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Abstract
Online federated learning (OFL) and online transfer learning (OTL) are two collaborative paradigms for overcoming modern
machine learning challenges such as data silos, streaming data, and data security. This survey explores OFL and OTL
throughout their major evolutionary routes to enhance understanding of online federated and transfer learning. Practical
aspects of popular datasets and cutting-edge applications for online federated and transfer learning are also highlighted in
this work. Furthermore, this survey provides insight into potential future research areas and aims to serve as a resource for
professionals developing online federated and transfer learning frameworks.

Keywords Online transfer learning · Online federated learning · Online learning · Federated transfer learning ·
Privacy-preserving

1 Introduction

Recent advancements in machine learning have propelled
the broad utilization of smart technologies, particularly
the Internet of Things (IoT). Worldwide, IoT devices are
expected to nearly triple from 8.74 billion in 2020 to over
25 billion in 2030 [1]. On the one hand, massive data
collected from IoT devices are critical for constructing
robust machine learning models, and these have promoted
the growth of innovations in the era of big data. Moreover,
real-world machine learning advances rely on the availability
of huge amounts of well-labelled data, such as ImgNet [2]
and Alpha Zero [3]. On the other hand, big data, which are
characterized by high volume, high velocity, and high diversity
[4], cannot be utilized directly as high-quality ready inputs,
posing significant challenges to the development of data-
driven real-world machine learning systems.

In the era of big data, the challenges of developing data-
driven machine learning systems differ radically from those
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of classic theoretical frameworks, owing to the inherent
characteristics of big data and the restrictions imposed
by data regulations and laws, such as the new General
Data Protection Regulation (GDPR) [5]. These distinctions
have important effects on the assumptions and performance
indicators of data-driven machine learning systems and
may stimulate the development of more innovative and
practical machine learning algorithms. We begin this review
by identifying the modern challenges in real-world machine
learning and then present an overview of our survey. Finally,
we consider how our survey contributes to the related fields.

1.1 Modern challenges in real-world machine
learning

Machine learning has been widely applied to various real-
world applications with satisfactory results. This survey
identifies significant modern challenges in the era of big
data and discusses their impact on developing real-world
machine learning models at both the data and model levels,
since a good machine learning model requires plentiful
training data and a well-designed model.

From the data standpoint, high-quality datasets can
provide more comprehensive information essential for
building an effective machine learning model. However,
in real-world machine learning applications, data may
not be stored in a centralized location, and may exhibit
statistical disparities [6] referred to as data silos. Medical
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records, for example, are private and are stored in
isolated medical facilities; some facilities may only contain
unlabelled data, whereas others may only hold a few
labelled records. Moreover, data labeling is prohibitively
expensive, particularly in fields requiring human skill and
domain expertise, such as the medical sector. Therefore,
the lack of labelled data is another obstacle for the
development of real-world machine learning since the
model performance is highly dependent on labelled data [2].
Also, data collection has become increasingly challenging
from a legislative standpoint, which is referred to as data
governance. For example, the GDPR [5] contains several
provisions that protect user privacy and restrict companies
from transferring data without explicit user consent.
Moreover, the real-time data collected by IoTs enable more
effective resource allocation and pose additional challenges
to conventional offline machine learning frameworks
that rely on pre-given training data. For instance, real-
time traffic data on road conditions are collected and
analysed to improve traffic management in smart cities,
which necessitates a dynamic machine learning framework
capable of handling streaming training samples [7].

From the model perspective, a well-designed model
can make effective inferences and meet the needs of
various tasks. However, the non-independent and identical
distribution (non-IID) of data in the real world complicates
the training of a single model that can be applied to
all tasks. For instance, when the next-word prediction
task is applied to a certain phrase, it should suggest a
response tailored to each local user. Local users label the
same data differently, necessitating the development of
customized models [8]. As a result, model personalization
is increasingly popular to meet the diverse needs of various
users. Another current challenge in real-world machine
learning is rapidly inferring a high-performance model
for new users and effectively updating existing models,
i.e. constructing models effectively. For instance, in a
distributed system, conventional machine learning models
that are based on a pre-given dataset must be retrained
every time a new user joins, wasting both bandwidth and
computing resources.

Various solutions have been proposed to address the
aforementioned challenges, including online transfer learn-
ing (OTL) [9, 10], and online federated learning (OFL) [11].
OTL and OFL extend the concept of transfer learning (TL)
[12] and federated learning (FL) [13] to the online con-
text, allowing these advanced methods to process online
big data efficiently. By leveraging knowledge from source
domains, OTL aims to develop an online model for the
target domain, addressing the challenges associated with
predicting sequentially arriving data in the target domain

due to a lack of well-labelled data. While OTL addresses
the problem of data labeling in the online context, it still
requires central access to data in both the source and target
domains, which may violate data privacy and security stan-
dards in the era of big data. On the other hand, OFL focuses
on training a central model using real-time data generated
by multiple distributed local devices without violating data
privacy regulations. During each training round, only the
updated parameters of each local model are transmitted to
the central model, ensuring performance of the centra model
while maintaining data privacy.

1.2 Literature retrieval strategy and results

The selection of highly related sources and publications
was based on standard criteria and protocols. The following
three search engines and databases were chosen: (1)
ScienceDirect (2) the Institute of Electronics Engineers
(IEEE), and (3) Google Scholar. The literature searched
ranges from work was conducted between January 2010
(OTL was first proposed in 2010 [9]) through to November
2021.

We selected the key phrases “online transfer learning”
and “online federated learning” as our key phrases and
included the synonyms as supplementary terms to expand
our search results. As a result, the following key search
strings are used for OTL during the literature retrieval stage:

• Online/dynamic/adaptive transfer learning
• Online/dynamic/adaptive transformation learning

and the following key search strings are used for OFL during
the literature retrieval stage:

• Online/dynamic/adaptive federated learning
• Online/dynamic/adaptive federated machine learning

The keywords in each key search string utilize the Boolean
operator ‘AND’; each key search string is connected with
the Boolean operator ‘OR’. After excluding studies with
incomplete titles and abstract information, 35 papers were
included in this review. The obtained results consist of
20 OTL studies and 15 OFL papers. Figure 1(a) and (b)
show the total retrieved articles and journals published from
January 2010 to date (November 2021), along with their
linear growth trends for OTL and OFL, respectively.

In summary, the development of OTL can be divided into
two distinct phases based on the linear growth trend of the
total papers obtained: the initial stage from 2010 to 2016,
and the developing stage from 2017 to the present. While
the field of OFL is still in its infancy, the lack of journal
publications indicates that there is still a lot of potential for
OFL research.
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Fig. 1 Statistical results of the obtained papers

1.3 Overview of this survey

The purpose of this paper is to provide a detailed survey of
various methods for addressing modern machine learning
challenges, focusing on OFL and OTL.

Figure 2 illustrates the print of this survey. The green
areas are our main emphasis, whereas existing surveys only
concentrate on the yellow areas. The red section is one of the
critical future paths we suggested for further investigation.
We consider federated and transfer learning in online
scenarios: OTL is not studied by traditional learning types
of TL [12, 14], i.e. transductive, inductive, and unsupervised
TL. Instead, we discuss OTL from two viewpoints: domain-
based OTL and task-based OTL. Furthermore, we review
OFL from three aspects: statistical heterogeneity, system
heterogeneity, and privacy guarantees, highlighting the most
significant challenges. The main contributions of our work
are summarized as follows:

• To the best of our knowledge, this is the first survey
to present recent advances in OTL and OFL studies,
and to identify potential future research directions.
It aims to serve as a resource for researchers and
practitioners developing online federated and transfer
learning frameworks.

• We provide definitions of OTL and OFL, as well as new
viewpoints on them. Additionally, we describe recent
advances in online federated and transfer learning, and
highlight the connections between different methods.

• We summarize popular datasets and cutting-edge
applications of OTL and OFL, discuss practical
considerations and provide insights into potential future
research directions.

The remainder of this survey is structured as follows.
Section 2 reviews and reports on related works, which
provides the necessary background on OTL and OFL. Then,
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recent advances in OTL and OFL are reviewed in Sections 3
and 4, respectively. Practical considerations in datasets and
applications of OTL and OFL are summarized and presented
in Section 5. In Section 6, we conclude this survey and
discuss future research directions.

2 Related work

In this section, we review related work on OTL and OFL,
including TL, FL, FTL, and OL. Moreover, we summarize
the implementation scenarios of these methods and identify
the existing challenges.

2.1 Transfer learning

Most of the traditional machine learning algorithms assume
that the training and test data have similar distributions
and feature spaces. However, this assumption does not
hold in the majority of real-world scenarios. Furthermore,
traditional machine learning has been hampered by a
lack of adequately labelled training data and mismatched
computing capability. TL [12] was proposed to address
these challenges by leveraging knowledge from a single or
multiple source domains to enhance a training task in the
target domain (Fig. 3). The knowledge transferred could
be instances from source domains [15], shared features
from source domains and the target domain [16, 17],
parameters from the trained learners of source domains [18],
or relations between source domains and the target domain
[19].

According to different implementation scenarios, TL can
be categorized as single source TL and multiple sources
TL. Single source TL refers to transferring knowledge
from a single source domain [20] whereas the multiple

sources TL utilizes several source domains to transfer the
knowledge [21, 22]. Moreover, different TL techniques have
been proposed to handle similar or different data structures
between the source and target domains, i.e. homogeneous
and heterogeneous TL [23, 24].

According to different label settings, a variety of TL
methods have been proposed and can be classified into
three major categories, i.e. transductive, inductive, and
unsupervised TL [12].

Inductive TL is used when the target domain has well-
labelled data, and there are different tasks in the source
and target domains. TrAdaBoost [25] is a well-known
inductive TL technique that extracts valuable information
from the source domain by re-weighting predicted instances
in both the source and target domains. However, this method
only utilized a single source domain, and the extracted
information may not be sufficient for the training task in the
target domain. To address this challenge, [26, 27] combined
the transfer task with multiple source domains, which
enhanced the training performance of the target model.
Moreover, unlike [25], which retained only one base learner
and discarded the rest, [28] assumed that all base learners
are useful, based on the theory that older learners can
represent the major distributions of instances, while newer
learners can provide accurate information about subsequent
iterations.

Transductive TL is used when the source domain data
is labelled, but the target domain data is unlabelled,
and both the source and target domains have the same
task. Domain adaptation is the most well-known subfield
of transductive TL [29], which aims to minimize the
marginal distribution gap between the source and the target
domains. Xia et al. [30] proposed a method for selecting
and weighting instances based on PU learning to identify
examples from the source domain that are most likely
to improve the training task. However, this method was
limited by the difficulty of dealing with high-dimensional
distributions. A solution was provided by [15], using the
logistic approximation to adapt the high-dimensional data
from the source domain to the target domain.

Instances/Features
/Parameters/Relations

Source
Domain(s)

Source Task(s)

Learner(s) Knowledge Learner

Target Task

Target
Domain

Fig. 3 Transfer learning process
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In real-world situations, both the source and target
domains may lack sufficient well-labelled data, which
cannot be addressed by the TL techniques discussed so far.
As a solution, unsupervised TL was introduced. Wang et al.
[31] proposed transferred discriminative analysis (TDA), a
method for generating class labels for unlabelled target data
by leveraging knowledge from the source domain. Although
unsupervised learning is a more practical solution in TL, it
has received little attention from researchers over the last
decade.

2.2 Federated learning

IoTs, such as smart healthcare devices and smart meters,
continuously collect vast amount of data. Models trained
from the aggregated data of these applications enable
efficient management of smart city applications, however
the process is complicated by a variety of legal constraints.
In this context, FL has been proposed for training a global
model from data distributed across multiple devices with
only intermediate updates periodically being sent to a
central server [13]. A typical FL paradigm is illustrated
in Fig. 4, in which the central server distributes the initial
model parameters to all local clients. Each client then trains
the local model and uploads the updated parameters to the
central server. After this, the global model will be updated
and rebroadcast to local clients. The above processes are
repeated continuously to ensure that the global model is
updated and optimized across all local clients.

FL can be categorized into horizontal FL, vertical FL, and
FTL, depending on how data are distributed among different
devices in the sample and the feature space. Moreover, since
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Local Database
B1

L2 G Ln G

Aggregation

Local Model 
Ln

Local Database
B2

Local Database
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Fig. 4 Federated learning process

FTL is known as a novel combination of TL and FL, we will
discuss this technique in more detail in chapter (2.3).

Horizontal federated learning (HFL) (Fig. 4) refers to the
situation in which data from distributed devices share the
same feature space but differ in samples. Google pioneered
HFL by utilising data distributed across many local Android
devices to forecast text input without violating privacy
regulations [32]. Abad et al. [33] then developed a
hierarchical heterogeneous HFL architecture for extending
HFL to heterogeneous environments, thus optimizing the
communication efficiency in local source devices with
heterogeneous networks. Additionally, [34] designed a
secure aggregation scheme based on [32] to further enhance
the privacy of aggregated intermediate updates. Further
research [35, 36] has been proposed to address the high cost
of communication in the HFL framework.

Vertical federated learning (VFL) was proposed on the
premise that heterogeneous data from various devices share
common sample IDs but have distinct feature spaces, and
thus VFL focuses on the correlation between devices from
different sectors. In a typical VFL process, data with
common sample IDs are retrieved and used to train a
machine learning model (Fig. 5). VFL is more difficult
to implement than HFL since it requires encrypted user-
ID alignment algorithms [37] for common entities [13]
and the authentication of a fully trusted third-party. To
overcome these obstacles, [38] developed a framework that
eliminates the need for a third-party coordinator, and this
framework has proven to be efficient and scalable. Although
VFL is capable of handling heterogeneous domains, the
majority of VFL techniques rely on statistical models such
as logistic regression rather than sophisticated machine
learning frameworks, indicating that this field still demands
enormous effort.

Apart from data distribution, FL can be categorized in a
variety of ways. Based on the network topology, FL can be
classified into centralized FL and peer-to-peer (P2P) FL [39,
40]. Centralized FL generally relies on a central server to
aggregate and broadcast the updated parameters. In contrast
to centralized FL, P2P FL does not rely on the central server
for local model updates but instead exchanges parameters
directly between neighbours. Based on data availability, FL
can be classified into cross-silo FL and cross-device FL
[41]. The cross-silo FL is suitable for scenarios involving
a small number of local clients, in which siloed data
are sourced from geo-distributed data centres (e.g. local
banks or medical centres) instead of a large number of
distributed edge nodes (e.g. smartphones or laptops). This
is because almost every local client within the cross-silo FL
is considered indexed and available for constant updating at
any time. On the other hand, cross-device FL is used when
there are a large number of participants and the local clients
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are not always available. To compensate for the unreliability
of local clients, the cross-device FL often employs resource
allocation techniques [42] and incentive mechanisms [43] to
improve the overall performance of the FL framework.

2.3 Federated transfer learning

Distinguished from HFL and VFL, FTL [44] refers to
situations where data across multiple devices differ in terms
of both feature spaces and sample IDs and is regarded as a
significant extension of traditional FL frameworks [13]. By
enabling users to leverage large datasets with well-trained
machine learning model parameters, FTL goes beyond
simply allowing users to exploit only matching data (i.e.
data with overlapped feature spaces or sample IDs) [45],
and Fig. 6 depicts the general process of FTL. The use of
TL in FL systems addresses the lack of well-labelled data in
the source devices and enables various sectors to train more
personalized local models in a secure and private manner.
It is worth pointing out that while TL and FL are natural
complements, there has been relatively little attention paid
to the FTL framework.

Similar to conventional FL methods, the major impedi-
ment to FTL development is training data in heterogeneous
settings, which is further complicated by the restrictive
assumptions of FTL application scenarios. Gao et al. [46]
developed a heterogeneous FTL framework to address the
feature heterogeneity by mapping the feature spaces of com-
mon features to those of uncommon features. Moreover,
to enable FTL in heterogeneous intelligent manufacturing
applications, [47] utilized pre-built models from a vari-
ety of smart environments as the central source domain,
and the central server then would select the best model
to broadcast based on the similarity between the central
source models and the local target models. Accordingly,

each heterogeneous local device will conduct TL to acquire
application-specific models. Furthermore, communication
efficiency is another concern in FTL. In [48], secret sharing
(SS) was adopted to improve the communication efficiency
and to increase the privacy level of FTL.
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FTL has received growing interests in real-world appli-
cations, such as smart healthcare [49], traffic monitoring
[50], smart energy [51], and image analysis [52]. The major-
ity of current FTL systems are based on deep learning
architectures [47, 49, 51, 52] that usually freeze the base
layers of the global model and retrain the fully-connected
layer on local devices. Chen et al. [49] performed human
activity recognition via FTL, which replaced one of the
fully-connected layers with a correlation alignment layer to
facilitate domain adaptation. FTL with deep learning archi-
tectures is efficient due to the highly transferable features
in the low-level layers and the ability to capture specific
features in the high-level layers of the deep network [53].

2.4 Online learning

OL is a machine learning paradigm for real-time data that
uses feedback from sequence data to learn and update
the best predictor for future data. In comparison to the
optimal model in foresight, the primary goal of OL is to
minimize cumulative error across the whole data sequence
[54]. Compared to conventional batch learning algorithms,
which require pre-given training data, OL is generally more
effective and scalable when dealing with large-scale real-
world machine learning problems involving data of varying
quantity and velocity.

OL has been extensively investigated for many years [55,
56]. There are two fundamental types of OL algorithms:
first-order OL and second-order OL. Hoi et al. [56]. The
Perceptron [57, 58] is one of the earliest first-order OL
algorithms, relying on gradient feedback to update a linear
classifier whenever a new sample is misclassified. Passive-
Aggressive (PA) [59] was introduced as a family of first-
order OL algorithms based on margin-based learning. It
updates the model when the classification confidence of a
new sample falls below a predefined threshold. Moreover,
online gradient descent [60–62] was proposed to model the
OL as an online convex optimization problem.

The misclassified instances are retained as support
vectors (SVs) in standard OL algorithms (e.g. Perceptron
and PA). Despite their solid theoretical guarantees and
efficient functioning, a fundamental issue is that the
increasing number of SVs over time may result in
an increased computational overhead. To overcome this
challenge, [63] discarded the oldest SVs assuming that they
were less representative of the data streams. Additionally,
[64] presented bounded online gradient descent (BOGD) to
constrain the amount of SVs that fall below a threshold.

Unlike first-order OL algorithms, which maximize
convergence by utilizing only the first-order derivative
information of the gradient, second-order OL algorithms
maximize convergence by utilizing both the first-order
and second-order information. The second-order Perceptron

algorithm [65] was designed to examine the geometric
properties of data. In order to capture second-order
information about the confidence level of the features, the
confidence weighted (CW) algorithm [66] was developed
to manage the updating of the classifier. Furthermore, the
second-order OL requires exponential space and time for
updates, and the sketched online Newton (SON) [67] was
introduced to address this issue. The SON is an enhanced
version of the online Newton step with a linear running
time in dimension and sketch size, allowing for dramatic
improvements in second-order learning efficiency.

2.5 Frontier implementation scenarios
and inter-connections of TL, FL, FTL, and OL

TL, FL, FTL, and OL are all innovative approaches built
on standard machine learning techniques to address modern
challenges in real-world applications. In this subsection, we
will outline their implementation scenarios to investigate
the underlying relationship between them and discuss the
existing challenges. By doing this we hope to highlight
the significance of our survey. Table 1 compares the
implementation scenarios of traditional machine learning,
TL, FL, FTL, and OL, which can be used as a guide to assist
professionals in selecting the most appropriate method to
apply to specific real-world problems.

Traditional machine learning relies on a massive amount
of well-labelled centralized data and assumes that all data
collected are homogeneous [29]. However, many real-world
scenarios require a more scalable, private, and dynamic
machine learning framework that can manage real-time
data from a variety of IoT devices. TL, FL, and OL were
therefore proposed as solutions to these modern challenges.

Although TL is rarely studied as a mechanism for knowl-
edge transmission in a decentralized environment, when
combined with FL, i.e. FTL, it is capable of transmitting
knowledge across distributed devices. Additionally, TL in
non-federated contexts typically involves instance transmis-
sion [15, 27, 68], posing a risk of privacy leakage. FL,
on the other hand, preserves privacy [69, 70] by sharing
local model update parameters instead of raw instances from
local clients [71]. TL enhances target model performance
by providing learners in target domains with a baseline per-
formance rather than starting from scratch, thereby reducing
computational overhead [72]. On the other hand, standard
FL involves tens of millions or even billions of local devices
[73], and all of these devices must meet eligibility computa-
tion power to participate in training, which is not practical,
as demonstrated in [74]. As a result, it is logical to apply
TL to this framework in order to enable FL with clients who
have limited processing capabilities.

Real-world applications necessitate machine learning
models to be resilient to heterogeneous data [41]. One of the
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Table 1 Frontier implementation scenarios of different techniques

most challenging topics of heterogeneous scenarios is cross-
modality [29], as it refers to situations in which the feature
and/or label spaces of the source and target domains are
completely different, which is one of the primary reasons
for data heterogeneity in most real-world machine learning
applications. The key idea in addressing this problem is to
identify feature mapping functions that project the source
and target feature spaces to a common latent space via
matrix factorization [75] using labelled source data or co-
occurrence data [76]. TL for cross-modality commonly
transfers knowledge from easily labelled source domains
to an expensively labelled target domain. An example is
the well-known text-to-image TL [77], which leverages
the semantic meaning of labelled text to improve model
classification performance on sparsely annotated image
data. Besides, VFL and FTL are also applicable to cross-
modality scenarios. However, the former can only be used
if certain conditions are met, i.e. having a large number
of sample IDs that overlap between the source and target
domains [13]. Additionally, while TL and FTL seek to
leverage knowledge from source domains in enhancing the
target model performance, the ultimate goal of VFL is to
assist all source and target parties in developing a ‘common
wealth’ strategy [13]. As shown in the table, TL, FL, and
FTL can all be used in cross-modality scenarios, which
explains why all of these strategies can help overcome
challenges associated with the lack of well-labelled data.

Aside from cross-modality heterogeneity, FL is well-
suited for cross-model and cross-system scenarios due
to its decentralized nature. In cross-model scenarios,
which are also prevalent in fundamental machine learning
applications, the structure of the locally trained models
varies due to the diverse patterns of data usage by local
clients [78]. FL prefers to use the global model with a
predefined model paradigm as the referencing information
in a cross-model scenario, and clients can update their local
models based on different structures [79, 80]. Ensemble
strategies are frequently used to enable TL in cross-model
scenarios, which combines multiple learners from different
source domains or learning algorithms with a weight
assignment strategy to maximize the utility of candidate

learners that have better performance in the target domain
[27]. Furthermore, most TL paradigms require all learners
to be trained in a centralized and consistent environment
whereas real-world situations are more complicated. On
the other hand, FL is applicable in situations where there
is system heterogeneity due to differences in storage,
computing, and battery capacities between individual client
devices. Xie et al. [81] developed an asynchronous FL
framework (FedAsync) for adaptively updating the weights
of local models in response to stale information, thereby
enhancing FL in a more effective, flexible, and scalable
manner.

Moreover, TL can personalize models in non-federated
environments by leveraging data from source tasks to
improve performance in a related target domain. However,
when TL is applied to domains that are extremely unrelated,
the model performance of the target domain could be worse
than that of the source domain without transferring the
source data, which is known as negative transfer [82].
Similar to this concept, when local clients come from highly
unrelated domains or system settings, training local models
in FL for these clients using a consistent scheme may
reduce the ability of each local model to depict unique client
characteristics [83], resulting in a worse aggregated model
than local models trained exclusively on their own datasets,
which can be recognized as a drift problem [84]. One of the
most widely used strategies for mitigating negative transfer
is to use effective selection mechanisms to determine the
relatedness (also known as transferability [85]) between the
source and target domains prior to the transfer [25, 77]. On
the other hand, the drift problem is more complicated and
can be approached differently. Rather than avoiding it, the
majority of researchers have turned this into a feature [41]
by applying various techniques such as multi-task learning
to the FL framework [86–88]: they create personalized
or device-specific local models [71] for clients that are
intended to behave better than the aggregated global model.

In the new era of big data, a prominent application
scenarios is modelling real-time data, which typically
become obsolete within hours or even minutes [89], such
as recommendation systems for business websites [90] and
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real-time non-intrusive load monitoring systems for elderly
living alone [91]. Additionally, there is a cold start [71]
problem in real-world machine learning applications, which
refers to new clients or datasets incoming into the system
from the source domain. Existing TL and FL methods
are generally based on pre-given datasets, which wastes
bandwidth and computational resources due to the need
to retrain the framework to achieve optimal results in the
scenarios above [92]. Thus, it is vital to incorporate TL and
FL into the OL paradigm to overcome these constraints.
However, as this field is still in its infancy, few solutions
have been proposed in recent years, and no prior research
has summarized the research area comprehensively. To
fill this review gap, following the understanding of the
relationship between related techniques, the following
sections will provide detailed descriptions and summaries
of current OTL and OFL studies for further consideration.

3 Online transfer learning

OTL enables the standard TL paradigms to transfer
knowledge from source domains, thereby enhancing the
online learning task on the target domain [9, 10].

It is worth noting that the organization of OTL in
this survey differs from the aforementioned traditional TL
categories, as OTL is a developing field with research
focusing on a more fundamental and specific perspective.
The following sections provide an interpretation of OTL
approaches from a domain-task perspective. In general,
domain-based interpretation is based on different settings
within the source domain, including single source (SS) OTL
and multiple sources (MS) OTL. On the other hand, the task-
based interpretation is based on different task types within
the target domain, including binary classification (BC)
OTL and multi-class classification (MC) OTL. While the
majority of OTL research has concentrated on classification
tasks, similar techniques can be applied to other machine
learning tasks such as regression and clustering [10, 93, 94].

Figure 7 gives a relation map of OTL studies, which
includes all the obtained OTL papers in Section 1.2.
Specifically, the relation map consists of a root representing
the cornerstone literature [9, 10] in which the OTL was
first proposed, and four stems representing the four sub-
areas of OTL, namely, SS-BC, SS-MC, MS-SC, MS-BC,
with each stem node containing leaf nodes that represent
literature focused on various technical aspects of each
area. According to the relation map, most existing OTL

Fig. 7 Relation map for OTL.
SS: Single source; BC: Binary
classification; MS: Multiple
sources; MC: Multi-class
classification
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studies have focused on SS-BC, MS-BC and MS-MC
OTL, while studies for SS-MC OTL have been relatively
scarce. Figure 8 summarizes the evolution timeline of OTL
according to its sub-areas. The earliest research interests on
OTL focused on SS-BC, and then several studies on SS-MC
were proposed. After addressing the research difficulties
in the single source domain, researchers started examining
different approaches to OTL for utilizing information from
multiple sources, i.e. MS-SC and MS-MC.

3.1 Notations and problem definition

Table 2 summarizes the frequently used mathematical
notations in OTL, and we keep these notations consistent
and similar to the majority of existing works [9, 10, 97, 104,
106, 108, 110] to facilitate comparisons between different
OTL methods.

Given n source domains denoted by DS = {
DSi

}n

i=1,
where each source domain DSi contains nSi labelled
instances. The problem of OTL is formulated with single
source (SS) task when n = 1, and with multiple sources
(MS) task when n > 1. The source data space in the i-th
source domain is denoted by X Si × YSi , where the feature
space X Si = R

di . The target domain is denoted by DT , with
nT instances. Similarly, we denote by X T × YT the target
data space in the target domain, where the feature space
X T = R

dT . The problem of OTL is formulated with binary
classification (BC) task when k = 2, and with multi-class
classification (MC) task when k > 2. When X Si = X T

and YSi = YT , the problem is identified as homogeneous
OTL (HomOTL). On the other hand, if the source and target
domains have different feature spaces (X Si �= X T ) or
different label spaces (YSi �= YT ), the problem is referred
to as heterogeneous OTL (HetOTL) [9, 10, 111].

3.2 Single source-binary classification (SS-BC) OTL

SS-BC OTL was first proposed by [9, 10], which
was considered in both homogeneous and heterogeneous
scenarios (HomOTL and HetOTL). For HomOTL, as
illustrated in Fig. 9, they first constructed the source model
f S using the offline source data by support vector machine
(SVM) and utilized the Passive-Aggressive (PA) algorithm
to build model f T on the target domain. The PA formulated

Fig. 8 Evolution timeline of OTL. SS: Single source; BC: Binary
classification; MS: Multiple sources; MC: Multi-class classification

OL as a constrained convex optimization problem, and the
weight ω of the online model on the target domain at a new
time point t + 1 was updated by the solution:

ωt+1 = ωt + τtytxt (1)

where τt = min
{
C,

�((xt ,yt );ωt )‖xt‖
}2

, and C is a positive

regularization parameter. �(·) is the hinge loss, which can
be written as �((x, y); ω) = max

{
1 − y(ω�x), 0

}
. The

resulting algorithm is passive and no update is needed when
�(·) = 0. Otherwise, when �(·) is positive, the algorithm is
aggressive and the instance xt will be selected as a support
vector into the support vector set, which is then forced
to learn ωt+1. The PA standardized the trade-off between
progress achieved at each new time point and information
gathered in previous rounds [59].

After obtaining both the source and the target models,
[10] proposed a weight updating scheme to adjust the
weights μ of the source model and v of the target model,
respectively:
⎧
⎪⎪⎨

⎪⎪⎩

μt+1 = μt s(f
S(xt ),yt )

μt s(f S(xt ),yt )+vt s(f T (xt ),yt )

vt+1 = vt s(f
T (xt ),yt )

μt s(f S(xt ),yt )+vt s(f T (xt ),yt )

μ1 = v1 = 1
2

(2)

where μt+1 and vt+1 are the weights of the source and target
models, respectively, at time point t + 1. s(·) is a weight
decay function that increases the weights of models that
contribute significantly to the final forecast.

Unlike [10], which only used a single source classifier,
[98] proposed an AB-HomOTL inspired by the boosting
algorithm to learn multiple weak source classifiers. As
illustrated in Fig. 10, this paper focused on the learning
strategy of the source model f S in the homogeneous
scenario for SS-BC OTL.

Specifically, AB-HomOTL selected PA as the primary
learning algorithm for training m multiple weak source
classifiers in the AdaBoost algorithm at the first stage. In the
second stage, the source classifiers were integrated with the
model f T trained on the target domain. During this stage,
a weight was assigned to each combination model based on
its performance on the new instance (xt , yt ). Finally, the
ensemble models were integrated to produce the final robust
target classifier f t .

Rather than weighting classifiers dynamically according
to their forecast accuracy, [99] emphasized that data
in the real world are cost-sensitive and considered the
misclassification cost to present an OTL algorithm with
adaptive cost (OLAC). Specifically, they utilized the
proportion of minority and majority samples to calculate
the misclassification cost, enabling dynamic classifier
adjustment for different samples. OLAC has been proven
to be effective in improving the classification accuracy
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Table 2 Summary of
frequently used mathematical
notations in OTL

Notation Description

DSi the i-th source domain

nSi the number of instances in the i-th source domain

n, K the number of the source domains/classes

DS the set of the source domains DS = {
DSi

}n

i=1

XSi the feature space of the i-th source domain XSi = R
di

X T the feature space of the target domain X T = R
dT

YSi the label space of the i-th source domain YSi = {1, 2, . . . , k}
YT the label space of the target domain YT = {1, 2, . . . , k}
DT the set of target domain

nT the number of instances in DT

(
xt , yt

)
the t-th arrived instance in the target domain

f Si (·) the model learned from the i-th source domain

f T (·) the model learned from the target domain

f t (·) the target model

μt,i the weight of the i-th source classifier at time point t

vt,i the weight of the i-th target classifier at time point t

nc the number of the co-occurrence instances
(
x̃Si , x̃Ti

)
the i-th unlabelled co-occurrence data

of minority samples, thereby increasing the overall model
performance.

Zhao et al. [10] also considered the SS-BC OTL in the
heterogeneous environment (HetOTL), which assumed that
the feature spaces of the source domain are a subset of
those of the target domain. Given a newly arrived instance
(xt , yt ), HetOTL divided it into two instances (xt(1), yt )

and (xt(2), yt ) where xt(1) ∈ X S and xt(2) ∈ X T /X S .
Then, inspired by the multi-view approach, HetOTL trained

source domain learning

system

target domain learning

system

Update weights of models

Combine models based on

their weights

Fig. 9 SS-BC homogeneous OTL framework

and updated two classifiers f T (1) and f T (2) from two views
simultaneously using the co-regularization optimization:

(
f

T (1)
t+1 , f

T (2)
t+1

)
= arg min

f T (1),f T (2)

γ1

2

∥∥∥f T (1) − f
T (1)
t

∥∥∥
2

+γ2

2

∥∥∥f T (2) − f
T (2)
t

∥∥∥
2 + C�(f T (1), f T (2); t) (3)

where γ1, γ2 and C are predefined positive regularization
parameters, and �(·) is the loss function. During the
updating, the classifier f

T (1)
1 was initialized by the trained

source classifier f S , and classifier f
T (2)
1 was initialized to

0. This updating rule ensured that the two-view classifiers
did not deviate excessively from the previous updates (the
first two regularization terms) while maintaining prediction
performance (the last term).

Similar to [93, 98] proposed heterogeneous ensembled
OTL (HetEOTL) based on AdaBoost to improve the perfor-
mance of OTL models in the heterogeneous environment.
The comparative experiment demonstrated that employing
the ensemble strategy outperformed the previous HetOTL
framework in [10]. Chen et al. [93] improved the per-
formance of the OTL model, however it made the same
assumption as [10], i.e. the feature spaces in the source
domain are a subset of those in the target domain.

To relax the above assumption, studies based on co-
occurrence data have been proposed [95–97]. Given a
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Fig. 10 AB-HomOTL
framework

target domain learning

system
Stage 1

Stage 2

source domain learning

system

Update weights of models

and combine them

Combine ensemble models based on

their weights

source domain DS and a target domain DT , whose feature
spaces are totally diverse, i.e. X S ∩ X T = ∅. The
unlabelled co-occurrence data

{(
x̃Si , x̃Ti

)}nc

i=1 ∈ X S × X T

are collected from offline sources to bridge different feature
spaces, in which x̃Si ∈ X S and x̃Ti ∈ X T . For example,
the website Flickr1 contains a massive collection of images
with tags that can be used as co-occurrence data and are
significantly less expensive to collect than labelled images
(Fig. 11).

Yan et al. [96] proposed online heterogeneous trans-
fer learning by hedge ensemble (OHTHE), which utilized
co-occurrence data as auxiliary knowledge to build a corre-
spondence map between the source and target domains, as
illustrated in Fig. 12.

They first measured the heterogeneous similarity
between the newly arrived instance xt and the offline source
instance xs based on co-occurrence text-image data. The
source model was then built by adding the weights of the
k nearest neighbours of xt in the source domain. Mean-
while, the target model was trained by PA. Following that,
the OHTHE utilized the Hedge (β) strategy [113] to dynam-
ically update the weights μ and v:
⎧
⎪⎨

⎪⎩

μt+1 = μtβ
�(yt f

S(xt ))

vt+1 = vtβ
�(yt f

T (xt ))

μ1 + v1 = 1

(4)

where μ1 ∈ (0, 1) and v1 ∈ (0, 1) are the initial weights. β

is a weight decay factor that is used to identify models that
contribute more to the final prediction and whose magnitude
is determined by the loss function �(·).
1http://www.flickr.com

3.3 Multiple sources-binary classification (MS-BC)
OTL

In real-world applications, it is difficult to extract sufficient
knowledge from a single source domain, thus combining
data from multiple source domains increases the reliability
and robustness of source classifiers. However, combining all
source domains directly may produce unsatisfactory fore-
casts since different source domains include information
from different perspectives, and the data qualities within
each source domain vary as well. As a result, OTL algo-
rithms with multiple sources should be more sophisticated
in order to distinguish critical source domains and thus
construct a more robust source learner.

Wu et al. [105] trained a set of source classifiers using
the kernel SVM, and each classifier was weighted according
to its performance on the newly arrived instance of the
target domain. The weighted source classifiers were then
integrated to create an ensemble learner for the source
domain. Simultaneously, PA was used to train the target
classifier on the online data. The ensemble source and target
classifiers were then integrated to generate an effective
ensemble model in the second stage. The weight updating
rule at the next round t + 1 of the classifier from i-th
source domain, the ensemble source classifier, and the target
classifier can be described as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μi
t+1 = μi

tβ
(f Si (xt ),yt )

μt+1 = μtβ
(f S(xt ),yt )

vt+1 = vtβ
(f T (xt ),yt )

μi
1 = 1

2n

μ1 = v1 = 1
2

(5)

http://www.flickr.com
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annotation 0 

A girl wearing a red and multicolored bikini is laying 

on her back in shallow water.

annotation 1 

Girl wearing a bikini lying on her back in a shallow 

pool of clear blue water.

annotation 2 

A young girl is lying in the sand, while ocean water 

is surrounding her.

annotation 3 

A little girl in a red swimsuit is laying on her back in 

shallow water.

annotation 4 

A girl is stretched out in shallow water.

Fig. 11 An instance of co-occurrence text-image data from Flicker [112]

where f S = ∑n
i=1μ

i
tf

Si (xt ). β ∈ (0, 1) is a weight decay
factor that is applied when the classifier suffers a loss value,
and μi

t denotes the weight of the classifier from the i-th
source domain at time point t .

In contrast to [105], which only investigated HomOTL,
[104] adapted the OTL framework to a heterogeneous
environment. Similar to the problem setting in [9, 10,
104] introduced heterogeneous OTL with multiple source
domains (HetOTLMS), which was based on the premise that
the feature spaces of the source domain are a subset of those
of the target domain. Instead of training an ensemble source
classifier, HetOTLMS combined the weak classifier from
the i-th source domain with the target classifiers trained by
PA to form n ensemble classifiers. In particular, for the i-th

source domain learning

system

target domain learning

system

Update weights of models

Combine models based on

their weights

Fig. 12 OHTHE framework. The ⊕ maker denotes the measure of
similarity between two instances

source domain in the t-th round, each newly arrived instance
was divided into two parts, the first of which shared the
same feature spaces as the source domain, and the second
of which shared the remainder of the target feature spaces.
Two classifiers in the target domain were generated and then
integrated with the source classifier based on their weights
to form an ensemble classifier.

Most studies developed models based on PA that
were limited to numerical attributes. Inspired by the very
fast decision tree (VFDT), which incorporates Hoeffding
bounds to guarantee the performance of an incremental
decision tree, [103] modified VFDT as VFDT-D in the
following ways to provide an OTL framework that handles
mixed attributes:

• Cache a few instances to initialize the statistical
information for newly constructed leaf nodes to satisfy
the Hoeffding constraint and manage mixture attributes.

• Modify the output form of the VFDT to treat it as
the posterior probability equal to the ratio of positive
training instances in a leaf node with respect to the total
number of training instances in that leaf node.

Then, using the VFDT-D, decision trees were induced
from the source domains and the target domain. Following
that, the tree path and posterior probability of the newly
arrived instance xt were then combined to determine the
ideal source domain with the highest degree of similarity
to xt , which was then integrated with the target domain
classifier to construct the final prediction decision function.
Comparative experiments demonstrated that the proposed
algorithm was capable of overcoming the cold start problem
[71], which occurs when the model performance degrades
in the early stage of the data stream due to the low number
of instances arriving in the target domain.

It is worth noting that the target model performs worse
than the source model as it lacks prior knowledge about the
target domain. As more instances arrive, the target model
will perform equally well or even better than the source
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model. On the other hand, most studies [9, 10, 96, 105]
updated model weights solely based on cumulative error,
ignoring the intrinsic timescale of online data. To address
this issue, [106] proposed a new weight updating rule which
assigns greater weight to later occurrences. They assumed
that the predictions made by the newer samples were more
plausible than those made by the earlier samples and hence
increased the weights over time to narrow the gap between
the accuracy and the weights of the models. On the other
hand, the traditional accumulating criteria ensure that the
newly arrived outliers have a negligible effect on model
updating, examining, therefore investigating whether the
same scenario holds in this framework is necessary.

3.4 Single source multi-class classification (SS-MC)
OTL andmultiple sources multi-class classification
(MS-MC) OTL

After reviewing binary classification OTL frameworks in
the previous section, we will discuss multi-class classifi-
cation OTL studies in this section. Multi-class tasks are
common in the real world, such as document classifica-
tion. Specifically, when an instance is relevant to a single
subject, the classification problem is referred to as multi-
class single-label classification; otherwise, the classification
problem is referred to as multi-class multi-label classifica-
tion [59], and the majority of existing OTL research has
focused on multi-class single-label classification. Multi-
class classification is more complicated than binary clas-
sification as it involves the development of offline and
online models that consider multiple classes, necessitating
the use of more sophisticated strategies to create a combined
multi-class classifier with satisfactory performance [96].

Inspired by the online multi-class PA (MPA) algorithm
[59, 102] presented an OTL algorithm for multi-class classi-
fication (OTLAMC) that adopted a novel loss function and
weight updating mechanism to enable OTL in multi-class
classification tasks. However, this paper only concentrated
on knowledge transfer from a single source domain. Kang
et al. [110] then developed the online multi-source transfer
learning for multi-class classification (OMTL-MC) system,
which incorporated data from multiple domains. While the
OMTL-MC structure is similar to that of the HetOTLMS
framework described in [104], there are two significant
differences:

• The OMTL-MC framework examined OTL in a
homogeneous environment, whereas the HetOTLMS
framework investigated OTL in both homogeneous and
heterogeneous settings.

• OMT-MC was developed with an extended Hinge loss
(EHL) function to support multi-class classification
tasks whereas HetOTLMS is only suitable for binary
classification tasks.

Zhang et al. [100] proposed an online PA feature trans-
formation (OPAFT) algorithm to calculate the similarity
in a k nearest neighbour (k-NN) classifier. Furthermore,
they extended this algorithm to the online multiple kernel
feature transformation (OMKFT) algorithm to improve the
performance of OPAFT for cross-domain and multi-class
object recognition. Another feature-based OTL framework
was proposed in [108], which investigated multi-class clas-
sification OTL with multiple source domains. Specifically,
they constructed an initial transformation matrix for the i-
th source domain by utilizing the source and target data.
Then, the transformation matrix was used to project the
original data into a new feature space. Meanwhile, the newly
arrived instance was projected into its appropriate feature
space using all of the transformation matrices, and a new
source classifier was trained in this new space. The pro-
jected instance was then trained using the MPA algorithm
to generate the associated classifiers for the target domain.
Finally, the source and target classifiers were combined
using the Hedge strategy. Rather than updating the trans-
formation matrices at each time step, this paper used a
time window to control the frequency of updates, thereby
reducing computation costs.

In contrast to previous OTL architectures that required
label revealing of target instances after each prediction,
[109] introduced an online multiple source transfer learning
(OMS-TL) architecture that requires only a few labelled
data points in the target domain as a priori and does not
require label revealing after each prediction. They employed
a bipartite graph to represent the classification results from
all the source domains and then estimated the likelihood of a
sample belonging to each class using convex minimization.
When a new instance is observed, the averaged probability
from all source domain classes to which the sample belongs
was combined with the target prediction based on the
weighted average of previous predictions to generate the
final result.

OTL aims to enhance the online learning task in
the target domain by leveraging knowledge from source
domains. By applying standard TL in the online context,
real-time data generated by various edge devices can be
efficiently processed. However, as with traditional TL,
OTL is constrained by the assumption that all data from
the source and the target domains must be processed
centrally, which is impractical in the real world due to data
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privacy regulations. As a result, the following section will
introduce OFL, which enables real-time data processing in
a distributed fashion while ensuring data privacy.

4 Online federated learning

FL holds significant promise for a variety of sophisticated
applications, including smart traffic management [114],
interactive social networks [115], and smart health monitor-
ing [116], owing to the massive amounts of data generated
by various edge devices (e.g. smartphones, wireless sensors,
and wearable devices). On the other hand, Standard FL has
been constrained to the premise that the training data at each
local device is gathered offline and should be fully trained
throughout each global round to deliver iteration round-
efficient solutions [117]. It is impossible to assume that the
training data at each local client remains constant through-
out each round of training, as clients may have access to
real-time data that will become obsolete in a matter of
hours or even minutes [115, 118]. In this case, standard
FL models will have difficulty capturing the fluctuations of
real-time data, and their generalization performance is likely
to decrease with an increase in training rounds. Therefore,
enabling the standard FL architecture in online scenarios
(i.e. OFL) is critical in the era of big data. Instead of deliv-
ering iteration round-efficient solutions by simply waiting
for training results from all the local clients, OFL studies
are increasingly focusing on the real-time data process-
ing efficiency of local clients, i.e. on delivering iteration
process-efficient solutions [117].

OFL considers that the data from each client is generated
and collected in real-time, and it seeks to capture a high
degree of temporal information from various distributions
of data sources. Due to the time-varying nature of online
data, several of the challenges associated with standard FL
are becoming increasingly apparent in the online FL:

• Statistical heterogeneity: non-IID and unbalanced prop-
erties of online time-varying data cause model/concept
drift [119] in OFL, and capturing the dynamic change
of the rapidly generated online data poses a significant
challenge to OFL.

• System heterogeneity: stragglers emerge due to device
heterogeneity and network instabilities. Balancing the
contribution of each local device to the local iteration
against the communication cost of the global iteration
is a critical challenge in OFL.

• Privacy guarantees: the vast amount of online data
generated makes it more challenging to guarantee
privacy for OFL. Various privacy protection strategies,
such as differential privacy (DP) [120], have been
implemented in FL in order to strike a balance between

data utility and privacy, and these techniques should
be optimized for the online environment to be more
reasonable and practical for OFL.

Different OFL research focuses on different challenge
priorities, and Table 3 summarizes current OFL studies on
those three challenges.

The table demonstrated that the majority of OFL studies
focused on statistical and system heterogeneity, while more
research is required on privacy guarantees in OFL. Figure 13
summarizes the evolution timeline of OFL according to
its sub-categories. It should be noted that OFL research is
still in its infancy. In 2019, OFL began raising concerns
about statistical heterogeneity and privacy issues, followed
by studies exploring system heterogeneity in 2020.

4.1 Notations and problem definition

Consider we have a set of K = {1 . . . K} distributed devices.
At each round t , the global server broadcasts its most
recent parameters ωt

g to the K devices. Each local device
k receives the global parameters ωt

g and a time-varying

local instance (xt
k, y

t
k) to update the parameters ωt+1

k of its
local model fk(ω

t+1
k ). Finally, the local devices upload the

updated parameters ωt+1
k to the global server for dynamic

aggregation:

ωt+1
g = h(ωt+1

1 . . . ωt+1
K ) (6)

mapping h should be carefully selected in accordance with
the model parameter structures [127], from which each
device k can estimate the label yt+1

k of a newly arrived
data xk+1

t in real-time. One of the most commonly used
mappings in the standard FL system is FedAvg [32], which
averages the aggregated local parameter sets:

ωt+1
g =

K∑

k=1

nk

N
ωt+1

k (7)

where nk is the number of the data samples taken on
device k, and N is the total number of samples taken on
K local devices. In OFL scenarios, the data is generated
continuously on various local devices, increasing the
uncertainty of the local model updating in comparison
to the central model [122]. As a result, more plausible
mappings should be established to constrain such variances
and thus improve the generalization performance of the

Table 3 Summary of studies on OFL

Online Federated Learning

Statistical Heterogeneity [92, 119, 121–125]

System Heterogeneity [11, 117, 122, 125–129]

Privacy Guarantees [130, 131]



S. Dai and F. Meng

Fig. 13 Evolution timeline of OFL

model. Additionally, as not all devices are activated during
each round t for a variety of reasons (e.g. due to network
delays or device heterogeneity), strategies such as devices
selection should be used to minimize the negative impact on
overall communication efficiency.

4.2 OFL with statistical heterogeneity

Giorgas et al. [124] concentrated on the statistical hetero-
geneity associated with unbalanced data in OFL. Specif-
ically, [124] assumed that the central server had been
provided with pre-given data for training the initial central
model. After initialization, the central model was broadcast
to local devices for training with new samples from dif-
ferent classes. Then, the updated models on local devices
were uploaded to the central server for integration. To
ensure that the integrated model did not deviate substantially
from the original central model, the integrated model may
optionally be retrained using pre-given training data in the
central server. This strategy effectively addressed common
OL challenges, such as the catastrophic forgetting [132] that
occurs due to the time-varying nature of online data.

To enable OFL framework in non-IID scenarios, [123]
designed a non-linear regression OFL framework based
on random Fourier feature-based kernel least-mean-square
(RFF-KLMS). Specifically, they defined a non-linearly
local model fk(ω

t
k) for an arrived instance (xt

k, y
t
k) of a

local device k at time t . Then the local parameter updating
function can be formulated as follows:

ωt+1
k = E

[
|fk(ω

t
k) − f̂k(ω

t
k)|

]
(8)

where E [·] is the expectation. f̂k(ω
t
k) = ωT

k zt
k , where ωk

is a linear representation of the non-linear model fk in the
random Fourier feature (RFF) space, and zt

k is the mapping
of xt

k in the RFF space. Hence, the global parameter
updating function can be further constructed in the RFF
space by:

ωt+1
g = 1

K

K∑

k=1

ωt+1
k . (9)

Instead of training a global utility model for all local
devices, some works have concentrated on improving the

performance of personalized local models in the OFL
framework. Based on the worker-leader-core network hier-
archy, researchers designed hierarchical nested personalized
federated learning (HN-PFL) for unmanned aerial vehicles
(UAVs) [119]. The intra-UVA swarm is embedded inside
an inter-UVA aggregation, which follows the worker-leader-
core network structure to train high-level personalized mod-
els for local devices. To enhance the learning of HN-PFL,
model/concept drift was introduced to quantify the dynamic
changes of local online time-varying data. For a local device
k with its local model f (ωt

k), denote the online model drift
at time t by �t

k ∈ R
+, which could capture the upper

bound of the variation of parameters between two adjacent
instances, we have:

∥∥∥	fk(ω
t+1
k ) − 	fk(ω

t
k)

∥∥∥
2 ≤ �t+1

k . (10)

Local models with a greater drift value are likely to become
obsolete, necessitating a shorter learning period and more
frequently revisiting. On the other hand, models with a
small drift value have lower local parameter fluctuations,
implying that they require less attention than models with
greater drift values. The model drift value was then utilized
to estimate the online gradient for each local model and
a core network was created for each training sequence
by storing the real-time properties of the network as
reinforcement learning states. Additionally, to avoid the
curse of dimensionality, they used a neural network to
model the Q-table and determine the network states, rather
than pre-building it using traditional reinforcement learning
techniques [133].

Li et al. [92] emphasized the importance of developing
individualized local models by combining multi-task
learning with the OFL framework. Unlike previous works
that analysed streaming data, [92] proposed an online
federated multi-task learning framework (OFMTL) to
address the problem of inferring effective local models for
newly joined devices without affecting previous clients or
the global server. The multi-task relationship learning [134]
was used in the OFMTL to transfer the relationship between
the local models of all the devices into a relationship
precision matrix. The OFMTL formulated the learning
of model parameters for the newly joined device as a
convex optimization problem related to the weight matrix
and the precision matrix, and an alternating optimization
algorithm was proposed to alternatively optimize the
model parameters and precision matrix of the new device
by using information gained from previous devices.
Additionally, to save computation resources while retaining
the generalization performance of previous models, the
model parameters were configured to be retrained only
when the number of newly joined devices reached a fixed
ratio with respect to the total number of previous devices.
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4.3 OFL with system heterogeneity

Varying communication rates of heterogeneous local
devices are also critical challenge for OFL, and the lagging
devices with a lower communication rate in this system
are known as stragglers [122]. Numerous solutions have
since been proposed for standard FL systems. However,
in real-world scenarios where the data on each local
device fluctuates, the updated model for each global round
may display more inherent dynamic features. Therefore,
more sophisticated algorithms for FL in the online context
(i.e. OFL) are required to minimize the negative impact
of stragglers in a dynamic environment. Based on the
reviewed papers, two types of protocols can be used to
address the issue of stragglers: (1) synchronous protocol; (2)
asynchronous protocol.

To deal with stragglers in the OFL system, [117]
proposed an adaptive batch sizing (ABS) solution based on
the synchronous protocol. Typical synchronous FL systems
require the central server to wait until all local devices
(including stragglers) have been updated before performing
a global update [135, 136], or simply ignore and drop
the stragglers [32]. Different from the above studies, ABS
[117] limited the size of training data at each global round
by allocating a batch size bound to each device based
on their processing speed and real-time data generation
speed, forcing all local devices, including stragglers, to
be synchronous during each global communication round.
Furthermore, ABS provided a buffer for each local device
to retain or revisit local data depending on network settings
to reduce volatility in the size of generated data during each
training round. Despite a lack of mathematical definitions
in [117], the proposed ABS structure in this paper is
instructive.

Zhou et al. [125] proposed a cost-effective federated
learning (CEFL) system capable of cooperatively reducing
computation and communication overhead. Similar to
[117], CEFL made dynamic decisions on local devices by

limiting the entry of newly arrived training data, buffering,
and scheduling the data according to the time-varying
resource pricing of the local devices. Additionally, CEFL
employed an additional optimization parameter to balance
the computational overheads of local models with the
overall communication cost.

Rather than leveraging all local devices for global model
training, [128] highlighted that the key challenge for OFL
is to distinguish between effective local models and to
determine the appropriate number of local epochs using
no prior knowledge. This study formulated the participant
selection problem as an optimization problem based on
system capacity (local device availability, data volume, and
network bandwidth) and long-term convergence of both
local and aggregated global models. To further extend
this solution into online scenarios, an online schema was
designed (Fig. 14) to dynamically select the participant
and the number of local epochs for each device in the
OFL system. Specifically, the online schema consists
of two parts: online learning and online rounding. The
first part produced fractional judgments solely based on
prior knowledge, whereas the second part employed a
compensation technique to randomly convert the fractional
decisions to integers without violating any pre-defined
constraints. The experiment results indicated that the
proposed schema could dynamically adjust the upper bound
on local convergence accuracy and select participants
with superior local model performance and computation
efficiency.

Asynchronous system design was also emphasized in
studies addressing the heterogeneity of the OFL system.

Chen et al. [122] developed an asynchronous OFL
framework (ASO-Fed) that enabled a wait-free OFL system
and improved the prediction performance and computation
efficiency of local devices when data arrived continuously.
ASO-Fed learned the inter-client interaction on the global
server using feature representation learning inspired by
attention mechanisms [137, 138] and weight normalization

Fig. 14 Structure of the online
schema proposed in [128]
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[139, 140]. The decay coefficient was utilized on the client-
side to balance the older and newer models when OL
was performed on each local device. Additionally, ASO-
Fed used a dynamic step size to minimize the negative
impact of stragglers. The step size was determined by the
data volume and communication capacity of each client,
and a larger step size was assigned to local clients with a
lower activation rate to compensate for the long latency and
achieve higher performance. Experiments demonstrated that
the proposed ASO-Fed framework converged faster than
synchronized FL frameworks and significantly reduced the
overall computational overheads.

On the other hand, [11] emphasized the importance
of incorporating contributions from all local customers,
even stragglers. They developed FLEET, which consists
of two components, I-PROF and ADASGD. The first
component aims to forecast and allocate computational
overheads across all local devices. The latter is a novel
stochastic gradient descent algorithm that employs weighted
stale gradients determined by a stale-aware dampening
factor and a similarity-based boosting value. The stragglers
with longer delays were assigned a smaller stale-aware
dampening factor, indicating that they contribute less to
the overall updating process. In contrast, a lower similarity
value indicates a gradient containing more significant new
data features. The FLEET has been proven to be effective
in minimizing the negative effects of stragglers while also
capturing vital information to improve the generalization
capability of the system.

4.4 OFL with privacy guarantees

Since the data are generated in an online fashion and the
sequence of training data is unknown, ensuring privacy
for the OFL framework requires a more sophisticated
design of the privacy algorithms. Odeyomi and Zaruba
[130] considered P2P FL in an online setting, and
proposed an online mirror descent algorithm with long-
term constraints on the sequential decisions made by each
device. Additionally, a modified online version of local
differential privacy was utilized to ensure the privacy of
the OFL system. By using only the private version of loss
gradients for real-time data sequence at each global round,
the online local differential privacy method provides global
privacy guarantees without relying upon loss information
across the entire data sequence. In each global training
round, each user received new data and updated its local
model. After that, each updated local gradient was subjected
to local differential privacy to ensure privacy in the online
scenarios. When compared to the online gradient descent
algorithm with differential privacy, the proposed algorithm
was proved to be more accurate in the long run.

In large-scale online distributed network settings, the
dynamic growth of the online dataset complicates the
process of incorporating noise into each associated data
sequence to ensure privacy. Zhou et al. [131] utilized a
trusted third party to protect the privacy of OFL in a
recommendation system based on adaptive binary tree-
based noise aggregation. They constructed a binary item-
cluster tree for each local device to reduce the scale of
incoming online big data at each global round. Specifically,
the item space was partitioned into refined child clusters,
and the optimal recommendation for the corresponding
client was searched from top to bottom of the constructed
tree. Then, to ensure privacy, a trusted third party was
proposed as a middleware to provide safe model aggregation
over all agents using an exponential mechanism, and two
forms of attacks from internal local devices and external
adversaries were evaluated to demonstrate the usefulness of
the approach.

OFL enables real-time distributed data training while
maintaining data privacy, and much of the current literature
on OFL focuses on addressing statistical and system
heterogeneity rather than providing privacy guarantees.
Compared to OTL studies, there are relatively few historical
studies of OFL. In the following section, we will describe
OTL and OFL from a practical perspective based on our
discussion of the methodology in the previous two sections.

5 Practical aspects in online federated
and transfer learning

Although studies of OTL and OFL have been conducted
with promising results in a variety of fields in recent
years, there are still practical concerns that need to
be addressed. This section discusses the practical issues
associated with online federated and transfer learning from
two perspectives: datasets and applications.

5.1 Datasets

In this section, we first summarize all the datasets based
on the obtained literature on OTL and OFL. Then we
will discuss practical considerations and concerns around
datasets for OTL and OFL.

The commonly used datasets for OTL and OFL are listed
in Tables 4 and 5. In addition, there are special datasets
used in some particular studies, which are described as
follows. Five papers have adopted special datasets in the
obtained OTL studies. [99] used various datasets in different
scenarios: landmine dataset2 for landmine detection, wdbc

2http://www.stevenhoi.org/OTL/

http://www.stevenhoi.org/OTL/
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Table 4 Summary of the commonly used datasets in OTL studies

Dataset for OTL References

Multi-language [96, 97, 102, 104, 110]

20Newsgroups [93, 98, 104–106]

Sentiment Analysis [10, 93, 98, 104, 105]

Office-Caltech [94, 100, 108, 110]

Text-image [95–97]

dataset3 for breast cancer diagnostic, german dataset for
credit risk detection, spambase dataset for spam email
filtering, a9a dataset for adult income prediction, and w8a
dataset for text categorization [141]. Similarly, to explore
OTL in different tasks, [96] utilized the video dataset from
YouTube along with two popular used datasets in Table 4:
multi-language and text-image datasets. Moreover, there
are studies that use medical imaging datasets for disease
diagnosis. For example, [109] used electrocardiogram
(ECG) data for cardiac arrhythmia detection, and [107]
used electrocorticogram (ECoG) data for epileptic seizure
detection.

Nine papers have adopted special datasets in the obtained
OFL studies. Compared to OTL, datasets used in OFL
are more personalized, which implies that more publicly
recognized datasets are required as benchmarks in this
field. Li et al. [92] used human activity recognition dataset
[142], eating recognition via Google glass dataset [143],
and eating habits monitoring datasets [144] for various real-
world tasks. In [125], an image dataset comparable to the
average image size of the CIFAR-10 dataset was used. Apart
from using the listed MNIST and air quality datasets, [122]
also adopted the FitRec dataset4, ExtraSensory dataset5 for
human activity analysis. Similarly, [124] used a subset of
WISDM Smartphone activity and biometrics dataset [145]
for human activity recognition. To explore OFL in different
application scenarios, apart from adopting the air quality
dataset, [127] also used data from Twitter, conductivity
dataset [146] in the OTL regression tasks, and used power
consumption6 dataset, parking occupancy7 dataset, and
traffic dataset in the OTL time-series forecasting tasks. Jin
et al. [128] used data from US-centric population [73] as
the FL workload trace. [131] utilized YFCC100M8 dataset,
which is the largest released public multimedia dataset.
Instead of using the real-world datasets, two OFL papers

3http://archive.ics.uci.edu/ml/
4https://sites.google.com/eng.ucsd.edu/fitrec-project/home
5https://sites.google.com/eng.ucsd.edu/fitrec-project/home
6https://archive.ics.uci.edu/ml/datasets/
7https://data.birmingham.gov.uk/dataset/birmingham-parking
8http://bit.ly/yfcc100md

Table 5 Summary of the commonly used datasets in OFL studies

Dataset for OFL References

MNIST and its extensions [11, 119, 122]

CIFAR [11, 117]

Air quality [122, 127]

[123, 130] chose to use synthetic datasets for experimental
analysis.

5.1.1 Popular datasets for OTL

Five datasets have been commonly used in OTL: Multi-
language dataset, 20Newsgroups dataset, sentiment analysis
dataset, text-image dataset, and Office-Caltech dataset.

The multi-language dataset [147] contains feature
characteristics of documents written in five different
languages (English, French, German, Spanish, and Italian)
but sharing the same set of categories. Each language
contains indexes of the documents written or translated in
that language.

The 20Newsgroups dataset9 contains about 20,000 news-
group documents organized by subject and subcategory.
The 20Newsgroups dataset has been mainly used to imple-
ment MS-BC OTL tasks [104–106]. Typically, researchers
focus on two primary subjects, each of which has multi-
ple subtopics. Then, to simulate multiple learning domains,
a positive label is assigned to each subtopic, which corre-
sponds to the negative label assigned to a subtopic within
the other primary subject.

Another commonly used dataset is the sentiment analysis
dataset10, which consists of product reviews on Amazon for
four different product categories (books, DVDs, electronics,
and kitchen). Each review includes a human rating score
(0-5 stars), a review caption, position, timestamp, an item
description, a reviewer name, and the review content. This
dataset has been used to perform SS-BC OTL [10, 93, 98]
and MS-BC [104, 105] OTL tasks.

The Office-Caltech dataset [148] is made up of real-
world object domains gathered from the Berkeley Office
[149] and Caltech-25611, which has been widely utilized in
OTL tasks requiring multi-class classification. The Caltech-
256 contains 30,607 pictures from 256 groups, and real-
world object domains include Amazon, Webcam, and the
digital single-lens reflex camera.

Different from the above datasets, the text-image dataset
has been utilized in a wide range of cross-modality OTL
scenarios, and it is sourced from the NUS-WIDE [150]

9http://qwone.com/∼jason/20Newsgroups/
10http://www.cse.ust.hk/TL/index.html
11https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001

http://archive.ics.uci.edu/ml/
https://sites.google.com/eng.ucsd.edu/fitrec-project/home
https://sites.google.com/eng.ucsd.edu/fitrec-project/home
https://archive.ics.uci.edu/ml/datasets/
https://data.birmingham.gov.uk/dataset/birmingham-parking
http://bit.ly/yfcc100md
http://qwone.com/{~}jason/20Newsgroups/
http://www.cse.ust.hk/TL/index.html
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
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collection on Flickr. This dataset comprises photos and tags
that have been published on the internet and is often used in
heterogeneous SS-BC OTL. More precisely, the unlabelled
text-image data pairs in this dataset are often utilized as co-
occurrence data to bridge the text samples from the source
domain and the images from the target domain.

5.1.2 Popular datasets for OFL

There are several datasets commonly used in OFL: CIFAR-
10 and CIFAR-100, MINIST, and air quality dataset.
MINIST and CIFAR are two public datasets that are often
utilized in OFL tasks [11, 122], particularly in simulations
of non-IID settings.

Both CIFAR-10 and CIFAR-100 datasets12 have 60,000
images, with the former having 10 classes with 6,000 photos
each and the latter having 100 classes with 600 images each.

MINIST13 is a database of handwritten digits that
contains a training set of 60,000 instances and a testing
set of 10,000 instances. This dataset is suitable for pattern
recognition tasks as it requires minimal pre-processing.

Air quality datasets collected from weather sensors in
different countries were used in [122] and [127] to predict
the level of pollutants in the air.

5.1.3 Practical considerations

OTL tasks are generally conducted on public datasets
such as Office-Caltech, which may have storage format
restrictions and are liable to become obsolete. It is also
challenging to update these existing datasets or to re-collect
fresh datasets. On the other hand, real-world datasets are
difficult to obtain due to privacy regulations. Furthermore,
most datasets only include a limited number of labelled
instances in the target domains, making it challenging to
perform cross-validation to fine-tune the target model [100].
For example, OTL applications for the healthcare system
are commonly based on publicly available hospital data, and
these applications may be limited to patients in a particular
geographical area, as people within various geographical
regions may have varying physical conditions. Additionally,
an OTL system may require target patients to upload their
physical states in near real-time, which is highly unlikely in
practice due to privacy concerns and system/ infrastructure
limitations.

When designing a comparative experiment, different
domain types of OTL tasks require different data settings
and must comply with the same data dividing rule. On the
other hand, data settings for OFL are relatively complex,
which requires the stimulation of both the statistical

12https://www.cs.toronto.edu/∼kriz/cifar.html
13http://yann.lecun.com/exdb/mnist/

heterogeneity generated by non-IID or imbalanced data and
the system heterogeneity caused by the varying uploading
rates across numerous local devices in an online scenario. To
deal with statistical heterogeneity, researchers often use the
standard data decentralization method [73] to classify the
data and partition individual categories into multiple shards
of varying sizes, after which each local client is allocated
with different shards [11, 122]. To stimulate stragglers, a
random delay timer may be used to reflect various network
delays across local clients [122]. Furthermore, a data growth
rate should be predetermined to imitate the growth of online
data. Data settings for OFL involve a variety of parameters,
and it is important to establish a unified standard for these
parameters to facilitate comparative experiments.

5.2 Applications

It is important to note that, despite relatively few studies
focusing purely on application-based scenarios, several
major prospects for OTL and OFL can be drawn from
the obtained studies and their datasets summarized in
the previous section, which may in turn lead to future
investigations and applications to real-world scenarios. This
section will describe the identified cutting-edge applications
and discuss relevant practical considerations. It covers
the application scenarios and their compatibility of both
OTL and OFL in different contexts, with the recognition
that existing studies can be categorized into two sectors,
namely industrial engineering and healthcare, based on an
exhaustive summary from the obtained papers.

5.2.1 Applications in industrial engineering

Given the achievements of OTL in domain shift scenarios
and OFL in data privacy protection, it is reasonable to apply
these methods to industrial engineering tasks, and Table 6
summarizes the detailed sub-scenarios of OTL and OFL
applications in industrial engineering.

OFL has been used in a variety of data-sensitive
industrial domains, including environmental protection
[122, 127], and unmanned aerial vehicle (UAV) control
[119, 121]. OTL applications, on the other hand, are most
commonly found in industrial situations that involve domain
shift problems, such as sentiment analysis [10, 93, 98, 104,
105]. There are other situations in the industrial engineering
where data is likely to be sensitive and therefore a cross-
domain task is required, such as image recognition [11,
94, 100, 108, 110, 122, 126] and online recommendation
systems [101, 131].

By combining data from multiple weather sensors
located at nine separate locations, [122] develop a novel
collaborative OFL model for predicting the pollutants in the
air. Apart from the environmental protection, OFL has been

https://www.cs.toronto.edu/{~}kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
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Table 6 Summary of
sub-scenarios of OTL and OFL
in industrial engineering

Sub-Scenarios OTL OFL

Environmental Protection \ [122, 127]

Unmanned Aerial Vehicle \ [119, 121]

Sentiment Analysis [10, 93, 98, 104, 105] \
Image Recognition [94, 100, 108, 110] [11, 122, 126]

Online Recommendation Systems [101] [131]

used to control UAVs in real-time [119, 121] for mission-
critical applications such as first-aid packet dispatching and
firefighting [151, 152].

Sentiment analysis has arisen as a hot topic in OTL,
with applications ranging from spam detection [109] to
document categorization [93, 105, 106]. For example, [109]
developed a spam email filter system by analyzing real-
world emails from fifteen different users. Such a system can
help reduce labor costs while safeguarding the property of
people.

Image recognition is a trending topic in OTL. Transfer-
ring information from related domains makes it possible to
conduct online image classification on the target domain. In
addition, computer vision-based tasks [126] are a hot topic
in industrial applications of OFL. Rather than uploading
annotated personal visual data to a central database, partic-
ipants in an object recognition task can train a local model
on their personal site. Furthermore, by leveraging an online
learning framework, OFL enables computer vision-based
tasks to manage massive amounts of online image data that
arrive sequentially from cameras.

Additionally, OFL and OTL have been implemented in
online recommendation systems. [101] proposed Social-
Transfer, a cross-domain OTL system for multimedia appli-
cations that learns from time-varying social stream data. To
address the privacy concerns associated with information
sharing, [131] developed a privacy-preserving recommen-
dation system based on OFL that takes advantage of the
privacy guarantees provided by the federated learning archi-
tecture while still capable of managing the streaming data.

5.2.2 Applications in healthcare

OFL and OTL are both promising solutions for healthcare.
For OFL, the connection between real-time data monitoring
from various edge devices and hospital records breaks down
analysis barriers between various parties while maintaining
data privacy. Furthermore, the information required to detect
a disease differs from patient to patient. Given that the
medical records of each patient constitute a unique domain,
OTL is well-suited for disease diagnosis, as it can leverage
multiple patient records to improve the diagnosis accuracy
of the target patients. OTL has been used to diagnose a

wide variety of diseases, including arrhythmias [99], breast
cancer [99], and epileptic seizures [107].

Nowadays, with the rapid development in the storage
capacity and computing power of edge devices such as
smartphones and wearable devices (e.g. google glass),
physical data about daily human life can be collected and
analysed conveniently. These data, however, are sensitive
and are at risk of being compromised by unauthorized
access. On the other hand, real-time monitoring systems
are required for special scenarios, such as remote health
condition monitoring for the elderly living alone, as certain
acute-onset diseases (e.g. heart attack, stroke) must be
detected instantly. With privacy guarantees, OFL is an
excellent candidate for the aforementioned application
scenarios, and it has been used in a variety of healthcare
applications, including human activity recognition [92,
122], and eating habits monitoring [92].

5.2.3 Practical considerations

Existing research on OTL has primarily concentrated on
text/image-based applications, which may not be applicable
to certain scenarios involving users who are unfamiliar
with text/image input. There are studies on TL that have
recommended the use of more forms of input, such as voices
[153] and gestures [154]. Future OTL research should
consider extending these advanced applications to online
contexts, which would accommodate a variety of inputs and
facilitate human-machine interaction.

While current application domains of OTL and OFL are
primarily focused on industrial engineering and healthcare,
there are many other areas worth exploring in TL and
FL, such as smart transportation [50]. Traditional offline
frameworks for smart transportation may benefit from an
online environment; for example, establishing an online
autonomous driving system may capture the dynamic nature
of the vehicle system and the inherent uncertainty of
the real-life environment, allowing drivers to make more
accurate and timely decisions.

With the widespread use of edge devices, device owners
can easily annotate their data by simply tagging or labeling
the device, which has been frequently utilized in OFL
research. On the other hand, malicious and false tagging
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will become more prevalent as local users are able to tag
on their own devices. As a result, OFL must concentrate
on filtering out invalid tagging to ensure the accuracy of
model inferences. Moreover, fewer OTL applications are
utilizing smart edge devices due to privacy regulations
regarding personal data. We anticipate that OTL models
trained on real-time data generated by edge devices will
perform significantly better. Therefore, it is anticipated
that there will be future research opportunities to combine
OTL and OFL to develop an online FTL framework that
takes advantage of both OTL and OFL paradigms to
accomplish this vision. After having investigated OTL and
OFL from practical perspectives, we conclude this survey
with a discussion of several areas of future work worthy of
consideration. In particular, we present a vision for online
FTL and describe the proposed framework in detail.

6 Discussion and conclusion

In this survey, we have provided a systematic and compre-
hensive overview of OTL and OFL. OTL employs knowl-
edge from single or multiple source domains to train online
target models for the target domain, while the OFL facili-
tates the traininig of online models at the edge of distributed
networks. We discussed the unique properties of OTL from
a domain-task perspective and described existing research
on OFL addressing several major challenges. Moreover,
popular datasets and cutting-edge online federated and
transfer learning applications were summarized, and prac-
tical considerations were presented from both datasets and
applications perspectives. In the following, we will identify
open problems worthy of future research efforts, and also
propose a vision of online federated transfer learning - a new
concept we have developed with the aim of addressing the
most significant challenges faced by existing studies.

rom the methodology perspective, existing OTL studies
have mainly focused on SS-BC and MS-BC OTL, while
studies for multi-class classification OTL tasks have been
relatively scarce. Therefore, sophisticated OTL frameworks
for various types of learning tasks should to be developed
in future research. Moreover, most of the current OTL
frameworks rely on the kernel method to build their online
target classifiers, which has the distinct benefit of being
more accurate than linear models. On the other hand, the
kernel method also has an acknowledged disadvantage of
being resource-intensive in terms of support vector storage.
It is recommended that efficient solutions such as budget
online kernel learning [54], which restricts the number
of support vectors to a fixed budget, are included in
the future OTL framework for their potential to reduce
computing overhead significantly. On the other hand,
studies in the field of OFL have frequently focused on

developing effective models for a variety of asynchronous
devices. Moreover, all current OFL frameworks, whether
synchronous or asynchronous, assume that local devices are
available during their allocated ‘working period’, which is
impractical since unforeseen events may occasionally occur,
rendering these local devices being unavailable. As a result,
a feedback mechanism could be developed in the future
OFL framework to confer sufficient authority on the local
device to commence the communication process.

From the practical perspective, existing OTL studies
often utilize public datasets, and the real-world datasets
are difficult to obtain due to data privacy regulations,
as OTL is based on the assumption that all models will
be trained on a centralized platform. Therefore, there
is a need for the collection of more state-of-the-art
datasets for OTL tasks. On the other hand, OFL datasets
are more diverse, since the local clients can retain the
dataset on their own device. However, typical OFL tasks
often require complex data settings for simulating the
heterogeneous scenarios in the real world, and different
settings of the datasets result in difficulties when comparing
different OFL frameworks. Therefore, developing unified
data setting protocols is also necessary for future research.
Moreover, the most prevalent learning type in real-world
applications is supervised learning for OTL and OFL, which
involves label-revealing after each prediction. Although
significant progress has been made in online federated
and transfer learning for handling distributed time-varying
data with few labels, applications for unsupervised learning
remain a challenge in this field. Methods such as [155],
which used a selective pseudo-labeling strategy to achieve
high performance for unsupervised TL, and federated
unsupervised representation learning [156], which pre-
trained deep neural networks using unlabelled data in a
federated setting, have shown promising outcomes recently.
FL and TL, as two forms of collaborative training, hold
tremendous potential in the filed of unsupervised learning.
Given the dynamic requirements of real-world machine
learning, it is reasonable to suggest that future research on
FL and TL extensions for unsupervised learning in online
contexts is necessary.

The implementation scenarios of TL, FL, FTL, OTL,
and OFL are summarized in Table 7, and the ideal
implementation scenarios of online FTL are also given
in the table. As can be seen from Table 7, OTL enables
standard TL to handle real-time data efficiently. As with
the standard TL, OTL is rarely studied in decentralized
environments, and carries the risk of data privacy violations
due to the instance transmission process. On the other hand,
OFL is able to handle local data generated in real-time
as well as provide privacy guarantees. However, similar
to standard FL, OFL needs to utilize special techniques,
such as TL, to create personalized local models. Since FTL
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Table 7 Frontier implementation scenarios of different techniques

has gained increasing attention as numerous studies have
demonstrated its efficiency [44], we envisage that extending
FTL to online scenarios will enable the development of
an advanced machine learning framework with dynamic

natures that leverages both OTL and OFL paradigms for
benefit to the general user.

Figure 15 illustrates the proposed online FTL framework
that is described below. The data in the source domain

Fig. 15 A vision of online FTL
framework
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can be generated in real-time or from pre-given datasets. It
should be noted that a scratch of the source data is essential
to ensure the benchmark performance of the source models.
Each local device in the target domain generates data in an
online fashion, and the real-time data is analysed by online
learners, who then attempt to formulate an optimal strategy
for online updating during each training round [54]. The
global model enables model aggregation, heterogeneous
computing, updating, and broadcasting. Local devices, such
as smartphones and laptops, provide essential infrastructure
tools, including local online/offline training, uploading, and
distributed storage.

Various applications may be developed on top of the
proposed online FTL to provide critical human-machine
interface services. By utilizing federated learning, machine
learning models for multiple parties can be established
without exporting local data, ensuring data security and
privacy while providing users with tailored services.
Meanwhile, TL enables FL to train models on a variety of
different but related parties, which is practically important
given that stakeholders within the same FL framework
are usually from the same sector. Furthermore, classical
batch/ offline learning has low efficiency in terms of
computing costs, as well as limited scalability for large-
scale applications due to the need for model retraining
after online data sequences are generated. We envisage that
extending FTL to online scenarios will help overcome the
limitations of traditional batch learning by allowing online
learners to update the local model safely and rapidly.

To summarize, this survey aims to serve as a resource for
researchers and practitioners developing online federated
and transfer learning frameworks. It provides a systematic
and comprehensive description of OTL and OFL, and
identifies open research questions worthy of future research
efforts. Finding solutions to such new and arising research
problems from methodologies to practical applications will
necessitate collaborative and long-term efforts from various
research communities.
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