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Abstract

Decision-makers who usually face model/parameter risk may prefer to act pru-
dently by identifying optimal contracts that are robust to such sources of un-
certainty. In this paper, we tackle this issue under a finite uncertainty set that
contains a number of probability models that are candidates for the “true”,
but unknown model. Various robust optimisation models are proposed, some of
which are already known in the literature, and we show that all of them can
be efficiently solved via Second Order Conic Programming (SOCP). Numerical
experiments are run for various risk preference choices and it is found that for
relatively large sample size, the modeler should focus on finding the best possible
fit for the unknown probability model in order to achieve the most robust deci-
sion. If only small samples are available, then the modeler should consider two
robust optimisation models, namely the Weighted Average Model or Weighted
Worst-case Model, rather than focusing on statistical tools aiming to estimate
the probability model. Amongst those two, the better choice of the robust opti-
misation model depends on how much interest the modeler puts on the tail risk
when defining its objective function. These findings suggest that one should be
very careful when robust optimal decisions are sought in the sense that the mod-
eler should first understand the features of its objective function and the size of
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the available data, and then to decide whether robust optimisation or statistical

inferences is the best practical approach.

Keywords and phrases: Optimal reinsurance, Risk measure, Robust optimisation,

Second order conic programming, Uncertainty modelling.

1. INTRODUCTION

The seminal works by Borch (1960) and Arrow (1963) mark the beginning of the theory of
optimal insurance/reinsurance in the field of actuarial science. The same problem is known
as the insurance demand problem in the field of insurance economics. In the last 50 years,
many research outputs have contributed into these fields of research by identifying the optimal
insurance/reinsurance contracts under various risk preferences. Examples outside the Expected
Utility Theory are numerous; for example, risk measure-based models have been studied by
Cai et al. (2008), Balbas et al. (2009 and 2011), Chi and Tan (2011), Asimit et al. (2013
and 2015), Cheung et al. (2014), Lu et al. (2014) and Cai and Weng (2016), where Value-at-
Risk (VaR) and Conditional- Value-at-Risk (CVaR) based decisions are the focal interest, since
these particular risk preferences are easy to interpret and are the most common in the insurance
sector.

The majority of the contributions from the existing literature assumes that the model speci-
fications are completely known, which purposely removes the model and parameter risks — the
risk of choosing a “wrong” model or the risk of choosing the “right” parametric model with
the “wrong” parameter values/estimates. Such risks are not of great concern when modelling is
based on high frequency data or simply, when large samples are available. Unfortunately, data
scarcity is a common feature of insurance data, which increases the uncertainty within the mod-
elling process and making any risk measurement to be highly sensitive. Therefore, the standard
statistical methods that aim to identify the “best” model fail to provide a reasonable answer.
Solutions to incorporate the model/parameter risks are available in the statistical literature, for
example parametric and non-parametric bootstrapping. Moreover, there exists a large number
of literatures in the field of actuarial science on finding robust worst-case risk measures, which is
reviewed and extended in Goovaerts et al. (2011). Any of these are possible whenever a simple
risk measurement is performed. This is no longer the case when the main aim is to find the best
strategy within an optimisation problem, where finding the “best” model does not guarantee a
robust decision, which is the main aim of the modelling process. A standard way to achieve this
is to use the method of robust optimisation; comprehensive surveys could be found, for example,

in Ben-Tal and Nemirovski (2002 and 2008), Ben-Tal et al. (2009), Bertsimas et al. (2011) and
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Gabrel et al. (2014), while applications to the optimal insurance literature could be found in
Balbés et al. (2015) and Asimit et al. (2017).

In this paper, we aim to identify the optimal insurance contract using a robust optimisation
model with a finite uncertainty set. That is, the modeler does not know which probability model
is appropriate and the optimal decision is produced by incorporating the risk measurements un-
der all (but in a finite number) of the possible probability models. That is, the uncertainty set is
constructed over a finite number of models as in Zhu and Fukushima (2009), Huang et al. (2010)
and Asimit et al. (2017), where the first two papers considered a convex hull of the candidate
models. This approach leads to a large uncertainty set that may be detrimental to the robust
optimal decision and therefore, it would be better to consider a non-convex uncertainty set that
is purely composed of the possible models as explained in Asimit et al. (2017). We extend this
idea by investigating various robust optimisation formulations and try to understand the effect
over the robustness of the optimal decision, which is in fact the main aim of robust optimisation.
In order to be more explicit, all formulations are explored within the context of optimal insur-
ance, but any application would lead to similar investigations. Our model assumes homogeneous
multiple beliefs with respect to the distribution of the buyer’s initial exposure. Distributional
uncertainty could be perceived in different ways by the insurance buyer and insurance seller,
but this would not change our mathematical formulations if the two parties have different be-
liefs about the distributional ambiguity set of X. Adverse selection is the classical example
of asymmetric information between the buyer and seller that would justify the distributional
ambiguity. The risk modelling power and experience are also related to the market size of an in-
surance company, which explains why some insurance players have competition advantage when
consuming the data from different other sources. For example, machine learning techniques are
good candidates to extract valuable information form data that are not obviously informative to
explain the risk in question via the classical actuarial techniques; this includes combining various
databases via dimension reduction methods and cluster analysis, which would help to enrich the
risk experience of the insurer player that has enhanced analytic capabilities. A recent paper of
Ghossoub (2019) also discusses the impact of heterogeneous beliefs over the Pareto set for a nice
and tractable model. In contrast, our approach relies on numerical optimisation to characterise
the Pareto set under any finite set of homogeneous multiple beliefs, but our aim is also to ex-
plain how these uncertainty sets could help to make the decision more robust in the presence of
(distributional) model error given that the uncertainty sets could have an unknownable impact

over actual decision.



The performance of our robust optimisation models are empirically evaluated via solving
Second Order Conic Programming (SOCP) instances, which can be efficiently solved. SOCP
problems are convex optimisation problems in which a linear objective function is minimised
over the intersection of an affine set and the product of second-order (quadratic) cones. The well-
known Linear Programming (LP), Quadratically Constrained Linear Programming (QCLP) and
Quadratically Constrained Quadratic Programming (QCQP) are SOCP examples (for details, see
Alizadeh and Goldfarb, 2003). SOCP is a popular numerical method for engineering applications
(for example, see Lobo et al., 1998), robust portfolio optimisation (for example, see Satchell,
2010) or for actuarial/insurance applications (for example, see Tan and Weng, 2014, Asimit
and Boonen, 2018 and Asimit et al., 2018). The main reason behind the popularity of SOCP
formulations is given by its computational efficiency. A number of efficient primal-dual interior-
point methods for solving SOCP problems have been studied and developed in the literature.
For example, Lobo et al. (1998) gives a worst-case theoretical analysis showing that the required
number of iterations grow at most as the square root of the problem size. Therefore, by casting
our robust optimisation models as SOCP problems, we are able to efficiently obtain the optimal
solutions using SOCP solvers.

The paper is organised as follows: Section 2 explains the robust optimisation formulations,
whose empirical formulations are discussed in Sections 3; extensive numerical examples are
given in Section 4 that evaluates the quality of our robust solutions by comparing to some
classic non-robust optimisation solutions; conclusions and all proofs are provided in Section 5

and 6, respectively.

2. PROBLEM FORMULATION

2.1. Standard Robust Optimisation Formulations. Robust optimisation is widely recog-
nised as an efficient method to incorporate the uncertainty with the model assumptions in an
optimisation problem. If random variables are included in the objective function, then the pa-
rameter/model risks represent the uncertainty that one should take into account in order to
create a robust optimal decision. Transforming information into knowledge, by means of finding
an optimal decision that is less sensitive to the model inputs, is possible if the actual optimisa-
tion is performed over an uncertainty set. This set comprises of reasonable information available
regarding the model parameters and/or competitive models that are considered realistic or com-
mon/good practice within the sector or profession. Specifically, the objective is to optimise

f(;w): A— R with A being a convex, where both are sensitive to the choice of model inputs.



The standard worst-case (wc) robust optimisation formulation is given by:

i t: 2.1
{Igllzue%f( W), (2.1)

where U is the uncertainty set that best describes the entire spectrum of model specifications.
Given that the optimal decision is very sensitive to the model choice, any change in model inputs
would possibly massively influence the optimum. Therefore, effectiveness may not necessarily be
achieved by choosing the “best possible” model choice, which carries its own level of uncertainty,
and robust optimisation is precisely created to help with producing robust decision. Note that
our discrete and finite uncertainty set U is chosen to explain the model error faced by the
decision-maker. Continuous uncertainty sets are also possible and are mathematically appealing
and allows one to elaborate complex mathematical explorations. If the main objective is to deal
with parameter uncertainty, then the uncertainty set is set around one reference probability
model and the uncertainty could typically be described via hyper-bozes, polytopes or ellipsoids.
Recall that the hyper-box uncertainty sets are sometimes known as the interval uncertainty
set. More detailed analyses and evaluations on the performance of robust optimisation using
finite and infinite uncertainty sets can be found in Ben-Tal and Nemirovski (2002 and 2008),
Ben-Tal et al. (2009), Zymler et al. (2013) and Chassein and Goerigk (2016). The uncertainty
sets from Zhu and Fukushima (2009) and Huang et al. (2010) are continuous and in fact, are
the convex hull version of our discrete and finite uncertainty set choice. Note that this approach
produces a large uncertainty set that may affect the robustness of the optimal decision, which is
in fact the main purpose of the robust optimisation; for details, see Asimit et al. (2017) where
it is shown that robust optimisation models with a finite uncertainty set tend to produce robust
optimal solutions that are closer to the ‘true’ optimal solution. For these reasons, we have
decided to consider this discrete and finite uncertainty set. Specifically, if U = {wy, k € M},
where M :={1,2,...,m}, then (2.1) becomes

i t; wp). 2.2
ey paap S (65 e0n) (22)

An alternative robust representation, namely the worst-regret (wr)-type, appears in the recent
literature and its formulation is given by:

i t; - Iz, h » = min f(t; for all k € M. 2.3
minmax f(t;wg) — fy, where fi =minf(t;wy) fora (2.3)

For further details, see Huang et al. (2010) and Asimit et al. (2017). A Bayesian-type repre-
sentation would be to average each possible model by allocating various weights to every single

model according to the prior knowledge that the modeler might have. That is, with some given
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scalars A\, we have the following weighted average (wa) type robust problem

min > Akf (b wp), (2.4)
keM

where A > 0 and 17X = 1. When the weights are all equal, the robust problem is labelled as
additive-type (ad).

A robust risk measurement that has not been discussed in the literature is the following
weighted worst-case (wwce) scenario type

l
Zf(i)(t;wl, .. ,wm,l), leM, (2.5)

=1

f(t;wl,...,wm,l)::

~| =

where f)(:;w1,...,wm,1) is the i upper order statistics of {f(;wi), k€ M}, ie.

f(i) (t;wl,...,wm,l) = f(t;wa(i)) such that f(t;wg(l)) > ... > f(t;wa(l))

with o being a permutation of M. Essentially, the decision maker evaluates the model uncer-
tainty as a weighted average of some higher tier risk levels that are measured over all possible
assumptions assumed to be equally likely to occur. Note that any weighted worst-case sce-
nario (2.5) is less conservative than (2.2) for any given [. Now, for any t € A, (2.5) could be

reformulated in the following fashion
ftwr, .. wm, 1) = mln{s—|— ] Z ( [t w;) — S) }, where (t)4+ = max(¢,0). (2.6)
+
It is not difficult to obtain the result from (2.6) and therefore, let {ax, k € M} be a finite set.
Therefore, one needs to show that

l
P Y ()

ieM

where a(¥) represents the i*" upper order statistics of {ay, k € M}. Without loss of generality,
we may assume that a; > a2 > ... > a,. Moreover, let qp := oo and a1 := —oo. The
objective function from (2.6) and its optimal solution, s*, are finite due to the (-)4+ component
and the fact that ap’s are finite. For any s such that s € (aj+1,aj], where 0 < j < m, the
following are true:
1 1<
i) If j =, then it is straightforward to see that s + 7 Z (ai — s)+ =7 Z aq;

ieM i=1
ii) If j <, then we have that

s+ (ai-s), (Zal H) }(Z z_]aﬁl)zizai;

ieEM

N‘}—‘



iii) If j > [, then we have that

8+}Z(ai (Za, j—z> }(zj: N ) Zaz

i=1
As a result, s* € (al+1, al], which in turn justifies our claim.

The next proposition shows how to solve a weighted worst-case scenario-type optimisation

problem in practice, i.e. to optimise (2.6) over t € A, and it is given as Proposition 2.1.

Proposition 2.1. Optimising (2.6) over a convex set t € A, i.e.

(m%EX%{S+Z §:< twi) _S)+}’

s equivalent to solving

1
min {s + 1Tu} , s.t. 0< u, f(t; wi) <s+4+wu;, VieM. (2.7)
(t,5,u) CAXRXRM l

The computational advantage of (2.7) is conspicuous, since most of the terms are linear.
Specifically, if f (~;wi) are SOCP representable for all i € M, then (2.7) becomes an SOCP
problem, which could be efficiently computed.

2.2. Optimal Robust Insurance Problem Definition. Consider an insurance buyer who
optimises its risk position by entering an insurance contract which reduces the buyer’s original
risk exposure X > 0 to I[X] at a cost P > 0, known as the premium. Let R[X] = X — I[X]
denote the part of risk X ceded to the insurance seller. In order to avoid potential moral hazard

issues, both I and R should be non-decreasing functions. Thus, I, R € C*° where
= {f is non-decreasing | 0 < f(z) < =z, |f(x) — f(y)| < |z —y| for all z,y € R}.

Assume that any feasible reinsurance contract satisfies ®(R[X]; P) < P < P, where ®(-;P)
represents the premium principle, i.e. a certain rule of calculating the premium based on the
probability measure P. The constraint, @(R[X ];73) < P, could be viewed as a rationality
constraint. The insurance seller makes no profit before selling the insurance contract and after
that, its net loss becomes R[X]— P. Therefore, the rationality constraint for the insurance seller
becomes ®(R[X] — P;P) < 0. The latter is equivalent to ®(R[X];P) < P, if ®(0;P) = 0 and

O is a translation invariant risk measure (for details see Definition 2.1).

Definition 2.1. Let (2, F,P) be a probability space and X be a linear space for random variables
defined on Q). Then, for any X € X anda € R, ® : X — R is a translation invariant risk measure

if (X +a) =2(X) +a.



Now, when the probability measure P is unknown, one may be interested in finding a more
robust reinsurance contract which takes into account the parameter and/or model uncertainty.
Assume that there are m possible probability measures {P1, Pa, ..., Pn}. Then, the feasibility
constraint becomes ®(R[X];P;) < P < P for all k € M. Clearly, the insurer’s net random
loss is X — R[X] + P. Further, we assume that the insurer orders its preferences via a risk
measure p and thus, its objective under the k" model is p(X — R[X]| + P; Pk), which reduces
to p(X — R[X]; Px) + P if p is a translation invariant risk measure.

In order to find the ‘best’ robust decision for the insurer, we first present four robust opti-
misation formulations that are detailed in Section 2.1. Their results are compared in pairs and
further compared to some traditional non-robust optimal insurance arrangements. In summary,

the following four robust optimisation formulations are considered for now:

A) we-type as defined in (2.2)

i X—R Pl st B(RIX::P)<P<P VkeM. (28
(R7P§%%QOX%{£%%<p( [X];Pr) + } s (RIX];Py) <P < eM.  (28)

B) ad-type as given in (2.4)

1 _
min — > p(X = RIX);Py) + P (X|;P) SP<P YkeM. (29)
(R,P)ecwxm{ o

C) wa-type as defined in (2.4)

i Aep(X — P : <P<P Vk (2.1
(R,PI)Iéch}wxén{kg w0 RIX};P) + } X P) < P < € M. (210)

D) wwe-type as given in (2.5)

!
1 _
i X— P ; <P<L<P VEk 2.11
<Rpﬁgw{l§ (X—RIX): Poo) + X|P) S PSP YkeM, (211)
where p(X—R[X];PU(i)) is such that p(X (1)) >...> p(X—R[X];PO(Z)) with

o being a permutation of M.

Recall that we implicitly assumed that the p and ® are translation invariant risk measures, which
is a very mild restriction. When [ = 1, the wwc — type Problem (2.11) becomes the we — type
Problem (2.8). Moreover, when [ = m, the wwec — type Problem (2.11) becomes the ad — type
Problem (2.9).

3. EMPIRICAL FORMULATIONS

3.1. Computable Formulations. The robust optimisation problems (2.8)—(2.11) may be nu-
merically solved by assuming a discrete distributed X with a finite sample space, i.e. the

possible outcomes are x := (x1,22,...,7,)’. Without loss of generality, one may assume
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that 1 < x9 < .-+ < x,. The risk ceding function R[X] is also discretised and becomes
y = (Y1,%2, ..., yn)T such that R[X] = y; if X = x; for all 1 < i < n. Under Py, denote the
probability vector, py := (P1k, Dok - - - Pnk) . s Where pix = Pp(X = ;) for all 1 < i < n and
ke M.

Two standard risk measures used in practice that play an important role in our analysis is the
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The VaR of a generic loss variable
Z > 0 with confidence level o € (0,1) is defined as

VaRq(Z;P) := iIeléf);% {P(Z < z)>a},
y

while the CVaR is given as (see Rockafeller and Uryasev, 2000):

11—«

CVaR,(Z;P) := gné}f% {t +
€

Ep(Z — t)+}. (3.1)

By definition, Ep(-) represents the expectation with respect to P. Note that the wwec-type
robust risk measure given in (2.6) may be understood as a discretised version of the above
representation (3.1).

Recall that R € C®, which implies that x, y and x — y are all non-decreasingly ordered.

Therefore the empirical measure of VaR,, (X — R[X]; Pk) becomes xpx) — Yp(k), Where

j
p(k) = mjin {Zpik > a} :
i=1

On the other hand, the empirical measure of CVaR,, (X — R[X]; Pk) becomes (,‘bfx — (bgy, where
d)k = (¢1k7 ¢2k7 o 7¢nk)T with

i—1 7
Si=g 1= | —g|1=> p|, 1<i<n, keM (3.2)
Jj=1 Jj=1

and ¢(t) = min (ﬁ, 1). By convention, the summation is read as 0 when the bound of the
above summation is 0.

It has been mentioned in Section 2.2 that p and ® are assumed to be translation invariant risk
measures in this paper. It is important to point out that we had carried out numerous numerical
experiments and found that the choice of premium principle does not have an impact on our
conclusions and for this reason, the numerical analysis in this paper will focus on examples with
the assumption that the expected value premium principle is in force, i.e. ®(-;P) = (1+60)Ep(+)

with 8 > 0. In turn, the premium constraints become:

(1+0)ply<P<P, VkeM. (3.3)
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Recall that X > 0 and I, R € C°, which is equivalent to
0<y<x,0<Ay < Ax, (3.4)

where A is an n-by-n matrix given by

1 0 0 O

-1 1 0 0
A =

0 0 -1 1

We now provide the LP formulations of the robust optimisation problems (2.8)—(2.11). It is
first assumed that the insurance buyer orders its preferences as via the VaR risk measure, i.e.
p(P) = VaRqa(+; P). Since X — R[X] € C*, we have that VaRa (X — R[X]; Pr) = Zpk) — Up(k)
for all kK € M. Therefore,

A) The we-type optimisation problem from (2.8) becomes

o Pr)rer%ritgxmxmr st Tpey — Yy + P <7, YVEeM, (3.3)and (3.4) hold. (3.5)

B) The ad-type optimisation problem from (2.9) becomes

min {; > (@) — o) +P} ) and (3.4) hold. (3.6)

P)ERm xR
(y,P)eRmx hem

C) The wa-type optimisation problem from (2.10) becomes

min { Z Ak (Tp(y — yp(k } ) and (3.4) hold. (3.7)

P)eR xR
v, T keM

D) The wwe-type optimisation problem from (2.11) becomes

min {r+ P} (3.8)
(y,P,r,s,u) ER x RXRX R xR

1
st s+ leu <r, 0<u, (3.3) and (3.4) hold,
Tp(k) — Yp(k) — S <up, VkeM.
The epigraph form from (3.5) is a standard reformulation in optimisation, while (3.6) and
(3.7) are straightforward reformulations that do not require any additional work.

The second case is the one in which the insurance buyer orders its preferences via the CVaR

risk measure, i.e. p(-;P) = CVaR,(+;P). Since X — R[X] € C®, we have that
CVaRq (X — RIX];Py) = dpx — Ly, VEkeM,

by keeping in mind (3.2). Therefore, (2.8)—(2.11) are equivalent to solving the following optimi-

sation problems:
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A) The we-type optimisation problem from (2.8) becomes

min st gix—¢ly+P<r, YEkeM, (3.3)and (3.4) hold. (3.9)
(y,Pr)eR? xRxR

B) The ad-type optimisation problem from (2.9) becomes

min {1 Z (qbkx qbky —i—P} 3) and (3.4) hold. (3.10)

P)eR" xR
(y,P)eR™ x e

C) The wa-type optimisation problem from (2.10) becomes

min { Z Ak ¢kx - ¢ky + P} ) and (3.4) hold. (3.11)

PYERT xR
(y,P)eRm™ x e

D) The wwe-type optimisation problem from (2.11) becomes

min {r+ P} (3.12)
(y,Pr,s,u) ER X RXRXRXR™

1
st. s+ leu <r, 0<u, (3.3) and (3.4) hold,

drx —ply —s <uy, Ve M.

The epigraph form from (3.9) is a standard reformulation in optimisation, while (3.10) and
(3.11) are straightforward reformulations that do not require any additional work.

Next, we assume that the insurance buyer orders its preferences as via the PHT risk measure,
ie. p(- =[5 9(P(- > ) dz with g(t) = t*, 0 < o < 1 (for details, see Wang et al., 1997).
Since X — R[ ] € C°, we have that

PHT,(X — RIX];Py) = pix — ¢ly, VkeM,

where ¢, are defined as in (3.2) with g(t) = t*. Therefore, the robust optimisation problems
(2.8)—(2.11) are precisely as in (3.9)—(3.12), but with different parameters ¢;,’s.

The final case is when the insurance buyer orders its risk preferences as via the standard
deviation SD risk measure, i.e. p(-;P) = Ep(-) + bSd(-;P) with b > 0. For a generic discrete
random variable Z with a finite sample space (21, 29, . . ., 2, ) that is equipped with a probability
measure P such that P(Z = z;) = pj, its standard deviation can be written as Sd(Z; P) = ||Qz|],
where Q is a n X n matrix with its (j1,j2)-th element to be g¢j,j, = \/pj, (1j,=j, — pj,) for all
1 < j1,j2 < n. By definition, 14 represent the indicator operator and takes the value one if A
is true and to take the value zero otherwise. Therefore, the SD risk measure under P, can be

written as
p(X = RIX]; Py) = pj (x —y) + b Qe (x —y)|,
where ¢j,jok = /Djik(1j1=jo —Pjok) for all 1 < j1, jo < nand k € M. Note that the corresponding

formulations are in SOCP form as follows:
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A) The we-type optimisation problem from (2.8) becomes

min r st pr(x—y)+0|Qu(x—y)|[+P <7, VkeE M, (3.3) and (3.4) hold.(3.13)
(y,Pr)eRmxRxR

B) The ad-type optimisation problem from (2.9) becomes

1 S (pF(x—y) +bti) + P} (3.14)

min {
Pt)eRmxRxR™ | M
(y,Pt)eR" xR x e

st [|Qpx—y)|l <tg, V ke M, (3.3) and (3.4) hold.

C) The wa-type optimisation problem from (2.10) becomes

min {Z M ( pr(x — y) + bt) —i—P} (3.15)

Pt)ERT xRxR™
(y,Pt)eRn xRx e

sit. |Qr(x—y)| <tk, VkeM, (3.3) and (3.4) hold.
D) The wwe-type optimisation problem from (2.11) becomes

min {r+ P} (3.16)
(3,P,r,s,u) ER? x RX R Rx Rm

1
st. s+ leu <7, 0<u, (3.3) and (3.4) hold,

Pr(x —y) +b|Qux—y)| — s < up, ¥k EM.

3.2. Pareto Optimality. One major concern regarding the robust optimisation models from
(2.8)—(2.11) is that optimal solutions could be inefficient insurance contracts. In other words,
the resulting robust optimal solutions are not necessarily Pareto optimal. The idea of Pareto
optimality ensures that the allocated risk is shared in the most efficient way, i.e. there is
no alternative allocation that may put the insurance players in a “better” risk position. The
mathematical formulation of this definition is now given in our context. That is, a robust
optimal solution (R*, P*) is also Pareto optimal if and only if there exists no other feasible

solution (R, P) such that
p(X — RIX|;Py) + P < p(X — R*[X];Py) + P*  VkeM,

with at least one inequality sign being strict. It is well-known that if all weighting coefficients
from (2.10) are strictly positive, then its robust optimal solutions (R*, P*) are also Pareto
optimal. That is, the solutions of the Additive Model (2.9) and Weighted Average Model (2.10)
with strictly positive \i’s (for all k& € M) are Pareto optimal. Unfortunately, the solutions of
(2.8) may lead to solutions that are not Pareto optimal, but a remedy is possible (for details, see
Asimit et al., 2017). The same conclusion is drawn for the solutions of (2.11) when [ < m and
we would like to check which solutions of (2.11) are Pareto optimal and if possible, to modify

those solutions of (2.11) that are not Pareto optimal into Pareto optimal solutions that solve
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(2.11). This would be a generalisation of Theorem 5.1 in Asimit et al. (2017), which in fact is
possible and we state this result as Theorem 3.1. Before giving the main result of the section,
let us explain the general setting of Theorem 3.1, which is given in Problem 3.1. Note that all

of the example from before have shown to be particular cases of Problem 3.1.

Problem 3.1. Let f, : A — R, g : A — R™ be some functions over a convex set A, where ny,

are some positive integers, for all k € M. Moreover, | is an integer such that 0 <1 < m. Let

fD() be the it upper order statistics of {fi(:),k € M}, ie.

FOC) = fo () such that  f,0)() = fo) () = - foim)()

with o being a permutation of M. The optimisation problem becomes:
min > N fO(z), st gp(@) € Ay, Ve M, (3.17)
where \,’s are positive scalars and Ay, are convex cones® for all k € M.

Recall that Problem 3.1 is convex as long as A\ > Ao > ... > )A; and all functions fj, gi are
convex over A. Using the notation from Problem 3.1, a feasible solution x*, i.e. gi(x*) € Ag
for all k € M, is Pareto optimal if there is no other feasible solution y, i.e. gi(y) € Ay for all
k € M, such that fi(y) < fr(x*) for all k € M with at least one inequality sign being strict.
We are now ready to state the main result of this section, which shows that one may identify
the group of solutions of (3.17) that are Pareto optimal as well without massively increasing the

computational effort.

Theorem 3.1. Let * be an optimal solution of (3.17). Then, * is also Pareto optimal if the

optimal objective function value of the following optimisation problem

min (fu(y) — fu(x)), st gr(y) € Ap, frly) — fru(@*) <0, VEkeM (3.18)

cA
Y7 kem

is zero. On the other hand, if the optimal value of (3.18) is negative, then any optimal solution

y* of (3.18) solves (3.17) as well and is Pareto optimal.

4. NUMERICAL RESULTS

The current section provides numerical illustrations to the robust optimisation problems 2.8—
2.11. Recall that our empirical method requires a sample of x = (1,22, ...,2,)? to be drawn
from the underlying distribution of X. Note that the empirical formulations discussed in Sec-

tion 3.1 are not restricted to certain distributions of X. Thus, without loss of generality, we

2A set B is a convex cone if and only if for any scalars a,b > 0, ax + by € B given that x,y € B.
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further assume that X is Log-Normal distributed with mean E(X) = 5,000 and standard devi-
ation v/3 x E(X). The Log-Normal assumption is one of the most natural parametric choices,
as it covers distributions with very different tail distributions, i.e. from moderately light tailed
to moderately heavy tailed distributions. The practitioners’ literature is often based on the
Log-Normal risk distribution assumption, e.g. Solvency II recommendations (see QIS 5) heavily
rely on this assumption. The premium principle ® is assumed to be an expected value principle

with a risk loading factor 8 = 0.25, i.e. ®(-;P) = (1+60)Ep(-). Also, the upper boundary of the

(1+0)E(X)

5 . Furthermore, the following five models

maximum acceptable insurance cost is P =

are considered as potential candidates for the unknown underlying distribution of X:

(i) Model 1: Exponential distribution with mean 1/v;
(ii) Model 2: Log-Normal distribution with parameters (u, 02);

Atz

)

)

(iii) Model 3: Pareto distribution with parameters (a, ) and cdf F(z) =1 — ( A )a, z > 0;

(iv) Model 4: Weibull distribution with parameters (c,v) and cdf F(z) =1 —e~%", 2 > 0;
)

(v) Model 5: Inverse Gaussian distribution with parameters (u, o) and cdf
F(z) = <I>< Az - 1)) + <I>< — 2 (2 + 1)>e2w,z >0,
For implementation purposes, we should define the probability vector p, for all ¥ € M by
discritising the Maximum Likelihood estimated model with the sample observation x. That is,

pir = Fy, (W,ﬁ) — F, (W,ﬁ) , forall i=1,...,n, k€ {1,2,3,4,5}, (4.1)

where by convention zg = —oo and z,41 = co. Moreover, ¥ is the Maximum Likelihood
Estimate based on the sample x. Let us also denote the true underlying distribution of X
and its corresponding probability vector as Model 0 and pg, respectively. Then, p, can be
found by applying the formula (4.1) with o replaced by the Model 0 parameters. It would
be interesting to see how the performance of our numerical results would be affected by the
decision-maker’s information set regarding the underlying distribution of X. That is, we repeat
the numerical experiments for different model collections. In particular, we choose the following
uncertainty sets: My := {1,2,3,4,5}, My := {1,3,4,5}, My := {1,5}, M} :={2,3,4,5} and

5 = {2,5}. Note that the underlying distribution of X is Log-Normal, and thus, we have
deliberately excluded Model 2 from Ms and My in order to investigate the impact of model
misidentification, when the “true” model is discarded.

We also need to specify the weights A\i’s that appear in (2.10). This is done by using the
relative likelihood (RL) and RLj := eAlCmin—=AICK) /2 where AIC), = 2q; — 2Ln(ﬁk) with g,
being the number of parameters estimated under the k¥ candidate distribution and Ly being

the corresponding maximum likelihood function value. Moreover, AIC,;, = mingc g AICY.
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Finally, the weights are defined as follows: g := #’;%Lk. Note that
k=1

m
0<RLy<1, 0<X<1 and » X=1 forallke M.
k=1

Also, if we denote k* such that AIC,;, = AICy+, then RLy« = 1 and A+ > Ay for all k € M.
In other words, the “best” model based on the AIC criterion receives the largest weight.

Let us denote the optimal solutions to the robust optimisation problems (2.8)—(2.11) as
(Ves Pine)s Via Pri)s (Viwas Pava) and (Yiwer Pawe)s Tespectively. In particular, y; represent the
optimal insurance contract and is an n-dimensional column vector with r € {wc, ad, wa, wwc},
while P’ represents the optimal insurance price and is a scalar. In order to assess the quality
of our robust solutions, it is necessary to set a benchmark; a natural and fair choice is the opti-
mal insurance contract if the underlying distribution of X would have been known, denoted by
(y4, P). In fact, (y%, P;) could be obtained by solving (2.9) with M = {0}. The robustness of

a generic optimal solution y* is our main focus, and therefore, we could compare various optimal

solutions via the following absolute error:
n
A" = Z lyi — vir| X pio.
i=1

Specifically, given two optimal solutions y% and y%, model A is preferred if A% < A% and we
write S >~ Sg.

The “robust” optimal solutions are compared with two “non-robust” optimal solutions. The
first “non-robust” model chooses the “best” distribution for X via the Akaike Information
Criterion (AIC), and hence, the model is called the AIC Model and its optimal solution is
denoted as (y% o, Pisc)- The second “non-robust” model is called the Elicitable Model and its
solution is denoted as (y3, P.). Before presenting our results, we first provide brief explanations
regarding the construction of the AIC and Elicitable Models. The AIC model chooses the ‘best’
distribution for X among all candidate distributions by finding the distribution & which gives the
smallest AIC value, i.e. k* := arg mingepq AICy. Then, (y%;-, Pi;c) is found by solving (2.9)
with M = k*.

We now move to the construction of the Elicitable Model starting with explaining the elicitabil-
ity concept. By definition, a scoring function S : R x R — [0, 00) is a mapping (u,v) — S(u,v),

where u is a point forecast and v is an observation.

Definition 4.1. Let f : I — 2% be a functional on a class of probability measures II on R such
that P +— f(P) C R, where P € II. A scoring function S : & x R — [0,00) is consistent for
the functional f relative to I1 if and only if EpS(t,L) < EpS(z,L) for all P € II,t € f(P) and
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x € R. Moreover, S is a strictly consistent scoring function if S is consistent and
EpS(t,L) =EpS(z,L) = z € f(P).

The functional f is elicitable relative to a class of probability measure II if and only if there
exists a scoring function S that is strictly consistent for f relative to II. The concept of elicitable
risk measure is introduced by Lambert et. al. (2008), but a comprehensive background about
elicitability could be found in the seminal paper of Gneiting (2011). The latter paper tells us
that VaR,, is elicitable and

EpSy(VaRa(X;P),z) < EpSy(y, ) (4.2)

for any real number y € R, where Sy(t,z) = (I{th} —a)(g(t) — g(x)) is the scoring function
and ¢ is any non-decreasing function. The translation of (4.2) into our discretised empirical

formulation under any probability distribution P becomes

Zpiksg (zp(ry> i) < Zpiksg (y, ;).
=1 i=1

As a result, whenever the “true” probability distribution Pj is unknown, but m probability
candidate models are available, one may choose the “best” distribution k£* that gives the lowest
expected score, i.e.
n
k* = arg mkianikS (acp(k),xi) ,
i=1
and hence, the “best” estimate of VaRy is x(;+). Finally, the non-robust optimal elicitability

solution (y*, P}) may be found by solving the following LP for all [ € M:

e

e LU R PUR S (4.3)

ZPuS — Yp(1)> Ti— Vi) ZPuS — Ypys Ti—Yi) s ¥ k€M,

(1+9>p£y<P<P, VkeM,

0<y<x0<Ay<Ax.

Let (y?;, P) be the optimal solution found for the above LP under distribution ! and let [* be
the probability model choice under the elicitability criterion, which is given by the one with the
lowest objective function (4.3) amongst all [ € M. Therefore, the Elicitability Model optimal
solution is (y}, P) := (yi, P)«). Recall that all other risk measures considered in this paper,
i.e. CVaR, PHT and SD are not elicitable, although CVaR and VaR are jointly elicitable, and
therefore, the Elicitable Model is only applied with the VaR-based case.
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Before discussing the results of our numerical experiments, we note that all optimisation
problems are implemented on a desktop with 6 core Intel i7-5820K at 3.30GHz, 16GB RAM,
running Linux x64, MATLAB R2014b, CVX 2.1.

4.1. Comparison of Robustness. We first investigate the results for the VaR,-based opti-

misation problems when o = 0.75, which are illustrated in Tables 4.1-4.3.  Our numerical

n=25 n =50 n =100 n =250

Ms | My | My || Ms | My | Mo || Ms | My | My | Ms | My | My
S 8% | 215 | 224 | 226 || 184 | 187 | 213 || 126 | 125 | 159 | 77 | 76 | 131
Sr. = Sr. |1 285 | 276 | 273 | 316 | 313 | 287 || 374 | 375 | 341 || 423 | 424 | 369

nd = Swa || 234 ] 204 | 207 || 225 | 218 | 237 || 171 | 140 | 186 || 126 | 107 | 141
Swa = Sug || 219 | 243 | 237 || 275 | 279 | 260 || 329 | 354 | 314 || 374 | 393 | 358

Swa = Shrc || 224 | 216 | 221 || 198 | 198 | 211 || 127 | 164 | 152 || 56 | 171 | 71
Shrc = Swa || 275 | 284 | 278 || 302 | 302 | 289 || 373 | 336 | 347 || 444 | 329 | 429

Sea = Sk 320 | 352 | 349 || 386 | 424 | 417 || 457 | 469 | 455 || 494 | 494 | 489
Sy - Sra 180 | 148 | 149 || 114 | 76 | 83 43 | 31 | 45 6 6 11
TABLE 4.1. Results when (3.7) is compared to (3.5), (3.6) and the AIC model

for the VaRg 75-based solutions under various sample sizes n and collections of

candidate models { Mgy, My, M5}.

experiments are set for 500 samples of various sizes n = {25,50,100,250} and results are re-
ported as the number of experiments out of 500 in which a particular model is preferred when
compared to another. The top four rows in Tables 4.1 and 4.2 together with Table 4.3 show the
results when the Weighted Average Model (3.7) is compared to the other three robust models
(3.5), (3.6) and (3.8), respectively. Recall that when | = 1, the Weighted Worst-case Model (3.8)
becomes the classic Worst-case model (3.5), and thus, we only solve (3.8) under M = M5, My
and M} with 2 <1 < m — 1. Note that the [ = 4 case only exists when M = Ms5. We noticed
that the Weighted Average Model stands as the most robust model in all comparisons, espe-
cially when the true underlying distribution of X is not included in the candidate distribution
collection M, i.e. under M, and Ms. The last four rows from Tables 4.1 and 4.2 compare the
solutions found under the Weighted Average Model (3.7) to those found under the non-robust
models, i.e. the AIC and the Elicitable Models. It is surprisingly clear that the Weighted Av-

erage Model (3.7) does outperform the elicitability criterion. However, the performance of the
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n =25 n =50 n = 100 n = 250
Ms | M| M5 || Ms | M3 | M5 || M5 | MG | M5 || M5 | M} | M5
S ™ S 11215 | 211 | 246 || 184 | 162 | 259 || 126 | 108 | 236 || 77 | 40 | 264
Sia = Sue || 285 | 289 | 254 || 316 | 338 | 240 || 374 | 392 | 264 || 423 | 460 | 234

Sr = Swa || 234 | 227 | 130 || 225 | 240 | 160 || 171 | 203 | 196 || 126 | 150 | 219
Sea ™= Sey || 219 | 211 | 131 || 275 | 255 | 166 || 329 | 297 | 223 || 374 | 350 | 245

Sea = Shrc || 224 | 177 | 236 || 198 | 170 | 218 || 127 | 134 | 248 | 56 | 107 | 272
Shrc = Swa || 275 | 323 | 263 || 302 | 330 | 281 || 373 | 366 | 252 || 444 | 393 | 224

Sea =Sy 1320 | 291 | 275 || 386 | 354 | 281 || 457 | 406 | 295 || 494 | 455 | 271
S*=Sx 1180 | 200 | 223 || 114 | 146 | 218 || 43 | 93 | 204 || 6 | 45 | 224
TABLE 4.2. Results when (3.7) is compared to (3.5), (3.6) and the AIC model

for the VaRg.75-based solutions under various sample sizes n and collections of

candidate models { M3, M}, M5}

n =25 n = 50 n = 100 n = 250

Ms | My | M3 || M5 | My | M) || Ms | My | M} || M5 | My | M}
S e =Sua (1=2) {202 | 201 | 204 || 171 | 182 | 160 || 123 | 116 | 106 || 77 | 78 | 40
Sra = Sewe (1=2) | 298 | 299 | 296 || 329 | 317 | 340 || 377 | 384 | 394 || 423 | 422 | 460
S e =Sua (1=3) | 238 | 227 | 259 || 182 | 202 | 219 || 128 | 136 | 163 || 84 | 81 | 109
S = Sewe (1=3) | 262 | 273 | 241 || 318 | 298 | 281 || 372 | 364 | 337 || 416 | 419 | 391
S we =S, (1=4) || 241 203 153 105
S =Sk e (1=4) | 259 297 347 395

TABLE 4.3. Comparison between the VaRq 75-based solutions of (3.7) and (3.8)

for various sample sizes n and collections of candidate models { M5, My, M3}

robust models are uniformly weaker than the non-robust AIC model across various combina-
tions of sample sizes and distribution collections. Similar outcomes may be found in Asimit et
al. (2017), where it is argued that such peculiar behaviour is due to the robustness of VaR itself
as a risk measure.

Recall that the comparison between the optimal contracts is done by looking into the A*
values, but these may be misleading if these values are quite small. Thus, additional comparisons
would help in getting more confidence in our results and boxplots of A*’s might be informative

*

as well. Figure 4.1 compares the boxplots between Ay and A%;~. In each of the boxplots,



19

1600 t 1 + { 1600 + t E {1 1600

+

+ o+ + + + 7
b £
1a00 ¥ F 4 1 1400 |7 F i+ L 1 1 1400 || ++ 1
;% + ,* + | % 4+ *
1200 | 7T 1 1200 | | L 1200 T+ +1
Lo 2 " TE \ p
1000 | ! L+ ] 1000 | ! 7 L 1000 | |1 F 1 L
N % - N I N
soo 1 1] 1= + goo [ | ! [ 1 soo | |+ I+ t
P + e % + rrr
600 | T 13 600 |- ! L 1 600 1! 1 & 3
| T + | | + | ; i
400 |- t i T——; ; 400 L \—i % 400 g 9 hl |
200 14 i E gé % 200 1 E Sé é 200 I T Qé é
1
oll 1lu1 111 1] oll Ll 1lur 1l o1 ol l Ll 1l 1l4 1
n=25 n=>50 n=100 n = 250 n=25 n=>50 n=100 n = 250 n =25 n=50 n=100 n = 250
1600 -, T + + 600 | L7
1400 | # T 1 1400 | 4 T
i S o4 F £ |+ +
1200 L7t 1 1200 7]t 1
| + +
1000 : ——i 1 1000 : : L I f 4
+ * +
soo | | 11 ;——+ 1 soo | I 1% % 1
| | | T + + | | T T + +
600 |- 1 ;% ;——+ . 600 |- ; ;i i 1
400 | + o7l 400 L 10+ F f
H g % 38l oLl |
200 1 L 1 1 Eé % 200 | L 9 9@ %
ol l 111 L4 1 L 11 ol l 111 L 41 L1 1

n =50 n = 100 n = 250 n =25 n=>50 n=100 n = 250

|
¥
&

FIGURE 4.1. Boxplots comparing A}, and A%~ computed from the VaRg.75-
based optimisation cases. Each graph constitutes of four groups of boxplots that
correspond to various sample sizes of n. The boxplot on the left /right-hand side
represents Ay, /A% ~. The top row boxplots are corresponding to distribution
collections Ms, My and My, while the bottom row relates to M} and M3,

respectively.

the median of A*’s is marked by a short red line inside the notched box, while the box itself
represents the inter-quartile range. All outliers are marked by a red cross. It is not difficult to
see that the variation of both A}, and A% ;. shrinks dramatically when the sample size n grows
for all distribution collections M € { M5, My, Mo, M}, M5}, Tt is also worth pointing out that
although Tables 4.1 and 4.2 tell us that the AIC Model is preferred to all robust optimisation
models (3.5)-(3.11) in the VaR-based case, Figure 4.1 shows that A}, and A%~ have quite
similar ranges, especially when the sample size n is small.

Next, we turn our attention to the set of results relating to the CVaRg 75-based decisions which
are given in Tables 4.4-4.6. Similar to the VaR-based case, we first compare among the robust
optimal solutions found in (3.9)—(3.12). Tables 4.4-4.6 have shown a similar pattern as seen
in the VaR case, where the optimal solutions found under the Weighted Average Model (3.11)
turn out to be the most robust among the four models (3.9)—(3.12), especially when n is large.
Further, there is strong numerical evidence showing that the Weighted Average Model performs

uniformly better than the non-robust AIC model throughout various combinations of sample
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n =25 n =50 n = 100 n = 250
Ms | My | Mo || Ms | My | Mo || M5 | My | Mg || M5 | My | Mo
Sie ™ S 1189 | 231|203 || 198 | 194 | 191 || 180 | 172 | 225 || 155 | 210 | 281
Sia = Sue || 311 | 269 | 297 || 300 | 306 | 307 || 320 | 328 | 275 || 345 | 290 | 219

S = Swa || 259 | 263 | 278 || 252 | 272 | 285 || 244 | 254 | 279 || 128 | 207 | 221
Sea = Soy || 240 | 237 | 221 || 248 | 227 | 213 || 256 | 246 | 221 || 372 | 293 | 279

Sea = Shrc || 276 | 261 | 269 || 298 | 301 | 294 || 271 | 285 | 267 || 253 | 213 | 250
Shrc = Swa || 224 | 239 | 231 || 202 | 199 | 206 || 229 | 215 | 233 || 247 | 287 | 250
TABLE 4.4. Results when (3.11) is compared to (3.9), (3.10) and the AIC model

for the CVaRg 75-based solutions under various sample sizes n and collections of

candidate models { Mgy, My, M5}.

n =25 n = 50 n = 100 n = 250
Mz | My | M5 | Ms | My | M5 || Ms | My | M5 || Ms | My | M5

See ™= Sea || 189 | 197 | 221 || 198 | 180 | 192 || 180 | 183 | 188 || 155 | 166 | 202
S > S || 311 | 303 | 279 || 300 | 320 | 308 || 320 | 317 | 312 || 345 | 334 | 298

Sra = Swa || 259 | 258 | 268 || 252 | 262 | 243 || 244 | 274 | 231 || 128 | 168 | 242
Soa =Sk || 240 | 238 | 232 || 248 | 236 | 254 || 256 | 226 | 267 || 372 | 332 | 258

Sea ™ Shrc || 276 | 281 | 286 || 298 | 301 | 282 || 271 | 269 | 272 || 253 | 255 | 248
Shrc = Swa || 224 | 219 | 213 || 202 | 199 | 218 || 229 | 131 | 227 || 247 | 245 | 252

TABLE 4.5. Results when (3.11) is compared to (3.9), (3.10) and the AIC model
for the CVaRg 75-based solutions under various sample sizes n and collections of

candidate models { M3, M}, Ms}.

sizes n and distribution collections M. Boxplots are also produced to better compare A}, , and
A ar¢ for CVaR-based optimisations, which could be found in Figure 4.2. Although the median
value of A}, and A%~ are very similar under various sample sizes and distribution collections,
the range of A%~ is in general larger than that of Ay . especially when the sample is small.
Therefore, the overall evidence tells us that our Weighted Average Model (3.11) leads to the
most robust optimal solution for CVaR-based decisions.

The third set of results are related to the PHT-based optimal solutions from (3.9)—(3.12)
and the AIC model. The results from Tables 4.7-4.9 tell us that the Weighted Average Model

performs better than all other “robust” models, which is even more evident when the sample size



n =50 n =100 n = 250

M M My Ms | My | M} || M5 | My | M}

e =8, (1=2) || 199 203 262 208 | 277 | 197 | 195 | 321 | 203

= 5% e (1=2) || 301 297 238 292 | 223 | 303 | 305 | 179 | 297

e =S5, (1=3) | 233 248 258 250 | 264 | 259 || 251 | 182 | 239

= 5% e (1=3) || 266 252 242 250 | 236 | 241 | 248 | 318 | 261
e =S5, (1=4) | 235 253 156
= 5% e (1=4) || 265 247 344

TABLE 4.6. Comparison between the CVaRg 75-based solutions of (3.11) and

(3.12) for various sample sizes n and collections of candidate models

{Ms5, My, M3}
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FIGURE 4.2. Boxplots comparing Ay , and A%~ computed from the CVaRg.75-

based optimisation cases. Each graph constitutes of four groups of boxplots that

correspond to various sample sizes of n. The boxplot on the left /right-hand side

represents Ay /A% ;~. The top row boxplots are corresponding to distribution

collections M5, My and My, while the bottom row relates to M} and M3,

respectively.
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is small. The last four rows displayed in Tables 4.7 and 4.8 summarise comparisons amongst

n =25 n = 50 n = 100 n = 250
Mg | My | Mg || Mg | My | Mg || Mg | My | Mo || Mg | My | Mo

e = S

e Oy

a=0.9) | 204 | 144 | 208 || 247 | 211 | 210 || 224 | 201 | 138 || 247 | 229 | 80
a=0.9) || 296 | 356 | 292 | 253 | 289 | 290 || 276 | 299 | 362 | 253 | 271 | 420

ol

o
S;d>-Sfm(oz 0.9) | 187 | 173 | 172 || 127 | 133 | 116 || 70 | 109 | 71 | 90 | 84 | 28
o= Se(@=0.9) || 310 | 325 | 327 || 372 | 365 | 384 || 425 | 389 | 427 || 410 | 415 | 471

114 | 142 | 153 || 71 | 108 | 156 || 24 | 88 | 165 || 3 | 92 | 200
386 | 358 | 347 || 429 | 392 | 344 || 476 | 412 | 335 || 497 | 408 | 300

235 | 235 | 243 || 267 | 286 | 284 || 229 | 254 | 254 || 210 | 223 | 251
264 | 265 | 254 || 233 | 214 | 216 || 271 | 246 | 246 || 290 | 277 | 249
TABLE 4.7. Results when the PHT-based (o = 0.9) Weighted Average Model

is compared to the Worst-case, the Additive and the AIC models under various

sample sizes n and collections of candidate models {Ma, My, M5}.

n =25 n = 50 n = 100 n = 250
Ms | My | M5 | Ms | My | M5 || Ms | My | M5 || Ms | My | M5
a=0.9) | 204 | 263 | 218 || 247 | 284 | 250 || 224 | 288 | 298 || 247 | 309 | 337
a=0.9) | 296 | 237 | 282 || 253 | 216 | 250 || 276 | 212 | 202 || 253 | 191 | 163

e S
e e

,\,\/\/\

S;;d>s* a=0.9) | 187|145 | 219 | 127 [ 114 | 270 || 70 | 70 | 346 || 90 | 130 | 470

=8, (@=0.9) | 310 | 352 | 279 || 372 | 382 | 227 || 425 | 425 | 154 || 410 | 370 | 30
St S%0(@=0.9) || 114 | 133 [ 190 | 71 | 90 | 139 | 24 | 26 | 44 | 3 | 3 | 4
S% 0= Sha(=0.9) || 386 | 367 | 310 || 429 | 410 | 361 | 476 | 474 | 456 | 497 | 497 | 496
St 8% e(a=0.2) || 235 | 228 | 255 || 267 | 247 | 241 | 229 | 228 | 226 || 210 | 207 | 207
Sho - Sha(a=0.2) || 264 | 272 | 245 || 233 | 253 | 258 | 271 | 272 | 274 | 290 | 293 | 293

TABLE 4.8. Results when the PHT-based Weighted Average Model is compared
to the Worst-case, the Additive and the AIC models various sample sizes n and

collection of candidate models { M3, M}, M5}.

optimal contracts found under PHT-based criterion with o = 0.9 and 0.2. The performance

of the Weighted Average Model (3.11) is rather weak when compared to the AIC Model when

a = 0.9. This outcome does not look surprising since é represents the risk aversion index, and
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n =25 n = 50 n = 100 n = 250
Ms | My | M3 || Ms | My | M) || Ms | My | M} || M5 | My | M}

Sewe ™ Oma (1=2) || 172 | 179 | 196 || 202 | 212 | 192 || 149 | 203 | 149 || 191 | 221 | 203
Sea = Smwe (1=2) || 328 | 321 | 304 || 298 | 288 | 308 || 351 | 297 | 351 || 309 | 279 | 297

Sr. =85 (1=3) || 318 | 309 | 352 | 318 | 281 | 361 | 372 | 303 | 399 || 350 | 314 | 332
S e =S5, (1=4) || 161 174 95 132

(1=2)
(1=2)
St e =S5, (1=3) || 182 | 191 | 148 | 182 | 219 | 139 | 128 | 197 | 101 || 150 | 186 | 168
(1=3)
(=4)
)

339 326 405 368

TABLE 4.9. Comparison between the PHT-based (o = 0.9) solutions for various

sample sizes n and collection of candidate models { M5, My, M} }.

the greater this value is, the more risk aversion the decision-maker is. When « is close to one,
the decision-maker acts less prudent, in which case robust optimal contracts are less of interest
to the decision-maker. This is even further supported by our results when replicating the same
experiment with a more risk-averse decision maker, i.e. « is reduced from 0.9 to 0.2, which could
be seen in the last two rows of Tables 4.7 and 4.8. It is straightforward to notice that there is a
significant improvement in the performance of our robust optimisation model, but unfortunately
it is not sufficient enough to conclude that it outperforms the AIC Model.

Figure 4.3 illustrates the distributions of Ay , and A% for the PHT-based case with ¢ = 0.2.
As before, the range of A}, and A%~ are very similar in most of the comparisons, especially
when n is small, telling us that there is not enough evidence to say that the AIC Model provides
a more robust solution than the Weighted Average Model (3.11).

The last set of results of the section considers the robustness of the S D-based optimal contracts
where b = 0.5. The first eight rows in Tables 4.10 and 4.11 compare the Weighted Average
Model (3.15) to the Weighted Worst-case Model (3.16) with 2 < [ < m, and the results are
different than before. That is, the Weighted Worst-case Model is preferred for almost any
sample size, but it is more clear when the sample size is small. In addition, the evidence tends
to be more significant as [ gets bigger, and hence, when our robust models are compared to the
non-robust AIC model, we show only the comparison results relating to the Weighted Worst-
case Model with [ = m, which is displayed in the last two rows in Tables 4.10 and 4.11. Note
that when [ = m, the Weighted Worst-case Model is indeed the Additive Model (3.14). One
may find that the AIC Model is only preferred over our robust Weighted Worst-case model

when sample size is rather large, e.g. n = 250, otherwise the Weighted Worst-case model is



24

2500 2500 2500

2000 2000 2000

1500 - 1500 1500

— = — —

—

1000 1000 1000

T — = — — o

o

o

o
= T - = — =
= DT — — — HiE HiE o+
=T — — — — S 4
= L — — — —H
=[O — — — i+ +
O — — e+

o

o

o

S ope T - - -

= T — — — — b HHH
= O = — — — i+

—
—

B b o — — — — b A
Gl T — — — — i H+
— O — — e+

g O — — HHi

o

3

o
2 b OO — — — —
8 O — — — — i Ht
S Lo —— — — ik 4 H
3 b OO — — — — 4
S O — — — e
SO - — e 4
b O — — <+ +

S

N
N
&
@
=
N

n 1C

)
=Y
)

2500 2500

2000 2000

1500 1500

4

1000 1000

o

o

o
= O = — = — =t
= — — — — A
= Lo — — — i i+
= T — — — — e e+
= OO — — — i
= (O — — — e i+

s D i e
S b T — — — — 4 H+ 4
S e O — — — e
O — —
o
o
o
Bl o — — — — — W
S b O — — — — i+ 4
S =[O — — =i+ +
= — — i+

(<)
3 b=

Il
@

n = 1C

Il
o
Il
Il
Il
e
a
Il
o
S

FIGURE 4.3. Boxplots comparing Ay, and A% ;~ computed from the PHTjp -
based optimisation cases. Each graph constitutes of four groups of boxplots that
correspond to various sample sizes of n. The boxplot on the left /right-hand side
represents Ay, /A% ~. The top row boxplots are corresponding to distribution
collections Ms, My and My, while the bottom row relates to M} and M3,

respectively.

recommended. This is consistent with the boxplot results displayed in Figure 4.4. These results
could be explained by the risk measure choice, since standard deviation does not measure the tail
of the distribution and therefore, the Weighted Worst-case Model overcomes this shortcoming.
Once again, the sample size plays an important role and the AIC Model always leads to more
robust solutions when data scarcity is not present.

It is also worth mentioning as a final remark that if we compare all the boxplots in Figures 4.1—
4.4, the A* resulted from the VaR-based optimisations tend to be smaller than those found under
optimisations based on other risk measures, i.e. CVaR, PHT and SD, which could be explained

by the robustness of VaR itself as a risk measure.

4.2. Stability. This section provides analyses on the stability of our empirical robust optimal
insurance contracts. In order to avoid excessive repeats, we only report the stability of empirical
solutions found from the most robust model as shown in Section 4.1, i.e. the Weighted Average
Model for the VaR-, CVaR- and PHT-based cases and the Weighted Worst-case Model for

the SD-based case. The scatter plots of y; , and y;,,. against x are shown in Figure 4.5 for
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n =25 n = 50 n = 100 n = 250
Mg | My | Mo || M5 | My | Mo || M5 | My | Mo | M5 | My | Mo
S we = Su, (1=2) || 296 | 260 | 319 || 326 | 276 | 332 || 294 | 256 | 296 | 246 | 250 | 255
S = Shwe (1=2) | 204 | 240 | 181 || 174 | 224 | 168 || 206 | 244 | 204 || 254 | 250 | 245
S we = Sua (1=3) | 309 | 319 347 | 313 303 | 281 244 | 257
S =Sk we (1=3) | 191 | 181 153 | 187 197 | 219 256 | 243
S we = Su, (1=4) | 326 | 331 350 | 308 308 | 284 247 | 251
S = Sewe (1=4) || 174 | 169 150 | 192 192 | 216 253 | 249
Srwe = Sua (1=5) | 325 336 324 259
Sra =S we (1=5) || 175 164 176 241
ol = Shrc 287 | 297 | 309 || 304 | 317 | 334 || 257 | 269 | 293 || 146 | 169 | 237
Shrc = Shg 213 | 203 | 191 || 196 | 183 | 166 || 243 | 231 | 207 || 354 | 331 | 263

TABLE 4.10. Comparison between the SD-based (b=0.5) solutions of (3.14),
(3.15), (3.16) and the non-robust AIC model for various sample sizes n and

collection of candidate models { M5, My, Mo}.

n = 25,100,250. It is observed that the VaR-based empirical solution mimics the functional
form of yy,, = c((:v, — dl) L (afZ — dg) +), while the empirical solutions of all other cases
mimic the functional form of y;j}aﬂ- = c(xi — cll)Jr and Yupe; = c(a;i — d1)+, where ¢, dy and
dy are unknown parameters that can be estimated by Ordinary Least Square (OLS) regression
fitting the functional forms to the corresponding data (z;,y}), i = 1,2,...,n. Recall that our
numerical experiment contains 500 samples for each choice of sample size n. That is, there
are 500 estimated pairs of the unknown parameters, (é, cil,c&), for each of n = 25,100, 250,
which is summarised in Table 4.12. Although variations exist in the mean values of (é, ch) for
the CVaR-, PHT- and SD-based cases, it is noticed that the standard errors of (é, cil) has
a decreasing trend as the sample size n grows. That is, we may conclude that the empirical
solution of our Weighted Average Model for CVaR- and PHT-based cases and our Weighted
Worst-case Model for SD-based case are stable and consistent. Unfortunately, such feature
is not observed in the empirical solutions for the VaR-based cases. However, this should not
become a major concern, as we have seen in Section 4.1 that our robust models are not the best

options for solving VaR-based cases and AIC Model is recommended instead.
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n =25 n = 50 n = 100 n = 250
Ms | My | M5 || M5 | My | M35 || M5 | M | M5 | M5 | M3 | M5
S: =8k (1=2) || 296 | 208 | 278 || 326 | 322 | 279 || 204 | 207 | 237 || 246 | 247 | 211
S: = S8: (1=2) |l 204 [ 202 | 222 || 174 | 178 | 263 || 206 | 203 | 263 | 254 | 253 | 289
S e =S85, (1=3) || 309 | 308 347 | 331 303 | 307 244 | 236
S* o wSE  (1=3) || 191 | 192 153 | 169 197 | 193 256 | 264
Sx =S5 (1=4) || 326 | 295 350 | 306 308 | 336 247 | 271
Sk =S85 (1=4) || 174 | 205 150 | 194 192 | 164 253 | 229
Srwe = Sua (1=5) | 325 336 324 259
Sk =S* (1=5)| 175 164 176 241
= Shre 287 | 293 | 298 || 304 | 301 | 301 || 257 | 267 | 236 || 146 | 170 | 186
Shrc = Shg 213 | 207 | 202 || 196 | 199 | 199 || 243 | 233 | 264 || 354 | 330 | 314

TABLE 4.11. Comparison between the SD-based (b=0.5) solutions of (3.14),
(3.15), (3.16) and the non-robust AIC model for various sample sizes n and

collection of candidate models { M5, M}, Ma}.

CVaR Case PHT Case SD Case
¢ dy ¢ dq ¢ dy
. Mean 0.916 2892.3 1.000 4460.0 0.9287 3343.0
(Standard Error) || (0.1650) | (1908.6) || (0.7195) | (5268.6) || (0.1011) | (2481.6)
100 Mean 0.8940 | 3147.0 1.000 4531.9 0.9075 3433.8
(Standard Error) || (0.1705) | (1222.7) || (0.0000) | (2787.0) || (0.0781) | (1412.0)
- Mean 0.8888 | 3212.3 1.000 4520.2 0.8925 3359.1
(Standard Error) || (0.1410) | (795.44) || (0.0000) | (1806.9) || (0.06210) | (933.07)

TABLE 4.12. Summary of mean and standard errors of (é, cfl> for CVaR-, PHT-

and SD-based cases with various sample size n.

5. CONCLUSIONS

Robust optimal insurance contracts have been investigated by carrying out many numerical
experiments under various risk-based decisions. It is concluded that the sample size plays a major
role in the sense that, whenever data scarcity is not present, the AIC Model is preferred and

there is a need to focus on available statistical methods in order to find the most robust optimal
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FIGURE 4.4. Boxplots comparing Ay, and A% ;~ computed from the SD-based
(b = 0.5) optimisation cases. Each graph constitutes of four groups of boxplots
that correspond to various sample sizes of n. The boxplot on the left/right-
hand side represents A} ,/A%;~. The top row boxplots are corresponding to
distribution collections Ms, My and My, while the bottom row relates to M}

and M3, respectively.

decision. If small samples are available, then either the Weighted Average Model or Weighted
Worst-case Model should be considered instead of trying to identify the “best” statistical tool
to estimate the unknown risk model. Our numerical experiments have shown that whenever
the decision-maker has a particular interest in the tail distribution, i.e. the decisions are based
on VaR, CVaR or PHT, the Weighted Average Model produces the most robust solutions
whenever the available sample is relatively small. On the other hand, the Weighted Worst-case
Model leads to the most robust optimal solution if the decision-maker has little interest in the
tail risk and thus, such risk preferences require a robust method that puts more weight on
the worst cases. These conclusions reiterate once again that one should be very careful when
robust optimal decisions are sought and one should first understand the features of the objective
function and the size of the available data, and then decide whether robust optimisation or

statistical inferences are the way forward.
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FIGURE 4.5. Scatter plots of empirical robust optimal insurance contracts found
from various robust optimisation models and sample sizes. The plots in each row
(from top to bottom) correspond to the VaR-, CVaR~ and PHT-based Weighted
Average Models and the SD-based Additive Model, respectively. The plots in
each column (from left to right) correspond to the sample size of n = 25, 100 and

250, respectively.

6. PROOFS

Proof of Proposition 2.1. The reformulation (2.6) tells us that minimising (2.5) over A can be

written as follows

. 1«

and we show that solving the above problem is equivalent to solving the optimisation prob-
lem (2.7). Let us denote the optimal solution to (2.7) as (t*, s*,u*). It is noticed that the objec-
tive function in (2.7) is increasing in w; for all i € M, and therefore, constraints f (t; wi) < s+uy
and 0 < u ensure that u; = (f (t*; wi) — s*>+ for all i € M. Consequently, (t*,s*) is also fea-
sible to the problem (6.1). Suppose that (t*, s*) is not the optimal solution to (6.1), then there
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must exist another feasible solution (t’ , 8 ) such that

s + ;i( [t w; —s) < s 4 - Z( f(t%5w;) S) = ;if (6.2)

Note that (t/,s’,u’) with u} = (f (tw;) — 5’) for all i € M is also feasible to (2.7). However,
+

m m

’+%Zu§<s*+%2u:‘

i=1 i=1
is implied by (6.2), which contradicts the assumption that (t*,s*, u*) is the optimal solution to
the optimisation problem (2.7). As a result, the optimal solution to (2.7) must also solve the
problem (6.1).

On the other hand, suppose that (t*,s*) is the optimal solution to (6.1). Then, (t*,s*,u*)
with v} = (f(t*; w;) —s*)+ for all i € M is also feasible to (2.7). If (t*, s*, u*) is not an optimal

solution to (2.7), there must exist another feasible solution (t', s’,u’) such that
1 1 — I
/ / * x ok P W
s + 7 Z-El u; < s° + 7 ;1 u; = s+ 7 ;1 (f(t Jwi) — S >+. (6.3)

Since the constraints f(t;wi) < s+ u; and 0 < u in (2.7) will ensure u] = (f(t’;wi) — 8’) ,
(t',s) is also feasible to (6.1) with

/ 1 S / 1 S
s+72ui<s 72
i=1 i=1

implied by (6.3), which then contradicts the assumption of (t*,s*) being the optimal solution
o (6.1). That is, the optimal solution to (6.1) must also solve the optimisation problem (2.7).
The proof is completed by combining both arguments. ]

Proof of Theorem 3.1. Let us first show that an optimal solution x* of (3.17) must be Pareto
optimal when the optimal objective function value in (3.18) is zero. If x* is not Pareto optimal,
then there must exist another feasible solution y of (3.17) such that fj (y) < fr (x*) for all
k € M with at least one inequality sign being strict. Thus, y is feasible in (3.18) and

> () - flx)) <o,

keM
which contradicts the statement that the optimal objective function value of (3.18) is zero.
Thus, x* must be Pareto optimal.

Next, we show that when the optimal objective function value of (3.18) is negative, any
optimal solution y* of (3.18) solves (3.17) as well and is Pareto optimal. Now, fj (y*) < f& (X*)
for any k € M, since y* is feasible in (3.18), which in turn gives that ) (y*) < fk) (X*) for
any k € M. The latter and the fact A\;’s are positive imply that y* must solve (3.17), since x*
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solves (3.17). Assume now that y* is not Pareto optimal. Therefore, there must exist another
feasible solution y of (3.17) such that fj (y) < f& (y*) for all k € M with at least one inequality
sign being strict. Consequently, y is feasible in (3.18) and

> (@) = lx)) < X (#ly) = £elx),

keM keM

which contradicts the fact that y* is an optimal solution of (3.18). Therefore, y* must be Pareto

optimal. The proof is now complete. O
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