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New findings 26 

 27 

What is the topic of this review? 28 

We review physiological complexity in muscle force and torque fluctuations; specifically, we 29 

focus on the quantification of complexity, how neuromuscular complexity is altered by 30 

perturbations and the potential mechanism underlying changes in neuromuscular complexity. 31 

 32 

What advances does it highlight? 33 

We highlight the necessity to calculate both magnitude- and complexity-based measures for 34 

the thorough evaluation of force/torque fluctuations. We also highlight the need for further 35 

research on neuromuscular complexity, particularly how it relates to the performance of 36 

functional activities (e.g. manual dexterity, balance, locomotion). 37 
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Abstract 51 

 52 

Physiological time-series produce inherently complex fluctuations. In the last 30 years, 53 

methods have been developed to characterise these fluctuations, and have revealed that such 54 

fluctuations contain information about the function of the system producing them. Two broad 55 

classes of metrics are used: 1) those which quantify the regularity of the signal (e.g. entropy 56 

metrics); and 2) those which quantify the fractal properties of the signal (e.g. detrended 57 

fluctuation analysis). Using these techniques, it has been demonstrated that aging results in a 58 

loss of complexity in the time-series of a multitude of signals, including heart rate, respiration, 59 

gait and, crucially, muscle force or torque output. This suggests that as the body ages, 60 

physiological systems become less adaptable (i.e. the systems’ ability to respond rapidly to a 61 

changing external environment is diminished). More recently, it has been shown that 62 

neuromuscular fatigue causes a substantial loss of muscle torque complexity, a process that can 63 

be observed in a few minutes, rather than the decades it requires the same system to degrade 64 

with aging. The loss of torque complexity with neuromuscular fatigue appears to occur 65 

exclusively above the critical torque (at least for tasks lasting up to 30 minutes). The loss of 66 

torque complexity can be exacerbated with previous exercise of the same limb, and reduced by 67 

the administration of caffeine, suggesting both peripheral and central mechanisms contribute 68 

to this loss. The mechanisms underpinning the loss of complexity are not known but may be 69 

related to altered motor unit behaviour as the muscle fatigues. 70 

 71 
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Introduction 73 

 74 

One of the great challenges of the life sciences in the 21st century is to understand the 75 

‘emergent’ properties of biological systems. Emergent phenomena are those producing system 76 

behaviours that cannot be predicted or explained by examining the system’s components in 77 

isolation (Macklem, 2009). The concept of emergence is of importance to physiology, because 78 

system level function is an expression of the interactions of a large number of component parts. 79 

These interactions can produce unexpected and often nonlinear system behaviours (Lipsitz and 80 

Goldberger, 1992). The neuromuscular system, in particular, expresses these features, as it is 81 

composed of various types of excitable cells (motor cortical neurones, spinal motoneurons, 82 

muscle fibres, muscle afferents) whose purpose is to generate the muscular forces required to 83 

successfully perform motor tasks. Ideally, this results in smooth and accurate force (or torque) 84 

production across a joint, and thus the desired movement patterns. However, even in health, 85 

joint torque fluctuates in a seemingly random fashion during muscle contraction. These 86 

fluctuations have long been regarded as unwanted system noise, or a reflection of an underlying 87 

pathology (such as Parkinsonian tremor; Vaillancourt et al., 2001). More recently, however, 88 

the ‘structure’ or ‘complexity’ of these fluctuations have been acknowledged to provide key 89 

information about the state of the system (Vaillancourt and Newell, 2003; Pethick et al., 2015). 90 

In short, healthy physiological systems fluctuate in a predictably complex fashion (Peng et al., 91 

2009). Understanding how these fluctuations change when the neuromuscular system is 92 

perturbed, particularly during neuromuscular fatigue, is a central aim of this review. 93 

 94 

In this review, we provide a detailed examination of complexity measures as they relate to 95 

neuromuscular outputs and function. In doing this, we do not assume any underlying 96 

mathematical knowledge and aim to provide a gentle introduction to the field. We first describe 97 



the quantification of complexity, and how this differs from traditional magnitude-based 98 

measures of time-series fluctuations. We then provide evidence regarding how neuromuscular 99 

output complexity is altered with various acute and chronic perturbations and outline potential 100 

mechanisms for such changes in neuromuscular output complexity. We finish by addressing 101 

future research directions necessary to increase our understanding of complexity in 102 

neuromuscular output and the implications of changes in neuromuscular output complexity. 103 

 104 

1. What is physiological complexity? 105 

 106 

Healthy physiologic systems are characterised by the interaction of multiple components and 107 

feedback loops operating over a range of temporal and spatial scales (Goldberger et al., 2002a). 108 

This results in outputs characterised by constant inherent fluctuations, even under resting 109 

conditions (Lipsitz and Goldberger, 1992). Such fluctuations have long been regarded as 110 

unwanted noise, which disturbs the balance of the system of origin and is associated with 111 

pathology (Goldberger et al., 2002a). However, it is now increasingly recognised that these 112 

fluctuations are not noise and, instead, contain “hidden information” regarding the underlying 113 

state and functionality of the system of origin (Goldberger et al., 2002a; Peng et al., 2009). 114 

 115 

Traditionally, fluctuations in physiological outputs have been quantified according to their 116 

magnitude, using measures such as the standard deviation and coefficient of variation (Slifkin 117 

and Newell, 1999). These magnitude-based measures assume that fluctuations are random, 118 

with each data point completely independent of past and future values. However, fluctuations 119 

in physiological outputs can also be quantified according to their structure (i.e. how the output 120 

evolves over time; Pincus, 1991), with this quantification of structure being independent from 121 

the magnitude of fluctuations. Analysis of the structure, or “complexity”, of physiological 122 



outputs began with the study of heart rate (Kaplan et al., 1991), which demonstrates irregular, 123 

self-similar fluctuations over multiple orders of temporal magnitude (i.e. seconds, minutes, 124 

hours) under resting conditions. Subsequent studies have found numerous other physiological 125 

outputs (including, inter alia, respiratory frequency and gait) to be characterised by irregular 126 

non-random fluctuations, temporal irreversibility and long-range (fractal) correlations under 127 

basal conditions (Hausdorff et al., 1995; Bruce, 1996). Importantly, these characteristics cannot 128 

be quantified by traditional magnitude-based metrics. Thus, complexity measures can provide 129 

information additional to, and distinct from, that provided by magnitude-based measures 130 

(Slifkin and Newell, 1999). Indeed, complexity measures are capable of detecting subtle 131 

changes undetected by more classical time-series measures, e.g. changes in heart rate with 132 

ageing (Lipsitz and Goldberger, 1992), postural tremor in Parkinson’s disease (Vaillancourt 133 

and Newell, 2000) and torque output during neuromuscular fatigue in otherwise healthy adults 134 

(Figure 1) can occur in the absence of any change in the magnitude of variability. Moreover, 135 

the observation that non-random fluctuations are seen across a wide range of healthy 136 

physiological outputs under basal conditions indicates that such fluctuations are not noise, but 137 

rather contain an underlying structure, which may have a role in system control (Goldberger et 138 

al., 2002a).  139 

  140 

The ubiquity of “complex” fluctuations in physiological outputs has led to the suggestion that 141 

complexity is a hallmark of healthy physiological systems (Peng et al., 2009). The presence of 142 

a complex output is believed to be adaptive, conferring the system with the flexibility to react 143 

to physiologic stresses in an ever-changing environment (Lipsitz, 2002). For example, low 144 

complexity in heart rate dynamics has been demonstrated to be a predictor of death after acute 145 

myocardial infarction (Mäkikalio et al. 1999), while low complexity in postural sway has been 146 

demonstrated to predict increased postural sway speed when increasing task difficulty (Manor 147 



et al., 2010). Interestingly, it has been repeatedly demonstrated that ageing and disease can be 148 

characterised by a progressive loss of complexity within the dynamics of physiological outputs 149 

(for reviews see: Lipsitz and Goldberger, 1992; Manor and Lipsitz, 2013). This loss of 150 

complexity is thought to be indicative of reduced system functionality and a diminished 151 

capacity to respond to perturbations; in other words, a loss of adaptability (Peng et al., 2009; 152 

Manor and Lipsitz, 2013).  153 

 154 

One system for which constant fluctuations in its output are of particular relevance is the 155 

neuromuscular system, where the presence of these fluctuations influences an individual’s 156 

capacity to achieve a desired force and produce an intended movement trajectory (Figure 2; 157 

Enoka et al., 2003). Indeed, in sporting performance variability is thought to serve as a measure 158 

of success in realising task goals (Slifkin and Newell, 1998). High variability is typically 159 

thought of as being indicative of inconsistent and poor performance, whereas the absence of 160 

variability is thought of as necessary for successful performance. Moreover, certain 161 

pathologies, such as Parkinson’s disease, are characterised by overt increases in neuromuscular 162 

variability (Vaillancourt and Newell, 2000), which can compromise the ability to perform 163 

activities of daily living. Fluctuations in neuromuscular output were long considered random 164 

noise superimposed on the signal (Fitts, 1954), though research has now demonstrated that both 165 

muscle force/torque (Slifkin and Newell, 1999) and the surface electromyogram (EMG; Gitter 166 

and Czerniecki, 1995) are, in fact, characterised by a complex temporal structure. This 167 

complexity is believed to reflect the ability to modulate motor output rapidly and accurately in 168 

response to alterations in task demands (Vaillancourt and Newell, 2003). Any change in the 169 

complexity of neuromuscular output therefore has the potential to compromise motor control 170 

and limit task performance in a range of populations and contexts (Morrison and Newell, 2012; 171 

Pethick et al., 2016). Recently, research has extended the “loss of complexity” hypothesis from 172 



the chronic perturbations of ageing and disease to the more acute perturbation of neuromuscular 173 

fatigue (Cashaback et al., 2013; Pethick et al., 2015). 174 

  175 

 176 

2. Quantifying complexity 177 

 178 

It is important to acknowledge the difference between magnitude-based and complexity-based 179 

measures of fluctuations and variability. This is illustrated in Figure 1, which shows two 180 

isometric torque time-series. Both time-series have nearly identical means and variances, but 181 

very different dynamics. It is only through the use of measures examining the temporal 182 

structure, or complexity, of these time-series (in this case approximate entropy and detrended 183 

fluctuation analysis) that these signals can be differentiated.  184 

 185 

Traditional measures of the magnitude of variability provide an index of the degree of deviation 186 

from a fixed point within a time-series independently from the order of distribution (Slifkin 187 

and Newell, 1999); with the standard deviation quantifying the absolute amount of variability 188 

and the coefficient of variation quantifying the amount of variability normalised to the mean 189 

of the time-series. However, such measures cannot quantify the temporal irregularity, time 190 

irreversibility and long-range fractal correlations exhibited by physiological outputs (Pincus, 191 

1991; Goldberger et al., 2002a). Measures of complexity, on the other hand, characterise the 192 

moment-to-moment relationship between successive points in a time-series (Slifkin and 193 

Newell, 1999). These complexity measures derive from non-linear dynamics and include those 194 

drawn from information theory, which provide a measure of the apparent randomness or 195 

regularity of an output (e.g. entropy statistics), and those drawn from fractal geometry, which 196 

quantify the long-range correlations present in an output. These measures provide information 197 



additional to, and distinct from, magnitude-based measures and are able to detect differences 198 

in the dynamics of outputs that magnitude-based measures are insensitive to (Figure 1; Lipsitz 199 

and Goldberger, 1992). No single statistical measure can, however, fully capture the 200 

complexity of a physiological output, and it is recommended that multiple metrics, quantifying 201 

different aspects of the output, are used to characterise complexity (Goldberger et al., 2002b). 202 

The main variability and complexity measures used to characterise muscle force are 203 

summarised in Table 1. For a comprehensive review of complexity measures and their 204 

calculation, see Seely and Macklem (2004). 205 

 206 

2.1. Entropy statistics 207 

 208 

Entropy is embodied in the Second Law of Thermodynamics as a measure of disorder or 209 

randomness that tends towards a maximum in an isolated system (Seely and Macklem, 2004). 210 

Entropy in the present context is different.  Specifically, Claude Shannon (1948) extended the 211 

concept of entropy to his “information theory”, in which entropy is thought of as the rate at 212 

which information is produced. In information theory, a highly predictable/regular output has 213 

low entropy, because little information is conveyed. For example, the output “HHHHH” has 214 

low entropy compared to the output “HELLO”, as there is less predictability, more irregularity 215 

and more information conveyed in the letters of the second output.   216 

 217 

Approximate entropy (ApEn) derives from Kolmogorov-Sinai entropy and was developed to 218 

quantify the apparent randomness or regularity of an output (Pincus, 1991). The development 219 

of ApEn was necessary because Kolmogorov-Sinai entropy and statistics derived from it 220 

theoretically required noise-free data of infinite length. The ApEn family of statistics was 221 

developed specifically to quantify the regularity of finite, noisy data sets often encountered in 222 



biology. To measure the complexity of an output, ApEn evaluates time-series for patterns that 223 

recur. This is accomplished by evaluating a data sequence of length m (termed the template) 224 

and determining the likelihood that other sequences of the same length are similar (within a 225 

specific tolerance, r). Once the frequency of occurrence of repetitive runs is calculated, a 226 

measure of their prevalence (the negative natural logarithm of the conditional probability) is 227 

determined. ApEn measures the difference between the logarithmic frequencies of similar runs 228 

of length m and runs with length m+1. Low values (close to zero) indicate a smooth and/or 229 

periodic time-series (e.g. a sine wave), while higher values (close to 2) correspond to greater 230 

irregularity and complexity. It is important to note that high entropy values, such as that of 231 

white noise, are not necessarily physiologically complex. White noise, for example, is a random 232 

signal (each value is completely independent of previous and future values), in which all 233 

nonlinear interactions have been destroyed (Goldberger et al., 2002b) As such, other metrics 234 

that can detect and quantify the presence of long-range correlations in a time-series (see below) 235 

are required to fully characterise physiologic complexity (Goldberger et al., 2002b). 236 

 237 

It has been acknowledged that an inherent bias exists within the ApEn calculation, because the 238 

algorithm counts each sequence as matching itself. As such, ApEn can be heavily dependent 239 

on the run length m, making it uniformly lower than expected for short runs, and resulting in it 240 

lacking relative consistency (Richman and Moorman, 2000). To reduce this bias, Richman and 241 

Moorman (2000) developed sample entropy (SampEn), which does not count self-matches. As 242 

with ApEn, a run length m and tolerance window r must be specified to compute SampEn. 243 

SampEn is precisely the negative natural logarithm of the conditional probability that two 244 

sequences similar for m points remain similar at the next point, without allowing self-matches. 245 

As with ApEn, SampEn quantifies a continuum from 0 to 2, with values close to zero indicating 246 

high regularity and low complexity, and values approaching 2 indicating low regularity and 247 



high complexity. Practically, SampEn is more consistent for short data lengths (<1000; Yentes 248 

et al., 2013), but for acquisition of more than 1000 data points, there is no meaningful 249 

difference between ApEn and SampEn: the use of either will yield the same interpretation. 250 

Results from our laboratory have indicated that, in the case of isometric muscle torque output, 251 

ApEn and SampEn do not differ when 5000 data points are used in their calculation (Pethick 252 

et al., 2015).   253 

 254 

Traditional entropy statistics, such as ApEn and SampEn, evaluate the regularity of a time-255 

series on only one timescale, the shortest one, and ignore other scales. Such metrics are, 256 

therefore, unable to capture the structural characteristics of a time-series over the multiple time 257 

scales inherent to healthy physiologic dynamics (Costa et al., 2002). To overcome this 258 

limitation, multiscale entropy (MSE) has been developed. In MSE, the original time-series is 259 

coarse-grained to derive multiple signals, each of which captures system dynamics on a given 260 

scale (Kang et al., 2009) The SampEn of each of these signals is then calculated in the same 261 

way as described above. The MSE curve is then obtained by plotting each of the SampEn values 262 

as a function of scale, with the area under this curve constituting the complexity index. As with 263 

ApEn and SampEn, high values over a wide range of time scales indicate high complexity.  264 

 265 

2.2. Fractal geometry 266 

 267 

It was Benoit Mandelbrot who first realised that principles of fractal geometry (seen, for 268 

example, in the von-Koch snowflake) could be applied to the complex shapes and forms of 269 

nature. The classic example he proposed was the coastline of Britain, which appears to maintain 270 

the same degree of “ruggedness” regardless of the size or detail of the map studied (Mandelbrot, 271 

1967). In other words, the coastline is self-similar across multiple length-scales. (Strictly 272 



speaking, the coastline possesses self-affinity, since the details of the coastline are not exact 273 

copies as the scale changes). From a physiological point of view, it was realised that many 274 

anatomic structures, such as the bronchial tree and vascular system, exhibit fractal-like 275 

geometry and self-similarity (Lipsitz and Goldberger, 1992). Applied to physiological outputs, 276 

an output is fractal if, as a function of time, it undergoes characteristic changes that are similar 277 

regardless of the time interval over which the observations are made. Fractal outputs are said 278 

to generate irregular fluctuations across multiple timescales (Figure 2), analogous to objects 279 

possessing geometrically similar structures across multiple length-scales (Goldberger et al., 280 

2002a).  281 

 282 

Detrended fluctuation analysis (DFA) is a measure of the long-range fractal correlations within 283 

a physiological output that are due to the intrinsic properties of the system (Peng et al., 1994). 284 

In the DFA algorithm, the time-series of interest is integrated, then divided into boxes of equal 285 

length, n, and a least squares line (representing the trend in each box) is fitted. The integrated 286 

time-series is detrended by subtracting the local trend in each box, and the root mean square of 287 

this integrated, detrended series, F(n), is calculated. This calculation is then repeated over all 288 

timescales or box-sizes. The slope of the line relating log F(n) to log n determines the DFA α 289 

scaling exponent (Goldberger et al., 2002a). The DFA α exponent provides a measure of the 290 

noise “colour” and “roughness” of a time-series and theoretically ranges from ~0.5 to ~1.5 for 291 

physiological outputs (Goldberger et al., 2002a). For a more in-depth explanation of the 292 

calculation of DFA, please refer to Seely and Macklem (2004). When α < 0.5, values are anti-293 

correlated and when α = 0.5, each value in a time-series is completely random and independent 294 

from previous values (i.e. white noise). When α > 0.5, each value is not completely random 295 

and is correlated, to some extent, with previous values. An α exponent of 1.0 is consistent with 296 

statistically self-similar fluctuations, long-range correlations and 1/f (pink) noise, where power 297 



is inversely proportional to frequency. An α exponent of 1.5 is indicative of Brownian noise, 298 

and a smooth output with long-term memory (a so-called “random walk”; Goldberger et al., 299 

2002a). 300 

 301 

 302 

3. Evidence of complexity in neuromuscular output 303 

 304 

It has long been known that the force (or torque) produced by a contracting muscle is neither 305 

smooth nor steady; rather, it constantly fluctuates around an average value (Enoka et al., 2003). 306 

It has been repeatedly demonstrated that the magnitude of force fluctuations, measured using 307 

the standard deviation, increases in proportion to the mean force exerted and as more motor 308 

units are recruited (Jones et al., 2002). The coefficient of variation, on the other hand, is greatest 309 

at low contraction intensities, decreases as the force exerted increases and then remains 310 

constant over much of the operating range of the muscle (Jones et al., 2002; Hamilton et al., 311 

2004). Furthermore, the magnitude of these fluctuations is affected by ageing (Enoka et al., 312 

2003) and neuromuscular fatigue (Hunter and Enoka, 2003). The presence of such fluctuations 313 

has significant functional impact, decreasing our ability to achieve a desired force and produce 314 

intended movement trajectories (Enoka et al., 2003). As such, fluctuations in force output have 315 

usually been interpreted as unwanted noise superimposed upon a signal (Stergiou and Decker, 316 

2011). If these fluctuations were noise, then it would be anticipated that each point in a time-317 

series would be independent of the next point and the structure of that time-series would 318 

approximate Gaussian noise (Slifkin and Newell, 1999). However, numerous studies over the 319 

last 20 years have demonstrated that this is most certainly not the case. 320 

  321 

The first evidence that fluctuations in muscle force output were distinguishable from noise 322 

came from a study by Slifkin and Newell (1999), who demonstrated that the temporal structure 323 



of isometric index finger flexion force was dependent on contraction intensity. During 324 

contractions ranging from 5-95% of participants maximum voluntary contraction (MVC), the 325 

magnitude of fluctuations (measured using the standard deviation) exhibited the well-326 

established increase as force requirements increased, whilst there was an inverted-U shaped 327 

relationship between contraction intensity and complexity. Specifically, ApEn increased 328 

(indicating increasing complexity) as contraction intensity increased, reaching a projected 329 

maximum at ~40% MVC, and then decreased (indicating decreasing complexity) with further 330 

increases in contraction intensity (Figure 4 in Slifkin and Newell, 1999). The authors suggested 331 

that up to 30-40% MVC, force was increased solely by increasing the number of active motor 332 

units and thereafter the generation of further force was dependent solely on modulation of 333 

discharge rates. They went on to speculate that the peak in complexity at 40% MVC was the 334 

point of maximum system adaptability and information transfer because at this point force 335 

could be modulated by either motor unit recruitment or rate coding. However, De Luca et al. 336 

(1982) demonstrated that, in the case of the first dorsal interosseous, below 40% MVC 337 

increased force occurs via concurrent modulation of both recruitment and discharge rates, 338 

whereas above that point increased discharge rates are the dominant (but not only) means of 339 

force increase (De Luca et al., 1982). Nevertheless, Forrest et al. (2014) also reported 340 

differences in ApEn in the first dorsal interosseous below and above 40% MVC that were 341 

concomitant with the previously reported change from concurrent modulation of recruitment 342 

and discharge rates to dominance of discharge rates. However, whether changes in ApEn are 343 

actually caused by changes in force gradation strategies or are simply coincident with them has 344 

yet to be tested experimentally. 345 

 346 

A similar inverted-U shaped relationship has been demonstrated for isometric elbow flexion 347 

(Svendsen and Madeleine, 2010), though further studies have called into question the exact 348 



shape of the contraction intensity-complexity relationship. We have, for example, observed 349 

that complexity decreases linearly with an increase in target force in the knee extensors 350 

(Pethick et al., 2016; Pethick et al., 2021a). Forrest et al. (2014) have demonstrated that 351 

differences in the shape of the relationship between studies can be attributed to different ApEn 352 

signal acquisition/processing choices (e.g. sampling frequency and the value of r, the tolerance 353 

of accepting matches). Nevertheless, it is clear that the fluctuations in muscle force are not, as 354 

once assumed, random noise, but rather have a complex temporal structure that is thought to 355 

be indicative of a flexible and adaptive output (Figures 1, 2 and 3). 356 

  357 

Studies have also shown that the EMG output is a complex signal composed of both 358 

deterministic and stochastic components (Potvin and Brown, 2004). Initial studies 359 

demonstrated that the surface EMG interference pattern possessed a fractal dimension which 360 

increased with increasing contraction intensity, indicating an output becoming more complex 361 

and less self-similar (Gitter and Czerniecki, 1995). This finding has subsequently been 362 

confirmed using entropic measures, with McManus et al. (2019) finding increases in SampEn 363 

for increasing contraction intensities between 10 and 40% MVC, and Cashaback et al. (2013) 364 

finding greater MSE during contractions at 70% compared to 40% MVC. It has, however, been 365 

suggested that surface EMG, particularly in bipolar configuration, is not appropriate for 366 

determination of complexity (Pethick et al., 2019). Indeed, amplitude cancellation and 367 

summation in the EMG signal results in a significant loss of signal content (Keenen et al., 368 

2006). Thus, it has been suggested that either intramuscular or high-density EMG, from which 369 

individual motor unit spike trains can be decomposed, may represent the optimal way to 370 

analyse the complexity of EMG output. Accordingly, it has been demonstrated that the ApEn 371 

of individual motor unit discharge rates, measured using intramuscular EMG, increases with 372 

increasing contraction intensity and increasing discharge rates (Vaillancourt et al., 2002). 373 



   374 

The complex output exhibited by muscle force is purported to confer the neuromuscular system 375 

with the adaptability and flexibility to react to physiological stresses (Lipsitz, 2002). 376 

Specifically, it reflects the ability to modulate motor output rapidly and accurately in response 377 

to alterations in task demands (Vaillancourt and Newell, 2003). It must be noted that, despite 378 

the purported significance of neuromuscular output complexity, there is currently limited 379 

empirical evidence linking it to system functionality. For example, no study to date has sought 380 

to determine how much variance in the performance of functional tasks force complexity 381 

accounts for. This is in contrast to the magnitude of force variability, which has been 382 

demonstrated to account for significant variance in the performance of manual dexterity 383 

(Feeney et al., 2018) and balance tasks (Davis et al., 2020). Importantly, the adaptive 384 

significance of complexity has been demonstrated for other physiological outputs, which 385 

suggests that it will also have significance for the neuromuscular system. For example, Manor 386 

et al. (2010) demonstrated that lower postural sway complexity during quiet standing predicted 387 

greater increases in postural sway speed when going from quiet standing to a dual task 388 

condition (i.e. when increasing task difficulty). 389 

 390 

The lack of empirical evidence relating neuromuscular output complexity to clinical tests of 391 

motor function has, arguably, limited the uptake of complexity measures in research. As 392 

discussed at the end of this review, addressing this issue represents an important and necessary 393 

goal of future research. Nevertheless, changes in neuromuscular output complexity have been 394 

demonstrated concomitant to a variety of perturbations, both acute and chronic, and are 395 

speculated to contribute to the reduced functionality characteristic of these perturbations. 396 

 397 

 398 



4. Loss of complexity hypothesis 399 

 400 

A complex physiological output (e.g. muscle force/torque, heart rate, respiration, gait, etc.) is 401 

thought to be a hallmark of a healthy system (Lipsitz and Goldberger, 1992; Peng et al., 2009), 402 

conferring the system with the adaptability and flexibility to react to physiological stresses in 403 

an ever-changing environment (Lipsitz, 2002). Whilst healthy physiological systems exhibit 404 

complex outputs, systems under greater relative stress exhibit decreased complexity 405 

(Goldberger et al., 2002a). This was first observed in cardiovascular dynamics and ageing 406 

(Kaplan et al., 1991), with old adults (aged 62-90 years) displaying reduced ApEn in R-R 407 

interval compared to young adults (aged 21-35 years). Such findings led Lipsitz and 408 

Goldberger (1992) to propose the “loss of complexity” hypothesis, which states that the ageing 409 

process from adulthood to senescence is characterised by a progressive loss of complexity 410 

within the dynamics of physiological outputs. It has subsequently been demonstrated that this 411 

loss of complexity is not just evident in ageing, but also in disease (Goldberger et al., 2002a). 412 

 413 

4.1. Loss of neuromuscular complexity with ageing  414 

 415 

In the context of the neuromuscular system, ageing from adulthood to senescence is 416 

characterised by a compromised ability to generate task-relevant and precise levels of force 417 

(Morrison and Newell, 2012). Indeed, there have been numerous investigations demonstrating 418 

an age-related increase in the magnitude of force fluctuations (see Enoka et al., 2003 and 419 

Oomen and van Diëen et al., 2017 for reviews). 420 

 421 

The first study to consider the importance of potential age-related changes in the complexity 422 

of muscle force fluctuations was by Vaillancourt and Newell (2003). They observed a 423 

progressive decline in the complexity of index finger abduction force (measured using ApEn 424 



and DFA α) during low-intensity isometric contractions (performed at 5, 10, 20 and 40% MVC) 425 

from young adults (aged 20-24 years) to old adults (aged 60-69 years) and older-old adults 426 

(aged 75-90 years). These findings have been confirmed by several subsequent studies (Sosnoff 427 

and Newell 2006a; 2008) and extended to low-intensity (15-40% MVC) isometric knee 428 

extension contractions (Fiogbé et al., 2018). Taken together, these findings indicate that an 429 

age-induced loss of muscle force complexity affects both small upper limb muscles associated 430 

with fine motor skills and large lower limb muscles associated with locomotion. Furthermore, 431 

Challis (2006) demonstrated decreased muscle torque complexity in older adults (aged ~73 432 

years) compared to young adults (aged ~23 years) during maximal isometric plantarflexion 433 

contractions. This is particularly important as age-induced increases in the magnitude of force 434 

fluctuations are typically only seen at low contraction intensities (Enoka et al., 2003; Oomen 435 

and van Diëen et al., 2017), suggesting that complexity-based measures may exhibit greater 436 

sensitivity to changes in force/torque fluctuations than magnitude-based measures. It has also 437 

been demonstrated that unilateral strength training can increase force complexity (measured 438 

using SampEn) in both the trained and untrained limbs in older adults (Keogh et al., 2007), 439 

indicating that muscular and neural adaptations may both contribute to age-related changes in 440 

complexity.  441 

 442 

Interestingly, it has been demonstrated that the age-related change in complexity can be bi-443 

directional, depending on the constraints and requirements of the action performed. Whilst 444 

older adults demonstrate decreased muscle force complexity during constant-force (i.e. 445 

isometric) tasks, they demonstrate increased complexity during sine-wave tracking tasks 446 

(Vaillancourt and Newell, 2003; Vaillancourt et al., 2004). It has been suggested that in tasks 447 

where the dynamic is constant, more complexity is required to maintain optimal output. During 448 

such tasks, an age-related decrease in complexity is evident because additional degrees of 449 



freedom must be introduced in order to realise the goal of no motion; something which older 450 

adults find difficult to accomplish (Vaillancourt and Newell, 2003). In contrast, in tasks where 451 

the dynamic is oscillatory, less complexity is required to closely track oscillations and reduce 452 

error (Vaillancourt and Newell, 2003). 453 

 454 

Similar age-induced losses of complexity have been observed in the surface EMG of various 455 

muscles. Arjunan and Kumar (2013) found that the fractal dimension of biceps brachii surface 456 

EMG was reduced in older adults during maximal and submaximal isometric contractions. 457 

Moreover, Kang and Dingwell (2016) observed lower complexity, measured using MSE, in 458 

the vastus lateralis and biceps femoris surface EMG during treadmill walking. Importantly, this 459 

extends the loss of complexity from isometric contractions to the type of dynamic contractions 460 

characteristic of activities of daily living.  461 

 462 

4.2. Loss of neuromuscular complexity with disease 463 

 464 

Numerous disease processes are associated with changes in neuromuscular output, with an 465 

obvious example being Parkinson’s disease, which is characterised by increased tremor 466 

(McAuley and Marsden, 2000). Research has demonstrated decreased complexity, measured 467 

by decreased ApEn and SampEn, in both tremor and isometric force output in Parkinson’s 468 

disease patients (Vaillancourt and Newell, 2000; Rose et al., 2013). Importantly, such 469 

decreases in complexity have been observed in the absence of differences in the magnitude of 470 

tremor/force (Vaillancourt and Newell, 2000; Vaillancourt et al., 2001), providing further 471 

evidence that complexity-based measures may be more sensitive than magnitude-based 472 

measures. Moreover, such findings suggest that complexity-based measures could be a useful 473 

tool in the detection of Parkinson’s disease, particularly in its early stages. Furthermore, an 474 

inverse correlation between decreases in the SampEn of knee extensor surface EMG and 475 



increases in the Movement Disorders Society Unified Parkinson’s Disease Rating Scale has 476 

recently been observed (Flood et al., 2019). Importantly, this is, to date, the only clinical motor 477 

function measure that has been correlated with changes in neuromuscular output complexity, 478 

though this does come with the caveats associated with analysing complexity of bipolar surface 479 

EMG discussed above. Further neurological conditions, such as stroke (Chow and Stokic, 480 

2014) and Multiple Sclerosis (Morrison et al., 2013), have been demonstrated to result in 481 

decreased force complexity compared with healthy controls. It has also recently been observed 482 

that the peripheral neuropathy associated with diabetes results in decreased complexity of 483 

muscle force and surface EMG outputs during lower limb contractions (Suda et al., 2017).  484 

 485 

 486 

4.3.Loss of neuromuscular complexity with neuromuscular fatigue 487 

 488 

During submaximal contractions performed to the limit of tolerance, maximal force generating 489 

capacity decreases, consequent to central and peripheral perturbations (Gandevia, 2001). This 490 

loss of force generating capacity necessitates an increase in the number of activated motor units 491 

and their firing frequency in order to sustain the demands of a submaximal task (Carpentier et 492 

al., 2001; Adam and De Luca, 2005). Such compensatory adjustments have long been 493 

associated with an increase in the magnitude of force fluctuations (Hunter and Enoka, 2003). 494 

Recent research has extended these changes in the magnitude of force fluctuations to the 495 

structure of fluctuations, thus further extending the “loss of complexity” hypothesis from 496 

ageing and disease to acute neuromuscular fatigue. 497 

 498 

We conducted the first study to investigate neuromuscular fatigue-induced changes in muscle 499 

torque complexity during both maximal and submaximal (40% MVC) intermittent isometric 500 

contractions, observing a decrease in knee extensor torque complexity (measured using ApEn, 501 



SampEn and DFA α; Figure 1; Pethick et al., 2015). This study demonstrated, based on the 502 

purported significance of complexity, that the impact of neuromuscular fatigue is not limited 503 

to force-generating capacity but extends to the adaptability of the neuromuscular system to 504 

external perturbation. We postulate that the development of neuromuscular fatigue makes 505 

targeting errors more difficult to correct, thus limiting the ability to explore control solutions 506 

(i.e. a loss of adaptability) and, consequently, to maintain task demands. Subsequently, we 507 

demonstrated that muscle torque complexity decreases only during contractions above the 508 

critical torque (i.e. in the severe exercise domain). No changes were observed during 509 

contractions below the critical torque (i.e. in the heavy exercise domain; Figure 3A; Pethick et 510 

al., 2016). Such results provided the first evidence that metrics derived from non-linear 511 

dynamics are able to identify changes in neuromuscular behaviour coincident with the critical 512 

torque. Moreover, the muscle metabolic profile and the development of peripheral fatigue 513 

cannot be stabilized above the critical torque/power (Poole et al., 2016). In other words, the 514 

response of muscle torque complexity to exercise below and above the critical torque is 515 

strikingly similar to other variables implicated in the development of fatigue. Whether these 516 

similarities reflect causal relationships between peripheral fatigue and motor control remains 517 

to be established. 518 

 519 

We have also demonstrated that circulatory occlusion following a bout of fatiguing knee 520 

extensor contractions completely abolishes recovery of muscle torque complexity (Pethick et 521 

al., 2018a). Indeed, at the end of the occlusion, when a second bout of contractions commenced, 522 

muscle torque complexity was no different than at task failure following the first bout of 523 

contractions. Given that circulatory occlusion holds the muscle ischaemic, preventing the 524 

recovery of the muscle metabolic milieu, this finding seems, at first glance, to support the 525 

supposition that the failure of complexity to demonstrate any recovery was mediated by this 526 



maintained peripheral fatigue. However, both voluntary activation and vastus lateralis average 527 

rectified EMG (arEMG) also failed to demonstrate any recovery at the onset of the second bout 528 

of contractions. This suggests that the neuromuscular fatigue-induced loss of muscle torque 529 

complexity is an integrated response to both peripheral and central processes. 530 

 531 

Various ergogenic aids and interventions have been found to affect the neuromuscular fatigue-532 

induced loss of muscle torque complexity. Caffeine ingestion has been demonstrated to slow 533 

the loss of muscle torque complexity (Figure 3C), consequent to a slowed rate of decrease in 534 

torque generating capacity and a slowed development of central fatigue (i.e. attenuated the 535 

decrease in voluntary activation; Pethick et al., 2018b). Similarly, ischaemic pre-conditioning 536 

(an intervention consisting of alternating bouts of muscle ischaemia and reperfusion prior to 537 

exercise) has been demonstrated to slow the loss of muscle torque complexity (Figure 3D), 538 

which was accompanied by a slowing in the rates of increase in muscle oxygen consumption 539 

and arEMG (Pethick et al., 2021b). Such findings indicate that the loss of muscle torque 540 

complexity, and the adaptability of the neuromuscular system it reflects, is tightly coupled to 541 

the neuromuscular fatigue process (i.e. loss of torque generating capacity, development of 542 

central and peripheral), even after experimental manipulation. It has also been demonstrated 543 

that a neuromuscular fatigue test performed with an additional cognitive load (a self-regulated 544 

mathematical task) decreased muscle force complexity during the beginning and middle of the 545 

task, compared with the same test performed with no cognitive load (Cruz-Montecinos et al., 546 

2018).  547 

 548 

Interestingly, in our work on the neuromuscular fatigue-induced loss of muscle torque 549 

complexity, the point of task failure (i.e. exhaustion) has been associated with consistently low 550 

levels of complexity (Pethick et al., 2015; Pethick et al., 2016; Pethick et a., 2018a). Such 551 



consistently low levels of complexity at task failure suggests that a loss of complexity could be 552 

a contributor to the “sensory tolerance limit” being reached at task failure (Hureau et al., 2018). 553 

The “sensory tolerance limit” proposes that the termination of severe-intensity exercise is 554 

associated with substantial and consistent changes in the muscle metabolic profile, which has 555 

been hypothesised to activate group III and IV afferent fibres (Amann and Dempsey, 2008). 556 

These, in turn, inhibit central motor drive. Recent work by Martinez-Valdes et al. (2020) 557 

observed an increase in motor unit recruitment and firing rate as task failure was approached 558 

during sustained isometric knee extensor contractions at 30% MVC. However, the peak firing 559 

rate at task failure did not reach levels seen during a non-fatiguing contraction at 50% MVC, 560 

suggesting firing rate saturated at a lower frequency compared with the higher force non-561 

fatiguing contraction.  562 

 563 

Further research has demonstrated differing recovery kinetics of muscle torque complexity 564 

following fatiguing isometric exercise and muscle damaging eccentric exercise that reduced 565 

MVC torque to the same extent (Pethick et al., 2019b). Following fatiguing isometric exercise, 566 

recovery of muscle torque complexity was complete 10 minutes after the cessation of exercise. 567 

In contrast, muscle torque complexity remained depressed for 60 minutes following the 568 

cessation of eccentric exercise and only recovered back to its baseline level 24 hours after 569 

exercise (Figure 3B). These findings indicate that, in addition to the prolonged depression of 570 

muscle force/torque that follows muscle damaging eccentric exercise, there is also a prolonged 571 

loss of adaptability in neuromuscular output. 572 

 573 

Research from our laboratory has observed no change in ApEn or DFA α of surface EMG 574 

during either fatiguing maximal or submaximal isometric contractions (Pethick et al., 2019a). 575 

This led us to speculate that the bipolar surface EMG setup and analysis of the rectified EMG 576 



we used were not appropriate for analysing complexity and that analysing motor unit spike 577 

trains (obtained via either intramuscular or high-density EMG) would be necessary for such 578 

analysis. Nevertheless,  neuromuscular fatigue-induced losses of complexity have been 579 

observed in the surface EMG of various muscles. Cashaback et al. (2013) demonstrated a 580 

decrease in MSE near exhaustion during a fatiguing biceps brachii contraction and concluded 581 

that neuromuscular fatigue degraded fast-acting regulatory mechanisms of force control. The 582 

authors went on to speculate that this degradation of regulatory mechanisms could result from 583 

a combination of decreases in motor unit action potential velocity and amplitude, and 584 

reductions in motor unit discharge rates.   585 

 586 

Alterations in neuromuscular complexity have been also been observed during dynamic 587 

exercise. Enders et al. (2015) observed increased regularity of surface EMG, measured using 588 

entropic half-life (a variant of SampEn), with increased power output during cycling. It was 589 

concluded that the increased difficulty of higher workloads led to a more constrained solution 590 

space, allowing less randomness in the execution of the task and fewer available solutions for 591 

the neuromuscular system to successfully complete the task. This decreased complexity with 592 

increased absolute task demands is similar to the decreased complexity with the increased 593 

relative task demands imposed by the development of neuromuscular fatigue. 594 

 595 

 596 

5. Mechanistic basis for the loss of neuromuscular complexity 597 

 598 

Motor units are the functional unit of the neuromuscular system, transducing synaptic input 599 

from the central nervous system into muscle force and movement. Motor neurons receive both 600 

independent and common synaptic input from a multitude of sources, though the independent 601 



components are filtered out and only the common component is transmitted to the output of 602 

the motor neurons (Farina and Negro, 2015). The common input comprises the exact command 603 

for optimal force generation and a noise component (termed common noise) that determines 604 

oscillations of discharge rates of motor neurons at a common low frequency (Farina and Negro, 605 

2015). Force fluctuations, and accuracy of force control, are determined mainly by variance in 606 

common noise (Negro et al., 2009; Farina and Negro, 2015). Indeed, it has been demonstrated 607 

that the magnitude of fluctuations in isometric force output are coherent with the common 608 

component of the cumulative motor unit spike train (Negro et al., 2009; Thompson et al., 609 

2018). It has been speculated that common synaptic input must also contribute to the temporal 610 

structure of neuromuscular output (Taylor et al., 2003; Pethick et al., 2016). However, to date, 611 

no study has directly explored the relationships between common synaptic input and muscle 612 

force/torque complexity.  613 

 614 

 615 

The first (indirect) evidence for the role of common synaptic input in the age-related decrease 616 

in neuromuscular output came from Sturman et al. (2005), who demonstrated a progressive 617 

decrease in the complexity of loaded postural tremor across young and three groups of 618 

progressively older adults. This decrease in tremor complexity was accompanied by, and 619 

linearly related to, an increase in peak-tremor EMG coherence, which provides a predictive 620 

measure of motor unit synchronisation (Halliday et al., 1999). As such, the authors speculated 621 

that the ageing process enhanced motor unit synchronisation, which then decreased the 622 

complexity of postural tremor. It must be noted, though, that measures of motor unit 623 

synchronisation are a poor proxy of common synaptic input (Farina and Negro, 624 

2015).Nevertheless, common synaptic input to muscle has been demonstrated to increase with 625 



increasing age and to be highly coherent with the age-related increased magnitude of force 626 

fluctuations (Castronovo et al., 2018). 627 

 628 

Further evidence of a relationship between motor unit synchronisation and neuromuscular 629 

complexity comes from a study on simulated EMG signals, which found that decreases in the 630 

fractal dimension (corresponding to decreased complexity) were highly related to simulation-631 

induced increases in motor unit synchronisation (Mesin et al., 2009). Subsequent experimental 632 

studies demonstrated decreases in the fractal dimension of surface EMG with neuromuscular 633 

fatigue, which were interpreted as increases in motor unit synchronisation (Beretta-Piccoli et 634 

al., 2015; Boccia et al., 2015). More recently, it has been shown that common synaptic input 635 

to muscles increases when the net excitatory drive to muscle increases, whether this is a 636 

consequence of increased contractile intensity  or the development of neuromuscular fatigue  637 

(Castronovo et al., 2015). We have, therefore, speculated that at any neuromuscular fatigue-638 

induced (or contraction intensity-induced) increase in common synaptic input should be 639 

reflected in a decrease in muscle torque complexity (Pethick et al., 2018a). As common 640 

synaptic input increases with the development of neuromuscular fatigue, there is an increase in 641 

common oscillations of motor neuron discharge rates (Castronovo et al., 2015) which would 642 

result in increased regularity (i.e. decreased complexity) of the force output. However, direct 643 

measurement of individual motor unit spike trains (using high-density EMG) is necessary to 644 

confirm this link between common synaptic input and muscle torque complexity. 645 

 646 

The observation of a neuromuscular fatigue-induced loss of muscle torque complexity only 647 

during contractions performed above the critical torque suggests that fatigue mechanisms 648 

particular to such contractions, i.e. metabolite-mediated peripheral fatigue (Burnley et al., 649 

2012), are involved. However, a loss of muscle torque complexity is likely to be a consequence 650 



of changes in common synaptic input to motor neurons (Pethick et al., 2016). As such, in the 651 

case of neuromuscular fatigue above the critical torque, we have postulated that metabolite-652 

mediated peripheral fatigue is a pre-requisite for central adjustments that act on the motor unit 653 

pool, which are then responsible for the increase in common synaptic input and loss of torque 654 

complexity (Pethick et al., 2016; Pethick et al., 2018a).  655 

 656 

 657 

6. Future research directions 658 

 659 

The presence of a complex output is purported to reflect the ability of a system to explore and 660 

achieve a variety of control solutions (Peng et al., 2009). Low levels of complexity are, 661 

therefore, reflective of a decreased ability to adapt to perturbation (Peng et al., 2009), with this 662 

empirically demonstrated in the ageing postural control system (Manor et al., 2010). The 663 

changes in the complexity of neuromuscular output seen with ageing from adulthood to 664 

senescence, disease and neuromuscular fatigue are similarly thought to reflect a reduction in 665 

the adaptive capacity and exploratory freedom of the neuromuscular system.  As such, reduced 666 

levels of complexity have been hypothesised to negatively impact motor control and co-667 

ordination (Cortes et al., 2014) and increase the risk of failing motor tasks (Pethick et al., 2018). 668 

This could result in poorer performance of skilled movements in athletic and sporting events 669 

(Forestier and Nougier, 1998), and perhaps more importantly, have a detrimental effect on 670 

functional movements, such as gait, in older adults (Buzzi et al., 2003). However, no research 671 

to date has investigated whether this might occur. It is imperative that future research establish 672 

empirical relationships between neuromuscular output complexity and the performance of 673 

motor tasks, such as manual dexterity, balance and locomotion, which represent the 674 



fundamental motor skills from which all other motor skills are thought to derive (Newell, 675 

2020).   676 

 677 

Several studies on ageing and disease have demonstrated changes in complexity in the absence 678 

of changes in the magnitude of fluctuations (Vaillancourt and Newell, 2000; Fiogbé et al., 679 

2018), suggesting that they may hold potential in detecting sub-clinical changes in motor 680 

control. Furthermore, complexity measures have been demonstrated to be tightly coupled to 681 

the neuromuscular fatigue process (Pethick et al., 2018) and exhibit the same exercise intensity 682 

domain-specific behaviours as measures such as V̇O2, blood [lactate] and pH (Poole et al., 683 

2016; Pethick et al., 2016; Pethick et al., 2020). Taken together, such findings indicate that 684 

muscle force/torque complexity may provide a sensitive index of the state of the neuromuscular 685 

system, providing information in addition to, and in some instances beyond, traditional 686 

measures of signal variability. However, to date research has only demonstrated empirically 687 

that EMG complexity provides an index of the state of the neuromuscular system in 688 

Parkinson’s disease. This does, however, come with the caveat that surface EMG may not be 689 

appropriate for characterising complexity due to the loss of signal content brought about by 690 

amplitude cancellation and summation (Keenan et al., 2006; Pethick et al., 2019a). Further 691 

research is necessary to determine to what extent complexity of either muscle force or EMG 692 

actually reflect the state of the neuromuscular system and whether this extends to other 693 

perturbations.  694 

 695 

 696 

Just as important as determining the functional relevance of neuromuscular output complexity 697 

is determining the mechanism responsible for it and for its decrease with perturbation. We 698 

speculate common synaptic input to be responsible, based on the observation that it increases 699 



(Castronovo et al., 2015; Castronovo et al., 2018) as a result of perturbations that decrease 700 

muscle force/torque or EMG complexity (Vaillancourt et al., 2003; Pethick et al., 2015). No 701 

study has, however, simultaneously measured both complexity and common synaptic input. 702 

Future studies must simultaneously measure motor unit spike trains (using high-density EMG), 703 

from which common synaptic input can be estimated, and muscle force/torque output. As 704 

mentioned previously, analysing complexity of the motor unit spike trains may also provide 705 

useful insight. Assuming common synaptic input is responsible for neuromuscular output 706 

complexity, a further challenge is determining what exactly causes it to change. For example, 707 

the mechanism responsible for the increased common synaptic input with ageing remains to be 708 

determined (Castronovo et al., 2018). 709 

 710 

In our work on the neuromuscular fatigue-induced loss of muscle torque complexity, the point 711 

of task failure (i.e. “exhaustion”) is associated with consistently low levels of complexity 712 

(Pethick et al., 2015; Pethick et al., 2016). This suggests that low complexity in neuromuscular 713 

output might be responsible, in part, for the inability to continue physical tasks (Pethick et al., 714 

2016; Pethick et al., 2018b). Although the evidence is so far correlative, there are 715 

physiologically plausible mechanisms that explain this, and which can be viewed in the 716 

following way. Low torque complexity indicates low adaptability in motor control. Targeting 717 

errors in isometric contractions are more difficult to correct, and the additional effort of doing 718 

so may be beyond the neuromuscular system’s capabilities or the participant’s willingness to 719 

continue. From this perspective, task failure could be better described as a neuromuscular 720 

fatigue-induced loss of motor control rather than a loss of motor “capacity” (as reflected in the 721 

task-specific MVC torque; Pethick et al., 2018a). To test this intriguing possibility, future 722 

research could create a regression model for predicting endurance time based upon complexity.  723 

 724 



 725 

 726 

7. Conclusion 727 

 728 

In this review, we have shown that fluctuations in neuromuscular output can be altered by 729 

ageing, disease and neuromuscular fatigue. Quantification of time-series regularity (entropy 730 

metrics) and noise colour (detrended fluctuation analysis) provides crucial additional 731 

information about the state of the system producing these fluctuations. Such fluctuations appear 732 

to be an emergent property of physiological function, born of the multiplicity of components 733 

involved in system control. Ageing degrades the complexity of physiological outputs generally 734 

by reducing system capacity and connectivity. Disease states also have this effect but often for 735 

a much more specific set of system components (e.g. the loss of specific neuronal populations 736 

in Parkinson’s disease). Neuromuscular fatigue also appears to reduce physiological 737 

complexity, but in this case without any loss of system structure. Instead, the changes in 738 

complexity appear to be related to a loss of peripheral function and the central adjustments 739 

made in order to compensate for the loss of force-generating capacity. 740 

 741 
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 744 

 745 

 746 

 747 

 748 

 749 

 750 



References 751 

 752 

Adam, A. and De Luca, C.J. (2005). Firing rates of motor units in human vastus lateralis muscle 753 

during fatiguing isometric contractions. Journal of Applied Physiology, 99, 268-280. 754 

 755 

Amann, M. and Dempsey, J.A. (2008). Locomotor muscle-fatigue modifies central motor drive 756 

in healthy humans and imposes a limitation to exercise performance. Journal of Physiology, 757 

586, 161-173. 758 

 759 

Arjunan, S.P. and Kumar, D.K. (2013). Age-associated changes in muscle activity during 760 

isometric contraction. Muscle & Nerve, 47, 545-549. 761 

 762 

Beretta-Piccoli, M., D’Antona, G., Barbero, M., Fisher, B., Dieli-Conwright, C.M., Clijsen, R. 763 

and Cescon, C. (2015). Evaluation of central and peripheral fatigue in the quadriceps using 764 

fractal dimension and conduction velocity un young females. PLoS One, 10, e123921. 765 

 766 

Boccia, G., Dardanello, D., Beretta-Piccoli, M., Cescon, C., Coratella, G., Rinaldo, N., 767 

Barbero, M., Lanza, M., Schena, F. and Rainoldi, A. (2015). Muscle fiber conduction velocity 768 

and fractal dimension of EMG during fatiguing contraction of young and elderly active men. 769 

Physiological Measurement, 37, 162-174. 770 

 771 

Bruce, E.N. (1996). Temporal variations in the pattern of breathing. Journal of Applied 772 

Physiology, 80, 1079-1097. 773 

 774 



Burnley, M., Vanhatalo, A. and Jones, A.M. (2012). Distinct profiles of neuromuscular fatigue 775 

during muscle contractions below and above the critical torque in humans. Journal of Applied 776 

Physiology, 113, 215-223. 777 

 778 

Buzzi, U.H., Stergiou, N., Kurz, M.J., Hageman, P.A. and Heidel, J. (2003). Nonlinear 779 

dynamics indicates aging affects variability during gait. Clinical Biomechanics, 18, 435-443. 780 

 781 

Carnavale, B.F., Fiogbé, E., Farche, A.C.S., Catai, A.M., Porta, A. and Takahashi, A.C.M. 782 

(2020). Complexity of knee extensor torque in patients with frailty syndrome: a cross-sectional 783 

study. Brazilian Journal of Physical Therapy, 24, 30-38. 784 

 785 

Carpentier, A., Duchateau, J. and Hainaut, K. (2001). Motor unit behaviour and contractile 786 

changes during fatigue in the human first dorsal interosseus. Journal of Physiology, 534, 903-787 

912. 788 

 789 

Cashaback, J.G., Cluff, T. and Potvin, J.R. (2013). Muscle fatigue and contraction intensity 790 

modulates the complexity of surface electromyography. Journal of Electromyography & 791 

Kinesiology, 23, 78-83. 792 

 793 

Castronovo, A.M., Negro, F., Conforto, S. and Farina, D. (2015). The proportion of common 794 

synaptic input to motor neurons increases with an increase in net excitatory input. Journal of 795 

Applied Physiology, 119, 1337-1346. 796 

 797 

Castronovo, A.M., Mrachacz-Kersting, N., Stevenson, A.J.T., Holobar, A., Enoka, R.M. and 798 

Farina, D. (2018). Decrease in force steadiness with aging is associated with increased power 799 



of the common but not independent input to motor neurons. Journal of Neurophysiology, 120, 800 

1616-1624. 801 

 802 

Challis, J.H. (2006). Aging, regularity and variability in maximum isometric moments. Journal 803 

of Biomechanics, 39, 1543-1546. 804 

 805 

Chow, J.W. and Stokic, D.S. (2014). Variability, frequency composition, and complexity of 806 

submaximal isometric knee extension force from subacute to chronic stroke. Neuroscience, 807 

273, 189-198. 808 

 809 

Cortes, N., Onate, J. and Morrison, S. (2014). Differential effects of fatigue on movement 810 

variability. Gait & Posture, 39, 888-893. 811 

 812 

Costa, M., Goldberger, A.L. and Peng, C.K. (2002). Multiscale entropy analysis of complex 813 

physiologic time series. Physical Review Letters, 89, p068102. 814 

 815 

Cruz-Montecinos, C., Calatyud, J., Iturriaga, C., Bustos, C., Mena, B., España-Romero, V. and 816 

Carpes, F.P. (2018). Influence of a self-regulated cognitive dual task on time to failure and 817 

complexity of submaximal isometric force control. European Journal of Applied Physiology, 818 

118, 2021-2027. 819 

 820 

Davis, L.A., Allen, S.P., Hamilton, L.D., Grabowski, A.M. and Enoka, R.M. (2020). 821 

Differences in postural sway among healthy adults are associated with the ability to perform 822 

steady contractions with leg muscles. Experimental Brain Research, 238, 487-497. 823 

 824 



De Luca, C.J., LeFever, R.S., McCue, M.P. and Xenakis, A.P. (1982). Behaviour of human 825 

motor units in different muscles during linearly varying contractions. Journal of Physiology, 826 

329, 113-128. 827 

 828 

Enders, H., Von Tscharner, V. and Nigg, B.M. (2015).: Neuromuscular strategies during 829 

cycling at different muscular demands. Medicine & Science in Sports & Exercise, 47, 1450-830 

1459. 831 

 832 

Enoka, R.M., Christou, E.A., Hunter, S.K., Kornatz, K.W., Semmler, J.G., Taylor, A.M. and 833 

Tracy, B.L. (2003). Mechanisms that contribute to differences in motor performance between 834 

young and old adults. Journal of Electromyography & Kinesiology, 13, 1-12. 835 

 836 

Farina, D. and Negro, F. (2015). Common synaptic input to motor neurons, motor unit 837 

synchronization, and force control. Exercise & Sport Science Reviews, 43, 23-33. 838 

 839 

Feeney, D.F., Mani, D. and Enoka, R.M. (2018). Variability in common synaptic input to motor 840 

neurons modulates both force steadiness and pegboard times in young and older adults. Journal 841 

of Physiology, 596, 3793-3806. 842 

 843 

Fiogbé, E., Vassimon-Barroso, V., Catai, A.M., de Melo, R.C., Quitério, R.J., Porta, A. and 844 

Takahashi, A.C.M. (2018). Complexity of knee extensor torque: Effect of aging and 845 

contraction intensity. Journal of Strength & Conditioning Research, 846 

http://doi.org/10.1519/jsc.0000000000002888. 847 

 848 



Flood, M.W., Jensen, B.R., Malling, A.S. and Lowery, M.M. (2019). Increased EMG 849 

intermuscular coherence and reduced signal complexity in Parkinson’s disease. Clinical 850 

Neurophysiology, 130, 259-269. 851 

 852 

Fitts, P.M. (1954). The information capacity of the human motor system in controlling the 853 

amplitude of movement. Journal of Experimental Psychology, 47, 381-391. 854 

 855 

Forestier, N. and Nougier, V. (1998). The effects of muscular fatigue on the coordination of a 856 

multijoint movement in human. Neuroscience Letters, 252, 187-190. 857 

 858 

Forrest, S.M., Challis, J.H. and Winter, S.L. (2014). The effect of signal acquisition and 859 

processing choices in ApEn values: Towards a “gold standard” for distinguishing effort levels 860 

from isometric force records. Medical Engineering & Physics, 36, 676-683. 861 

 862 

Gandevia, S.C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological 863 

Reviews, 81, 1725-1789. 864 

 865 

Gitter, J.A. and Czerniecki, M.J. (1995). Fractal analysis of the electromyographic interference 866 

pattern. Journal of Neuroscience Methods, 58, 103-108. 867 

 868 

Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., Ivanov, P.C., Peng, C.K. and Stanley, H.E. 869 

(2002a). Fractal dynamics in physiology: alterations with disease and aging. Proceedings of 870 

the National Academy of Sciences, 99, 2466-2472. 871 

 872 



Goldberger, A.L., Peng, C.K. and Lipsitz, L.A. (2002b). What is physiologic complexity and 873 

how does it change with aging and disease? Neurobiology of Aging, 23, 23-26. 874 

 875 

Halliday, D.M., Conway, B.A., Farmer, S.F. and Rosenberg, J.R. (1999). Load-independent 876 

contributions from motor-unit synchronization to human physiological tremor. Journal of 877 

Neurophysiology, 82, 664-675. 878 

 879 

Hamilton, A.F.C., Jones, K.E. and Wolpert, DM. (2004). The scaling of motor noise with 880 

muscle strength and motor unit number in humans. Experimental Brain Research, 157, 417-881 

430. 882 

 883 

Hausdorff, J.M., Peng, C.K., Ladin, Z.V.I., Wei, J.Y. and Goldberger, A.L. (1995). Is walking 884 

a random walk? Evidence for long-range correlations in stride interval of human gait. Journal 885 

of Applied Physiology, 78, 349-358. 886 

 887 

Hunter, S.K. and Enoka, R.M. (2003). Changes in muscle activation can prolong the endurance 888 

time of a submaximal isometric contraction in humans. Journal of Applied Physiology, 94, 108-889 

118. 890 

 891 

Hureau, T.J., Romer, L.M. and Amann, M. (2018). The “sensory tolerance limit”: A 892 

hypothetical construct determining exercise performance? European Journal of Sport Science, 893 

18, 13-24. 894 

 895 

Jones, K.E., Hamilton, A.F.C. and Wolpert, D.M. (2002). Sources of signal-dependent noise 896 

during isometric force production. Journal of Neurophysiology, 88, 1533-1544. 897 



 898 

Kang, H.G., Costa, M.D., Priplata, A.A., Starobinets, O.V., Goldberger, A.L., Peng, C.K., 899 

Kiely, D.K., Cupples, L.A. and Lipsitz, L.A. (2009). Frailty and the degradation of complex 900 

balance dynamics during a dual-task protocol. Journal of Gerontology, 64, 1304-1311. 901 

 902 

Kang, H.G. and Dingwell, J.B. (2016). Differential changes with age in multiscale entropy of 903 

electromyography signals from leg muscles during treadmill walking. PLoS One, 11, 904 

e0162034. 905 

 906 

Kaplan, D.T., Furman, M.I., Pincus, S.M., Ryan, S.M., Lipsitz, L.A. and Goldberger, A.L. 907 

(1991). Aging and the complexity of cardiovascular dynamics. Biophysics Journal, 59, 945-908 

949. 909 

 910 

Keenan, K.G., Farina, D., Merletti, R. and Enoka, R.M. (2006). Amplitude cancellation reduces 911 

the size of motor unit potentials averaged from the surface EMG. Journal of Applied 912 

Physiology, 100, 1928-1937. 913 

 914 

Keogh, J.W., Morrison, S. and Barrett, R. (2007). Strength training improves the tri-digit 915 

finger-pinch force control of older adults. Archives of Physical Medicine and Rehabilitation, 916 

88, 1055-1063. 917 

 918 

Lipsitz, L.A. and Goldberger, A.L. (1992). Loss of “complexity” and aging: potential 919 

applications of fractals and chaos theory to senescence. Journal of the American Medical 920 

Association, 267, 1806-1809. 921 

 922 



Lipsitz, L.A. (2002). Dynamics of stability: the physiology basis of functional health and 923 

frailty. Journal of Gerontology, 57, B115-B125. 924 

 925 

Macklem, P.T. (2009). Emergent phenomena and the secrets of life. Journal of Applied 926 

Physiology, 104, 1844-1846. 927 

 928 

Mäkikallio, T.H., Høiber, S., Køber, L., Torp-Pedersen, C., Peng, C.K., Goldberger, A.L., 929 

Huikuri, H.V. and Trace Investigators. (1999). Fractal analysis of heart rate dynamics as a 930 

predictor of mortality in patients with depressed left ventricular function after acute myocardial 931 

infarction. American Journal of Cardiology, 83, 836-839. 932 

 933 

Mandelbrot, B. (1967). How long is the coast of Britain? Statistical self-similarity and 934 

fractional dimension. Science, 156, 636-638. 935 

 936 

Manor, B., Costa, M.D., Hu, K., Newton, E, Starobinets, O, Kang, H.G., Peng, C.K., Novak, 937 

V. and Lipsitz, L.A. (2010). Physiological complexity and system adaptability: evidence from 938 

postural control dynamics of older adults. Journal of Applied Physiology, 109, 1876-1891. 939 

 940 

Manor, B. and Lipsitz, L.A. (2013). Physiological complexity and aging: implications for 941 

physical function and rehabilitation. Progress in Neuro-psychopharmacology & Biological 942 

Psychiatry, 45, 287-293. 943 

 944 

Martinez-Valdes, E., Negro, F., Falla, D., Dideriksen, J.L., Heckman, C.J. and Farina, D. 945 

(2020). Inability to increase the neural drive to muscle is associated with task failure during 946 

submaximal contractions. Journal of Neurophysiology, 124, 1110-1121. 947 



 948 

McAuley, J.H. and Marsden, C.D. (2000). Physiological and pathological tremors and 949 

rhythmic central motor control. Brain, 123, 1545-1567. 950 

 951 

McManus, L., Flood, M.W. and Lowery, M.M. (2019). Beta-band motor unit coherence and 952 

nonlinear surface EMG features of the first dorsal interosseous muscle vary with force. Journal 953 

of Neurophysiology, 122, 1147-1162. 954 

 955 

Mesin, L., Cescon, C., Gazzoni, M., Merletti, R. and Rainoldi, A. (2009). A bi-dimensional 956 

index for the selective assessment of myoelectric manifestations of peripheral and central 957 

muscle fatigue. Journal of Electromyography & Kinesiology, 19, 851-863. 958 

 959 

Morrison, S. and Newell, K.M. (2012). Aging, neuromuscular decline, and the change in 960 

physiological and behavioral complexity of upper-limb movement dynamics. Journal of Aging 961 

Research, 891218, 2012. 962 

 963 

Morrison, S., Sosnoff, J.J., Sandroff, B.M., Pula, J.H. and Motl, R.W. (2013). The dynamics 964 

of finger tremor in multiple sclerosis is affected by whole body position. Journal of the 965 

Neurological Sciences, 324, 84-89. 966 

 967 

Negro, F., Holobar, A. and Farina, D. (2009). Fluctuations in isometric muscle force can be 968 

described by one linear projection of low-frequency components of motor unit discharge rates. 969 

Journal of Physiology, 587, 5925-5938. 970 

 971 



Negro, F. and Farina, D. (2011). Linear transmission of cortical oscillations to the neural drive 972 

to muscles is mediated by common projections to populations of motoneurons in humans. 973 

Journal of Physiology, 589, 629-637. 974 

 975 

Newell, K.M. (2020). What are the fundamental motor skills and what is fundamental about 976 

them? Journal of Motor Learning and Development, 8, 280-314. 977 

 978 

Oomen, N.M. and van Diëen, J.H. (2017). Effects of age on force steadiness: a literature review 979 

and meta-analysis. Aging Research Reviews, 35, 312-321. 980 

 981 

Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E. and Goldberger, A.L. (1994). 982 

Mosaic organization of DNA nucleotides. Physical Review, 49, 1685-1689. 983 

 984 

Peng, C.K., Costa, M. and Goldberger, A.L. (2009). Adaptive data analysis of complex 985 

fluctuations in physiologic time series. Advances in Adaptive Data Analysis, 1, 61-70. 986 

 987 

Pethick, J., Winter, S.L. and Burnley, M. (2015). Fatigue reduces the complexity of knee 988 

extensor torque fluctuations during maximal and submaximal intermittent isometric 989 

contractions in man. Journal of Physiology, 593, 2085-2096. 990 

 991 

Pethick, J., Winter, S.L. and Burnley, M. (2016). Loss of knee extensor torque complexity 992 

during fatiguing isometric muscle contractions occurs exclusively above the critical torque. 993 

American Journal of Physiology, 310, R1144-R1153. 994 

 995 



Pethick, J., Winter, S.L. and Burnley, M. (2018a). Effects of ipsilateral and contralateral fatigue 996 

and muscle blood flow occlusion on the complexity of knee-extensor torque output in humans. 997 

Experimental Physiology, 103, 956-967. 998 

 999 

Pethick, J., Winter, S.L. and Burnley, M. (2018b). Caffeine ingestion attenuates fatigue-1000 

induced loss of muscle torque complexity. Medicine & Science in Sports & Exercise, 50, 236-1001 

245. 1002 

 1003 

Pethick, J., Winter, S.L. and Burnley, M. (2019a). Fatigue reduces the complexity of knee 1004 

extensor torque during fatiguing sustained isometric contractions. European Journal of Sport 1005 

Science, 19, 1349-1358. 1006 

 1007 

Pethick, J., Winter, S.L. and Burnley, M. (2019b). Prolonged depression of knee-extensor 1008 

torque complexity following eccentric exercise. Experimental Physiology, 104, 100-111. 1009 

 1010 

Pethick, J., Winter, S.L. and Burnley, M. (2021a). Fatigue-induced changes in knee-extensor 1011 

torque complexity and muscle metabolic rate are dependent on joint angle. European Journal 1012 

of Applied Physiology, https://doi.org/10.1007/s00421-021-04779-1. 1013 

 1014 

Pethick, J., Casselton, C., Winter, S.L. and Burnley, M. (2021b). Ischaemic pre-conditioning 1015 

attenuates fatigue-induced loss of knee extensor torque complexity. Medicine & Science in 1016 

Sports & Exercise, 53, 306-315. 1017 

 1018 

Pincus, S.M. (1991). Approximate entropy as a measure of system complexity. Proceedings of 1019 

the National Academy of Sciences, 88, 2297-2301. 1020 



 1021 

Poole, D.C., Burnley, M., Vanhatalo, A., Rossiter, H.B. and Jones, A.M. (2016). Critical 1022 

power: an important fatigue threshold in exercise physiology. Medicine & Science in Sports & 1023 

Exercise, 48, 2320-2334. 1024 

 1025 

Potvin, J.R. and Brown, S.H.M. (2004). Less is more: high pass filtering, to remove up to 99% 1026 

of the surface EMG power, improves EMG-based biceps brachii force estimates. Journal of 1027 

Electromyography & Kinesiology, 14, 389-399. 1028 

 1029 

Richman, J.S. and Moorman, J.R. (2000). Physiological time-series analysis using approximate 1030 

entropy and sample entropy. American Journal of Physiology, 278, H2039-H2049. 1031 

 1032 

Rose, M.H., Løkkegaard, A., Sonne-Holm, S. and Jensen, B.R. (2013). Tremor irregularity, 1033 

torque steadiness and rate of force development in Parkinson’s disease. Motor Control, 17, 1034 

203-216. 1035 

 1036 

Seely, A.J. and Macklem, P.T. (2004). Complex systems and the technology of variability 1037 

analysis. Critical Care, 8, R367. 1038 

 1039 

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical 1040 

Journal, 27, 379-423. 1041 

 1042 

Slifkin, A.B. and Newell, K.M. (1998). Is variability in human performance a reflection of 1043 

system noise? Current Directions in Psychological Science, 7, 170-177. 1044 

 1045 



Slifkin, A.B. and Newell, K.M. (1999). Noise, information transmission, and force variability. 1046 

Journal of Experimental Psychology, 25, 837-851. 1047 

 1048 

Sosnoff, J.J. and Newell, K.M. (2006a). Aging, visual intermittency, and variability in 1049 

isometric force output. Journal of Gerontology, 61, 117-124. 1050 

 1051 

Sosnoff, J.J. and Newell, K.M. (2006b). Are age-related increases in force variability due to 1052 

decrements in strength? Experimental Brain Research, 171, 86. 1053 

 1054 

Sosnoff, J.J. and Newell, K.M. (2008). Age-related loss of adaptability to fast time scales in 1055 

motor variability. Journal of Gerontology, 63, 344-352. 1056 

 1057 

Stergiou, N. and Decker, L.M. (2011). Human movement variability, nonlinear dynamics and 1058 

pathology: is there a connection? Human Movement Science, 30, 869-888. 1059 

 1060 

Sturman, M.E., Vaillancourt, D.E. and Corcos, D.M. (2005). Effects of aging on the regularity 1061 

of physiological tremor. Journal of Neurophysiology, 93, 3064-3074. 1062 

 1063 

Suda, E.Y., Madeleine, P., Hirata, R.P., Samani, A., Kawamura, T.T. and Sacco, I.C. (2017). 1064 

Reduced complexity of force and muscle activity during low level isometric contractions of 1065 

the ankle in diabetic individuals. Clinical Biomechanics, 42, 38-46. 1066 

 1067 

Svendsen, J.H. and Madeleine, P. (2010). Amount and structure of force variability during 1068 

short, ramp and sustained contractions in males and females. Human Movement Science, 29, 1069 

35-47.  1070 



 1071 

Taylor, A.M., Christou, E.A. and Enoka, R.M. (2003). Multiple features of motor-unit activity 1072 

influence force fluctuations during isometric contractions. Journal of Neurophysiology, 90, 1073 

1350-1361. 1074 

 1075 

Vaillancourt, D.E., Larsson, L. and Newell, K.M. (2002). Time-dependent structure in the 1076 

discharge rate of human motor units. Clinical Neurophysiology, 113, 1325-1338. 1077 

 1078 

Vaillancourt, D.E. and Newell, K.M. (2000). The dynamics of resting and postural tremor in 1079 

Parkinson’s disease. Clinical Neurophysiology, 111, 2046-2056. 1080 

 1081 

Vaillancourt, D.E. and Newell, K.M. (2003). Aging and the time and frequency structure of 1082 

force output variability. Journal of Applied Physiology, 94, 903-912. 1083 

 1084 

Vaillancourt, D.E., Slifkin, A.B. and Newell, K.M, (2001). Regularity of force tremor in 1085 

Parkinson’s disease. Clinical Neurophysiology, 112, 1594-1603. 1086 

 1087 

Vaillancourt, D.E., Sosnoff, J.J. and Newell, K.M. (2004). Age-related changes in complexity 1088 

depend on task dynamics. Journal of Applied Physiology, 97, 454-455. 1089 

 1090 

Yao, W., Fuglevand, R.J. and Enoka, R.M. (2000). Motor-unit synchronization increases EMG 1091 

amplitude and decreases force steadiness of simulated contractions. Journal of 1092 

Neurophysiology, 83, 441-452. 1093 

 1094 



Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D. and Stergiou, N. (2013). The 1095 

appropriate use of approximate entropy and sample entropy with short data sets. Annals of 1096 

Biomedical Engineering, 41, 349-365. 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 



Declarations 1120 

 1121 

Funding: This work was supported by a Research Project Grant from the Leverhulme Trust 1122 

(RPG-2016-440). 1123 

Conflicts of interest/competing interests: None. 1124 

Authors’ contributions: All authors were involved in the conception of the review and 1125 

contributed to the writing and critical revision of the manuscript. 1126 

 1127 

 1128 

 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 



Figure legends 1145 

 1146 

Figure 1. Torque time series from the beginning (top panel) and end (bottom panel) of  a 1147 

time to task failure test in a young participant. Note the substantial loss of complexity 1148 

(shown by the decrease in ApEn and the increase in DFA α) despite unchanged mean and SD 1149 

torque. Such changes in complexity in the absence of a change in variability indicates that 1150 

complexity measures may be more sensitive to subtle changes than classical time-series 1151 

measures. 1152 

 1153 

Figure 2. Representative knee-extensor torque time series during intermittent isometric 1154 

contractions at a target of 40% MVC. Each panel shows the same contraction with 1155 

decreasing time and torque scales. Panel A shows a series of five contractions. Panel B zooms 1156 

in to focus on the second of the five contractions. Panel C zooms further in to focus on just the 1157 

fluctuations around the target torque in the that contraction. Notice the fluctuations evident in 1158 

the time-series in spite of the participant attempting to maintain a constant torque output and 1159 

the self-similarity of these fluctuations are the time and torque scales are changed.. In panel C, 1160 

the fluctuations can clearly be seen to vary in amplitude and frequency (i.e. they contain a 1161 

complex temporal structure). Complexity metrics (e.g. ApEn, SampEn, DFA α) are used to 1162 

characterise the structure in such time-series. 1163 

 1164 

Figure 3. Key findings from experimental studies on the effect of neuromuscular fatigue 1165 

on the complexity of knee extensor torque output. Panel A shows the influence of exercise 1166 

intensity on the time course of torque complexity (Pethick et al., 2016). In this study, a fatigue-1167 

induced loss of complexity was only observed during contractions above the critical torque, 1168 

suggesting that peripheral fatigue is a prerequisite for such losses. In Panel B, long-lasting 1169 



peripheral derangements wrought by eccentric contractions depressed torque complexity for 1170 

more than 60 min, whereas complexity following isometric contractions recovered within 10 1171 

min of task failure (TF; Pethick et al., 2019b). Panel C shows the influence of caffeine 1172 

administration on the progressive loss of torque complexity (Pethick et al., 2018b). In this 1173 

study, both voluntary activation and torque complexity were elevated at TF with caffeine 1174 

ingestion compared to placebo, suggesting a small but significant role for central processes in 1175 

the loss of complexity with neuromuscular fatigue. Finally, in Panel D, ischaemic 1176 

preconditioning resulted in a blunting of the rate of loss of torque complexity with fatigue 1177 

(Pethick et al., 2021). Collectively, these results suggest that the fatigue-induced loss of torque 1178 

complexity is a response that is peculiar to exercise performed in the severe-intensity domain 1179 

(above CT), but that both central and peripheral factors contribute to such losses. 1180 
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Measure What does it 
quantify? 

Calculation requirements Output Interpretation Advantages Limitations 

Standard 
deviation 
(SD) 

Absolute 
amount of 
variability in 
a time-series 

Time series of x data points Value expressed in unit 
of measurement of time-
series (e.g. N.m when 
applied to torque) 

Greater values are 
indicative of decreased 
force steadiness 

Easy to 
calculate; 
proven 
clinically 
useful 

Fails to 
discriminate 
time-series with 
distinctly 
different 
dynamics 

Coefficient 
of variation 
(CV) 

Amount of 
variability in 
a time-series 
normalised to 
the mean 

Standard deviation and mean of a 
time-series 

Value expressed as a 
percentage 

Greater values are 
indicative of decreased 
force steadiness 

Easy to 
calculate; 
proven 
clinically 
useful 

Fails to 
discriminate 
time-series with 
distinctly 
different 
dynamics 

Approximate 
entropy 
(ApEn) 

Randomness/ 
regularity of 
a time-series 

The number of data points in a 
time-series (N), the length of 
the template to be compared 
(m) and the tolerance for 
accepting matching templates 
(r), typically set to between 10 
and 25% of the standard 
deviation 
 

Value expressed in 
arbitrary units, ranging 
from 0 to 2 

Low values are 
indicative of 
regular/periodic time-
series; high values are 
indicative of 
irregular/random time-
series 

Characterises 
temporal 
structure (i.e. 
dynamics) of 
time-series 

Dependent on 
number of data 
points in time-
series (N); counts 
self-matches; 
evaluates 
regularity on only 
one time scale; 
needs to be 
complemented by 
other measures 

Sample 
entropy 
(SampEn) 

Randomness/ 
regularity of 
a time-series 

The number of data points in a 
time-series (N), the length of 
the template to be compared 
(m) and the tolerance for 
accepting matching templates 
(r), typically set to between 10 
and 25% of the standard 
deviation 
 

Value expressed in 
arbitrary units, ranging 
from 0 to 2 

Low values are 
indicative of 
regular/periodic time-
series; high values are 
indicative of 
irregular/random time-
series 

Characterises 
temporal 
structure (i.e. 
dynamics) of 
time-series; 
greater relative 
consistency 
than ApEn 

Evaluates 
regularity on only 
one time scale; 
needs to be 
complemented by 
other measures 



Multiscale 
entropy 
(MSE) 

Randomness/ 
regularity of 
a time-series 

The original time-series is coarse 
grained to derive multiple 
signals; the sample entropy of 
each coarse grained signal is then 
analysed  
 

  

Sample entropy of each 
course-grained time-
series plotted; area under 
curve is complexity 
index  

Low values over a 
large range of time 
scales are indicative of 
regular/periodic 
outputs; high values 
over a large range of 
time scales are 
indicative of 
irregular/random time-
series 

Characterises 
temporal 
structure (i.e. 
dynamics) of 
time-series; 
evaluates 
regularity on 
multiple time 
scales 

Limited 
application to 
force and EMG 
time-series 

Detrended 
fluctuation 
analysis 
(DFA) 

Long-range 
fractal 
correlations 
and noise 
colour in a 
time-series 

The time-series is integrated  
then detrended; detrended 
series separated into boxes of 
equal length n; regression 
analysis at different box sizes; 
calculation of α exponent 
achieved by linear regression 
of all previous results (i.e. 
repeated over all time scales)  

 
 

α scaling exponent, 
ranging from ~0.5 to 
~1.5 

α = 0.5 is indicative of 
white noise (values are  
random and 
independent), α = 1.0 
is indicative of pink 
noise (statistically 
self-similar 
fluctuations, long-
range correlations), α 
= 1.5 is indicative of 
Brownian noise (long-
term memory) 

 

Identifies 
intrinsic 
variation; 
evaluates 
across time 
scales 

Requires large 
data sets 
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