
https://doi.org/10.1007/s12559-022-10010-w

Visual‑LiDAR SLAM Based on Unsupervised Multi‑channel Deep Neural
Networks

Yi An1 · Jin Shi1 · Dongbing Gu2 · Qiang Liu3 

Received: 24 May 2021 / Accepted: 6 March 2022
© The Author(s) 2022

Abstract
Recently, deep learning techniques have been applied to solve visual or light detection and ranging (LiDAR) simultaneous
localization and mapping (SLAM) problems. Supervised deep learning SLAM methods need ground truth data for training,
but collecting such data is costly and labour-intensive. Unsupervised training strategies have been adopted by some visual or
LiDAR SLAM methods. However, these methods only exploit the potential of single-sensor modalities, which do not take
the complementary advantages of LiDAR and visual data. In this paper, we propose a novel unsupervised multi-channel
visual-LiDAR SLAM method (MVL-SLAM) which can fuse visual and LiDAR data together. Our SLAM system consists of
an unsupervised multi-channel visual-LiDAR odometry (MVLO) component, a deep learning–based loop closure detection
component, and a 3D mapping component. The visual-LiDAR odometry component adopts a multi-channel recurrent convo-
lutional neural network (RCNN). Its input consists of front, left, and right view depth images generated from 360◦ 3D LiDAR
data and RGB images. We use the features from a deep convolutional neural network (CNN) for the loop closure detection
component. Our SLAM method does not require ground truth data for training and can directly construct environmental 3D
maps from the 3D mapping component. Experiments conducted on the KITTI odometry dataset have shown the rotation and
translation errors are lower than some of the other unsupervised methods, including UnMono, SfmLearner, DeepSLAM,
and UnDeepVO. Experimental results show that our methods have good performance. By fusing visual and LiDAR data,
MVL-SLAM has higher accuracy and robustness of the pose estimation compared with other single-modal SLAM systems.

Keywords  Unsupervised deep learning · Multi-channel RCNN · Visual-LiDAR SLAM · Sensor fusion

Introduction

Simultaneous localization and mapping (SLAM) plays a key
role in many fields, such as autonomous robot navigation,
localization [1, 2], and self-driving systems. Traditional
SLAM methods [3, 4] use manual design features to carry
out inter-frame matching and loop closure detection. How-
ever, the parameters of these methods have to be set in vari-
ous scenarios to achieve better performance. Recently, with
the advance of deep learning techniques, significant achieve-
ments of deep learning–based methods have been made [5,
6]. Compared to traditional methods, deep learning methods
can automatically extract features without manual designs,
and they could perform better in some challenging scenes.

Supervised training methods are employed by some deep
learning systems, which need ground truth data. However,
the acquisition of ground truth data is difficult and expen-
sive. Recently some researchers proposed unsupervised
SLAM algorithms [7] to avoid the use of labelled data.

 *	 Qiang Liu
	 qiang.liu@psych.ox.ac.uk

	 Yi An
	 anyi@dlut.edu.cn

	 Jin Shi
	 sj2796219195@mail.dlut.edu.cn

	 Dongbing Gu
	 dgu@essex.ac.uk

1	 School of Control Science and Engineering, Dalian
University of Technology, Dalian 116023, China

2	 School of Computer Science and Electric Engineering,
University of Essex, Colchester CO4 3SQ, UK

3	 Department of Psychiatry, University of Oxford,
Oxford OX3 7JX, UK

/ Published online: 28 April 2022

Cognitive Computation (2022) 14:1496–1508

1 3

http://orcid.org/0000-0001-7531-4459
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-022-10010-w&domain=pdf

Unsupervised learning methods reduce the difficulty of
acquiring training data, so it is easier to expand the training
dataset. Given a larger dataset, the pose and depth estimation
accuracy and robustness can be further increased.

Most unsupervised learning SLAM methods only use
single-modal data like RGB images or light detection and
ranging (LiDAR) data. Visual SLAM requires relatively sta-
ble lighting changes, and some of them only use monocu-
lar images, which cannot obtain the absolute scale directly.
Compared to visual SLAM, LiDAR SLAM has higher accu-
racy. However, the collected 3D point cloud data are dis-
torted due to the moving of LiDAR sensors. Moreover, the
vertical resolution of LiDAR sensors is low.

In this paper, we propose a novel unsupervised visual-
LiDAR SLAM method to compensate for the weakness of
each sensor and explore the complementary advantages. Our
SLAM consists of an unsupervised visual-LiDAR odometry
component, a deep learning–based loop closure detection
component, and a 3D mapping component. The core of our
odometry component is a multi-channel recurrent convolu-
tional neural network (RCNN). Its input includes monocu-
lar RGB images and multi-channel depth images generated
from 3D LiDAR data. Our loop closure detection component
adopts a convolutional neural network (CNN) to detect the
loop closure. Then, the general graph optimization (g2o) [8]
is used to conduct the global graph optimization. Finally, a
global 3D map can be constructed from our 3D mapping
component. Figure 1 shows the framework of our system.

Since the system adopts an unsupervised training method,
no ground truth data is used. During the training process,
consecutive RGB images and multi-channel depth images
are fed into the network. The outputs of the network are 6D

pose and 3D maps. Our experiments are based on the KITTI
odometry dataset [9]. Results have shown that our SLAM
and odometry are better than some of the state-of-the-art
unsupervised visual odometry (VO) and SLAM methods in
terms of translation and rotation accuracy.

Our main contributions are summarized as follows:

•	 Our SLAM method fuses multi-modal data, including
RGB images and LiDAR data, to estimate the pose and
3D map, improving the accuracy and robustness of pose
estimation.

•	 An unsupervised learning method is proposed for the
multi-channel visual-LiDAR odometry component,
which reduces the costs of training dataset collection.

•	 Our loop closure detection is implemented with a CNN
model to extract the loop closure information from RGB
images and multi-channel depth maps.

The rest of the paper is organized as follows. "Related Works"
describes the literature related to visual or LiDAR SLAM
methods. "Our SLAM System" shows our SLAM method in
detail. Experimental results are listed in "Experiments". And
the last part is a summary and the future work.

Related Works

Traditional Visual SLAM

Davison et al. [10] proposed a monocular SLAM method
(MonoSLAM). MonoSLAM is the first real-time monocular
SLAM, which is based on extended Kalman filter (EKF).
MonoSLAM extracts Shi and Tomasi features [11] from
monocular images to estimate the pose. Endres et al. [12]
proposed RGB-D SLAM V2. Oriented fast and rotated brief
(ORB) [13], features from scale-invariant (SIFT) [14], and
speeded up robust features (SURF) [15] can be used in the
feature extraction stage. Mur-Artal and Tardós [16] proposed
ORB-SLAM2, expanding the previously proposed monocu-
lar SLAM to monocular, binocular, and RGB-D SLAM.

Supervised Visual SLAM

Since the significant achievement of deep learning methods
in image recognition and classification tasks, many research-
ers have introduced deep learning methods into their visual
SLAM methods. Compared with the traditional methods,
deep learning–based methods automatically perform fea-
ture extractions, feature matching, or complex geometric
operations, which makes the deep learning–based methods
more attractive. Kendall et al. [17] firstly applied the CNN
to VO. The PoseNet they proposed takes monocular images
as the inputs, and the outputs are 6D poses. Handa et al. Fig. 1   Overview of our proposed visual-LiDAR SLAM

1497Cognitive Computation (2022) 14:1496–1508

1 3

[18] extended the spatial transform network [19] to deliver
an RGB-D VO method. The network is inspired by the
VGG-16 network [20], and it also can estimate depths from
the monocular RGB images. Wang et al. [21] extended the
CNN by adding a recurrent neural network (RNN) structure.
The CNN extracts features, and the RNN performs feature
matching. However, all the above methods need ground truth
data.

Unsupervised Visual SLAM

The main advantage of unsupervised methods is no need for
ground truth data which decreases the difficulty of acquir-
ing training data. Zhou et al. [22] proposed an unsupervised
system to recover poses and depth information from videos,
paving the way for unsupervised visual VO methods. How-
ever, this system only uses RGB images, and the predicted
results do not include an absolute scale. Mahjourian et al.
[23] proposed an unsupervised system using 3D geomet-
ric constraints. Except for the pixel-wise or gradient-based
information in small local neighborhoods, the system also
considers the 3D geometry of a scene to enforce the con-
sistency of the estimated 3D point clouds and ego-motion
across consecutive frames. The principle is similar to iter-
ated closest point (ICP) [24]. Liu et al. [25] proposed an
unsupervised monocular VO method, but depth information
is still needed for training. Li et al. [7] proposed an unsuper-
vised monocular SLAM method (DeepSLAM). It requires
stereo images for training and monocular images for testing.
However, DeepSLAM does not use LiDAR data.

Traditional LiDAR SLAM

Compared with visual methods, LiDAR SLAM methods
have higher accuracy. However, the acquisition frequency
of LiDAR sensors is lower. Zhang and Singh [3] proposed
a LiDAR odometry method (LOAM), which extracts and
matches geometric features in Cartesian space and has a
lower requirement on the cloud density. LOAM includes
two algorithms. One algorithm performs odometry at a high
frequency but with low accuracy. The other algorithm runs
at a lower frequency for mapping. Then, they fused visual
and LiDAR sensors and proposed a visual-LiDAR odometry
method (VLOAM) [26] based on LOAM. Compared with
LOAM, VLOAM has higher accuracy. VLOAM includes
visual odometry to estimate ego-motion at a high frequency
and LiDAR odometry to refine the motion estimation at
a lower frequency. Deschaud [27] proposed a 3D LiDAR
SLAM method based on a scan-to-model matching frame-
work, which used the implicit moving least squares (IMLS)
surface representing LiDAR sweeps.

Supervised LiDAR SLAM

Li et al. [28] proposed a supervised LiDAR odometry (LO-
Net) method, which has the similar accuracy with LOAM.
LO-Net can be trained in an end-to-end manner. LO-Net
can learn feature representation from LiDAR data efficiently.
Cho et al. [29] proposed DeepLO. DeepLO is based on a
geometric constraint and incorporates the ICP algorithm
into a deep learning framework. Li et al. [30] proposed a
semantic SLAM method including a semantic segmentation
network. The system can construct a 3D semantic map. Lu
et al. [31] proposed a learning-based LiDAR localization
system (L3-Net). L3-Net achieves centimeter-level locali-
zation accuracy. 3D convolutions are used to enhance the
accuracy.

Unsupervised LiDAR SLAM

Yin et al. [32] proposed a LO method, which is based on an
unsupervised convolutional auto-encoder structure (CAE-
LO). However, CAE-LO is not an end-to-end method,
which only uses a neural network to extract features from
3D LiDAR data. Cho et al. [33] proposed an unsupervised
LiDAR odometry method based on geometric information
(UnGLO). UnGLO can output the poses directly. UnGLO
utilizes a 2D spherical projection for input representation
and uses point-to-plane ICP to formulate the loss function.

Our SLAM System

Our SLAM consists of an unsupervised visual-LiDAR
odometry component, a deep learning–based loop closure
detection component, and a 3D mapping component. The
loop closure detection is used to decrease the accumulated
errors of our odometry. The 3D map is constructed by using
an optimized global pose. Figure 1 shows the overview of
our SLAM system.

Visual‑LiDAR Odometry Component

The odometry needs to predict the pose from a consecu-
tive input sequence. We propose an RCNN to be the core of
our odometry. The network adopts an unsupervised training
framework. The inputs are RGB images and multi-channel
depth images generated from 3D LiDAR point clouds. The
outputs are the 6D pose with an absolute scale.

Data Preparation

To ensure the unity of the network structure, our odometry
does not use LiDAR data directly. We convert the 3D LiDAR
data to multi-channel depth images. The multi-channel depth

1498 Cognitive Computation (2022) 14:1496–1508

1 3

images include three depth images from left, right, and front
views. The purpose of using multi-channel depth images is
to get more information about the sensor motion.

We project the LiDAR data onto the imaging plane to
obtain the front depth images, which correspond to RGB
images at the pixel level. I = {It|1 ≤ t ≤ n} represents an
RGB image sequence, and Df = {D

f

t
|1 ≤ t ≤ n} denotes

a front depth image sequence corresponding to I. Let
qt =

[

xt, yt, zt

]� denote a 3D LiDAR point, and let pt =
[

ut, vt

]�
be its projection on It , and dt is the depth value of pt . The
projecting process can be described as:

where p̃t =
[

ut, vt, 1
]� and q̃t =

[

xt, yt, zt, 1
]� are the homog-

enous coordinates of pt and qt respectively. [R t] is the extrin-
sic parameter matrix (rotation matrix and translation vec-
tor) between the 3D LiDAR data and the camera. K is the
intrinsic matrix of the camera. Through Eq. (1), dt can be
solved. The corresponding depth value of It namely Df

t
 can be

obtained. Due to the sparse distribution of point clouds, only
a few pixel points have depth values. We use the barycentric
interpolation method to fill the holes in the depth images.

For the left and right depth images, we build two virtual
cameras generated from the real camera rotating 90◦ clock-
wise and anticlockwise with itself as the center, and then

(1)dtp̃t = K[R t]q̃t

we obtain the left and right cameras. Similarly, we use Eq.
(1) to project the LiDAR data onto imaging planes of the
left and right cameras to get the left and right depth images.
Dl = {Dl

t
|1 ≤ t ≤ n} and Dr = {Dr

t
|1 ≤ t ≤ n} represent con-

secutive left and right depth image sequences respectively.
The LiDAR points that cannot be projected onto the three
imaging planes (front, left, right cameras) are discarded.

Network Architecture

The network is a four-channel architecture. The inputs of the
four channels are RGB images, front depth images, left depth
images, and right depth images. The inputs of each channel
are multiple consecutive images. We input five consecutive
images to the network in training. The RGB images and the
depth images are resized to 416 × 128 × 3 . The architecture
of our odometry component is shown in Fig. 2.

The design of our CNN framework is based on Oxford’s
visual geometry group (VGG) [20]. We modify the VGG
network. Each channel of the CNN starts with a 7 × 7 con-
volutional layer, followed by two 5 × 5 convolutional layers.
Both are used to capture the basic features of images. The
remaining structure is five 3 × 3 convolutional layers. We
reduce the size of the convolutional layer to obtain more
detailed features. In the proposed network, the strides used

Fig. 2   Architecture of the visual-LiDAR odometry component based on RCNN

1499Cognitive Computation (2022) 14:1496–1508

1 3

are 2 and 1. We also use zero padding to prevent the image
size from decreasing too quickly. A rectified linear unit
(ReLU) activation function follows each convolutional layer
to introduce nonlinearity to the network. The convolutional
layers are detailed in Table 1.

The CNN as a feature extractor converts images into fea-
ture vectors, while the RNN as a pose prediction module
combines the feature vectors in consecutive time steps. The
RNN is a long short-term memory (LSTM) structure. Com-
pared with a standard RNN, the LSTM can avoid the prob-
lem of long-term dependence. The core of an LSTM is the
cell state, which is controlled by three regulators, namely the
forget, input, and output gates. The number of hidden units
in an LSTM cell is 256. According to [34], we set the bias
of the forget gate to 1.

The full connection layer follows the LSTM. The fully
connected structure has two layers. The dimension of each
layer is set to 256. The outputs of the full connection layer
are the rotation and translation vectors, namely the 6D pose.
The rotation vector is represented by 3 values using Euler
angles, and the translation vector includes 3 values in the
Euclidean space.

Loss Function

We use RGB images and multi-channel depth images to
calculate the loss function. The loss function consists of
two parts: 2D and 3D spatial loss. The 2D spatial loss is
the difference of pixel values between a raw image and a
reconstructed image. And the 3D spatial loss is the differ-
ence between a raw 3D point cloud and a reconstructed 3D
point cloud. The illustrations of loss calculations are shown
in Figs. 3 and 4 for the 2D and 3D spatial loss respectively.
Tt−>t+1 represents the predicted transformation matrix from
the network.

•	 2D spatial loss: We project the pixels of an RGB image
from It to It+1 . Ît+1 is the reconstructed image, which is

constructed by Rt−>t+1 , tt−>t+1 , and It . Rt−>t+1 and tt−>t+1
represent the predicted rotation matrix and translation
vector from the network. The reconstruction process of
Ît+1 can be described as:

 where p̂t+1 is a pixel coordinate of Ît+1 , and the cor-
responding pixel value is same as pt . s is a scale factor.
Since p̂t+1 is not a integer in most cases, it is projected
to its four neighboring pixel points: top-left, top-right,
bottom-left, and bottom-right as recommended in [19].

	  Similarly, we use p̂t to construct Ît . p̂t can be solved by
Eq. (3). The process is described as:

 where p̃t+1 is the homogenous coordinate of pt+1.
•	 3D spatial loss: We convert the depth images to the 3D

space to generate a point cloud, that is, a pixel of depth
images is converted to a 3D point. C = {Ct|1 ≤ t ≤ n} is
the point cloud generated from Df  , Dl , and Dr in the cam-
era coordinate. ct =

[

xt, yt, zt

]� is a 3D point of Ct . Translat-
ing ct to the coordinate of Ct+1 can be expressed by the
following equation:

(2)
[

p̂t+1

1

]

=
1

s
K(Rt−>t+1dtK

−1
�pt + �t−>t+1)

(3)
[

p̂t

1

]

=
1

dt+1

KR
−1
t−>t+1

(sK−1
�pt+1 − �t−>t+1)

Table 1   Convolutional layers

Layer Filter size Stride Padding Channel
number

Conv1 7 × 7 2 3 8
Conv2 5 × 5 2 2 16
Conv3 5 × 5 2 1 32
Conv4 3 × 3 2 1 64
Conv5 3 × 3 1 1 128
Conv6 3 × 3 1 1 256
Conv7 3 × 3 1 1 256
Conv8 3 × 3 2 1 256 Fig. 3   2D spatial loss calculation for training

Fig. 4   3D spatial loss calculation for training

1500 Cognitive Computation (2022) 14:1496–1508

1 3

 The point cloud Ĉt+1 is constructed by ĉt+1 . The differ-
ence between Ĉt+1 and Ct+1 is used to calculate the 3D
spatial loss. We can also use Eq. (4) backwards to recon-
struct Ct . The inverse equation is described as follows:

 where ĉt can be used to construct the point cloud Ĉt . The
2D spatial loss is described as:

 The 3D spatial loss is described as:

 We introduce two independent weights �2D and �3D to
balance the 2D and 3D spatial loss. The total loss L is
described as:

Loop Closure Detection Component

To reduce the accumulated errors of odometry, we use a
loop closure detection component to find loop closures in the

(4)ĉt+1 = Rt−>t+1ct + �t−>t+1

(5)ĉt = R
−1
t−>t+1

(ct+1 − tt−>t+1)

(6)L2D =

n−1
∑

t=1

(

||It − Ît||
2 + ||It+1 − Ît+1||

2
)

(7)L3D =

n−1
∑

t=1

(

||Ct − Ĉt||
2 + ||Ct+1 − Ĉt+1||

2
)

(8)L = �2DL2D + �3DL3D

trajectory and improve the pose accuracy. The architecture
of the loop closure detection component is shown in Fig. 5.

We adopt a pre-trained CNN for loop closure detection. The
inputs of the pre-trained CNN are RGB images and multi-channel
depth images, which are converted into feature vectors. We
choose VGG19 to extract the feature vectors from the images.

At the time step t, we can obtain four images ( It , D
f

t
 , Dl

t
 ,

and Dr

t
 ). The four images are converted to four feature vec-

tors. We concatenate the four feature vectors to generate a
new vector vt(1 ≤ t ≤ n) to describe a scene. By compar-
ing the cosine distance between two feature vectors vi and
vj (i ≠ j) , we can judge if the trajectory has a loop closure.
The calculation equation of cosine distance is described as:

where dcos represents the similarity between �i and �j . If dcos
is higher than a threshold dTH , it can be considered that a
loop closure has been found.

We convert the image sequence, including RGB images
and multi-channel depth images, to feature vectors. Every
scene has a corresponding feature vector. These feature vec-
tors form a vector sequence V = {vt|1 ≤ t ≤ n} . We use Eq.
(9) to extracting key frames. The first frame is set as the
current key frame. The cosine distance between the current
key frame and the next key frame cannot exceed dKEY . Fol-
lowing the vector sequence V, the next key frame can be
found. Then, we set the next key frame as the current key
frame. This process is repeated until the vector sequence V
is traversed. Extracting the key frames also can reduce the

(9)dcos = cos(�i, vj)

Fig. 5   Architecture of the loop closure detection component

1501Cognitive Computation (2022) 14:1496–1508

1 3

time consumption of loop closure detection. Then, we cal-
culate the similarity, namely the consine distance between
key frames, to find the loop closures in the image sequence.

If the cosine distances of all feature vectors from key
frames are lower than the dTH , it is considered that there is
no loop closure in the sequence. In this case, g2o is not used
to optimize the pose.

After the loop closure detection, we feed the loop closure
information and the predicted pose into the pose optimization
system. Then, we use g2o [8] to optimize the predicted pose.

Experiments

In this part, we present our experimental results. We com-
pare our odometry component and SLAM system with
other state-of-the art odometry and SLAM methods, such

as SfMLearner [22], UndeepVO [35], UnMono [25], Deep-
SLAM [7], UnGLO [33], VISO2-Mono, and VISO2-Stereo
[36].

Training

The network was trained on a desktop with an Intel Core
E5-1650 v3 @3.50GHz CPU and a Nvidia GeForce GTX
1080Ti 11GB Memory GPU.

Our code was based on Tensorflow. We used the KITTI
odometry dataset as the training data, including 22 sequences
captured by cars in cities, suburbs, highways. Ground truth
data are provided in sequences 00–10, while 11–21 are not.
UnGLO used 3D LiDAR data for training. SfMLearner
and UnMono used monocular RGB images for training.
UndeepVO and DeepSLAM used binocular RGB images for
training. Our system was trained by monocular RGB images

Fig. 6   The trajectories of odometry with ground truth. (a) Sequence 00. (b) Sequence 05. (c) Sequence 07. (d) Sequence 09

1502 Cognitive Computation (2022) 14:1496–1508

1 3

and multi-channel depth images generated from 3D LiDAR
data. The size of training images was set to 416 × 128 × 3 ,
which was used by SfMLearner, UnMono, UndeepVO, Deep-
SLAM, our SLAM, and odometry. The input image sizes of
VISO2-Mono and VIS2O-Stereo were 1242 × 376 . Due to
the relatively small training dataset, we enhanced the train-
ing data to ensure the system with stronger robustness. We
enhanced the training data in the following aspects:

–	 Luminance: We randomly changed the light intensity on
RGB images, and the adjustment range � was [0.7, 1.3].

–	 Scale: We randomly changed the scale of RGB images
and multi-channel depth images. The adjustment range
of X and Y were [1.0, 1.2], and then they were clipped
to 416 × 128.

–	 Rotation: We randomly rotated RGB and multi-channel
depth images in the range of r ∈ [−5, 5] degrees.

After completing the above steps, the processed data were
fed into the network. The optimizer of our network was
Adam [37]. We adopted the recommendations for the first
and second attenuation indices: �1 = 0.9 and �2 = 0.999 .
The network inputs were five consecutive RGB images and
multi-channel depth images in one batch. The batch size
of the training was 32. Within a total training length of 40
epochs, the loss function value tended to be stable around
15 epochs under normal conditions.

Performance Evaluation

Compared to our odometry, our SLAM adds a loop clo-
sure detection component. According to the loop closure
information, SLAM uses g2o to optimize the pose from the
odometry. DeepSLAM adopted 00–02, 08, 09, and 11–21
sequences for training. Other unsupervised methods used

Fig. 7   The trajectories of SLAM with ground truth. (a) Sequence 00. (b) Sequence 05. (c) Sequence 07. (d) Sequence 09

1503Cognitive Computation (2022) 14:1496–1508

1 3

00–08 sequences as the training dataset. In the training pro-
cess, UnMono, DeepSLAM, SfmLearner, and UnDeepVO
are all trained by the enhanced training dataset.

The experimental comparison is divided into four aspects:

–	 Our odometry was compared with other odometry meth-
ods in 00–10 sequences.

–	 Our SLAM was compared with our odometry in 00–10
sequences.

–	 Our SLAM was compared with VISO2-Stereo and
UnMono in 11–21 sequences.

–	 The 3D map was constructed through the predicted
global pose graph.

Since the KITTI odometry dataset is taken from an outdoor
moving vehicle, only minor deviations were generated in the
vertical direction. To clearly present the differences between

trajectories, the y axis is omitted in trajectory diagrams. The
initial point of each trajectory is set as (0,0). Intuitively, the
closer the trajectory is to the ground truth (GT) curves, the
higher the accuracy.

The trajectories of odometry selected from 00 to 10
sequences are presented in Fig. 6. The trajectories of GT, our
odometry, and UnMono are represented by black, blue, and
green curves respectively. As can be observed, the trajecto-
ries of our odometry are closer to GT curves than UnMono.
The accuracy of our odometry is higher than UnMono. It can
be seen the importance of adding multi-channel depth data
to the system, which can improve the predicted accuracy of
trajectories.

The trajectories of our SLAM selected from 00 to 10
sequences are presented in Fig. 7. The trajectories of our
SLAM are represented by red curves. As can be observed,
the trajectories of our SLAM are closer to GT curves than

Fig. 8   The trajectories of SLAM without ground truth. (a) Sequence 14. (b) Sequence 15. (c) Sequence 16. (d) Sequence 17

1504 Cognitive Computation (2022) 14:1496–1508

1 3

our odometry. The accuracy of our SLAM is higher than our
odometry. Due to the influence of accumulated errors, the
prediction accuracy of turning angles plays a pivotal role. It
can be seen, adding loop closure detection to our odometry,
the deviation between prediction trajectories and GT trajec-
tories was reduced.

The trajectories of our SLAM selected from 11 to 21
sequences are presented in Fig. 8. The trajectories of VISO2-
Stereo are represented by black curves. Since there is no
ground truth in 11–21 sequences, VISO2-Stereo is used
as a reference. As can be observed, the trajectories of our
SLAM are closer to VISO2-Stereo than UnMono, which
again proves the importance of multi-channel depth data.

The detailed error analysis is shown in Tables 2 and 3. We
computed the root mean square error (RMSE) of translation
and rotation on the lengths of 100, 200,..., 800 meters. As
can be observed, the average error of our odometry is less
than UnMono. It can be seen the training and testing results
are improved by adding the multi-channel depth images.
Only the rotation errors of our odometry in sequences 04
and 05 are higher than UnMono. The pose transformation
includes rotation and translation. When the sensors (the
camera and LiDAR) go straight, the rotation angle is small.
When the sensors turn, the rotation angle is large. The trans-
lation is a linear process, while rotation is a non-linear pro-
cess. Therefore, rotation is more difficult to predict for the
network. In the training process, UnMono adds many turning
data to improve the rotation prediction accuracy. However,
this may result in decreased translation accuracy. Therefore,

the proposed method does not add too many turning data
during the training process. The training data of turning and
going straight are balanced, so the proposed odometry may
have higher rotation errors than UnMono in some sequences.

Compared with other unsupervised visual odometry and
SLAM methods, our SLAM system has higher accuracy.
Compared with VISO2-Stereo, our SLAM and odometry
methods automatically extract features without manual
designs, and they could perform better in some challeng-
ing scenes. The data of sequence 01 are collected from the
expressway, which is more difficult to estimate the pose than
urban and rural streets. As can be observed, our SLAM and
odometry methods perform better than VISO2-Stereo in
sequence 01. It can be seen, our methods are more robust
than VISO2-Stereo. Compared with UnGLO, our odometry
has a lower translation error. Since UnGLO adopts LiDAR
data directly, UnGLO has a lower rotation error. From the
predicted results of sequences 09 and 10, which are not
used for training, our odometry has higher accuracy. It can
be seen our odometry is more robust than UnGLO, and by
comparing the mean errors of our SLAM and odometry,
it can be seen adding loop closure detection in the system
can reduce translation and rotation errors. However, in some
cases, the optimization of the posture may have some nega-
tive effects. For example, our SLAM has a higher rotation
error than our odometry in sequence 07. The error of the
odometry accumulates over time, the initial error is small,
and as time increases, the error gradually increases. G2o can
effectively reduce the gradually accumulated small errors.

Table 2   Translational and
rotational errors of our SLAM,
our odometry, UnMono,
DeepSLAM, VISO2-Mono,
and VISO2-Stereo. Our SLAM,
our odometry, UnMono, and
DeepSLAM are unsupervised
deep learning based. VISO2-
Mono and VISO2-Stereo are
feature based

t
rel
(%) : average translational RMSE drift (%) on length of 100–800m

r
rel
(◦∕100m) : average rotational RMSE drift ( ◦∕100m ) on length of 100–800m

Our SLAM Our
odometry

UnMono DeepSLAM VISO2-Mono VISO2-
Stereo

Visual-
LiDAR

Visual-
LiDAR

Monocular Monocular Monocular Stereo

Unsupervised Unsupervised Unsupervised Unsupervised Feature based Feature
based

Seq. t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

00 2.53 0.79 2.77 1.78 5.14 2.13 NA NA 18.35 2.73 1.87 0.59
01 3.76 0.80 3.76 0.80 15.64 0.95 NA NA 36.52 7.69 8.61 1.23
02 3.95 1.05 4.82 2.26 4.86 2.30 NA NA 4.36 1.19 2.01 0.41
03 2.75 1.39 2.75 1.39 6.03 1.83 7.66 4.3 8.47 8.82 3.21 0.73
04 1.81 1.48 1.81 1.48 2.15 0.89 4.56 1.90 4.69 4.69 2.12 0.24
05 3.49 0.79 3.81 1.43 3.84 1.29 3.25 1.31 19.22 17.58 1.53 0.53
06 1.84 0.83 4.03 1.24 4.29 1.33 4.97 1.53 7.15 1.93 1.57 0.32
07 3.27 1.51 3.61 1.41 3.80 1.71 4.71 1.84 23.61 29.11 1.85 0.78
08 2.75 1.61 2.75 1.61 2.92 1.63 NA NA 24.47 2.53 1.92 0.56
09 3.7 1.83 3.76 1.92 5.58 2.77 NA NA 7.17 1.25 1.94 0.54
10 4.65 0.51 4.65 0.51 5.14 3.34 8.35 3.93 44.61 3.26 1.18 0.48
Mean 3.14 1.14 3.50 1.43 5.40 1.94 5.58 2.47 18.28 2.99 2.52 0.60

1505Cognitive Computation (2022) 14:1496–1508

1 3

However, if the predicted pose of the odometry at a certain
time produces an abrupt large error as shown in sequence 07,
using g2o does not always have a good optimization result.
Since g2o optimizes the global pose, in order to reduce this

abrupt large errors, other poses will be over-corrected and
new errors will be introduced.

The 3D reconstruction on sequence 09 is shown in Fig. 9.
The 3D LiDAR data was projected to the image plane, and the

Table 3   KITTI odometry
evaluation

t
rel
(%) and r

rel
(◦∕100m) are the average translational RMSE drift and rotational RMSE drift on length of

100 to 800m. The sequences 00–08 are the training dataset, and the sequences 09 and 10 are used to test

Seq. 00–08 Seq. 09 Seq. 10

Methods t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

Our odometry 3.34 1.49 3.76 1.92 4.65 0.51
UnDeepVO 4.54 2.55 7.01 3.61 10.63 4.65
UnMono 4.18 1.61 5.59 2.57 5.14 3.34
UnGLO 3.68 0.87 4.87 1.95 5.02 1.83
SfmLearner 28.52 4.67 18.77 3.21 14.33 3.30

Fig. 9   3D reconstruction of sequence 09. (a) Sequence 09. (b) Sequence 09. (c) Sequence 09

1506 Cognitive Computation (2022) 14:1496–1508

1 3

RGB pixel points corresponding to the 3D points were found,
that is, the RGB information of 3D points was obtained. We
used the color point clouds to reconstruct the 3D scene.

Finally, we analyze the time complexity of UnMono and
our odometry. In the testing process, the batch size was set
to 1. The time consumption of UnMono and our odometry is
25.63ms and 29.01ms respectively. Compared with UnMono,
our odometry spends a longer running time due to the addi-
tional network structure.

Conclusions

In this paper, we proposed an unsupervised multi-channel
visual-LiDAR SLAM method (MVL-SLAM), which consists
of an unsupervised multi-channel visual-LiDAR odometry
component (MVLO), a loop closure detection component,
and a 3D mapping component. The estimation accuracy of
poses is improved after adding multi-channel depth informa-
tion generated from LiDAR data. The absolute scale can be
obtained directly compared with other monocular systems.
The loop closure detection uses a CNN model to extract
features from the depth and RGB images. We combine the
global poses, RGB images, and LiDAR data to construct 3D
maps.

In the future, we will explore other options of combing
LiDAR point clouds and RGB images together to improve
its robustness under challenging circumstances.

Acknowledgements  This work was supported in part by the National
Natural Science Foudation of China under Grant 61673083, and in
part by the Science and Technology Major Projecct of Shanxi Province
under Grant 20191191014.

Declarations 

Ethical Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed Consent  Informed consent was obtained from all individual
participants included in the study.

Conflict of Interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Liu Q, Li R, Hu H, Gu D. Indoor topological localization based on a
novel deep learning technique. Cogn Comput. 2020;12(3):528–41.

	 2.	 Wu H, Wu Y, Liu C, Yang G, Qin S. Fast robot localization
approach based on manifold regularization with sparse area fea-
tures. Cogn Comput. 2016;8(5):856–76.

	 3.	 Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-
time. In: Proceedings of Robotics: Science and Systems. 2014.

	 4.	 Mur-Artal R, Montiel J, Tardós J. ORB-SLAM: a versatile and accurate
monocular SLAM system. IEEE Trans Robot. 2015;31(5):1147–63.

	 5.	 Deng C, Qiu K, Xiong R, Zhou C. Comparative study of deep
learning based features in SLAM. In: 2019 4th Asia-Pacific Con-
ference on Intelligent Robot Systems (ACIRS). 2019. p. 250–254.

	 6.	 Li C, Li Z, Feng Y, Liu Y, Shi G. Development of a human-robot
hybrid intelligent system based on brain teleoperation and deep
learning SLAM. IEEE Trans Autom Sci Eng. 2019;16(4):1664–74.

	 7.	 Li R, Wang S, Gu D. DeepSLAM: a robust monocular SLAM
system with unsupervised deep learning. IEEE Trans Ind Electron.
2021;68(4):3577–87.

	 8.	 Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W.
G2O: A general framework for graph optimization. In: 2011 IEEE
International Conference on Robotics and Automation. 2011. p.
3607–3613.

	 9.	 Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: the
KITTI dataset. Int J Robot Res. 2013;32(11):1231–7.

	10.	 Davison A, Reid I, Molton N, Stasse O. MonoSLAM: real-time
single camera SLAM. IEEE Trans Pattern Anal Mach Intell.
2007;29(6):1052–67.

	11.	 Shi J, Tomasi. Good features to track. In: 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition.
1994. p. 593–600.

	12.	 Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3-D mapping
with an RGB-D camera. IEEE Trans Robot. 2014;30(1):177–87.

	13.	 Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient
alternative to SIFT or SURF. In: 2011 International Conference
on Computer Vision. 2011. p. 2564–2571.

	14.	 Lowe D. Distinctive image features from scale-invariant key-
points. Int J Comput Vis. 2004;20:91–110.

	15.	 Bay H, Tuytelaars T, Gool LV. SURF: speeded up robust features.
In: European Conference on Computer Vision. 2006. p. 404–417.

	16.	 Mur-Artal R, Tardós J. ORB-SLAM2: an open-source SLAM
system for monocular, stereo, and RGB-D. IEEE Trans
Robot. 2017;33(5):1255–1262.

	17.	 Kendall A, Grimes M, Cipolla R. PoseNet: A convolutional net-
work for real-time 6-DOF camera relocalization. In: Proceed-
ings of the IEEE International Conference on Computer Vision
(ICCV). 2015. p. 2938–2946.

	18.	 Handa A, Bloesch M, Pătrăucean V, Stent S, McCormac J, Davison A.
GVNN: neural network library for geometric computer vision. In: Euro-
pean Conference on Computer Vision. Springer; 2016. p. 67–82.

	19.	 Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial
transformer networks. In: Advances in neural information process-
ing systems 28. Curran Associates, Inc.; 2015. p. 2017–2025.

	20.	 Simonyan K, Zisserman A. Very deep convolutional networks
for large-scale image recognition. International Conference on
Learning Representations (ICRA). 2014.

	21.	 Wang S, Clark R, Wen H, Trigoni N. DeepVO: Towards end-
to-end visual odometry with deep recurrent convolutional neural
networks. In: 2017 IEEE International Conference on Robotics
and Automation (ICRA). 2017. p. 2043–2050.

	22.	 Zhou T, Brown M, Snavely N, Lowe D. Unsupervised learning
of depth and ego-motion from video. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2017. p.
6612–6619.

1507Cognitive Computation (2022) 14:1496–1508

1 3

http://creativecommons.org/licenses/by/4.0/

	23.	 Mahjourian R, Wicke M, Angelova A. Unsupervised learning of
depth and ego-motion from monocular video using 3D geometric
constraints. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2018. p. 5667–5675.

	24.	 Besl P, Mckay H. A method for registration of 3-D shapes. IEEE
Trans Pattern Anal Mach Intell. 1992;14(2):239–56.

	25.	 Liu Q, Li R, Hu H, Gu D. Using unsupervised deep learning technique
for monocular visual odometry. IEEE Access. 2019;7:18076–88.

	26.	 Zhang J, Singh S. Visual-lidar odometry and mapping: low-drift,
robust, and fast. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). 2015. p. 2174–2181.

	27.	 Deschaud JE. IMLS-SLAM: Scan-to-model matching based on
3D data. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA). 2018. p. 2480–2485.

	28.	 Li Q, Chen S, Wang C, Li X, Wen C, Cheng M, Li J. LO-Net:
Deep real-time Lidar odometry. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2019. p.
8465–8474.

	29.	 Cho Y, Kim G, Kim A. DeepLO: Geometry-aware deep Lidar
odometry. arXiv preprint arXiv:​1902.​10562. 2019.

	30.	 Li R, Gu D, Liu Q, Long Z, Hu H. Semantic scene mapping with
spatio-temporal deep neural network for robotic applications.
Cogn Comput. 2018;10(2):260–71.

	31.	 Lu W, Zhou Y, Wan G, Hou S, Song S. L3-Net: Towards learning
based Lidar localization for autonomous driving. In: 2019 IEEE/

CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019. p. 6382–6391.

	32.	 Yin D, Zhang Q, Liu J, Liang X, Wang Y, Maanpää J, et al. CAE-
LO: Lidar odometry leveraging fully unsupervised convolutional
auto-encoder for interest point detection and feature description.
arXiv preprint arXiv:​2001.​01354. 2020.

	33.	 Cho Y, Kim G, Kim A. Unsupervised geometry-aware deep Lidar
odometry. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA). 2020. p. 2145–2152.

	34.	 Kawakami K. Supervised sequence labelling with recurrent neural
networks. Ph. D. dissertation, PhD thesis. Ph. D. thesis. 2008.

	35.	 Li R, Wang S, Long Z, Gu D. UnDeepVO: Monocular visual
odometry through unsupervised deep learning. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA).
2018. p. 7286–7291.

	36.	 Geiger A, Ziegler J, Stiller C. Stereoscan: Dense 3D reconstruc-
tion in real-time. In: 2011 IEEE Intelligent Vehicles Symposium
(IV). 2011. p. 963–968.

	37.	 Kingma D, Ba J. Adam: a method for stochastic optimization.
arXiv preprint arXiv:​1412.​6980. 2014.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1508 Cognitive Computation (2022) 14:1496–1508

1 3

https://arxiv.org/abs/1902.10562
http://arxiv.org/abs/2001.01354
http://arxiv.org/abs/1412.6980

	Visual-LiDAR SLAM Based on Unsupervised Multi-channel Deep Neural Networks
	Abstract
	Introduction
	Related Works
	Traditional Visual SLAM
	Supervised Visual SLAM
	Unsupervised Visual SLAM
	Traditional LiDAR SLAM
	Supervised LiDAR SLAM
	Unsupervised LiDAR SLAM

	Our SLAM System
	Visual-LiDAR Odometry Component
	Data Preparation
	Network Architecture
	Loss Function

	Loop Closure Detection Component

	Experiments
	Training
	Performance Evaluation

	Conclusions
	Acknowledgements
	References

