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Abstract

Energy is the soul of each new invention on this Bio-sphere. The upturn in this

advancement and technological growth, energy resources are getting scarce.

As the energy resources are limited and can not be increased in the same pro-

portion as with the exponential rising demand, that is why, we have to manage

our energy consumption smartly. An optimal integration of the Renewable en-

ergy sources (RESs) for this purpose is the need of the day. This paper proposes

a bio-inspired algorithm, namely, the Lion’s Algorithm (LA), for an efficient

Energy Management System (EMS) in industrial areas, along with a beneficial

utilization of RES and energy storing units (ESUs). Different objectives, like,

Total Energy Cost (TEC), Peak to Average power Ratio (PAR), Hourly Load

(HL) and maximization of end-user comfort (the reduction in waiting time)

are analyzed and observed. LA algorithm is specially designed to achieve these

objectives up-to maximum optimal limits. The MATLAB simulation results il-

lustrate that, our proposed algorithm reduced the cost upto 42.66% and PAR
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35.94% compared to un-scheduled and scheduled with other state-of-the-art

algorithms, with an average waiting time of only 0.216 hrs (12.96 sec).

Keywords: Bio-inspired Algorithms, Energy Management System, Energy

Optimization, Lion Algorithm, Smart Grid, Traditional Electric Power Grid,

Sustainable Energy

1. Introduction

Scientific research sparked the industrial revolution, ushering in a new era

of improvement in every facet of existence. Through the use of new equip-

ment and amenities made possible by modern technologies, human existence

has become more comfortable [1], [2]. The universe’s latent potentials are be-5

ing explored through new science. All of these explorations and advancements

are possible because of electricity. All mechanical and electrical mechanisms

have been converted to run on energy sources as a result of industrial advance-

ment, increasing their demand and resulting in energy shortfall over the last

few decades. This is a critical time to increase the efficiency and effective-10

ness of these resources in order to conserve energy. Although researchers in

the electrical domain have devised numerous processes and mechanisms, one

such mechanism is the application of optimization techniques. Advanced in-

frastructure is critical for economic progress, which takes yet another massive

amount of energy. However, the amount of energy that is accessible remains15

constant because installed power plants generate a finite amount of energy.

Increased energy production or the construction of new power plants is an

expensive and time-consuming operation that developing countries cannot af-

ford. Researchers have used a variety of strategies and technologies in order to

address these issues. These strategies make use of algorithms inspired by na-20

ture, bio-inspired algorithms, and mathematical models. To identify the opti-

mal solution, researchers model complex problems using various optimization

algorithms.

Electrical energy’s invention ushered in a period of profound change in hu-
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man history. It has numerous benefits for human life, ranging from everyday25

use such as lighting, washing clothes, and cooling systems (refrigeration or

air-conditioning) to communication systems and industrial level. The world’s

future will be entirely reliant on electrical potential, but there is a problem

here: energy scarcity. As a result, we employ an optimization process to max-

imise the efficiency of existing resources, which has been made possible by30

the advancement of Smart Grid (SG) technology. Due to the advantages of

power exchange and communication between consumers and utilities, proper

power management occurs, resulting in benefits such as reduced peak to av-

erage power ratio (PAR), reduced electricity bills, and similarly decreased fre-

quency of system interruptions, resulting in increased system reliability and35

sustainability.

Various algorithms, such as the Particle Swarm Optimization (PSO) algorithm,

the Multi-verse Optimization (MVO), the Dragonfly algorithm, and the Wind-

driven optimization algorithms, have all been used to provide comfort using

the optimization concept. The Lion’s Algorithm (LA) is proposed in this paper40

to achieve not only the above objectives, but also the optimal integration of

consumer-generated energy resources like solar and wind turbines.

Demand-Side Management (DSM) is concerned with the load on consumers.

It serves two primary functions: load management and demand response (DR)

[3]. Every energy-consuming area is equipped with Smart Meters SM and45

AOAs. In EMC, smart metre communication is primarily used to transmit pric-

ing signals and monitor power consumption. Consumers are kept informed

about their consumption through bidirectional communication in SM and uni-

directional power flow. Keeping peak hours in mind, the Energy Management

Controller (EMC) is responsible for scheduling the appliances. Each appliance50

should complete its assigned time slot in order to achieve its optimization ob-

jective [4, 5]. Given that energy is produced in a fixed quantity, its supply will

almost certainly be directly proportional. That is why we require appropriate

techniques and methods for efficiently utilising energy in order to maintain

the production supply chain [6]. Traditional grids are incapable of meeting55
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this energy demand, which is why smart grids (SG) have been proposed and

implemented in certain areas. The smart grid (SG) improves the resilience and

consistency of existing power grids. A critical component of SG is the smart

metre (SM), which is used not only for bidirectional communication but also

for energy monitoring. In SG, the EMC is responsible of scheduling appli-60

ances in the residential, commercial, and industrial sectors. EMC works in

conjunction with Automated Appliances (AOAs) and a sophisticated commu-

nication and distribution system. SM, in collaboration with EMC, schedules

the appliances based on the utility’s pricing signal and data on the length of

the machines’ operational time [7].65

We conducted various simulations to demonstrate that our proposed algorithm

intelligently minimised energy costs, PAR, and machine waiting time. To ac-

complish this, a smart grid for industrial load management is implemented

and modelled for various LOTs and machine power ratings. Different machines

in the industry have varying power ratings, owing to their varying dimensions70

and application in varying load units. Thus, in order to manage such a system,

we require an algorithm capable of producing satisfactory results.

Similarly, if the energy provider provides an incentive to its customers in the

form of real-time low prices during non-peak hours, this would be extremely

beneficial. The remaining paper is structured as follows. Section 3 discusses75

related work. Section 4 discusses briefly the model architecture and the anal-

ysis of real-time data. Section 5 contains a description of our proposed Lion’s

Algorithm (LA). Section 6 compares the simulation results for the Pricing Sig-

nal, Daily Average Load, Hourly Load, Hourly electricity cost, PAR, Total Cost,

and waiting time to several state-of-the-art optimization algorithms. The final80

section of the paper contains the conclusion.

2. Background and Related Work

Numerous researches, all over the world, have proposed different optimiza-

tion techniques. In [8], the authors have proposed a mixed-integer linear pro-
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gramming approach for finding a way to balance the load and adjustment of85

cost in more populated areas. However, they didn’t consider user comfort,

which is the main focus of current research. In [9, 10], authors have used

three different meta-heuristic techniques, i.e., the Harmony Search Algorithm

(HSA), Enhanced Differential Evolution (EDE) and the Bacterial Foraging Al-

gorithm (BFA),for optimal utilization of the existing energy facilities. The re-90

sult analysis reveals that HSA is the best in terms of cost as compare to BFA

and EDE. Although, HAS reduced the electricity cost more than the other two

algorithms, yet the un-scheduling cost of each algorithm is greater. Appliances

have been scheduled according to the day ahead pricing (DAP) signal. In pric-

ing signals, crusts and troughs appear according to uses. The algorithm shifts95

the appliances to less energy cost hours, in which, per unit electricity price is

less as compared to on-peak hours. The highest quantity of energy consumed

in an unscheduled case is 12.0750 kWh. While after applying the algorithm,

the new readings are 9.0152kWh, 9.4750kWh, and 9.7750 kWh in cases of

HAS, EDE, and BFA respectively. EDE achieved sound in the case of PAR and100

BFA in the case of reducing user discomfort.

For attaining good results in terms of cost and PAR minimization, Genetic Al-

gorithm (GA), Moth-Flame Optimization algorithm (MFO) and a hybrid ver-

sion of the GA and MFO, namely, Time-constrained Genetic Moth-Flame Op-

timization (TG-MFO) algorithms are used in [11? ]. In [12], BFA, GA and105

a hybrid version of these two algorithms, are used for energy optimization.

These algorithms focus mainly on cost and PAR minimization and load man-

agement on consumer side. The results show that, the day-bsed energy cost

is less in the hybrid algorithm as compared to its parents algorithms, GA and

BFA. This approach has saved 10% of unscheduled cost. PAR for BAF is low110

but the cost figure is high. In the case of the hybrid approach, PAR is less as

compared to GA, and the waiting time is also reasonable. In [13], researchers

have divided appliances into two categories, one is power flexible and the sec-

ond one is time flexible to acquire minimum electricity cost and decrease the

waiting time. The authors used a hybrid version of Common Scrambling Al-115
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gorithm (CSA) and Earthworm Optimization Algorithm (EWA) algorithms in

[14]. Based on their calculations, they reduced the cost up to 50.6% by RTP

signaling.

Similarly, in [15], the author draws a comparison between GA and the CSA for

the total cost calculation, waiting time, and PAR reduction. By using GA, the120

cost is reduced by 22.840%, while, CSA has reduced it 21.470%. GA achieved

PAR reduction up-to 3.63 (18.240% reduction) and 3.7198 for CSA (19.0% re-

duction) concluding that GA is better for cost reduction and CSA for PAR re-

duction. All results are based on appliances scheduling according to pricing

signals. Electricity price is different in different time slots due to which elec-125

tric companies made their consumers aware to shift appliances from on-peak

hours to off-peak hours. In [16, 17, 18], the main grid is connected with the

micro-grid to for minimization of both, PAR and energy cost, using the op-

timization techniques viz GWO, BPSO, GA, and WDO. To get better results,

they have used hybrid versions of the different algorithms. The function of130

the DMS program is to provide support to power in different areas, such as

infrastructure maintenance, control of electricity, and providing the best way

to manage energy resources [19]. In a large scale, the load is shifted between

PHs and OPHs in residential areas. Appliances are divided into two major por-

tions, non-shiftable and shiftable. The proposed hybrid’s results are better as135

compare to other techniques [20, 21, 22]. In [23], the author used a Q-learning

algorithm for the optimal DR mechanism. This is a fully automated system

for the residential sector. An energy model BPOS is used on behalf of DMS. It

aims to control electricity costs in residential areas by scheduling shiftable ap-

pliances. For the investigation of the DR mechanism, the Time-Of-Use (ToU)140

pricing model is used for the manipulation of energy-cost, however, user dis-

comfort due to this scheduling is ignored in [24]. BFOA works on a Hyper-

Heuristic Resource Scheduling (HHRS) algorithm for the grid. The operational

completion time of the last job to leave the system and cost performance met-

rics are used to compare BFOA with the existing resource scheduling algorithm145

which is GA and annealing. Purposed algorithm results show that it performed
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well in terms of cost minimization [25, 26]. In [27, 21], scholars enhanced the

reliability and efficiency in SG to produce minimization of the cost by data-

centers and cloud grid infrastructure. The presented DR mechanism mini-

mizes cost, minimizes the UdC and maximizes the privacy in [28]. The authors150

in [29, 30, 31, 32] give a detailed report on load management strategies. The

power transmission of SG, communication between RUs and SG for NANs or

HANs are discussed. Dynamic Pricing-Based and Incentive-Based Scheduling

Schemes are described to elaborate peak shaving. Finally, the authors give a

brief estimate of Load Management techniques and major challenges because155

of LM in SG.

3. Research Challenges

As mentioned earlier, that, an efficient energy management system is essen-

tial due to the un-efficient utilization of existing energy resources in the tra-

ditional electric power grids. By exploiting various computational techniques160

and algorithms, the aforementioned problem could be solved comfortably. Al-

though, researchers have proposed numerous types of bio-inspired algorithms,

however, these research works have mostly ignored the end-user discomfort

due to scheduling of their appliances in either residential, commercial or in-

dustrial sectors, while minimizing their electricity-bills and PAR. That’s why,165

in this research work, we use a new bio-inspired technique for industrial ap-

plication. In industrial sector, we have divided our load in different load units.

The scheduling of appliances is one of the most important requirements to op-

timize the performance of these different load units. The objectives of schedul-

ing are to reduce; the electricity bill, PAR, aggregated power consumption and170

appliances waiting time in order to minimize the end-user’s discomfort, etc. In

this regard, the current research in SG majorly focuses on optimization tech-

niques for power scheduling. As, in the present era of electricity dependent

modern technologies, user wants to finish his job quickly, instead of waiting

for his appliances to start. On the other hand, the consumption has to be min-175
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imized in order to reduce the cost as well. But unfortunately, these research

attempts have ignored frequency of interruptions and aggregated power con-

sumption, as these issues threaten reliability, stability, sustainability and secu-

rity of Smart Grid.

4. Objectives180

There are four main objectives of our work as listed below:

1. Minimization of end-users frustration due to scheduling of their ma-

chines;

2. Minimization of end-users consumed energy-cost;

3. Minimization of PAR;185

4. Integration of RESs.

The mathematical models of our objective functions are given as follow:

EN
T =

N∑
n=1

Wn ×Xn (1)

In the above equation, Wn is the power of nth machine, N shows the total no of

machines in a given load unit, Xn is the ON-time in a time slot of nth machines

and EN
T is the total energy calculated for all load units in a single time slot.

Now the total cost CSch for all scheduled appliances can be calculated by

multiplying total energy EN
T ,m calculated in mth time slot with the respective

energy price ζm in that time slot.

CSch =
M∑
m=1

EN
T ,m × ζm (2)

Cunsch is the total energy price for all slots of Unscheduled appliances calcu-

lated in the similar manner, then the normalized CNorm of scheduled appli-

ances can be calculated as:

CNorm =
CSch

CSch +Cunsch
(3)
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Now, let the starting time of a machine is α and the operation finishing time190

is β, then the new variable η will be the actual operational starting time of that

machine. Then, the consumer’s maximum waiting time could be up to ηmax.

Therefore, ηmax, will be the maximum operation starting time, after which the

machine must start, so that, the machine will complete its operation up to the

final time β.195

Now, since,

(β −α) ≥ LOT (4)

Therefore, the range of waiting time can be α to ηmax.

Machines normalized waiting time (τw) can be calculated as:

τw =
η −α

ηmax −α
(5)

Equation (1.5) shows that the normalized waiting time can be from “0” (when

η = α) to “1” (when (η = ηmax). Now, the final expression for minimization

function is given by the following equation:

min

(
(λ1 ×CNorm) + (λ2 × τw)

)
(6)

Our proposed objective function aims to reduce electricity cost, while main-

taining higher end user comfort level by minimization of waiting time. λ1 and

λ2 are multiplying factors of two portions of our objective function. Their val-

ues varies between ’0’ and ’1’ so that λ1 + λ2=1 . It reveals that either λ1 and200

λ2 could be 0 to 1. That is, if an end user does not want to participate in the

load scheduling process, then his multiplying factors will be λ1 =1 and λ2 =0

in the objective function.

5. Model Architecture

The EMS in the smart grid consists of two main sides, DMS (Demand Side205

Management) and SSM (Supply Side Management). Smart Meter (SM) has AMI

(Advanced Metering Infrastructure) technology, used for bilateral communica-

tion between consumer and supply. Machines have different patterns of EMC.

9



Energy Management Control (EMC) then adjusts its load relative to the pric-

ing signal received from the company. Figure 1 depicts the proposed system210

model architecture.

Figure 1: Proposed System Model Architecture

Smart Meter SM collects the pricing signal and direct it to EMC. Mean-

while, it collects a power signals from EMC and forward it to the energy providers

(company). This communication can be done through different media, like,

Wi-Fi, ZigBee, Global System for Mobile Communication (GSM), etc [33]. In215

an industry system with different sections carry different load units. We have

taken a crushing mill as a case study in this paper. It has different automatic

operated machines (AOMs), with different power ratings as depicted in Figure

2.

Mill-A and Mill-B are both of the same categories. They use one of them at220

a time. This Mill-A/B takes 177KW power and it consists of different types of

motors i.e. Main Mill 75KW, Crusher/Compressor 82 KW, and Rotary/Elevator

20KW. These induction motors are 100HP, 110HP, and 26HP respectively. Mill-

C takes 299KW and consists of 3 types of motors i.e. 176HP, 150HP, and a

10



Figure 2: Load Units

slip ring motor of 84HP. The coating section takes the power of 162KW and225

having two types of induction motors of 148HP and 68HP. The jaw crusher

section takes 90KW having two motors 100HP and 20HP. The packing section

takes 15KW and has only one type motor of 7HP. Conveyor takes 14.5KW and

having one motor of 10HP. The estimated load of the mill is 350KW which in-

dicates that at the same time interval, 4 to 5 motors are in working condition.230

The Maximum Demand Indicator (MDI) is measured to be 400KW. Keeping

demand in mind machines do their work till overload. Table 1 summarizes the

load units, power ratings and their length of operational times (LOT).

Table 1: Industrial load units and their power ratings and length of operational times

AOMs Power Rating(KW) LOT (Hrs)

Mill A/B 177kW 8

Mill - C 299kW 5-8

Coating Section 162kW 7

Unit # 2 90kW 10

Packing Machine 15kW 9

Conveyers 14.5kW 12
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6. Scheduling Algorithm

The different algorithm has been used in literature to achieve low PAR, low235

energy cost and user relief for the optimal solution of appliances scheduling

time. In this paper, The Lion’s Algorithm has been used which is a new Nature-

Inspired Search Algorithm. A brief description of this algorithm is given below.

6.1. The Lion’s Algorithm (LA)

The lion, regarded as the most powerful animal on the planet, fights not240

only for its prey but also for the survival of other mammals. The optimal so-

lution provided by the Lion’s Algorithm is based on lion behaviours. Because

a lion cub matures between 2-4 years, the territorial lion must defend his ter-

ritory for the same amount of time. Nomadic or roving lions conquer during

this time period, which is referred to as territorial or regional defence. The no-245

madic lions and the regional lions engage in combat. If the nomadic lion gains

dominance, it slaughters all of the beaten lion’s newborn cubs and forces the

female lion to reproduce for the next generation. This nomadic lion will now

take on the role of territorial lion. When the pride’s cubs reach maturity, they

either kill or expel the territorial lion. This invader lion kills and gives birth to250

the regional lion’s cubs.

The inspiration behind this algorithm is to study its social behavior and find

an optimal solution for a large-scale solution. The algorithm gives the solution

based on both single and multi-variable. Territorial defense and territorial

takeover are two behaviors which give optimal solution. Lion is the main solu-255

tion and cubs give the solution-driven from the lion’s solution. Evolution takes

place in territorial defense when the existing solution (the territorial lion) is

replaced with new solutions (the nomadic lion). If this newly generated solu-

tion is better, then the old driven solution is removed.

The aim of the territorial takeover is only to keep the best male lion and the260

female lion solution and remove all others. Following are the steps involved

in The Lion’s Algorithm. Based on its nature, it has four major components.

These are given as follow;
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1. Pride Generation, for new solutions.;

2. Mating, for developing a new solution;265

3. Territorial or regional Defense;

4. Territorial takeover to find new best solutions and replacing the old ones.

The process is repeated until the desired solution is obtained. The pride is an

energetically varied size solution initially with two solutions. One is for males

and the other is for females. Which keeps the driven solutions and removed270

the lousy solution. The procedure of mating is for generating new solutions

from already existing solutions by mutation and crossover. Gender gaping is

the difference among the resolutions and killing new born cubs means derived

solutions are best.

275

The search process of the Algorithm follows its basic function. For the

optimal solutions, the objective function is.

argminf (p1,p2 · · ·pn)n ≥ 1 (7)

pi(p
min
i ,pmax

i ) (8)

The above Eq. (7) n−variable minimization function for every solution vari-

able may indicate certain equalities and inequalities. Lion has binary struc-

tured when n=1 and integer for n > 1. Initial pride is structured as pmale =

[pmale
1 ,pmale

2 , · · ·pmale
L ] and pf emale = [pf emale

1 ,p
f emale
2 , · · ·pf emale

L ] where L is solu-

tion length vector given as.

L = {
n n ≥ 1

m otherwise
(9)

Eq. (9), pmale
l and p

f emale
l , where l = 1,2 · · ·L are integers in (pmin

l ,pmax
l ) for

n > 1. On the other hand, pmale
l and p

f emale
l may be either 0 or 1 at n = 1 such

that h(pl) = (pmin
l ,pmax

l ). The h(pl) is for both pmale
l and p

f emale
l

h(pl) = d(p1)
L∑
l=2

2L−lp1 (10)
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C1

Pmale

C1

Pfemale

C2

Pmale

C2

Pfemale

P11Cub P12Cub P21Cub P22Cub

Figure 3: Different probabilities of crossover

where

k(pl) = {
1 if p1 = 0

−1 otherwise
(11)

Through the process of crossover and mutation of pmale
l and p

f emale
l , four

(4) new pcub are produced. Figure 3 depicts two different probabilities of the

crossover. After the generation of pcub from crossover and pnew from mutation,

the cub pool shows 4 direct cubs and 4 mutated cubs and this is referred to as

gender grouping. The clustering process of gender grouping is to derive two280

solution groups, one for pp
m−cub

male cubs and others for pf −cub female cubs.

For the stability of the cub pool and to update the pride it is considered to be

necessary to kill the weak cubs. This killing by testing the health is to keep the

male and female cubs equal in number which also determines the objective

function worth of every cub. The existing territorial lion gets this stabilized285

cubs pool and initialized to zero. During every territorial defense success, the

cubs’ age is incremented by on. Following pseudo-code shows the territorial

defense and territorial takeover. In the pseudo-code, by following the process

of pmale similar is followed for pnomod . Instance objective function is f ()̇. pmale

and pnomod have the objective function values f (pmale) and f (pnomod) and also290

their strength respectively whereas f (ppride) is entire pride strength calculated

as.
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f (ppride) =
1

2(1 + ∥pm−cub∥)

f (pmale) + f (pf emale) +
Agemat

age(cub) + 1

∥pm−cub∥∑
Z=1

f (pm−cubZ ) + f (pf −cubZ )

∥pm−cub∥


(12)

Where, f (pm−cubsZ ) and f (pf −cubsZ ) are the statuses of male cubs and female cubs,

∥pm−cub∥ denotes the number of male lion cubs in pride where Agemat is the age295

maturity of cubs.

The coalition property of this algorithm gives a strong solution for pride. It

processes the new solution in such that this new solution is better the capabil-

ity of both the present solution and pride. Once the cubs reach the maturity300

level Agemat , they are considered lions and started defending with old’s line

pride to prove their strength.

At the start of the territorial takeover, build pmale
pride and p

f emale
pride by annexing

the pmale and pcub in pmale
pride and pf emale and pf −cubs in p

f emale
pride should follow

these criteria.

f
(
pmale
best

)
<
(
(pmale

best (pd)
)
;
(
(pmale

best (pd)
)
, pmale

best (13)

f
(
p
f emale
best

)
<
(
(pf emale

best (pd)
)

;
(
(pf emale

best (pd)
)
, p

f emale
best (14)

After the selection of best, the mating strength of pmale
best decides whether to keep

p
f emale
best in pride or not.305

The steps involved in the LA are summarized as follow;

7. Simulation Results

Various simulations are conducted to determine the validity and produc-

tivity of our proposed algorithm. All of these simulations are aimed at demon-

strating proper and rational scheduling on an industrial scale in order to ac-310

complish our objective. After monitoring industrial energy consumption, these
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simulation results were retrieved. Six distinct components are managed prop-

erly in a multitude of ways, for instance, LOT rated power. Table-1 summarises

the overall system of sections, including their numerical values and class type.

Due to the limitations of scheduling techniques and the proper load manage-315

ment of shiftable sections, the shiftable sections play a critical role comparable

to that of non-shiftable appliances. The simulation results are consistent with

the research objectives of low cost, an effective Peak-to-Average Power Ratio

(PAR), and a plausible waiting time.

7.1. Daily Average Load320

Figure 4 depicts that the daily average load for each algorithm is equal. It

means that, the load in un-scheduled case and scheduled with different algo-

rithms, like, GA, CSA, LA and ACO (showed with different colors) is the same.

Keeping this common load in mind, simulations are done for knowing the pro-

ductivity and strength of our suggested algorithm (i.e. LA) and other algo-325

rithms which are in comparison with it. This common load will decide which
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Figure 4: Daily average load graph

method of scheduling is best to get more efficient results. PAR, electricity cost,

and waiting time-like factors are observed through this leveled scenario.

7.2. Hourly Load Curves

Figure 5 shows different sketches of hourly load curves, which are drawn330

for un-scheduled load and scheduled with different bio-inspired algorithms,

like, LA, CSA, GOA, and ACO. Their results are compared with unscheduled

sketches. It is clear from the figure, that, LA algorithm shifted the load sec-

tions from on-peak to off-peak hours, which is not only cost effective but also

gives maximum end-user comfort. With different values of appliances power335
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ratings and their LOTs, our proposed algorithm results are comparatively more

acceptable as compare to others.

7.3. Pricing Signal

Numerous global energy systems issue their Real-Time Pricing (RTP) hourly

flags on day-ahead basis. Real-time pricing (RTP) signal gives valuable in-340

formation to both utility and consumer to monitor their usage of electricity.

Energy smart meters (SM) provides day-ahead pricing (DAP) signals to the

clients, according to which, they manage their daily needs. We have utilized

the real-time pricing signal of the New York Independent System Operator

(NYISO) [34]. An hourly chart of that DAP signal is graphed in the Figure 6a345

and Figure 6b. Based on this DAP signal, the cost is calculated.

7.4. Hourly Electricity Cost

Before calculating total electricity cost, it is mandatory to calculate hourly

cost, so that, it should be clarified that, in which time interval, the electric-

ity cost is high. Knowing that, the data scheduling process can be made more350

efficient. In Figure 7 different sketches are drawn which indicate different al-

gorithms. Their peaks and depths, can easily be observed. Compared to CSA,

GOA and ACO, Lion’s Algorithm (LA) is giving a compensated sketch through-

out the day (24 hrs). So LA is stable in case of hourly electricity cost as shown

in the Figure 7.355
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Figure 6: (a) DAP Signal (MATLAB), (b) DAP Signal (Original) [34].

7.5. PAR simulation

The stability of PAR in electric power systems is the main concern of every

researcher. This means that, the system would be stable when PAR is low and

vice versa. Figure-8 for PAR values points out that the LA algorithm yields

comparatively less value of PAR than all the other optimization algorithms.360

The CSA Algorithm, GOA Algorithm, and ACO Algorithms optimized PAR to

(3% decrease), (13.05 % increase) and (28.72% increase) respectively, while our

proposed Lion’s Algorithm (LA) decreased it to 35.94 % as depicted in Figure

8, Which was the main concerned of our proposed algorithm.

7.6. Total Daily Energy Cost365

Besides resources, one most important factor is cost optimization to provide

comfort-ability regarding low energy cost and hence low consumer electricity

bill. The more the algorithm is economical, more it will be considered pro-

ductive. After cost simulation, it is analyzed that the cost of the LA algorithm

optimized up to 42.66%. However, CSA, GOA, and the ACO algorithm reduced370

the cost by 31.81%, 51.13% and 22.79% respectively. This concludes that GOA
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Figure 9: Total Daily Energy Cost

performed well in the case of cost optimization as shown in Figure 9, however,

it has reduced the cost with more waiting time, as will be seen in the Figure 10

7.7. Average Waiting Time/ User Comfort375

Cost optimization and PAR minimization directly affects the consumer in-

terest. However, they are concerned with the waiting time of load units after

making their schedule. This factor (i.e. waiting time of scheduled appliances)

is directly related to user comfort when load units scheduling is determined.

Figure 10 depicts the average waiting time of machines by different algorithms.380
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Figure 10: Average Waiting Time

It is clear from the figure that LA outperformed in comparison to all other al-

gorithms. LA gives only 0.216 hrs (12 minutes and 57 seconds) of average

waiting time, compared to CSA (1.038 hrs), GOA (1.294 rs) and ACO (1.096

hrs) algorithms.

Table 2 summarizes the performance of the proposed LA algorithm in com-385

parison to the unscheduled-load and load scheduled with the CSA, GOA and

ACO algorithms.

8. Conclusion

In this paper, we have proposed a Bio-Inspired algorithm, namely, Lion’s

Algorithm (LA) for an efficient Energy Management System (EMS) to sched-390

ule different industrial load sections for energy optimization and then the re-

sults are compared with already existing techniques of CSA, GOA, and ACO.

By considering industrial machines power ratings, different LOTs, and Day-
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Table 2: Comparison of the proposed algorithm LA with un-scheduled load and scheduled with

CSA, GOA and ACO algorithms

Techniques Cost ($) %Cost Re-

duction

Waiting

Time (h)

PAR % PAR

Change

Un- Schedule 268.72 – – 6.51 –

LA Scheduled 154.07 42.66% 0.216 4.17 -35.94

%

CSA Scheduled 183.24 31.81% 1.038 6.49 -0.3%

GOA Scheduled 131.31 51.13% 1.294 7.36 +13.05%

ACO Scheduled 207.46 22.79% 1.096 8.38 +28.72%

Ahead Price signal, we calculated hourly load, hourly energy cost, total daily

load, total daily energy cost, PAR and consumer average waiting time. The395

simulation results show that there is 42.66% decrease in the cost and 35.94%

minimization in PAR compared to un-scheduled load. In this work, we not

only focused on cost minimization and PAR reduction but mainly concerned

with minimized average waiting time, to care of end-user comfort. That is why

the proposed algorithm reduced the cost only at 0.216 hrs (12.96 sec). This is400

a big achievement of the proposed algorithm. This algorithm can be used to

realistic data when and where it is needed. In future work, more bio-inspired

algorithms will be explored and utilized for achieving better results in term of

total cost and PAR reduction, with lowest possible waiting time, and can be ap-

plied in all three sectors of society, i.e., industrial, commercial and residential405

sectors.

Abbreviation

The following abbreviations are used in this manuscript and are presented

in alphabetical order:

23



ACO: Ant Colony Optimization410

AM: Analytic Method

AMI: Advanced Metering Infrastructure

AOAs: Automated Appliances

AR: Architecture

BFA: Bacterial Foraging Algorithm415

CSA: Cuckoo search Algorithm

DAP: Day ahead Pricing

DSM: Demand Side Management

DER: Distributed Energy Management

DSM: Demand-Side Management420

ERD: Energy and Reserve Dispatch

ESS: Energy Storage System

ED: Economic Dispatch

EDE: Enhanced Differential Evolution

EMC: Energy Management Control(ler)425

EWA: Earthworm Optimization Algorithm

GA: Genetic Algorithm

GEM: Grid Energy Management

GOA: Grasshopper Optimization Algorithm

HL: Hourly Load430

HEM: Home Energy Management

HE: Heuristic

HSA: Harmony Search Algorithm

LA: Lion’s Algorithm

LOTs: Length of Operational Time(s)435

MDI: Maximum Demand Indicator

MEM: Micro-grid Energy Management

MEO: Micro-grid Economic Operation

MFO: Moth-Flame Optimization algorithm

MH: Math-Heuristic440
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MVO: Multi-verse Optimization

OPF: Optimal Power Flow

OF: Objective Function

PAR: Peak to Average power Ratio

PSO: Particle Swarm Optimization445

RDG: Reconfiguration of Distribution Grid

RTP: Real Time Pricing

SA: Solution Algorithms

SDN: Smart Distribution Network

SG: Smart Grid450

SM: Smart Meter

SSM: Supply Side Management

TEC: Total Energy Cost

TG-MFO: Time-constrained Genetic Moth-Flame Optimization

TN: Taxonomy UC: Unit Commitment455
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