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Reliability of EEG Measures in Driving Fatigue
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Abstract— Reliability investigation of measures is impor-1

tant in studies of brain science and neuroengineering.2

Measures’ reliability hasn’t been investigated across brain3

states, leaving unknown how reliable the measures are in4

the context of the change from alert state to fatigue state5

during driving. To compensate for the lack, we performed6

a comprehensive investigation. A two-session experiment7

with an interval of approximately one week was designed8

to evaluate the reliability of the measures at both sensor9

and source levels. The results showed that the average10

intraclass correlation coefficients (ICCs) of the measures11

at the sensor level were generally higher than those at the12

source level, except for the directed between-region mea-13

sures. Single-region measures generally exhibited higher14

average ICCs relative to between-region measures. The15

exploration of brain network topology showed that nodal16

metrics displayed highly varying ICCs across regions and17

global metrics varied associated with nodal metrics. Single-18

region measures displayed higher ICCs in the frontal and19

occipital regions while the between-region measures exhib-20

ited higher ICCs in the area involving frontal, central and21

occipital regions. This study provides an appraisal for the22

measures’ reliability over a long interval, which is informa-23

tive for measure selection in practical mental monitoring.24

Index Terms— Driving fatigue, EEG, brain network, func-25

tional connectivity,graph metrics, sensor and source levels.26

I. INTRODUCTION27

DRIVING fatigue has been considered as one of the fatal28

causes of traffic accidents, accounting for 20% of all road29

fatalities worldwide [1]. Prolonged driving on a monotonous30
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road environment reduces driver’s vigilance, further resulting 31

in driving fatigue [2]. To date, various psychophysiological 32

signals have been used to assess fatigue and EEG is a relatively 33

reliable and easily-used indicator for fatigue [3], [4]. When 34

selecting a measure, its reliability over time is important as 35

high reliability ensures that driving fatigue can be correctly 36

and accurately assessed. Previous studies only investigated the 37

reliability of single-region measures during different episodes 38

of fatigue [5], while between-region measures have not yet 39

been investigated. This requires a comprehensive investigation 40

of all measures to address how reliable each measure is and 41

compare the reliability between each of them in terms of 42

identifying driving fatigue. 43

Early EEG studies utilized individual-region measures, such 44

as entropy [6] and spectral power [4], [7], [8], [9], [10], [11] 45

to assess driving fatigue. A study reported decreased sample 46

entropy in the occipital region during driving fatigue [6]. 47

Similar decreases during fatigue were found in central, pari- 48

etal, occipital regions using entropy. Considering different 49

frequency bands relevant to driving fatigue, previous studies 50

using EEG spectral power reported distinct changes from alert 51

to fatigue. Spectral power in theta and alpha bands increased 52

during fatigue while spectral power in beta band decreased 53

[8], [9], [10]. Increases of spectral power in theta band 54

were found in frontal, central and occipital regions [4], [11]. 55

Spectral power in alpha band increased in central, parietal, 56

occipital, and temporal regions during fatigue [4], [10], [11]. 57

Decreases of beta band during fatigue were observed in frontal, 58

central, temporal, parietal, and occipital regions [4], [10], [11]. 59

Although changes in delta and gamma bands during fatigue 60

have been reported, more prominent changes were frequently 61

reported in theta, alpha, and beta bands [12], [13]. 62

Between-region measures have been increasingly used and 63

widely applied to diverse neuroimaging studies, such as motor 64

imagery performance prediction [14], schizophrenia identifi- 65

cation [15], and fatigue identification [16], [17], [18], [19], 66

[20], [21]. Increases of mean phase coherence in frontal and 67

parietal regions were found in the delta and alpha bands 68

under fatigue [17]. In another study, interhemispheric con- 69

nections in alpha band showed an increase while higher con- 70

nection strengths were observed for interhemispheric frontal 71

and occipital connections relative to interhemispheric cen- 72

tral, parietal, and temporal connections during fatigue [18]. 73

Graph metrics have been utilized to capture the properties of 74

brain functional connectivity during fatigue [19], [20]. In a 75

study using ordinary coherence, total synchronization strengths 76

(in the frequency range of 0.5∼30 Hz) in frontal, central, 77
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and temporal regions, mean degree in delta and theta, and78

mean clustering coefficient in delta, theta, and alpha displayed79

significant increases while characteristic path length signifi-80

cantly decreased in delta, theta, alpha, and beta bands during81

fatigue [19]. A study using phase lag index (PLI) reported82

increases of connection strengths in delta band and changes83

of minimum spanning tree metrics in delta and theta bands84

towards star-like network configuration during fatigue [20].85

Directed measures such as partial directed coherence and86

directed transfer function have also been utilized to detect87

driving fatigue [21]. Similar to the single-region measures,88

between-region measures for fatigue assessment were more89

commonly reported in theta, alpha, and beta bands [12], [13].90

Previous studies have utilized various single-region and91

between-region measures of EEG, capturing different proper-92

ties of the brain regional and inter-regional activities. To deter-93

mine their potential usefulness as biomarkers of particular94

brain functions, we could estimate the reliability of the mea-95

sures [22]. Most of the previous studies analyzed the relia-96

bility of the measures during the resting condition [22], [23],97

[24], [25]. A study using fMRI reported higher reliability of98

the second order graph metrics than that of the first order graph99

metrics [23]. In a MEG study comparing different connectivity100

measures, higher reliability was observed for amplitude enve-101

lope correlation and partial correlation measures while phase-102

based measures and imaginary partial coherence displayed103

lower reliability [24]. In a study using EEG at sensor level104

and source level, the reliability of the graph metrics was higher105

for within-day sessions relative to between-day recordings and106

higher at sensor level compared to source level [22]. In the107

other EEG study utilizing phase-based measures comprising108

PLI and weighted PLI, the reliabilities of the two measures109

were found to be similar and the measures in alpha band had110

the highest reliability [25]. While wPLI exhibited lower global111

metric reliabilities relative to PLI, wPLI displayed higher relia-112

bilities of regional degree and inter-regional connections [25].113

The other studies have also analyzed the reliability of EEG114

measures using task-based protocol [5], [26]. In a study using115

working memory tasks, the global metrics were more reliable116

in the lower frequency bands and during the task compared117

to during the rest [26]. In a study using single-region mea-118

sures during different episodes of driving fatigue, mean EEG119

amplitudes in delta, theta, alpha, and beta bands were generally120

highly reliable (Pearson’s correlation, r > 0.6) with the highest121

observed in delta and theta bands (r > 0.95) [5]. Although122

these studies have discussed the reliability of measures, they123

did not consider the changes of the measures between different124

brain states. The studies also reported the reliability of single-125

region or between-region measures separately, neglecting the126

comparison between the two categories.127

Since subjects may have different baseline values for mea-128

sures, we proposed to estimate the reliability of the mea-129

sure changes between alert and fatigue states in this study.130

Investigating the reliability of measure changes across states,131

instead of measure values, might be more useful for fatigue132

detection because it enables the evaluation of the consistency133

of measures capturing the changes of brain states over time.134

In this study, we showed comparative results in terms of135

reliability among measures for driving fatigue and explored 136

those measures at both sensor level and source level. 137

II. METHODOLOGY 138

A. Experimental Protocol 139

Thirty healthy students, 18 males and 12 females (age: 140

23.17 ± 2.72 years, mean ± standard deviation), were 141

recruited from the National University of Singapore. All 142

subjects reported normal or corrected-to-normal vision, with 143

no history of substance addiction or mental disorders. The sub- 144

jects were required to obtain a full night (>7 h) sleep before 145

the day of the experiment. On the day of the experiment, they 146

were required to avoid consuming caffeine or alcohol. Each 147

subject signed a consent form and was trained to familiarize 148

themselves with the driving equipment before the start of the 149

experiment. The driving simulation was conducted using Log- 150

itech G27 Racing Wheel set and Carnetsoft Driving Simulator 151

(http://cs-driving-simulator.com) software. The subjects were 152

instructed to drive a car following a guiding car and to brake 153

as soon as the red taillights of the guiding car lit. Each subject 154

completed two identical driving sessions of 90 minutes, with 155

an interval of approximately one week. The experiment was 156

reviewed and approved by the institutional review board of the 157

National University of Singapore. 158

B. EEG Data Acquisition and Source Localization 159

Brain activity was recorded as EEG using wireless EEG 160

recording equipment with 24 dry electrodes (Cognionics, Inc., 161

USA), with a sampling rate of 250 Hz. The impedances 162

of all EEG channels were kept below 20 k�. The EEG 163

channels were referenced to the linked mastoids. Preprocessing 164

steps were performed to remove artifacts. Firstly, all EEG 165

channels were rereferenced using common average reference 166

(an alternative reference is infinity [27], [28]). The EEG 167

channels having poor contact with the scalp were removed 168

and then respectively interpolated using the signals from 169

its adjacent channels. The last 5-min portion of EEG was 170

discarded due to the change of the simulation phase into free 171

driving where there was no guiding car. The EEG signals were 172

band-pass filtered at 0.5∼45 Hz. The processed signals were 173

segmented into epochs of a 2-second period. Abnormal epochs 174

containing values with more than 5 times standard deviation 175

from the mean probability distribution were removed using 176

EEGLAB [29]. Based on the self-reported confirmation of 177

fatigue after the experiment and the increased reaction time at 178

the end of the experiment, the epochs between the 0th and 15th 179

minute and between the 70th and 85th minute were considered 180

as alert and fatigue samples respectively. Four subjects having 181

the insufficient number of alert and fatigue epochs in either 182

session after epoch rejection were excluded from further 183

analysis. For the remaining subjects, the remaining epochs 184

were decomposed into components using independent com- 185

ponent analysis (ICA). ICA components representing artifacts 186

were removed and the remaining components were used to 187

reconstruct clean EEG epochs. Clean EEG epochs were then 188

obtained in the first session (alert: 391.12 ± 51.81, fatigue: 189
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340.35 ± 91.56) and the second session (alert: 377.15 ± 54.67,190

fatigue: 363.50 ± 70.93) of the experiment.191

The exact low resolution brain electromagnetic tomography192

(eLORETA) [30] was used in this study to transform the EEG193

signals at sensor level to the cortical current source densities.194

The head model of eLORETA was based on the Montreal195

Neurological Institute average MRI brain map (MNI152) [31].196

The solution space was restricted to the cortical gray matter197

with 6239 voxels at 5 mm spatial resolution. The voxels at198

the cortical gray matter were then grouped into 80 cortical199

regions, based on the automated anatomical labeling (AAL)200

brain atlas. In this study, the 24-channel EEG signals were201

transformed into 80-region EEG at source level. Single-region202

and between-region measures were then computed from alert203

and fatigue epochs at sensor level and source level separately204

for the first and second sessions.205

C. Single-Region Measures206

The single-region measures utilized in this study were sam-207

ple entropy and power spectral density. Sample entropy (SE) is208

an optimized method of approximate entropy which estimates209

the complexity of the time series of the data without including210

the self-matches when computing the probability [32]. The211

parameters of SE were set to m = 2 and r = 0.2×std [6].212

In this study, SE was computed at the whole band (0.5∼45 Hz)213

for all sensor level and source level regions. Power spectral214

density (PSD) was utilized to measure the EEG activity at the215

aforementioned bands relevant to fatigue identification, theta,216

alpha, and beta bands. PSD was obtained by computing the217

ratio between the power of each band and the power of the218

total band [11]. In this study, PSD theta, alpha, and beta were219

calculated for all sensor level and source level regions. The220

differences of SE and PSD values between alert and fatigue221

were obtained before computing the reliability, resulting in 24222

and 80 values at sensor level and source level respectively.223

D. Between-Region Measures224

In this study, phase lag index (PLI) and partial225

directed coherence (PDC) were utilized as undirected and226

directed between-region measures respectively. PLI measures227

between-region synchronizations by computing the instan-228

taneous phase differences between regions, minimizing the229

effect of volume conduction [33]. PDC is a frequency-based230

measure based on Granger causality, estimating the directed231

information flow between regions [34]. For each measure,232

the individual connections and their corresponding graph233

metrics were computed. The individual connections of PLI234

were computed for the alert and fatigue epochs between all235

sensor level and source level regions, resulting in 276 and236

3160 connections respectively. The individual connections of237

PDC were calculated for the alert and fatigue epochs, resulting238

in 552 for sensor level and 6320 for source level connections239

(excluding the self-connections). The graph metrics of PLI and240

PDC comprised global (clustering coefficient, characteristic241

path length, global efficiency, and local efficiency) and nodal242

(nodal efficiency and nodal clustering coefficient) metrics. The243

PLI and PDC matrices were first thresholded at the sparsity244

range of 10% to 40% with 1% increment to obtain their distinct 245

characteristics at the different number of edges. Each graph 246

metric was computed at each sparsity threshold and its area 247

under the curve (AUC) along the sparsity range was computed. 248

The difference of the average AUCs in alert and fatigue 249

states were computed before estimating their reliabilities. Each 250

global metric had one value per subject per session while each 251

nodal metric had 24 (80) values per subject per session at 252

sensor (source) level. 253

E. Reliability and Statistical Analysis 254

The single-region and between-region measures were 255

obtained for alert and fatigue epochs. The average difference 256

between alert and fatigue across epochs of each subject was 257

then computed separately for the first and second sessions. 258

See the box named ‘Compute Reliability’ depicted in Fig. 1. 259

Intraclass correlation coefficient (ICC) [35] was then computed 260

to measure the reliability of the differences across subjects 261

over the two sessions. Specifically, 26 difference values for 262

each session were grouped to compute the mean M and the 263

variance V 2. The ICC was computed by 264

ICC = 1

(N − 1) V 2

N∑

n=1

(x1
n − M)(x2

n − M) 265

where N is the number of difference values for each session. 266

x1
n ∈ {x1

1, x1
2 , · · · , x1

26 and x2
n ∈ {

x2
1 , x2

2 , · · · , x2
26

}
are differ- 267

ence values for session 1 and session 2, respectively. ICC was 268

set to zero when it was a negative value. 269

To determine whether the ICC distributions of the 270

single-regions and between-regions measures were differ- 271

ent, Kruskal-Wallis test was conducted for the sensor level 272

measures and source level measures separately. Wilcoxon 273

signed-rank test was conducted for the comparison between 274

SE and PSD and between PLI and PDC, while Wilcoxon rank- 275

sum test was conducted for the comparison between SE/PSD 276

and PLI/PDC. 277

III. RESULTS 278

The ICCs of the measures at sensor level and source level 279

were depicted in Fig. 2. Kruskal-Wallis test showed significant 280

differences (p<0.05) among the measures at both sensor level 281

and source level. The results of the post-hoc tests between the 282

measures were shown in Fig. 3 and Fig. 4 for the sensor level 283

and source level measures, respectively. 284

At sensor level, PSD theta had the highest mean ICC and 285

its ICCs were significantly higher than the ICCs of the other 286

measures. PSD alpha had the second highest mean ICC and 287

its ICCs were significantly higher than the ICCs of the other 288

measures except for sample entropy, PSD beta, and PLI alpha, 289

having similar mean ICCs among them. While PLI alpha 290

was significantly higher than PLI theta, PLI beta, and PDC 291

measures, sample entropy and PSD beta were significantly 292

higher than PLI theta and PLI beta only. The lowest mean 293

ICCs were found for PLI theta and PLI beta. 294

At source level, PSD alpha had the highest mean ICC and 295

its ICCs were significantly higher than the other measures. 296

PLI measures had the lowest mean ICCs and its ICCs were 297
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Fig. 1. The illustration of intraclass correlation coefficient (ICC) computation of the measures. The EEG data at sensor level were collected from
the two-session experiment. Exact LORETA was used for transforming the EEG at sensor level to EEG at source level. The EEG at both sensor
level and source level were segmented into alert and fatigue epochs. For each alert / fatigue epoch, the single-region and between-region measures
were calculated. The measure change for each subject was computed by subtracting the average of the measure values in the fatigue epochs from
the average of the measure values in the alert epochs. The reliability coefficient was then calculated using ICC across the two sessions.

Fig. 2. The means and standard errors of the single-region and between-region measures. The measures at the sensor level were depicted in the
left panel while the measures at the source level were shown in the right panel.

significantly lower than the ICCs of the other measures.298

Sample entropy, PSD theta, and PSD beta had similar mean299

ICCs among them. PDC measures had similar mean ICCs300

among the different frequency bands although PDC beta had301

the highest ICC, followed by PDC alpha and PDC theta, and 302

the differences were significant. 303

The ICCs of the global and nodal metrics computed from 304

between-region measures were listed in Table I and Table II 305
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TABLE I
RELIABILITY OF THE GLOBAL METRICS OF PLI AND PDC MEASURES

Fig. 3. The post-hoc statistics between the measures at sensor level.
White boxes indicate the non-significant differences while the colored
boxes refer to the significant differences.

respectively. Among the PLI measures at sensor level, PLI306

alpha had the highest ICCs for both global and nodal metrics,307

followed by PLI theta. PLI beta had poor ICCs (ICC < 0.2)308

for the global and nodal metrics. The graph metrics of PLI309

Fig. 4. The post-hoc statistics between the measures at source level.
White boxes indicate the non-significant differences while the colored
boxes refer to the significant differences.

alpha at source level had lower ICCs than the respect metrics 310

at sensor level. The graph metrics of PLI beta showed poor 311

ICCs while the graph metrics of PLI theta at source level 312

generally had higher ICCs than the corresponding metrics at 313
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TABLE II
RELIABILITY OF THE NODAL METRICS (MEAN ± STD) OF PLI AND PDC MEASURES

Fig. 5. The ICC distributions of the selected measures for single-region, between-region, and nodal metrics. The top panel and bottom panel
showed the distributions of the measures at sensor and source level respectively. The horizontal axis represents ICC values and the vertical axis
represents the number of occurrences. The red lines in each plot refer to ICC = 0.4 and the percentages indicate the regions / connections having
ICCs higher than 0.4.

sensor level, except for the clustering coefficient. For the PDC314

measures, global metrics had higher ICCs at the sensor level315

than the metrics at source level except for global efficiency of316

PDC beta. The nodal clustering coefficients of PDC measures317

were higher at sensor level than the metrics at source level,318

while the opposite case occurred for the nodal efficiency of319

PDC measures.320

The measures with the highest ICCs in different cate- 321

gories, such as single-region, individual connections, and 322

nodal metrics, were selected for visualization. The ICC distrib- 323

utions of the selected measures were depicted in Fig. 5. For the 324

single-region category, PSD theta and PSD alpha had the high- 325

est mean ICCs at sensor level and source level respectively. 326

PLI alpha and PDC beta had the highest mean ICCs for 327
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Fig. 6. The topographies of ICC values of PSD theta and PLI alpha
(nodal efficiency) at the sensor level.

Fig. 7. The top 20 connections of PLI alpha having the highest ICC
values at the sensor level.

between-region measures. For the nodal metrics, PLI alpha328

(nodal efficiency) and PLI theta (nodal clustering coefficient)329

had the highest mean ICCs. In Fig. 5, single-region measures330

and nodal metrics had a higher percentage of regions with331

ICC > 0.4 at sensor level relative to the measures at source332

level while the between-region measures with ICC > 0.4 had333

similar percentage of individual connections at sensor level334

and source level.335

The ICCs of the selected single-region measure, nodal336

metric, and between-region measure at the sensor level were337

depicted in Fig 6 and Fig 7. In Fig. 6, higher ICCs for PSD338

theta were observed in frontal and occipital regions while339

higher ICCs for PLI alpha (nodal efficiency) were mainly340

found from frontal to occipital regions in the right hemisphere.341

In Fig. 7, twenty connections with the highest ICCs were342

shown for PLI alpha. The connections were mainly found343

between frontal and central regions and between central and344

parietal/occipital regions.345

The selected measures at source level were depicted in346

Fig. 8, Fig. 9, and Fig. 10 for single-region measure, nodal347

metric, and between-region measure, respectively. In Fig. 8,348

the right frontal, right temporal, right parietal and occipital349

regions had higher ICCs for PSD alpha. For PDC beta,350

twenty connections with the highest ICCs were shown in351

Fig. 9. The connections were observed mainly from right352

superior frontal gyrus (medial part) and right anterior cingulate353

gyrus to the other parietal, temporal, and occipital regions.354

For PLI theta (nodal clustering coefficient), higher ICCs355

were found in frontal, temporal, and occipital regions, shown356

in Fig. 10.357

IV. DISCUSSION 358

In this study, we comprehensively investigated the relia- 359

bility of the EEG measures for driving fatigue identifica- 360

tion. Our study explored the reliability of measure changes, 361

instead of measure values, to evaluate the consistency of the 362

changes from alert to fatigue. We estimated the reliability 363

across two sessions with a long interval in between, instead 364

of two episodes within a session, since such estimation is 365

closer to the practical use of fatigue detection which requires 366

reliable performance across days of operation. We com- 367

pared the reliability of the single-region measures with the 368

between-region measures and discussed the results in detail 369

below. 370

From the single-region measures at sensor level, 371

we observed differences in the ICCs of PSD measures 372

relative to SE. Among the single-region measures, PSD theta 373

(significant, p<0.05) and PSD alpha (not significant, p>0.05) 374

had higher mean ICCs relative to SE while PSD beta had 375

lower mean ICCs (not significant, p>0.05). Previous spectral 376

EEG study also found that EEG activity in theta band had 377

the highest correlation coefficients between two episodes of 378

driving fatigue, followed by that in alpha and beta bands [5]. 379

At source level, the ICCs of PSD alpha were significantly 380

higher than PSD theta, PSD beta, and SE. In this study, 381

higher ICCs were found at lower frequency bands. This might 382

reflect the distinct consistencies of the single-region measures 383

in particular frequency bands during driving fatigue. 384

At both sensor level and source level, single-region mea- 385

sures generally had higher mean ICCs than individual connec- 386

tions from between-region measures. This observation might 387

indicate the difference between the regional activities and 388

inter-regional interactions in identifying brain state changes. 389

While the consistency of regional activities from alert to 390

fatigue depends only on the individual regions, the consistency 391

of inter-regional interactions relies on the changes involving 392

any two regions. This more complex mechanism in between- 393

region interactions might be reflected by their overall lower 394

reliability relative to the reliability of the regional activities. 395

The ICCs of the measures at sensor level were generally 396

higher than those at source level, except for PDC measures. 397

For single-region measures, the higher percentage of regions 398

with ICC > 0.4 were found at sensor level relative to source 399

level, suggesting that single-region measures are more reliable 400

at sensor level compared to those at source level. This finding 401

is in agreement with the previous statement in a study inves- 402

tigating the reliability of EEG measures at both sensor and 403

source levels [22], probably due to the volume conduction 404

effect at the sensor level which was highly repeatable across 405

sessions and subjects [24], [37]. 406

At sensor level, PLI measures generally exhibited lower 407

mean ICCs except for PLI alpha. In the previous study 408

comparing MEG-based between-region measures [24], phase- 409

based measures also showed relatively lower reliabilities. The 410

low ICCs of PLI might be caused by its method of minimizing 411

the volume conduction effect [24] and relying on subtle prop- 412

erties of the signals which were harder to estimate and more 413

variable across subjects [37]. Compared to the other between- 414

region measures, PLI alpha at sensor level displayed higher 415
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Fig. 8. The topography of the ICCs of PSD alpha at the source level.

Fig. 9. The top 20 connections of PDC beta having the highest ICC values at the source level.

mean ICCs in individual connections and graph metrics. The416

observation agreed with a study investigating the reliabilities417

of PLI and weighted PLI, reporting higher global and the418

median of inter-regional PLI in alpha band relative to that419

in theta and beta bands [25]. Connectivity in alpha band420

was also reported as relatively more dominant and reliable 421

compared to that in the other bands for driving fatigue assess- 422

ment [12]. The dominance of PLI alpha at sensor level might 423

suggest the high consistency of the measure in identifying 424

fatigue. 425
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Fig. 10. The ICCs of PLI theta (nodal clustering coefficient) at the source level.

On the other hand, PDC measures had significantly higher426

ICCs (p<0.05) at source level than those at sensor level.427

This might signify that the PDC measures at source level are428

relevant to identifying fatigue. A previous study had assessed429

mental fatigue using PDC measures at the source level, reveal-430

ing the less efficient and asymmetrical organization of the431

cortical connectivity [36].432

In this study, the pattern of the reliability of the measures433

at source level might not resemble that at sensor level,434

particularly for distinct frequency bands. This observation435

might be caused by the variability induced by the source436

localization method [37]. In this case, the use of multimodality437

such as EEG-fMRI might be more beneficial for reliability438

estimation of driving fatigue indicators at sensor level and439

source level. A previous study has assessed driving fatigue440

using EEG-fNIRS, showing increasing alpha suppression in441

the occipital region and increasing HbO in the frontal cortex,442

supplementary motor area, primary motor cortex, and parieto-443

occipital cortex [38].444

Based on the results of the graph metrics, we found that445

nodal metrics had relatively high standard deviations. On the446

right panel of Fig. 6, regions were observed with high contrast447

of high and low ICC values. Similar to individual connections,448

the highly varying ICCs might be caused by the complexity449

to compute the metrics. In this case, the reliability of nodal450

efficiency and clustering coefficient of a node depended on451

its changes relative to the changes of all of the other nodes.452

Synchronous changes between states with all other nodes453

could result in high reliability while asynchronous changes454

with one or more nodes could lower the reliability. The global455

effect of this dependency with all of the other nodes might456

also suggest the ICCs of the global metrics which were 457

varying within the ICC value ranges of the corresponding 458

nodal metrics. At sensor level, several global metrics could 459

achieve higher ICCs relative to the mean ICCs of the single- 460

region measures, possibly indicating the synchronous changes 461

among all nodes. The other cause might be that particular 462

nodes were more relevant for fatigue estimation, which will 463

be discussed in conjunction with the regions of the other 464

measures. 465

Particular regions were observed with higher ICCs com- 466

pared to the other regions. In PSD theta at sensor level, higher 467

ICCs were found in frontal and occipital regions as shown on 468

the left panel of Fig. 6. At source level, right frontal, right 469

temporal, right parietal and occipital regions of PSD alpha 470

displayed higher ICCs relative to the other regions, depicted 471

in Fig. 8. Based on the nodal metrics, regions from right 472

frontal to right occipital showed high ICC values at sensor 473

level for PLI alpha (nodal efficiency), shown on the right 474

panel of Fig. 6. Frontal, temporal, and occipital regions had 475

higher ICC values relative to the other regions for PLI theta 476

(nodal clustering coefficient) at source level, shown in Fig. 10. 477

Based on the results, higher ICCs were mainly found in frontal 478

and occipital regions. In the previous studies, power increases 479

during fatigue have been reported in occipital region [11], 480

[39], [40], [41] and in frontal region [10], [11], [42], [39]. 481

These regions might be more sensitive to induced fatigue, 482

involved in the pathophysiology of chronic fatigue [43] and 483

cognitive control [44], [45] (frontal) as well as visual processes 484

(occipital). 485

For the PLI alpha at sensor level (see Fig. 7), the connec- 486

tions having high ICCs were observed between frontal and 487
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central and between central and parietal/occipital regions. The488

previous study using transfer entropy also revealed connec-489

tivity changes around central and parietal regions during a490

transition state from high to low vigilance level [44]. These491

high ICCs of connections involving the central region might492

explain the importance of sensorimotor regions (central) in493

relation to the visual (occipital) and cognitive control (frontal)494

processing during fatigue [44], [45].495

For PDC beta at source level, connections from right frontal496

to right occipital regions displayed high ICC values. In the497

previous study using PDC at the source level, an asymmetrical498

pattern of connectivity was observed where the right hemi-499

spheric connectivity was preserved during fatigue [36]. The500

dominance of right hemispheric activity might be associated501

with sustained visual attention [46], [47].502

To conclude, this study presented the reliability of the503

proposed measure changes between alert and fatigue states.504

The reliability of single-region and between-region measures505

were computed at sensor level and source level. At both sensor506

level and source level, single-region measures had higher507

mean ICCs than the individual connections of between-region508

measures. Nodal metrics displayed highly varying ICCs, sug-509

gesting the dependence of a region on the changes of the510

other regions. The global effect of this interdependency was511

reflected in the ICCs of the global metrics, varying within512

the ICC range of the respective nodal metrics. In this study,513

between-region measures showed high reliability for PLI alpha514

(sensor level) and PDC measures (source level) while single-515

region measures showed high reliability for PSD at lower516

frequency bands (theta and alpha). All in all, the reliability of517

measures during driving reveals their capability of consistently518

identifying driving fatigue. Such reliability across sessions519

with a long interval is important for the selection of measures520

in real-time fatigue monitoring.521
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