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Abstract
Several computational studies have been undertaken to explore the Ca2+-induced Ca2+ release (CICR) events in cardiac myo-
cytes and along with experimental studies it has given us invaluable insight into the mechanism of CICR from spark/blink 
initiation to termination and regulation, and their interplay under normal and pathological conditions. The computational 
modelling of this mechanism has mainly been investigated using coupled differential equations (DEs). However, there is a 
lack of computational investigation into (1) how the different formulation of coupled DEs capture the Ca2+ movement in the 
cytosol and sarcoplasmic reticulum (SR), (2) the buffer and dye inclusion in both compartments, and (3) the effect of buffer 
and dye properties on the calcium behaviour. This work is set out to explore (1) the effect of different coupled formulation 
of DEs on spark/blink occurrence, (2) the inclusion of improved sarcoplasmic buffering properties, and (3) the effects of 
cytosolic and sarcoplasmic dye and buffer properties on Ca2+ movement. The simulation results show large discrepancies 
between different formulations of the governing equations. Additionally, extension of the model to include sarcoplasmic 
buffering properties show normalised fluorescent dye profiles to be in good agreement with experimental and amongst its 
one- and two-dimensional representations.

Keywords  Cardiac myocyte · Ca2+ sparks and blinks · Ca2+-induced Ca2+ release · Stochastic Ca2+ release · Stochastic 
partial differential equations

Introduction

CICR is the repeated process in which influx of extracellular 
Ca2+ into the cytosol from L-type channels triggers a release 
of Ca2+ from the sarcoplasmic reticulum (SR) through ryan-
odine receptors (RyRs). Ca2+ releases from the SR into the 
cytosol appear as sparks in the cytosol and as blinks in the 
SR. The successive activation of RyRs increases the local 
Ca2+ concentration in the cytosol. This process is called 
Ca2+ transient and the sequential activation of Ca2+ results 
in spontaneous propagating waves of Ca2+ which occur in 
ventricular cardiac myocytes mainly due to Ca2+ overload. 
This occurs under pathological conditions affecting the 
heart’s normal function which may lead to heart failure and 
ventricular arrythmias (Lakatta and Guarnieri 1993).

Ca2+ sparks in the heart muscle was observed to behave 
stochastically (Cannell et al. 1995) and that Ca2+ releases 
occur at discrete sites with regular spacing of 1.8–2 µm lon-
gitudinally and more irregular spacing with a mean value 
of 0.76 µm transversely (Parker et  al. 1996; Shacklock 
et al. 1995). Spontaneous Ca2+ sparks were accounted for 
in several mathematical models as either deterministic or 
stochastic. The first noteworthy model accounts for Ca2+ 
release at uniformly distributed sites and releases follow a 
time dependent process with an exponential rise and fall of 
the Ca2+ flux from the SR (Backx et al. 1989). The CICR 
process is described by a deterministic formulation whereby 
the release is dependent on a threshold Ca2+ concentration. 
The process is represented by a one-dimensional model 
accounting only for longitudinal diffusion.

Other similar models (Smith et al. 1998; Izu et al. 2001a; 
Subramanian et al. 2001) that also include a determinis-
tic formulation of the Ca2+ releases, represent the system 
with a two-dimensional model whereby spatial and aniso-
tropic properties of the Ca2+ diffusion can be successfully 
reproduced. The models mentioned above account for free 
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fluorescent indicator dye and Ca2+-binding proteins such as 
endogenous buffers. Additionally, the system was based on 
Fick’s Law diffusion derived using a system of partial differ-
ential equations (PDEs) and ordinary differential equations 
(ODEs). Ca2+ sparks are stochastic in nature (Cannell et al. 
1995) and this has since been included in models (Chen et al. 
2013, 2014, 2018a, b; Arif et al. 2019; Izu et al. 2001b; Li 
et al. 2010).

The use of fluorescent indicator dye and buffer properties 
are an integral part of studying cardiac myocyte physiology 
in health and disease. Not only does the use of dye and buff-
ers in experimental studies of cardiac myocytes enable the 
observation and measurement of Ca2+ wave properties, but 
also it can have a direct influence on the wave dynamics. 
Studies on eukaryotic cells (Wang and Thompson 1995), 
Xenopus oocytes (Jafri and Keizer 1995) and astrocytes 
(Wang et al. 1997) using indicator fura-2 shows measures 
that immobile/mobile buffers slow down the propagation 
of Ca2+ waves as well as reduces the wave amplitudes. In a 
more recent study (Bovo et al. 2015) on the effect of buffer-
ing in cardiac myocytes, fluo-4 and fluo-5 N were used to 
measure sparks and blinks, respectively. It has been shown 
that the presence of Ca2+ buffers (more specifically BAPTA) 
has supressed Ca2+ spark activity as well as caused earlier 
termination of these sparks. Nevertheless, the effect of dif-
ferent types and level of buffering and dye properties on the 
Ca2+ dynamics is not considered to be fully explored. This 
is especially important since these properties may influence 
calcium handling and contractility (Smith and Eisner 2019).

Majority of stochastic models mainly explore the Ca2+ 
movement in the cytosol. However, Ca2+ sparks in the cyto-
sol are directly linked to Ca2+ blinks in the SR. To account 
for such coupling link, a system of coupled differential equa-
tions must be formulated. One such model has been formu-
lated (Chen et al. 2018b; Li et al. 2017) with either a partial 
differential equation (PDE) or an ordinary differential equa-
tion (ODE) representing the Ca2+ movement in the SR. All 
models mentioned have greatly improved our understanding 
of the Ca2+ dynamics under pathological conditions. How-
ever, more exploration is needed to gain new insight into 
the coupled system. The idea of using a coupled system of 
PDEs or a system of partial and ordinary differential equa-
tions for modelling this coupling linkage is not novel. The 
choice of equations in the coupling link is vital towards a 
better estimate of the Ca2+ sparks and blinks. This needs 
further investigation as to gain insight into the drawbacks 
and trade-offs of using such models. In the current work, 
there are two goals set out to achieve. One of them is to 
extend our investigation from our previous work (Serife et al. 
2017) and gain new insight into modelling the cytosolic and 
sarcoplasmic Ca2+ sparks and blinks using coupled PDEs. 
The second goal is to formulate a fully coupled system with 
stochastic Ca2+ release that not only reproduces the cytosolic 

Ca2+ sparks but also produces the sarcoplasmic Ca2+ blinks 
comparable to those experimentally observed. Finally, the 
third and last goal of this work is to observe the effects of 
cytosolic and sarcoplasmic buffers and dye on the speed and 
amplitude of Ca2+ wave propagation.

Methods

Model for stochastic calcium waves

The model presented in the current work follows from our 
previous work (Serife et al. 2017) on the stochastic extension 
of the deterministically coupled model (Dupont and Gold-
beter 1994, 1997; Tracqui and Ohayon 2009). The governing 
equations for Ca2+ sparks and blinks are based on the Fick’s 
Law diffusion for simplicity and are given in Eqs. (1) and 
(2) as below.

The cytosolic and sarcoplasmic Ca2+ concentrations are 
represented by C and CS , respectively. DCi , DCSi

 , i = x, y are 
cytosolic and sarcoplasmic diffusion coefficients in the x 
and y directions; JCa2+leak and JSRleak represent the cytosolic 
Ca2+ leak from the cytosol to the exterior of the cell and 
sarcoplasmic Ca2+ leak from the SR to the cytosol; Jpump 
represents the pumping rate of SR Ca2+-ATPase. The last 
three terms are given as JCa2+leak = kC , JSRleak = kf CS and 
Jpump = VpumpC

npump∕(K
npump
pump + Cnpump ), where Vpump is the 

maximum rate, Kpump is the affinity constant for SR pumps 
and npump is the Hill constant with k and kf  representing rates 
of passive Ca2+ efflux from the cytosol to the extracellular 
medium and from the SR into the cytosol.

The flux of Ca2+ release from a Ca2+ release unit (CRU) 
i s  de te r mined  by  JCRU = �

∑

�D(x − x�)�D(y − y�)
S(x, y, t;Topen) where � =

ICRU

2Fc

 is a molar flux from a Ca2+ 
release channel based on the current of the CRU, ICRU , and 
Faraday’s constant, Fc . The Dirac delta, �D , term in the sum-
mation represents a point source (i.e. the CRU) located at x� , 
y� . Jdye and Jbuffer are fluxes due to the Ca2+ fluorescent indi-
cator dye and endogenous stationary buffers. These are given 
as Jbuffer = −

d[CaB]

dt
 and Jdye = −k+f C([F]T − [CaF]) + k−f [CaF] 

where [F]T is the total concentration of dye, and k+
f
 and k−

f
 

(1)
�C
�t

= DCx
�2C
�x2

+ DCy
�2C
�y2

+ Jdye + Jbuffer − Jpump

− JCa2+leak + JCRU + JSRleak,

(2)
�CS

�t
= DCSx

�2CS

�x2
+ DCSy

�2CS

�y2
+ Jdye

+ Jbuffer + Jpump − JCRU − JSRleak.
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are forward and reverse rate constants for dye. The Ca2+ 
bound dye, [CaF] , and Ca2+ bound buffer, [CaB] , are 
assumed to be mobile and immobile (Izu et al. 2001a) and, 
thus, are updated using a PDE and ODE, respectively. These 
are given in Eqs. (3) and (4) as below.

where DDx and DDy are diffusion coefficients for fluorescent 
dye. Similarly, k+

B
 and k−

B
 are forward and reverse rate con-

stants for buffer, and [B]T is the total buffer concentration. 
The firing of CRUs is controlled by the stochastic functionS . 
The probabil i ty  that  a  release uni t  f i res  is 
P(C(x, y, t),Kprob, nprob).Δt where P(C(x, y, t),Kprob, nprob)
= Pmax

[Ca2+]nprob
(Kprob+[Ca2+]

nprob )
 .  Pmax is the maximum probability of 

Ca2+ spark occurrence, Kprob is the Ca2+ sensitivity param-
eter and nprob is the Hill coefficient. The stochastic opening 
of a release unit is stimulated at each time interval Δt by 
generating a uniformly distributed random number ur 
between 0 and 1. AsC(x, y, t) → ∞ , P

Pmax

→ 1 so the probabil-

ity that ur is less than P

Pmax

 is less than 1. Therefore, in the case 

where ur <
P

Pmax

 , the release unit fires by setting S = 1 and the 
unit remains open for Topen ms. Once the channel is closed it 
remains closed. In the case whereur >

P

Pmax

 , the release unit 

does not open and remains closed untilur <
P

Pmax

.

Improved sarcoplasmic buffer and dye properties

Ca2+ sparks and blinks are two different views of the same 
elementary release events. Ca2+ blinks are important events 
for the termination of sparks. An ideal model should be able 
to estimate the fluorescent values in the cytosol as well as 
that in the SR. In the previous section, the fluorescent dye 
and buffers in the SR are not taken into account. Model-
ling of such coupling has not been fully explored. There-
fore, model presented in the previous section is modified 
and extended to accommodate for an improved estimation 
of the Ca2+ blinks with the normalised fluorescent profile 
in the SR. In addition to the equations used in the previous 
section, new equations are introduced for estimating the sar-
coplasmic Ca2+ concentration, Ca2+ bound fluorescent indi-
cator, [CaF] , and Ca2+ bound buffer, [CaB] , in the SR. The 
governing equation for the sarcoplasmic Ca2+ concentration 
in Eq. (2) is modified to Eq. (5) as below.

(3)�[CaF]

�t
= DDx

�2[CaF]

�x2
+ DDy

�2[CaF]

�x2
− Jdye,

(4)
d[CaB]

dt
= k+

B
C(

[

B]T − [CaB]
)

− k−
B
[CaB],

where the terms JSRdye , JSRbuffer , and JRyR are defined as (Li 
e t   a l .  2 0 1 7 ;  T a n  e t   a l .  2 0 0 7 ) 
JSRdye = −K+

FCs

(

[F]TSR − [CaF]SR
)

+ K−
F [CaF]SR

  ,  

JSRbuffer = − d[CaB]SR
dt

 and JRyR = �RyR
∑

�,� �D
(

x − x�
)

�D
(

y − y�
)

S
(

x, y, t;Topen
)

, where [CaF]SR is spatially and temporally 
diffusive, [CaB]SR is only diffusive in time (Li et al. 2017). 
These two are therefore updated with a PDE and an ODE (Li 
et al. 2017) as given in Eqs. (6) and (7) as below.

The molar flux, � , in the SR is governed by the current 
through the SR channels, IRyR , grid sizes in the x and y 
directions, �x and �y , and the discrepancy between the cyto-
solic and sarcoplasmic Ca2+ concentrations (Li et al. 2017), 
[

Ca2+
]

cyt −
[

Ca2+
]

SR
 , as �RyR = IRyR

2Fc�x�y

(

[

Ca2+
]

cyt −
[

Ca2+
]

SR

).

Numerical methods

A computational domain with dimensions 20 × 100 µm is 
used meshed with a grid size of 0.8/3 × 0.4 µm and time 
step size of 0.003125 ms. Channels are spaced lx = 2μm and 
ly = 0.8μm apart longitudinally and vertically, respectively 
(Table 1). As boundary conditions zero-flux is assumed at 
the cell boundaries by imposing �C∕�x = �C∕�y = 0 and 
�CS∕�x = �Cs∕�y = 0 (Backx et al. 1989; Smith et al. 1998; 
Izu et al. 2001a, 2001b; Chen et al. 2013, 2014; Serife et al. 
2017). Similar assumption is imposed on the Ca2+ bound 
dye, i.e. �[CaF]∕�x = �[CaF]∕�y = 0 (Backx et al. 1989; 
Smith et al. 1998; Izu et al. 2001a, 2001b; Chen et al. 2013, 
2014; Arif et al. 2019; Serife et al. 2017). The governing 
Eqs. (1), (2) and (3) in one dimension are discretised using 
the Crank–Nicolson finite difference method. Equation (4) 
is discretised and solved using the forward Euler method. In 
the two-dimensional case, Eqs. (1), (2) and (3) are discre-
tised using the alternating direction implicit (ADI) method. 
Discretising Eq. (2) is given in two steps as in Eqs. (8) and 
(9) below.

(5)
�Cs

�t
= DCsx

�2Cs

�x2
+ DCsy

�2Cs

�y2
+ JSRdye

+ JSRbuffer + Jpump − JSRleak + JRyR,

(6)
�[CaF]SR

�t
= DF

(

�2[CaF]SR

�x2
+

�2[CaF]SR

�y2

)

− JSRdye,

(7)

d[CaB]SR

dt
= K+

CSQ
Cs

(

[B]TSR − [CaB]SR

)

− K−
CSQ

[CaB]SR.
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w h e r e  t h e  a d d i t i o n a l  t e r m s  a r e 
T =

(

Jdye
n + Jbuffer

n + Jpump
n − JCRU

n
)

 and the �2
x
 , �2

y
 corre-

spond to the standard second order central differences in the 
x and y directions, respectively. These are given as 
�2
x
[CS]

n =
[CS]

n
i−1j

−2[CS]
n
ij
+[CS]

n
i+1j

Δx2
 and �2y [CS]n =

[CS]nij−1−2[CS]nij+[CS]nij+1
Δy2

.
Equations (1) and (3) are discretised as before in Serife et al. 

(2017) and will not be given here. The discretised equations 
are then represented by a matrix and vector form where a tridi-
agonal matrix solver is used to numerically solve this system 
of equations. For the model with an improved sarcoplasmic 
calcium dye and buffer representation, Eqs. (1) and (3)–(7) 
are discretised using the same methods mentioned above. For 
the one-dimensional case, a combination of Crank–Nicolson 
finite difference method for the PDEs and Euler method for 
the ODEs. As for the two-dimensional case, a combination of 
ADI for the PDEs and Euler method for the ODEs. The non-
buffered and non-dyed version of this improved model is also 
treated in a similar fashion by using the mentioned models 

(8)
−

DDxΔt

2Δx2
[CS]

n+
1

2

i−1j
+

(

1 +
DDxΔt

Δx2
+

kf

2
Δt

)

[CS]
n+

1

2

ij

−
DDxΔt

2Δx2
=
(

1

2
DDy�

2

y
+ 1

)

[CS]
n
ij
+

1

2
(T),

(9)
−

DDyΔt

2Δy2
[CS]

n+1
ij−1

+

(

1 +
DDyΔt

Δy2
+

kf

2
Δt

)

[CS]
n+1
ij

−
DDyΔt

2Δy2
[CS]

n+1
ij+1

=
(

1

2
DDx�

2

x
+ 1

)

[CS]
n+

1

2

ij
+

1

2
(T),

depending on the dimensionality. The simulation results are 
given in the next section.

Results

Comparison of the one‑ and two‑dimensional 
models

The two-dimensional system is set to be isotropic 
( DCx = DCy , DDx

= DDy
 and DCsx

= DCsy
 ) for the purpose of 

comparing with the one-dimensional system. The calcium 
release is set to be based on two columns of point sources in 
the middle of the domain (Fig. 1). The source strengths, � , 
for both the one- and two-dimensional models require sepa-
rate numerical conversions since a line source is not equiva-
lent to a linear array of discrete CRUs. Therefore, the molar 
flux of the line source requires adjustment to approximate 
the molar flux of a point source. The source strengths used 
are �1 = 0.19�3 and �2 = 0.51�3 for the one- and two-dimen-
sional systems, respectively (See appendix and (Serife et al. 
2017) for derivation). �i, i = 1, 2, 3 refer to the source 
strength in one-, two- and three-dimensional settings. Solv-
ing Eqs. (1)–(4) in both one dimension (i.e. derivatives in 
the y-direction are set to zero) and two dimensions with the 
parameters set to values in Table 1 (unless mentioned) (Izu 
et al. 2001a, 2001b; Chen et al. 2013, 2014) give the results 
in Fig. 2.

Figure 2 shows the cytosolic and sarcoplasmic Ca2+ con-
centrations for the one-dimensional (top panels) and two-
dimensional (bottom panels) models, respectively. From 
initiation to activation of neighbouring channels there is 
some delay for Ca2+ near the neighbouring channels to 
reach activation threshold. Once the neighbouring channels 
are activated, there is an increase in Ca2+ around the region 
which explains the decrease then slight increase in concen-
tration from spark initiation. The results for the sarcoplasmic 
Ca2+ shows a drop to between 441 and 482.2 µM for the 
one-dimensional model and between 397 and 441.1 µM for 
the two-dimensional case. This is a large reduction in the 
differences between the two models compared to our previ-
ous work (Serife et al. 2017) where an ODE is used instead 
of a PDE to represent the sarcoplasmic Ca2+ concentration. 
Comparing results for the one- and two-dimensional models 
in our previous work (Serife et al. 2017) showed large dis-
crepancies in the sarcoplasmic Ca2+ concentrations between 
the one- and two-dimensional models of about 350 µM. With 
this modified model this discrepancy has reduced to approxi-
mately 40 µM.

On the other hand, the time course of the cytosolic Ca2+ 
waves are consistent between the two models as apparent in 
Fig. 2 (left panels) and Fig. 3 where the normalised cytosolic 

Table 1   Standard parameter 
values

Symbol Values Units

DCx,DCy 200 µm2s−1

DDx,DDy 20 µm2s−1

DCsx
,DCsy

12 µm2s−1

lx,ly 2,0.8 µm
[Ca2+]cyt(∞) 0.1 µM
[Ca2+]SR(∞) 640 µM
Fc 96,500 Cmol−1

Vpump 0.208 µMs−1

Kpump 0.184 µM
Kprob 15 µM
npump,nprob 3.9,1.6 µM
k,kf 10,1 s−1

Pmax 0.3 s−1

ICRU 20 pA
k+
B
,k+
f

100,80 (µMs)−1

k−
B
,k−
f

100,90 s−1

[B]T,[F]T 123,50 µM
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fluorescent dye profiles, F/F0, are given for the two models 
showing a peak amplitude of 1.8 in both cases.

Improved sarcoplasmic buffer and dye properties: 
comparison of one‑ and two‑dimensional models

Similar to the previous section the two-dimensional model 
is set to be isotropic ( DCx = DCy, DDx

= DDy
 and 

DCsx
= DCsy

 ). The one- and two-dimensional models are 
discretised in a similar fashion to the ones before using CN 
for the one-dimensional PDEs and ADI for the two-dimen-
sional PDEs with forward Euler used for the ODEs. The 
parameters associated with the rate of passive Ca2+ efflux, k 
and kf, are set to 8 s−1 and 0.25 s−1, respectively. The sarco-
plasmic Ca2+ at rest is set to 954 µM. The parameters associ-
ated with the sarcoplasmic buffers and dye used are given in 
Table 2 (Li et al. 2017). The rest of the parameters not men-
tioned here are adopted from the previous section (Table 1).

Figure 4 shows the simulation results run for 550 ms for 
reproducing the time course of the normalised cytosolic (left 
panels) and sarcoplasmic (right panels) fluorescent indica-
tor dye profiles for the one-dimensional (top panels) and 
two-dimensional (bottom panels) models. Observing the 
normalised fluorescent values in the SR, i.e. 

[

�F∕F0

]

SR
 

profile, the drop is computed to be 0.16 which represents 
the blink amplitude. Although the blink amplitudes in both 
the one- and two-dimensional cases match closely, there is a 

discrepancy in the normalised cytosolic fluorescent dye val-
ues of about 0.6 with a value of 1.17 in the one-dimensional 
and 1.23 in the two-dimensional cases.

The estimated blink amplitude of 0.085 is comparable 
to a previously published numerical study (Li et al. 2017) 
and experimentally observed blink amplitude of 0.08 ± 0.02 
(Brochet et al. 2005). However, the experimentally observed 
range has been reported to be an underestimate of the 
true Ca2+ depletion and a corrected blink amplitude (i.e. 
[

ΔF∕F0

]

SR
 ) is measured as 0.13 (Brochet et al. 2005) in 

which the computed blink values in this work is a close 
estimate.

Non‑buffered and non‑dyed properties

This section is aimed at giving the simulation results 
on the cytosolic and sarcoplasmic Ca2+ wave propaga-
tion in the absence of buffer and dye properties in com-
parison with when buffer and dye are present. The model 
presented in Sect. 3.2 is used to distinguish the effects of 
buffer and dye on the Ca2+ movement in both the cytosol 
and the SR compartments by setting Jbuffer = Jdye = 0 and 
JSRbuffer = JSRdye = 0 whilst keeping all other parameters con-
stant. Figure 5 shows the results for solving the model in 3.2 
with (bottom panels) and without (top panels) cytosolic and 
sarcoplasmic buffers and dye.

Fig. 1   The uniform distribu-
tion of the CRU channels on 
the Cartesian domain for the 
two-dimensional case. Two 
columns of point sources verti-
cally (black dotted points) along 
the middle of the domain (i.e. 
at 50 µm and 50.4 µm) are force 
activated to initiate a wave
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The parameters in this model reflect fluo-3 used in 
the cytosol and fluo-5 N used in the SR compartments. 
The results show a noticeable change in both amplitude 
and speed of Ca2+ movement in the cytosol and SR. The 

termination of Ca2+ waves take twice as long with the 
presence of buffers and dye than that without these proper-
ties. The cytosolic Ca2+ peaks are supressed in the pres-
ence of buffers and dye roughly by 35%. This inevitably 
changes the amount of depletion in the SR. The amount 

Fig. 2   One-dimensional (top panels) and two-dimensional (bottom 
panels) model results for the cytosolic (left panels) and sarcoplasmic 
(right panels) Ca2+ wave formation from initiated sparks and blinks 
with cytosolic Ca2+ buffer and dye included. Sensors correspond to 
probes placed at locations to record computed values of cytosolic and 
sarcoplasmic calcium. Sensors 1–7 are located at 0, 25, 25, 38, 38, 49 
and 50 µm longitudinally from the source of the initially released cal-
cium and 9.6 µm in the transverse direction for the two-dimensional 
case (See Fig. 1 for how the domain is set up). Ca2+ sparks and blinks 

are initiated at the centre of the cell domain as shown above by the 
first peaks and blinks. Peak (cytosolic) concentration values at sen-
sors 1–7 in µM for the one- and two-dimensional models are (13.58, 
11.07, 12.86, 11.19, 12.96, 14.08, 20.74) and (15.03, 9.70, 11.36, 
9.77, 11.41, 12.37, 21.23), respectively. Trough (sarcoplasmic) values 
in µM at sensors 1–7 for the one- and two-dimensional models are 
(482.2, 448.8, 448.8, 445, 445.9, 443.4, 441) and (441.1, 406.6, 405, 
403, 402, 399.3, 397), respectively

Fig. 3   Normalised cytosolic 
fluorescent dye profile for the 
one-dimensional model (left) 
and two-dimensional model 
(right). There is a similar pat-
tern of decrease then slight 
increase in profile just after 
initiating a spark. This is due to 
increase in concentration around 
the region where neighbouring 
channels are activated leading to 
additional Ca2+ release near the 
first initiation point
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depleted has dropped by approximately 57% when buffers 
and dye are present.

Discussion and conclusion

Comparing results of the one- and two-dimensional 
models in our previous work (Serife et al. 2017) showed 
large discrepancies in the sarcoplasmic Ca2+ concentra-
tions between the models of about 350 µM. The model 
formulation for the sarcoplasmic Ca2+ was limited to an 
ODE. In this work, the ODE is replaced by a PDE and 
the discrepancy in the sarcoplasmic Ca2+ concentrations 
between the two cases has decreased to 40 µM. The large 
discrepancy is due to the spacing between channels in the 
y-direction introducing a large variation in the SR Ca2+ 

content. Given this observation when the Ca2+ movement 
in the SR is modelled using an ODE the dispersive nature 
is not accurately simulated. Therefore, the use of a PDE 
becomes more important.

Another important observation made which will be very 
useful when modelling such dynamic behaviour in cardiac 
myocytes using DEs is the results from the modified and 
extended model given in the previous section that accounts 
for the Ca2+ bound buffer and dye movements in the SR. The 
blink amplitude obtained here shows good agreement with 
results obtained in the experimental (Brochet et al. 2005) 
and computational (Li et al. 2017) studies. On the other 
hand, the results obtained for the normalised fluorescent 
dye in the cytosol shows slight discrepancy from the one-
dimensional to the two-dimensional model. This shows that 
a source strength adjustment that was made for the cytosolic 
Ca2+ release molar flux may also be needed in the case for 
the sarcoplasmic Ca2+ molar flux.

The points discussed above are important to consider 
when modelling the Ca2+ movement in cardiac myocytes 
using DEs since most often ODEs are used as simplification 
and as a consequence, one must keep in mind the result-
ing trade-offs. If an ODE is used in replacement of a PDE 
for estimating the cytosolic Ca2+ movement this might be 
acceptable given that one is aware of the large discrepancies 
in the Ca2+ content and useful insight is drawn from the 
cytosolic content. This point becomes more important as 

Table 2   Standard parameter values for sarcoplasmic buffer and dye

Symbol Values Units

DF 1.6 µm2s−1

[Ca2+]SR(∞) 954 µM
[B]TSR , [F]TSR 0.014, 20 µM
K+
CSQ

 , K−
CSQ

100, 60,000 µMs−1, s−1

K+
F

 , K−
F

48.8, 19,520 µMs−1, s−1

IRyR 0.07 pA

Fig. 4   Normalised cytosolic 
fluorescent dye profiles (left 
panels) and normalised sarco-
plasmic fluorescent dye profiles 
(right panels) for the one-
dimensional model (top panels) 
and two-dimensional model 
(bottom panels)
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three-dimensional models become more frequent since the 
discrepancies can become larger due to the fact that spacing 
between channels in the z-direction will introduce additional 
variations into the cytosolic and sarcoplasmic Ca2+ contents.

Finally, the effect of buffers and dye based on the 
improved model given in this paper was also computa-
tionally investigated. The results showed that inclusion of 
buffers and dye, slows down the speed and suppresses the 
amplitude of Ca2+ wave propagation. This behaviour is 
observed in experimental studies using fura-2, fluo-3 (Wang 
and Thompson 1995; Wang et al. 1997) or a combination of 
fluo-4 and fluo-5 N (Bovo et al. 2015). However, the com-
bined use of fluo-3 and fluo-5 N has not been explored in 
such a manner so it may not serve as a direct comparison. 
The study presented here can be further extended to explore 
the influence of fluo-5 N and fluo-3 indicators separately. 
This area remains not sufficiently investigated and future 
studies on distinguishing the effect of different types of dye 
and buffer properties will be beneficial to providing insight 

into the effects of these properties on Ca2+ movement and 
contractility.

Most mathematical models using stochastic partial dif-
ferential equations, focus on studying the occurrence of 
individual Ca2+ sparks. The model presented here incor-
porates a stochastic activation of the CRUs which in turn 
effects the activation of the RyRs and is one of the few that 
couple stochastic cytosolic and sarcoplasmic Ca2+ produc-
ing fluorescent dye profiles comparable in both pattern and 
amplitude to that in experiments. In a previous model (Li 
et al. 2017), the stochastic coupling of the cytosolic and 
sarcoplasmic compartments was simultaneously solved, 
however, only results for the blinks were presented and the 
effect of blinks on the occurrence of sparks were not shown. 
The blink amplitude estimated previously (Li et al. 2017) as 
well as the model presented here produces a blink ampli-
tude very close to the corrected blink amplitude in ΔF∕F0 
observed experimentally. Given the suitable parameters rep-
resenting the Ca2+ bound buffer and dye reactions this model 

Fig. 5   Cytosolic and sarcoplasmic Ca2+ concentration results in 
the absence of buffer and dye (top panels) and that in the presence 
of buffer and dye properties (bottom panels). As mentioned before 
sensors correspond to probes placed at locations to enable the time 
course of computed concentrations to be recorded. Sensors 1–7 are 
located at 0, 25, 25, 38, 38, 49 and 50  µm longitudinally from the 
source of the initially released calcium and 9.6 µm in the transverse 
direction for the two-dimensional case (See Fig. 1 for how the domain 

is set up). Peak (cytosolic) concentration values in µM at sensors 1–7 
are (95.54, 100.9, 109.2, 101.3, 109.3, 122.4, 139) for the non-buff-
ered and non-dyed model, and for the buffered and dyed model are 
(60.76, 62.54, 75.12, 62.7, 75.46, 95.43, 113.6), respectively. Trough 
(sarcoplasmic) values in µM at sensors 1–7 are (282.1, 299.3, 299.5, 
299.1, 299.3, 301.2, 309.5) for the buffered and dyed model, and for 
the non-buffered and non-dyed model are (572.8, 578.9, 578.7, 578.6, 
578.7, 578.6, 583.9), respectively
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can easily be adapted for cell models for further evaluation. 
Previously, it was shown that using fractional differential 
equations (FDEs) as opposed to PDEs for modelling Ca2+ 
sparks and waves reproduces more accurate full-width at 
half-maximum (FWHM) property of the Ca2+ spark (Chen 
et al. 2013, 2014, 2018a, b; Tan et al. 2007; Li et al. 2011). 
A similar extension can be applied to the current work. The 
influx of Ca2+ from the extracellular medium to the cyto-
sol occurs as regular pulses through L-type channels. The 
effect of this in the current work is addressed by including 
two columns of points sources in the middle of the domain 
which accounts for only one pulse, but this can be extended 
to regular intervals of pulses. Due to the focus of the work, 
this has not been accounted for.

Appendix

An adjustment to the source strength was previously done 
(Serife et  al. 2017) (adjusted from Izu et  al. 2001b) to 
approximate the molar flux of a point source in two dimen-
sions. This approach is extended for the one- and two-dimen-
sional cases in this current work. The numerical conver-
sion for the source strength involves the Green’s function 
obtained from the analytical solution of the diffusion prob-
lem for each of the dimensional cases and convolving this 
with the Heaviside function. The deduced relations for each 
of the cases are

 where w =

√

(

DCxΔy
2 + DCyΔx

2
)

DCz + Δz2DCxDCy and D 
is the geometric mean of DCx , DCy and DCz . Equating the 
deduced expressions for the one- and two-dimensional cases 
and setting DCx = DCy = DCz = 0.2�m2ms−1 with mesh sizes 
Δx = 0.4 , Δy = 0.8∕3 and Δz = 0.2 and channel open dura-
tion Topen = 10ms gives the relation �1 = 0.19�3∕�m

2 and 
�2 = 0.51�3∕�m where �3 =

ICRU

2F
 which is incorporated into 

the simulation of the one- and two-dimensional models.
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