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Abstract 

African rice (Oryza glaberrima) has adapted to challenging environments and is a promising source of genetic vari-
ation. We analysed dynamics of photosynthesis and morphology in a reference set of 155 O. glaberrima accessions. 
Plants were grown in an agronomy glasshouse to late tillering stage. Photosynthesis induction from darkness and 
the decrease in low light was measured by gas exchange and chlorophyll fluorescence along with root and shoot 
biomass, stomatal density, and leaf area. Steady-state and kinetic responses were modelled. We describe extensive 
natural variation in O. glaberrima for steady-state, induction, and reduction responses of photosynthesis that has 
value for gene discovery and crop improvement. Principal component analyses indicated key clusters of plant bio-
mass, kinetics of photosynthesis (CO2 assimilation, A), and photoprotection induction and reduction (measured by 
non-photochemical quenching, NPQ), consistent with diverse adaptation. Accessions also clustered according to 
countries with differing water availability, stomatal conductance (gs), A, and NPQ, indicating that dynamic photosyn-
thesis has adaptive value in O. glaberrima. Kinetics of NPQ, A, and gs showed high correlation with biomass and leaf 
area. We conclude that dynamic photosynthetic traits and NPQ are important within O. glaberrima, and we highlight 
NPQ kinetics and NPQ under low light.
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Introduction

The climate crisis places crop yields under increasing pres-
sure from biotic and abiotic constraints and constitutes a 
major threat in meeting global food demand (Ray et al., 2019). 

Substantial yield decreases in key cereal crops are predicted to 
occur in both vulnerable and productive regions (Black et al., 
2008; Challinor et al., 2014). Asian rice (Oryza sativa), a dietary 
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stable to a third of the global population, is predicted to ex-
perience yield losses up to 37% by the end of the century due 
to climate change-driven drought events Bocco et al., 2012; 
Zhao et al., 2017). The development of productive and resilient 
rice cultivars has been the subject of increasing research focus 
(Atwell et al., 2014), and advances have been made through 
traditional plant breeding methods within the O. sativa indica 
and japonica types. However, there has also been an interest in 
the introgression of genes from a range of diverse interspecific 
material. This includes the African rice species Oryza glaberrima, 
which was domesticated in Africa 2000–3000 years ago, inde-
pendently of the domestication of Asian rice O. sativa. Oryza 
glaberrima retains many properties that are specific to challen-
ging African conditions of soil and climate, including limited 
water availability, abiotic stress, pests, and diseases (Bimpong et 
al., 2011; Agnoun et al., 2012; Bocco et al., 2012; Cubry et al., 
2020).

Oryza glaberrima is not suitable for commercial rice produc-
tion due to lodging, shattering, milling difficulties, and low 
yields in comparison with O. sativa (Linares, 2002). However, 
the resilience to a range of abiotic and biotic stresses makes O. 
glaberrima an attractive target for gene mining and translation 
(Fig. 1; Sarla and Swamy, 2005), which was one of the motiv-
ations for the interspecific New Rice for Africa (NERICA) 
breeding programme (Wambugu et al., 2019). This underlying 
genetic diversity might allow commercial rice to tolerate in-
creasingly unpredictable climatic conditions. Recent genomic 
sequencing advances for O. glaberrima have now added new 
possibilities (Cubry et al., 2020).

Photosynthetic efficiency and water use efficiency (WUE) 
are important components of productivity and abiotic stress 
resilience (Zhao et al., 2017). Stomata are key players in both 
processes, regulating CO2 assimilation (A; the parameter ab-
breviation list can be found in Supplementary Table S1 and 

the water lost by transpiration via stomatal conductance (gs). 
However, improvements in WUE incorporate a trade-off be-
tween transpiration rate at the expense of net CO2 assimilation 
rate (A) (Blum, 2009; Lawson et al., 2010; Lawson and Blatt, 
2014). The leaf stomatal density (SD) value can affect gs; recent 
work using rice with reduced SD has demonstrated that photo-
synthesis was not compromised in well-watered conditions but 
enhanced WUE in all conditions and improved biomass and 
yield under water limitation (Caine et al., 2019; Mohammed 
et al., 2019). Consequently, improved yield in water-limiting 
environments might be achieved by optimization of stomatal 
morphology and density. Dynamics of stomatal aperture al-
teration have also been increasingly highlighted as playing 
an essential role in improving photosynthetic efficiency and 
WUE (Drake et al., 2013; Lawson and Blatt, 2014). Stomata 
can take some time to reach stable gs (McAusland et al., 2016). 
Increasing the speed of stomatal opening and closing, closely 
coupling to A (Fig. 1), may be important in conserving water 
and improving crop yields (Lawson and Vialet-Chabrand, 
2019).

Historically, light-saturated carbon assimilation cap-
acity (Amax) (mostly under ambient atmospheric [CO2]) has 
been a parameter of interest for photosynthesis improve-
ments (Murchie et al., 2018). However, recent research now 
makes it clear that the dynamic responses of photosynthesis 
and photoprotection [such as non-photochemical quenching 
(NPQ)] to the fluctuating field environment are essential for 
photosynthetic efficiency-based yield gains (Kromdijk et al., 
2016; Taylor and Long, 2017; Murchie et al., 2018; Acevedo-
Siaca et al., 2020). Light in plant canopies is transient due to 
architecture, intermittent cloud cover, solar angle, and wind 
(Burgess et al., 2016). The ability of A to rapidly adjust to 
changes in light levels is limited by two major processes: sto-
matal dynamics and photosynthetic biochemistry (McAusland 

Fig. 1.  Schematic showing example induction and reduction in response to changes in light intensity during gas exchange measurements. These 
examples of raw A and gs gas exchange measurements show the modelled dynamic response parameters; minimum, maximum, slope, and time to 
reach a defined percentage of the curve maximum.
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et al., 2016; Slattery et al., 2018; Acevedo-Siaca et al., 2020). 
In wheat, slow induction dynamics were estimated to cost 
21% of carbon assimilation acquisition (Taylor and Long, 
2017). Further dynamic leaf photosynthetic efficiency can 
be improved through the rapid relaxation of photoprotection 
(Kromdijk et al., 2016; Hubbart et al., 2018). Under high light, 
NPQ dissipates excess excitation energy as heat. However, in 
fluctuating light conditions, NPQ dynamics can lag behind 
shifts in light level, limiting photosynthesis. On this basis, it 
is clear that elucidating photosynthesis-related dynamics is an 
essential focus of improving crop yields and improving abiotic 
stress tolerance, whereby plants can utilize light and CO2 with 
increased efficiency.

Variation in photosynthetic, NPQ, and stomatal traits have 
been examined in O. sativa; however, there is no comprehen-
sive analysis which compares both induction and decline. We 
hypothesize that due to the origins within the diverse African 
climates, substantial variation for dynamic photosynthesis traits 
may exist within the genome of O. glaberrima and we have 
used a new, whole-genome re-sequenced, resource of 155 O. 
glaberrima accessions (Wambugu et al., 2019; Cubry et al., 2020) 
to characterize 58 phenotypic traits for photosynthesis and leaf 
WUE. This includes the use of automated machine learning to 
describe SD and gas exchange methods to facilitate the mod-
elling of A, NPQ, and gs induction and decline dynamics across 
a large population of individuals. Furthermore, as the effect of 
environment-driven trait adaptation is central to the novelty of 
O. glaberrima, we explore the effect of 20 climatic variables and 
ecotype upon trait adaptation within the population. Here, we 
describe an African rice population with broad heritable vari-
ation in a range of useful traits and we provide evidence that 
dynamic and steady-state photosynthesis and photoprotective 
traits are linked to whole-plant growth. To our knowledge, this 
is the largest survey of dynamic photosynthesis for a species in 
the Oryza genus to date. This further highlights the import-
ance of O. glaberrima as an essential source of variation for crop 
improvement and providing a solid base for future research to 
elucidate physiological processes and pursue trait-related gene 
identification.

Materials and methods

Plant material and growth conditions
The seeds of 155 O. glaberrima accessions were provided by the 
Interspecies Comparison & Evolution (RICE) team within Diversité 
Adaptation Developpement des plantes (DIADE), IRD-Montpellier, 
France. A table of information presenting the plant material is provided 
in Supplementary Table S2.

Plants were grown, measured, and processed at the Sutton Bonington 
Campus, University of Nottingham, UK. Plants were sown and grown in 
a controlled-environment agronomy-style glasshouse (Cambridge HOK, 
UK). Conditions were maintained at a 12 h dark:light (07.00–19.00 h) 
photoperiod, controlled using blackout blinds, temperature of 28±3 °C, 
and 50–60% relative humidity. Metal halide lamps were used to maintain 
light levels when they fell below 200 μmol m−2 s−1 photosynthetically 

active radiation (PAR). Seeds were heat treated to prevent pathogenesis 
at the primary seedling stage through immersing in water at 55 °C for 
15 min. Seeds were germinated in a module tray for 2 weeks before being 
transplanted to soil pits (5 m×5 m×1.25 m, L×W×D) within the glass-
house. Five replicates of each accession were transplanted in east–west 
rows, at 20 cm intervals, into high nutrient loam-based soil in 2×5 m 
concrete pits. Plants were irrigated by drip tapes twice a day, to provide 
a soil water content close to field capacity. Soil top layers were replaced 
every 2 weeks from the same batch.

Due to the size of the population accessions, planting was staggered at 
1–2 week intervals. Accessions were grown in rotations of 12 genotypes 
at a time, with five biological replicates, four of which were selected for 
measurement. Plants were measured at 8 weeks old when they were ap-
proximately in the mid to late tillering stage. Measurements commenced 
in July 2017 and ended in October 2017. The elite O. sativa variety ‘IR64’ 
was used as a reference genotype and planted as a row in every batch (see 
‘Data analysis’ below).

Gas exchange measurements
An IRGA (infra-red gas analyser; Li-Cor 6400XT, Lincoln, NE, USA) 
was used on the uppermost fully expanded leaf. A light induction pro-
gramme was used: leaves were dark adapted for 1 h, the sample leaf was 
then placed in the leaf cuvette and allowed to achieve steady state in dark-
ness before being subject to a photosynthetic photon flux density (PPFD) 
of 1500 µmol m−2 s−1, from in-built red and (10%) blue LED lights, 
from 0 s to 900 s, reducing to 100 µmol m−2 s−1 from 900 s to 1200 s. A 
graphical representation of the induction assay can be seen in Fig. 1. The 
leaf cuvette conditions were maintained at a block temperature of 30 °C, 
400 μmol−1 mol−1 CO2, flow rate 500 ml min−1, and 50–65% humidity. 
Gas exchange data were logged every 10 s. Measurements were collected 
between 09.00 h and 16.00 h. Chlorophyll fluorescence parameters were 
collected simultaneously, by applying a single saturating pulse before the 
application of actinic light to attain Fo and Fm and then at intervals of 60 s 
following this for the calculation of ϕPSII (PSII operating efficiency in 
the light), qP (photochemical quenching), and NPQ (non-photochemical 
quenching: measurement of a photoprotective process that estimates the 
rate constant for PSII heat loss) (Murchie and Lawson, 2013). Intrinsic 
water use efficiency (iWUE) was calculated post-data collection as CO2 
assimilation rate (A)/stomatal conductance (gs). We calculate that vapour 
pressure deficit (VPD) in the cuvette was ~1.51–2.10 kPa. Saturation or 
near-saturation was achieved within this time scale. Raw data for A, gs, 
and NPQ are shown graphically in Supplementary Fig. S1 as individual 
replicates and means per accession. 

Stomatal density and automated stomatal counting
Stomatal impressions were taken from the same area of the first fully ex-
panded leaf where the IRGA measurements were obtained. A ~1 cm2 
negative impression of the abaxial (basal) and adaxial (upper) leaf surface 
was taken using fast-drying clear nail polish and adhered to a microscope 
slide. Impressions were obtained after all other measurements had been 
taken.

Images were obtained on a Leica DM5000B light microscope at ×40 
objective with 10 fields of view per impression. Due to the volume 
of images (13  110), a bespoke machine learning-based software was 
created to automatically calculate the number of stomata in each 
image. The software can reliably identify O. glaberrima and O. sativa sto-
mata, showing a high correlation (r=0.94; n=540 images per counting 
method) between software and manual stomatal counts. Our method 
was based on transfer learning for deep neural networks: we have util-
ized a pre-trained deep model for the different datasets and adapt it for 
user-annotated rice stomata samples. Based on the transfer learning ap-
proach, we utilize a pre-trained object detection model trained on the 
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standard COCO datasets (Lin et al., 2014). Since our goal is detecting 
and classifying stomata, we use the Faster R-CNN model (Ren et al., 
2015) as one of the state-of-the-art methods based on deep neural 
networks. We used the Faster R-CNN model available in Tensorflow 
with the Inception-V2 architecture (Szegedy et al., 2016) as the base 
model. Inception-V2 is a variation of Inception-V1, also referred 
to as GoogLeNet, which was the state-of-the-art architecture at the 
ImageNet competition in ILSVRC 2014. After loading the pre-trained 
Faster R-CNN, the last few layers of classification layers are changed 
to meet the aim of stomata classification and detection. In the next 
step, the Faster R-CNN with stomata images are trained with different 
hyperparameters such as learning rate and number of epochs to find 
out the best parameters to reduce execution time and errors. Further 
information on our methodology is located in File S1 at the Zenodo 
repository https://doi.org/10.5281/zenodo.5555930; Murchie, 2021).

Morphological traits
Plant height, leaf area, and root and shoot dry biomass were taken at 8 
weeks post-germination, after the completion of gas exchange meas-
urements. Each plant was dug up and care taken to preserve the root 
system. The shoot area was measured using a LiCor LI-3100 area meter. 
The root ball was soaked and carefully washed to preserve root struc-
ture, as described by York (2018). The shoot and root material were 
then placed in a drying oven at 70 °C for 72 h before weighing for dry 
biomass.

Data analysis
All data analyses were performed using R-Studio (v. 4.0.1).

To reduce the temporal and spatial effects of measuring the acces-
sions in batches, a linear mixed-effects model (‘lme4’ package, v.1.1-26) 
was used to calculate best linear unbiased predictions (BLUPs) and pre-
dicted means, considering the effects of accession, sowing date, meas-
urement date, location within the glasshouse, and, if relevant, IRGA 
machine (Supplementary Fig. S2). BLUPs are commonly used to 
account for the random effects that accompany measuring large popu-
lations in fluctuating environments (Robinson, 1991; Merk et al., 2012). 
The coefficients of the mixed-effects model were also used to estimate 
broad sense heritability (H2). All results reported here use the adjusted 
means data generated from the mixed-effects model. Normality was 
tested using the Shapiro–Wilk test. A 0.01 α value was used, as the 
Shapiro–Wilk test tends to report false negatives in sample sizes ex-
ceeding 50 individuals. All data for IR64 were found to be normally 
distributed, whereas 25 out of 57 traits in the O. glaberrima panel showed 
a deviation from a statistically normal distribution. In the results, and O. 
glaberrima descriptive statistics Table 1, non-normal traits report values 
for median and interquartile range (IQR), whereas normally distrib-
uted traits will report mean and standard deviation. A full breakdown of 
IR64 and O. glaberrima normality statistics, box, and distribution plots 
can be found in Files S2–S4 at Zenodo.

A bespoke Python pipeline was written to identify the data point at 
95% of the maximum and extract values within the induction side of a 
curve (File S5 at Zenodo).

The correlation analyses were completed using a Pearson correlation 
coefficient in the ‘Corrplot’ package (v. 0.84), with a correlation signifi-
cance threshold of P<0.1005.

The percentage genetic variation (PGV) was calculated as follows; 
[(xmax–xmin)/x)]×100. Where xmax, xmin, and x, respectively, denote the 
maximum, minimum, and mean values for a trait in the population (Gu 
et al., 2014). This measure is used to quantify the genetic variation of a 
trait within the combined population. Values >100% signify where the 

range is greater than the mean and represent particularly high underlying 
genetic variation.

Kinetic modelling
Dynamic modelling of A, NPQ, and gs was performed using a dose–re-
sponse curve-fitting method, previously used to model stomatal responses 
by Barratt et al. (2021). The ‘drc’ (v. 3.0) package was used to analyse and 
extract several useful parameters for both curve induction and reduction 
responses (Ritz et al., 2015), denoted by i and r, respectively. The measured 
parameters are detailed in Table 1 and include curve slope (i/r slope), lower 
limit (i/r min), upper limit (i/r max), and the time taken to reach a defined 
percentage of the dependent variable, in this case 10 (i/r 10), 50 (i/r 50), and 
90% (i/r 90). A representation of these parameters on A and gs response 
curves can be found in Fig. 1. The LL.4 (log-logistic 4-parameter) model 
was chosen as the best fit for both the A induction, and gs induction 
and reduction responses. The LL.3 (log-logistic 3-parameter) model was 
used for NPQ induction, and the W2.4 (4-parameter Weibull2) model 
for NPQ relaxation. The comparison of eight different models, followed 
by Akaike’s information criterion analysis, was used to select the best 
model fit. All 155 accessions were analysed for A induction curves; 24 
accessions were removed for gs induction and gs reduction curve fitting 
due to unusable curve measurements.

Due to the volume of data, the best fitting model was selected for the 
induction and reduction curve for each parameter (gs, A, and NPQ) and 
then applied to all data (e.g. for gs induction, a LL.4 model was applied to 
all 155 genotypes). To ensure that the model selection process captured 
the variation that may occur in the population, five genotypes were ran-
domly chosen for model selection and the consensus model was used. 
The estimated parameters generated from the model (min, max, ed50, 
and slope) were manually cross-referenced to the raw data, to ensure 
these outputs closely represented the raw data. To evidence the fit of the 
selected models to the raw data, we include a table showing the model 
fit of a randomly selected accession for each parameter (Supplementary 
Table S3). We note the large SE for Ar slope, probably due to the rapid and 
steep drop in A that occurs between two data points, so we attribute less 
confidence in this parameter.

Multivariate and climatic analysis
The multivariate analyses, principal component analysis (PCA), and hier-
archical clustering (H-clustering) methods require a complete dataset, 
with no missing values. Consequently, missing phenotype data were im-
puted using the missMDA package (v. 1.18). PCA was performed using 
the FactoMineR (v. 2.4) package, and the H-clustering was performed 
using the HCPC method. Details of the FactoMineR package and 
HCPC algorithm can be found in Lê et al. (2008).

The PCA and H-clustering of the phenotypic dataset contained all 
155 O. glaberrima accessions and the IR64 O. sativa representative. The 
analysis included 64 quantitative trait variables and four qualitative vari-
ables, namely narrow ecotype, broad ecotype, country of origin, and 
African region.

Agroecological niche and geographical coordinates of the collection 
sites for each O. glaberrima accession were provided by AfricaRice. We 
have complete ecological information for all 155 accessions, and geo-
graphical coordinates for 105 accessions (Fig. 2A–C). Nineteen variables 
for temperature and precipitation, at the collection site of each acces-
sion, were obtained using the BIOCLIM dataset (Hijmans et al., 2005). 
Information on the elevation above sea level was obtained using the 
elevatr package (v. 0.3.1). PCA and H-clustering analysis, and subsequent 
climate–trait correlations, were performed on the subset of 105 accessions 
for which we had geographical coordinates.

https://doi.org/10.5281/zenodo.5555930﻿
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Table 1.  The range of natural variation and broad-sense heritability (H2) within a population of diverse O. glaberrima accessions across 
dynamic and static traits

Trait Min Max Mean (SD) Median (IQR) PGV Sig. H2 

Steady state

Amax 17.92 22.42 20.16 (0.87) 22.30 ∗∗∗ 0.11
ETRmax 104.10 144.30 123.00 (7.60) 32.69 ∗∗∗ 0.22
gsmax 0.26 0.46 0.34 (0.03) 58.82 ∗∗∗ 0.17
iWUEmax 58.34 71.81 62.63 (3.08) 21.40 ∗∗∗ 0.07
NPQmax 1.98 2.30 2.13 (0.06) 14.88 ∗∗∗ 0.12

ϕPSIImax 0.16 0.22 0.19 (0.01) 32.70 ∗∗∗ 0.22

qPmax 0.43 0.51 0.47 (0.02) 18.71 ∗∗∗ 0.17
Trmmolmax 4.13 5.75 4.81 (0.27) 29.84 ∗∗∗ 0.12
VPDmax 1.43 1.52 1.47 (0.01) 6.38 ∗∗∗ 0.00
Morphological
Shoot:root 3.36 9.50 5.55 (1.13) 73.22 ∗∗∗ 0.12
Shoot biomass 2.36 7.85 4.40 (0.89) 123.33 ∗∗∗ 0.14
Shoot area 279.07 1068.97 652.73 (126.27) 118.51 ∗∗∗ 0.16
Root biomass 0.36 1.98 0.77 (0.18) 203.75 ∗∗∗ 0.23
Plant height 61.79 93.86 78.77 (6.20) 40.72 ∗∗∗ 0.18
Adaxial SD 260.16 353.50 314.08 (18.04) 29.72 ∗∗∗ 0.21
Abaxial:adaxial 1.05 1.40 1.24 (0.06) 18.87 ∗∗∗ 0.15
Abaxial SD 324.31 435.99 388.83 (22.54) 28.72 ∗∗∗ 0.21
Dynamic
gsi slope –3.90 –1.90 –2.44 (0.38) 78.43 ∗∗∗ 0.14
gsi max 0.35 0.49 0.42 (0.03) 31.88 ∗ 0.11
gsi min 0.06 0.14 0.08 (0.01) 112.50 ∗∗ 0.12
gsi 10 65.50 207.09 108.19 (29.45) 126.83 ∗∗∗ 0.18
gsi 50 179.53 324.80 223.71 (48.40) 64.17 ∗ 0.11
gsi 90 477.70 684.41 539.21 (48.40) 37.53 NS 0.08
gsi rate 0.0005 0.0008 0.0006 (<0.01) 45.45 ∗ 0.09
Ai slope –2.42 –1.50 –1.78 (0.17) 50.84 ∗∗ 0.10
Ai max 20.44 27.83 23.43 (1.47) 31.53 ∗∗∗ 0.20
Ai min –1.32 –1.09 –1.22 (0.04) 18.85 NS 0.01
Ai 10 49.01 140.97 63.79 (13.96) 136.43 ∗∗∗ 0.15
Ai 50 189.56 334.26 217.84 (24.73) 64.97 ∗∗ 0.12
Ai 90 652.34 849.54 718.78 (52.10) 27.14 NS 0.06
Ai rate 0.03 0.04 0.03 (0.002) 33.33 NS 0.05
NPQi slope –3.48 –2.32 –2.72 (0.22) 42.65 ∗∗∗ 0.12
NPQi max 2.12 2.44 2.24 (0.05) 14.29 ∗∗∗ 0.08
NPQi 10 19.57 28.12 23.80 (1.53) 35.75 ∗∗∗ 0.11
NPQi 50 50.98 56.44 53.65 (1.02) 10.16 NS 0.05
NPQi 90 118.70 132.30 125.58 (2.71) 10.82 NS 0.03
NPQi rate 0.017 0.02 0.02 (<0.01) 15.00 ∗∗ 0.07
gsr slope 6.48 10.49 8.05 (0.80) 49.43 NS 0.07
gsr min -0.30 0.02 -0.13 (0.08) 228.57 ∗∗ 0.11
gsr max 0.38 0.61 0.48 (0.05) 48.96 ∗∗ 0.15
gsr 10 908.91 956.10 922.35 (8.56) 05.11 NS 0.07
gsr 50 1061.65 1385.05 1208.21 (76.16) 26.77 ∗∗∗ 0.26
gsr 90 1370.52 2116.04 1640.46 (266.31) 44.56 ∗∗∗ 0.23
gsr rate 0.0006 0.0101 0.001 (<0.01) 339.28 ∗∗∗ 0.25
Ar slope -332.60 -322.20 -328.45 (2.15) 3.17 NS 0.01
Ar min 2.88 3.60 3.22 (0.11) 24.05 ∗∗∗ 0.11
Ar max 17.09 21.72 19.22 (0.96) 22.36 NS 0.04
Ar 10 901.90 902.20 902.09 (0.04) 0.03 NS 0.03
Ar 50 905.30 905.70 905.45 (0.05) 0.04 NS 0.03
Ar 90 910.60 911.00 910.77 (0.05) 0.04 NS 0.02
Ar rate 0.79 2.36 1.51 (0.09) 103.97 ∗ 0.08
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FactoShiny was used to generate summary reports of the PCA and 
H-clustering analyses on both the phenotype data and climate data; these 
can be found in Files S6–S9 at Zenodo.

Results

Phenotypic analysis of morphology and steady-state 
photosynthesis

Significant variation and high levels of PGV were identified 
between accessions across all morphological, gas exchange, and 
fluorescence traits measured in this O. glaberrima panel (Table 1; 
Files S2, S4 at Zenodo).

Root biomass, shoot biomass, and shoot area showed a 5-, 3-, 
and 4-fold variation, respectively. Plant height showed a 1.3-fold 
variation in PGV. Significant (P<0.001) positive correlations be-
tween all plant growth traits were found (Fig. 3A, C).

Even though key steady-state photosynthesis traits showed 
a relatively narrow distribution (typically between 15% and 
40%), both shoot biomass and shoot area showed significant 
(P<0.01–0.05; Fig. 3A; File S10 at Zenodo), positive correlations 
to Amax, qPmax, ETRmax, and ϕPSIImax, providing confidence that 
steady-state photosynthesis is linked to biomass production. gsmax 

showed an almost 2-fold variation across O. glaberrima accessions. 
PGV for steady-state traits ranged from 6.38% to 58.82% (Table 
1), with most traits in the 20–30% range, including key photo-
synthetic traits. All key steady-state photosynthetic traits showed 
significant (P<0.0001) positive correlations to one another (Fig. 
S3). Some unexpected relationships were apparent, for example 
between NPQmax and VPDmax. iWUEmax was highly correlated 
with gsmax (Fig. 3B) (and Trmmolmax) but not Amax, indicating 
stomatal limitation of A.

Stomatal morphology (Fig. 4) did not show a clear relation-
ship with conductance. A relatively modest 1.3-fold accession-
dependent variation in the abaxial SD and adaxial SD was 
observed. The abaxial SD was 1.24-fold greater than the ad-
axial SD. PGV showed that all SD traits were highly signifi-
cant (P<0.0001, Table 1) across the O. glaberrima accessions, 
revealing that SD has a genetic basis. However, no association 
between any SD traits and iWUEmax, or gsmax was detected. 
Unexpectedly the adaxial SD showed a significant negative 
correlation to NPQmax, while abaxial SD showed a negative 
association with plant height (Fig. 3D). The SD ratio, however, 
showed significant associations with multiple traits (Fig. 3C); 
Amax, ETRmax, ϕPSIImax, qPmax, NPQmax, and plant height, the 
reasons for which are unclear.

Fig. 2.  Map showing the geographical collection locations of O. glaberrima accessions used in this study. The annual range of (A) temperature, (B) 
annual precipitation, and (C) elevation across Africa. 

Trait Min Max Mean (SD) Median (IQR) PGV Sig. H2 

NPQr slope –49.71 –36.27 –41.83 (2.65) 34.35 ∗∗∗ 0.21
NPQr min 0.56 0.66 0.61 (0.02) 23.00 ∗∗∗ 0.16
NPQr max 1.99 2.30 2.13 (0.06) 14.55 ∗∗∗ 0.10
NPQr 10 921.31 923.66 922.60 (0.39) 0.27 ∗∗∗ 0.19
NPQr 50 946.63 954.76 950.23 (1.41) 0.97 ∗∗∗ 0.19
NPQr 90 985.20 1008.16 995.50 (4.13) 02.50 ∗∗∗ 0.19
NPQr rate 0.013 0.020 0.016 (<0.01) 43.75 ∗∗∗ 0.14

Normally distributed traits report the trait mean and standard deviation, whilst the median and interquartile range is given for non-normally distributed 
traits. PGV is the percentage of genetic variation. Sig. refers to the ANOVA test between two mixed-effects models, where the accession is present as 
an effect in one model and not in another. A significant result suggests that the accession genotype has an effect and therefore the trait is heritable. 
∗∗∗P<0.0001, ∗∗P<0.001, ∗P<0.01

Table 1.  Continued

https://doi.org/10.5281/zenodo.5555930
https://doi.org/10.5281/zenodo.5555930
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Phenotypic analysis of dynamic photosynthesis

Dynamic responses are now recognized as important deter-
minants of photosynthetic productivity. Responses of gas ex-
change, fluorescence, and photoprotection to light shifts were 
modelled and show significant variation in 29 traits (Table 1, 
column ‘Sig’; Figs 5A–D, 6A, B; Supplementary Fig. S4A–F).

The well-documented divergence between the induction of 
gs and A was observed, where a lag in gs induction and reduc-
tion occurs relative to A (Figs 1, 5A–C). The mean upper limit 

estimates for A induction and reduction curves (Ai max and  
Ar max) and gs induction and reduction (gsr max and gsi max) curves 
were similar (P<0.0001, Supplementary Fig. S5A, B) to meas-
ured values. The estimated averages for the mean lower limits 
of the A induction (Ai min), gs induction and reduction (gsi min 
and gsr min) curves are close to zero (Table 1).

The average time taken to reach 10% of the maximum in-
duction curve was significantly less for CO2 assimilation (Ai 10) 
than for gs (gsi 10), whereas the time taken to reach 50% of the 

Fig. 3.  O. glaberrima shows a range of interesting morphological and steady-state photosynthetic trait correlations. The colour gradient shows a second 
correlation against the y-axis variable. (A) Positive correlation between root and shoot biomass; the second correlation shows root biomass and shoot 
area. (B) The effect of gsmax on Amax and the second correlation of gsmax against iWUEmax. (C) Pearson correlation matrix showing associations between 
morphological and steady-state gas exchange traits, filtered to show trait associations at a P<0.1005 significance threshold. Correlations are scaled 
by colour, shown in the right-hand scale bar; asterisks indicate significance between traits (∗∗∗P<0.001, ∗∗P<0.01, ∗P<0.05). (D) Negative correlation 
between SD ratio and plant height, while the SD ratio against NPQmax shows a positive correlation.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
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induction curve for Ai 50 and gsi 50 did not significantly differ. 
However, the average time to reach induction to 90% of the 
maximum (Ai 90) was significantly longer than that of gsi 90.

Strong interactions between stomatal and CO2 assimilation 
indicate co-dependence (Fig. 5E, F). Notably the steepness of 
the gs induction slope (gsi slope) highly correlates with key in-
duction traits gsi 90, gsi rate, gsmax, Ai slope, Ai rate, iWUEmax, NPQislope, 
NPQimax, and NPQi50. gsi rate was also strongly correlated to 
many dynamic induction traits; gsmax, gsi 10, gsi 50, gsi 90, Amax, Ai 

90, and Ai rate.

The rate of photosynthetic induction in high light was as-
sociated with rates of decline in low light (Fig. 5). gsi slope versus 
gsr slope, gsi rate versus gsr rate, and Ai rate versus Ar rate were signifi-
cant, suggesting that accessions which exhibited rapid stomatal 
opening also close at a greater rate (Fig. 5C, D; Supplementary 
Fig. S5). Further, traits associated with rapid stomatal closure, 
gsr slope, gsr 10, gsr 50, and gsr 90 showed significant associations with 
enhanced iWUEmax.

Like steady-state traits, A and gs dynamics were also linked 
to plant biomass and morphology in these data, further 

supporting the role of photosynthesis in determining growth. 
A greater Ai rate was positively correlated with total plant and 
shoot biomass. Ar rate showed positive associations with total 
plant biomass, shoot biomass, shoot:root ratio, and shoot area. 
Ar slope had negative associations with shoot biomass, shoot:root 
ratio, and plant height, while a more rapid Ar 90 was correlated 
to a greater shoot biomass, shoot:root ratio, and shoot area. gsi 

rate showed positive associations with total plant biomass, shoot 
biomass, root biomass, and shoot area.

Again there were fewer links with stomatal morphology; a 
significant negative association was identified between the SD 
ratio and Ar rate. Only upper leaf SD was also found to have 
positive relationships to gsi 50 and Ar rate, and a negative relation-
ship to gsr min.

Non-photochemical quenching dynamics

NPQ is of particular interest here because it showed multiple 
relationships with photosynthesis and biomass. The model es-
timation of the NPQ induction and relaxation curve upper 

Fig. 4.  Microscope images showing examples of the O. glaberrima accessions with highest (TOG_14116) and lowest (TOG_5464) recorded SD. These 
images demonstrate the extent of SD variation in the population and the qualitative correlation between high SD and small stomatal size, (A) TOG_5464; 
adaxial SD=260 mm−2, (B) TOG_5464; abaxial SD=325 mm−2, (C) TOG_14116; adaxial SD=345 mm−2, (D) TOG_14116; abaxial SD=426 mm−2.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
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limit (NPQi max and NPQr max) was close to the measured value 
for NPQmax, providing confidence in the method (Table 1; 
Supplementary Fig. S5C)

We observed limited significance between the kinetics of 
NPQ relaxation and kinetics of A. Importantly, there was a 
significant negative correlation between the A reduction curve 
lower limit (Ar min) achieved under 100 PPFD, and NPQr slope, 
NPQr 50, and NPQr 90, suggesting that A maintains a higher 
value under low light conditions when NPQ relaxes rapidly 
(Kromdijk et al., 2016). Additionally NPQi slope, NPQi rate, and 
the time taken to induce 90% of the maximum (NPQi 90) 
strongly correlated with Amax.

Speed of induction was not closely related to NPQ capacity: 
only the time taken to reach 90% of the NPQ curve upper 
limit (NPQi 90) positively correlated to a greater NPQmax. Like 
gas exchange traits, NPQ induction and relaxation traits were 
positively correlated (NPQi slope versus NPQr slope and NPQi rate 
versus NPQr rate).

Interestingly, NPQ and gs dynamic traits also showed nu-
merous significant correlations. gsi slope significantly correlated 
with NPQi slope, NPQi 10, NPQi 50, and NPQi 90. gsi rate was 
positively related to NPQi slope and NPQi 90. Accessions with 
steeper gsr slope were also found to have a greater NPQr rate (Fig. 
6D). These associations highlight a complex interdependent 

relationship between gs, A, and NPQ and the recent link 
noted between underlying control of NPQ by PsbS and the 
dynamics of stomatal conductance and gas exchange (Fig. 
6C, D) (Kromdjik et al., 2016; Glowacka et al., 2018).

Further NPQ relaxation traits were related to morpho-
logical and SD traits, indicating that photoprotection has a 
role in determining growth. NPQi slope and NPQi 90 (Fig. 6E) 
showed negative correlations with shoot biomass and shoot 
area. NPQi rate positively correlated to shoot biomass and shoot 
area. A more pronounced set of associations was observed 
during NPQ relaxation; shoot biomass and shoot area, respect-
ively, showed negative correlations to NPQr slope, NPQr 50, and 
NPQr 90 (Fig. 6F), and positive correlations to NPQr 10 and 
NPQr rate. Root biomass showed a similar, but not as strong, 
association with NPQr slope, NPQr 10, NPQr 90, and NPQr rate.

Trait and ecological comparison between O. 
glaberrima and O. sativa

It is informative to compare the O. glaberrima trait variation 
with that of the elite Asian O. sativa cultivar, IR64 (File S3 
at Zenodo; Table 1) even though caution should be observed 
using just one genotype. We highlight the slower induction 
rates of photosynthesis of IR64.

Fig. 5.  Demonstrating the variation of (A, B) A and (C, D) gs dynamic responses to light intensity changes within the O. glaberrima population using 
four example accessions. IG35 and TOG_6356 were used as example of a ‘slow’ and ‘fast’ responding accession, respectively, whereas EG85 and 
TOG_12160 are used to demonstrate the intermediate gradient of responses in the population. (E) gsi slope was correlated with gsr slope and Ai slope; during 
induction, with a greater negative value indicating a steeper slope; this relationship is reversed for the decrease. (F) Ar rate shows positive associations with 
gsr 50 and shoot biomass.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
https://doi.org/10.5281/zenodo.5555930
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IR64 had a slightly smaller shoot than O. glaberrima but a 
greater root biomass, reflected in the lower shoot:root ratio of 
IR64, suggesting a greater investment in roots. IR64 height 
was lower. IR64 displayed a greater SD on the abaxial leaf side 
than O. glaberrima, and IR64 had a lower SD ratio.

IR64 did not differ from O. glaberrima for Amax and NPQmax. 
However, average ETRmax and ϕPSIImax were higher in IR64. 
IR64 showed a slightly lower gsmax and greater iWUEmax in 
comparison with O. glaberrima. The latter is likely to be a direct 
result of the higher levels of gsmax observed in O. glaberrima. 
Clear differences were found in dynamics of A, gs, and NPQ 
between the two species.

During induction, IR64 was significantly slower than O. 
glaberrima for gsi 10, gsi 50, Ai 10, Ai 50, Ai 90, Ai rate, NPQi 10, and 
NPQi 50 (Supplementary Fig. S4). This implies that IR64 had 
a longer gs and NPQ lag phase. The initial rapidity of the gs 
induction curve may facilitate the significantly faster A re-
sponse observed in O. glaberrima, suggesting that O. glaberrima 
may be able to respond better to the onset of high light than 
IR64. During the decrease, IR64 and O. glaberrima did not 
significantly differ for gsr 10, gsr 50, gsr 90, gsr rate, Ar 10, Ar 90, Ar 

rate, NPQr 10, and NPQr rate. IR64 was found to have a faster 
reduction response for Ar 50, NPQr 50, and NPQr 90 in com-
parison with O. glaberrima (Table 1 in comparison with File 
S3 at Zenodo).

During the multivariate analyses, we observed that O. sativa 
IR64 values cluster separately from O. glaberrima for both 
ecology and country of origin. This can be seen most clearly 
when plotting principal components (PCs) 1 and 3, where the 
two species cluster distinctly for the Asian country of origin 
and paddy field ecology (Fig. 8C).

Impact of country of origin and ecotype on O. 
glaberrima trait adaptation

An important aspect of O. glaberrima’s novelty is the inde-
pendent evolution to O. sativa and adaptation to the variable 
African environment. We used PCA and H-clustering to ex-
plore natural trait variation and the adaptive effect of envir-
onmental climatic variables. Here we identify phenotypic 
trends which cluster according to country and environment, 
indicating adaptation and possibly variation in growth strategy.

Fig. 6.  Demonstrating the variation of NPQ (A) induction and (B) relaxation responses to light intensity changes within the O. glaberrima population using 
four example accessions, as explained in Fig. 5. (C) Negative correlations were identified with NPQi 90 against Amax and NPQi rate. (D) NPQr rate showed a 
positive relationship to gsr slope, where a high value indicates a steeper slope and a negative correlation between NPQr rate and NPQr slope, where for this 
model a more negative value suggests a steeper relaxation slope. NPQi 90 (E) and NPQr 90 (F) showed associations with both shoot biomass and shoot 
area.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
https://doi.org/10.5281/zenodo.5555930
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Dynamic photosynthesis variation in Oryza glaberrima  |  3293

The PCA and H-clustering were separated into two grouped 
analyses for phenotypic and climatic variables. For the PCA of 
phenotypic traits 12 PCs were selected as they explain 95% of 
the variance (Supplementary Fig. S6). The H-clustering ana-
lysis identified three clusters (Fig. 7A) with common sources of 
trait variation (File S7 at Zenodo). The accessions in cluster 1 
are characterized by a slow gs reduction time (gsr 10/50/90), rapid 
A and NPQ induction time (Ai 50 and NPQi 90), steep A re-
duction curve (Ar slope), rapid A reduction time (Ar 50/90), high 
values for gsmax, Ar rate, NPQi rate, and shoot:root ratio, and low 
values for root biomass, VPDmax, and iWUEmax. Accessions pre-
sent in cluster 2 demonstrate gs reduction curves with a steep 
slope and rapid reduction times (gsr 10/50/90), high trait values 
for NPQmax, VPDmax, and iWUEmax, and low values for plant 
biomass, shoot biomass, shoot area, gsmax, ETRmax, and ϕPSIImax. 
Accessions in the largest group, cluster 3, show high trait values 
for total biomass, shoot biomass, shoot area, root biomass, and 
Amax, low levels of NPQ (NPQr min) under reduced light (100 
PPFD), and rapid gs reduction time (gsr 50/90). Cluster 3 is the 
group where IR64 can be found, and it consists mostly of low-
land type accessions.

Adaptation to different environments was explored during 
the multivariate analyses. In Fig. 8A and B, axes PC1 and 2 are 
shown overlaid with ecological niche and country of origin. 
Oryza glaberrima accessions cluster separately dependent upon 
their ecological origin, in particular upland or lowland (Fig. 
8B). Accessions from lowland-type ecologies dominate, though 
it is still clear that upland and lowland show trait differences. 
Accessions also show a high degree of trait variation due to 
countries of origin that have contrasting climates (Fig. 8A). For 
example, distinct clustering can be seen between landlocked 
Burkina-Faso, which borders the Sahara, and coastal Gambia. A 
categorical analysis was performed to establish if the accessions 

that occupy each cluster of the H-clustering analysis share 
similar origins (Supplementary Fig. S7B, C). While there is no 
obvious relationship, a greater proportion of upland accessions 
occupy cluster 1, whereas a large proportion of lowland acces-
sions are present in cluster 3 (Supplementary Fig. S7C).

The diversity of climates and elevations (Fig. 2A–C) are 
likely to have directly impacted trait adaptation and resilience. 
A PCA focused on climatic traits explored the relationship 
between climate and phenotype. The first four PCs explain 
90% of trait variation in the population (File S8 at Zenodo). 
H-clustering identified three distinct clusters of accessions 
with common sources of variation in climatic variables (Files 
S9, S11  at Zenodo). A categorical analysis of ecological niche 
and country of origin for the accessions present in each cluster 
showed a clear distinction of climate-based clustering due to 
country of origin (Fig. 7C). Cluster 1 contains all accessions 
that originate from the neighbouring countries of Liberia and 
Sierra Leone. Cluster 2 contains all accessions from Zimbabwe 
and most accessions originating from Nigeria. Cluster 3, which 
contains the largest number of accessions, contains all individ-
uals originating from Cameroon, Chad, Ghana, and Tanzania, 
and the majority of accessions from Côte d’Ivoire and Senegal.

With the extensive phenotypic and climatic variables re-
duced to a small number of components, we completed a 
correlation analysis between the phenotypic and climatic trait 
PCs to identify groups of climatic drivers on trait adaptation. 
A significant positive association was identified between trait 
PC1 and climatic PC4 (r= –0.20, P<0.05; Fig. 8D), suggesting 
that key traits contributing to phenotypic trait PC1, which in-
cludes photosynthetic traits and shoot biomass, have adapted 
in response to precipitation-related variables that contribute 
to climate PC4 loadings. Other significant associations were 
identified between phenotype PC5 and climate PC4 (r=0.25, 
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Fig. 7.  Hierarchical clustering of 155 O. glaberrima accessions (A) for 64 phenotypic traits and the frequency of accessions for each country of origin (B) 
and ecological niche (C) in the clades (1–3) identified in the climate hierarchical clustering analysis.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
https://doi.org/10.5281/zenodo.5555930
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
https://doi.org/10.5281/zenodo.5555930
https://doi.org/10.5281/zenodo.5555930
https://doi.org/10.5281/zenodo.5555930


3294  |  Cowling et al.

P<0.05), phenotype PC8 and climate PC2 (r=0.24, P<0.05), 
and phenotype PC11 and climate PC3 (r=0.25, P<0.05) File 
S12; Supplementary Fig. S8).

Discussion

Crop production in future climates has the challenge of 
increasing productivity whilst retaining resilience. To do so, op-
timizing interactions and trade-offs between carbon assimila-
tion, photoprotection, and water loss will be essential. However, 
we do not yet have complete understanding of the genetic 
basis of the co-regulation of the interlinked processes and 
components (light harvesting, photoprotection, electron trans-
port, carbon assimilation, and stomatal conductance) involved. 

Recent progress shows that crop productivity and WUE are 
only partly dependent upon ‘steady-state’ maximum values of 
Amax and gsmax. SD, stomatal conductance, and photoprotection 
dynamics have been identified as critical traits to optimize 
carbon assimilation and minimize abiotic stress (Kromdijk et 
al., 2016; Caine et al., 2019; Faralli et al., 2019). However, elite 
gene pools may be genetically narrow and poorly adapted to 
challenging environmental conditions. Attention is increasingly 
focused upon underutilized crop species and wild relatives as a 
source of genetic diversity to improve resilience in commercial 
species (Draic et al., 2011). Whilst the variation for photosyn-
thesis induction has been partly characterized in O. sativa, this 
is not true of O. glaberrima (Acevedo-Siaca et al., 2020, 2021). 
The O. glaberrima association panel used here was developed as 
a resource for crop improvement, which may have diversity not 

Fig. 8.  Graphical PCA outputs; the phenotypic PCs 1 and 2 are overlaid with 95% confidence ellipses for the O. glaberima accessions; (A) country of 
origin and (B) ecotype categorical variables. (C) PCs and 3 show the separate clustering of O. sativa (IR64), based on country of origin and ecotype 
categories, from O. glaberrima. (D) PC1 from the phenotypic traits data PCA was found to be a function of PC4 from the climatic data PCA analysis.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab459#supplementary-data
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available in O. sativa (Agnoun et al., 2012). For the first time, a 
comprehensive analysis of photosynthesis- and morphology-
related traits has been completed in O. glaberrima. Our novel 
approach uses a large pool of accessions, with a large range 
of heritable natural variation to explore the natural variation 
and relationships in these traits. While we cannot here make 
a meaningful comparison between O. glaberrima and O. sativa, 
we observed key differences, with the former showing faster 
photosynthesis induction. This may be an indication of adap-
tation to drier soils and air generally, requiring faster opening 
and closure of stomata (Lawson and Vialet-Chabrand, 2019).

Here we have described extensive natural variation in O. 
glaberrima for steady-state, induction, and relaxation/reduction 
responses for A and gs. This suggests underlying genetic diver-
sity to these traits that could be identified and exploited. We 
identified indications of heritability (H2) and underlying gen-
etic variation (PGV) in many of these traits (Table 1). Trait her-
itability values were comparable with estimates of similar traits 
from maize (Choquette et al., 2019), but they are marginally 
lower than those previously demonstrated in O. sativa (Qu et 
al., 2017), though a strong genetic component is still indicated. 
A calculation of heritability using genomic data would pro-
vide a more accurate estimation (Zhu and Zhou, 2020). This 
would be useful when selecting traits for genetic introgression 
or characterization. The large number of accessions used here 
(155) permits a statistical comparison that was not possible in 
related studies on dynamic photosynthesis in O. sativa where 
fewer lines were analysed (Acevedo-Siaca et al., 2020).

A global PCA and clustering analysis showed a distinc-
tion between clusters of high biomass (cluster 3), low biomass 
(cluster 2), and low root biomass (cluster 1). The fast gs decrease, 
low gsmax, high NPQmax, and high iWUEmax of cluster 2 would 
suggest a conservative type geared toward water conservation, 
whilst the high total biomass of cluster 3 is consistent with a 
fast growth type displaying a rapid gs decrease, low NPQ, and 
a higher Amax. The association of cluster 3 with wetter low-
land environments is consistent with higher productivity. We 
therefore see a general consistency in these two clusters with 
photosynthetic, water use, and biomass production ‘strategy’. It 
is also notable that steady-state Amax correlates well with bio-
mass, suggesting that capacity for higher photosynthesis is still 
important. Increases in photosynthetic capacity are known to 
improve light responses in rice (Sun et al., 2016).

Extensive natural variation identified in dynamic 
photosynthetic traits

In recent years, there has been a shift in photosynthesis-related 
research towards dynamic responses in place of steady-state 
values. It is now recognized that irradiance fluctuations in field 
conditions, and the ability of stomatal and photosynthetic re-
sponses to respond instantaneously, can substantially affect plant 
productivity (Taylor and Long, 2017). To enable greater prod-
uctivity in dynamic environments such as a crop canopy, one 

would anticipate that all components of photosynthesis would 
respond rapidly to ‘track’ light closely. Each component has 
a different effect; thus, fast activation of the Calvin cycle and 
CO2 assimilation during induction is beneficial, while rapid 
reduction of NPQ and fast stomatal closure at transition to low 
light enable the attainment of improved CO2 efficiency and 
iWUE at low light.

It is clear that we see some independence of dynamic traits, 
but interesting associations appear which indicate a link with 
biomass. Recent research suggests that major yield gains can be 
made by enhancing photoprotection capacity and NPQ dy-
namic responses (Kromdijk et al., 2016; Hubbart et al., 2018). 
Rapid NPQ relaxation can remove the limitation on quantum 
yield of CO2 assimilation, allowing a quicker recovery of 
photosynthetic efficiency upon A reduction (Kromdijk et al., 
2016; Murchie and Ruban, 2020). Our findings support this: 
NPQ relaxation dynamics were the only group found to have 
ubiquitous associations with increased shoot biomass and area. 
Notably, we also observed that values for A under low light 
were greater in those accessions that exhibited rapid NPQ re-
laxation and those that have lower NPQ capacity under low 
light (NPQr min). It is also hypothesized that faster induction 
of CO2 assimilation may reduce the need for photoprotection 
during induction (McAusland and Murchie, 2020); however, 
we found no association between A induction traits and NPQ 
dynamic or steady-state values. We did find that faster NPQ 
induction is associated with greater photosynthetic capacity, 
shoot area, and biomass.

Whilst no associations were identified between NPQ and 
A reduction dynamics, we found strong positive correlations 
between the speed of gs and NPQ dynamics. This may high-
light the importance of the key NPQ protein, PSII subunit S 
(PsbS), on stomatal conductance, as shown by Głowacka et al. 
(2018), whereby PsbS overexpression, which increases both 
NPQ capacity and NPQ dynamic rate (Kromdijk et al., 2016; 
Głowacka et al., 2018; Hubbart et al., 2018), also reduces the 
extent of stomatal opening in tobacco. This may be reflected 
here by the negative correlation between NPQmax and gsmax, 
also that the gs induction rate was lower when NPQ induc-
tion was faster. This highlights the need to further explore 
the associations between NPQ and gs dynamics: these have 
not been elucidated although there is a general principle that 
limitations imposed by gs or Rubisco activation state would 
result in a further reduction of electron transport and an en-
hanced NPQ. We suggest that in O. glaberrima NPQ may be 
a major player in both gs and A reduction dynamics. Akin 
to the relationship between A and gs, there is a trade-off in 
NPQ as it reduces photosynthetic quantum yields under low 
irradiance.

No association was identified between the water use-related 
traits, gs and iWUEmax, and SD; this may be because the vari-
ation was less than that needed to produce changes in gas ex-
change traits (Caine et al., 2019; Mohammed et al., 2019). It is 
also possible that this highlights the importance of stomatal size 
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and morphology, rather than density, on these traits. Smaller sto-
mata have been shown to have improved WUE, gsmax, and dy-
namics (Drake et al., 2013; Dittberner et al., 2018; Lawson and 
Vialet-Chabrand, 2019; Chatterjee et al., 2020). However, the 
positive correlations we identified between SD ratio, NPQmax, 
and the level of NPQ achieved under low light (NPQr min) is 
unusual. The significant negative association between SD ratio 
and Ar rate has no direct interpretation but may indicate that the 
SD ratio is a trait worthy of further work. Upper leaf SD had 
positive relationships to gsi 50 and Ar rate, and negative to gsr min, 
also indicating that distinction between the leaf surfaces may 
be important.

Understanding the interplay of photoprotective, stomatal, 
and assimilation dynamics should include detailed morpho-
logical characterization (Ohsumi et al., 2007; Drake et al., 2013; 
McAusland et al., 2016), together with the associated meso-
phyll conductance (Campany et al., 2016; Deans et al., 2019). 
The proportion by which photosynthetic dynamics are limited 
by stomata or biochemistry seems to be species dependent 
(Tinoco-Ojanguren and Pearcy, 1993; Taylor and Long, 2017; 
De Souza et al., 2020). Oryza sativa photosynthetic induction 
has been shown to be predominantly limited by biochemistry 
(Acevedo-Siaca et al., 2020, 2021), and the same assumption 
might be extended to O. glaberrima due to a similar genomic 
composition (Stein et al., 2018); however, we conclude from 
our data that stomatal limitations may be more pronounced in 
O. glaberrima.

Accessions have adapted to variable ecological and 
environmental regimes in different countries

No comprehensive studies exist that tease apart the ecological 
and environmental variables that correlate with specific trait 
adaptation in O. glaberrima. This information is useful from an 
evolutionary perspective but may be essential in the selection 
of cultivars for abiotic stress tolerance varieties and trait-related 
genetic characterization.

Of note, we identified a significant association between 
the climate PC4 and phenotype PC1 (Fig. 8D; File S12 at 
Zenodo). This relationship suggests that key photosynthetic 
traits contributing to PC1 have adapted in response from cli-
matic pressures associated with PC4, such as elevation and the 
combined effect of temperature and precipitation. However, 
these are broad observations for climatic–trait correlations 
across the African continent, lacking resolution that can be 
seen in studies on a discrete geographical area (Wolfe and 
Tonsor, 2014).

For the selection of abiotic stress tolerance-adapted culti-
vars, the H-clustering analyses would be of particular use, as 
this generated three distinct clades of O. glaberrima accessions 
stemming from similar climatic and phenotypic variables. 
Furthermore, the climatic H-clustering demonstrated clear 
grouping of accessions due to country of origin (Fig. 7B), 

suggesting that a higher resolution analysis of environmental 
effect on trait adaptation would be beneficial.

We identified adaptation based upon ecotype in the PCA 
(Fig. 8B), supporting a known distinction between O. glaberrima 
upland and lowland phenotypes (Ghesquière, 1997). However, 
there is no comprehensive description in the literature of the 
physiological differences that contribute to these ecotypes. 
Though due to the unequal representation of accessions from 
each ecological niche in this analysis, it is difficult to obtain 
a clear indication of the effect of ecotype on trait adaptation.

The environmental analysis completed here produces useful 
information of accessions displaying similar phenotypic qual-
ities because of environmental adaptation. Equally, this also 
highlights the requirement for a dedicated study to truly elu-
cidate the environmental and ecological trait adaptation of O. 
glaberrima, utilizing equally represented accessions from a range 
of ecotypes and assessing physiological adaptation to climatic 
variables at a range of spatial scales.

Conclusions

Here, we have demonstrated that O. glaberrima has broad, her-
itable natural variation in a range of important traits, which 
are likely to aid in the improvement of O. sativa. This is the 
first study to describe photosynthetic, photoprotection, 
and dynamic traits in O. glaberrima, the size of which is not 
matched in panels of O. sativa accessions. The phenotyping ef-
forts compiled here will provide a basis for the identification 
of interesting traits for physiology research, aid in the selection 
of accessions for crop improvement efforts, and provide infor-
mation for genetic characterization.

Supplementary data

The following supplementary data are available at JXB online. 
Fig. S1. Original, un-fitted data for induction and reduction 

of CO2 assimilation (A), stomatal conductance (gs) and NPQ 
vs time.

Fig. S2. Correlations between the best linear unbiased pre-
dictor (BLUP) values and the original mean.

Fig. S3. Correlation matrix of all phenotypic traits measured.
Fig. S4. Modelled curves for two extreme O. glaberrima ac-

cessions and O. sativa IR64, plotted on a log scale.
Fig. S5. Linear regression plots showing strong positive cor-

relations between the actual measurement vs modelled esti-
mate values.

Fig. S6. Plots showing the scree plot and trait loadings for the 
phenotypic data PCA analysis.

Fig. S7. H-clustering dendrogram of 105 O. glaberrima acces-
sions and frequency plots generated from the H-clustering ana-
lysis of the phenotypic data from 155 O. glaberrima accessions.

Fig. S8. Correlation matrix for all phenotypic and climatic 
data, alongside their principal components.
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Table S1. List of parameter abbreviations, definitions and 
units of measurement.

Table S2. List of O. glaberrima ID codes, country of origin 
and ecology.

Table S3. Estimated model outputs.
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