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Highlight: Recently emerging literature reveals that plastids are more multifaceted in their spatial 

organization and environmental sensing and signaling than previously thought. This discovery opens 

the field to important new facets of how plants adjust to environmental change.  
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Abstract 

In plants, plastids are thought to interconvert to various forms that are specialized for 

photosynthesis, starch and oil storage, and diverse pigment accumulation.  Post-endosymbiotic 

evolution has led to adaptations and specializations within plastid populations that align organellar 

functions with different cellular properties in primary and secondary metabolism, plant growth, 

organ development and environmental sensing. Here, we review plastid biology literature in light of 

recent reports supporting a class of ‘sensory plastids’ that are specialized for stress sensing and 

signaling. Abundant literature indicates that epidermal and vascular parenchyma plastids display 

shared features of dynamic morphology, proteome composition and plastid-nuclear interaction that 

facilitate environmental sensing and signaling. These findings have the potential to reshape our 

understanding of plastid functional diversification. 
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Introduction 

The evolution of multicellular eukaryotic organisms was sparked, in part, by successful 

endosymbiosis of a photosynthetic microbe, bringing about an entire divergent branch of 

autotrophic systems evolution (Marechal, 2018). Post-endosymbiotic expansion of the chloroplast 

has been punctuated by functional diversification, with many plastid types no longer fully 

photosynthetic. As an organellar group, distinct plastid forms can interconvert to provide specialized 

functions within a specific tissue type or developmental stage (Pyke, 2007). Yet, the vital importance 

of photosynthesis has inclined the majority of plastid studies toward the mesophyll chloroplast and 

its properties. The origin and specialized features of other classes of plastids are only now being 

elucidated, leading to better understanding of how plastid transitions are defined by changes in their 

nuclear-directed proteome composition (Christian et al. 2020; Chu et al. 2018; Melonek et al. 2016).  

 

Earlier botanical literature referred to the “leucoplast”, a collective term for plastids much smaller in 

size than the mesophyll chloroplast and non-photosynthetic (Pyke, 2007). Leucoplasts have been 

described in epidermal cells, vascular parenchyma, root tissues, meristem regions and reproductive 

tissues. However, the smaller plastids within the epidermal pavement cells of Arabidopsis do contain 

chlorophyll (Higa et al. 2014; Barton et al. 2016), and this appears to be the case in vascular 

parenchyma plastids as well (Virdi et al 2016), based on autofluorescence in laser confocal 

microscopy experiments. The abaxial epidermis “leucoplasts” of Nicotiana benthamiana, have a 

photosynthetic efficiency similar to that of mesophyll chloroplasts, indicating that different higher 

plant species may have a range of photosynthetic competencies in tissues such as epidermis, bundle 

sheath and vascular parenchyma (Fryer et al. 2003; Galvez-Valdivieso et al. 2009; Barton et al. 2016; 

Exposito-Rodriguez et al. 2017; Xiong et al. 2021). Studies have shown that the “leucoplast” 

proteome contains distinct proteins not found within the mesophyll chloroplast (Beltran et al. 2018). 

Still, to date this plastid type remains ill-defined in the literature, earlier described as participating in 

“synthesis and storage of starch, lipids and proteins” (Wise, 2006).   

 

Leucoplasts, or a subset thereof, play important roles in a plant’s interaction with, and response to, 

its environment. We focus on this plastid subtype here with primary emphasis on work conducted in 

the model species Arabidopsis thaliana. Based on outcomes of this recent research, which includes 

organelle dynamic morphology, proteome composition and genetic mutant studies, this organelle is 

referred to as the sensory plastid (Virdi et al. 2016; Beltran et al. 2018). For the purposes of this 
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review, we specifically limit mention of the guard cell plastids, which share several features with 

sensory plastids but carry out specialized functions that distinguish their particular cell type. 

 

Sensory plastids are specialized for environmental sensing/signaling 

Sensory plastids are characterized not only by a distinctively small size but by unusually dynamic 

properties, including the production of stromules. Stromules are plastid envelope tubular 

outgrowths that extend to various lengths and display highly dynamic properties (Hanson and Hines, 

2018). The structures are thought to facilitate plastid intracellular positioning and increase in density 

in plastid relocation and division mutants (Caplan et al. 2015; Holzinger et al. 2018; Ishikawa et al. 

2020). Stromules also increase when plastid outer envelope proteins are over-expressed (Machettira 

et al. 2012), reflecting interactions with other cellular components. Although most studies of 

stromule activity are conducted in leaf epidermal pavement cells, the structures are also abundant in 

vascular parenchyma and root hair plastids (Gray et al. 2012). Response to environmental stimuli can 

induce rapid and prolific stromule formation, and stromule numbers increase under conditions of 

high light and redox changes (Brunkard et al. 2015), increased glucose or sucrose levels (Schattat and 

Klosgen, 2011), and in response to abiotic stress-related hormone signaling and pathogen effector-

triggered immunity (Gray et al. 2012; Caplan et al 2015; Kumar et al. 2018; Savage et al. 2021). 

 

Root epidermal plastids bear striking resemblance to the above-ground sensory plastid in size 

and behavior, and root epidermal cells are also notable for dynamic stromule formation 

(Pyke, 2007). Root plastids influence interactions between root cells with symbiotic 

microbes, for example, so that sites where fungal interactions occur within arbuscule cells 

produce extensive stromule networks (Fester et al. 2001; Hans et al. 2004). These points of 

interaction undergo measurable changes in plastid metabolic activity during establishment of 

symbiosis (Lohse et al. 2005).  

 

Most studies that focus on plastid stromule activity have been conducted in epidermal pavement 

cells. This reliance on epidermis may be one of convenience, facilitating live cell imaging. Yet, 

mesophyll chloroplasts show markedly reduced stromule numbers, average length and activity 

relative to epidermal cell plastids (Waters et al. 2004; Higa et al. 2014). This disparity in plastid 

stromule activity could be a function of differences in plastid size and density in mesophyll and 

epidermal cells, with greater stromule activity in plastids that can move more freely within the cell 
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(Waters et al. 2004). Sensory plastid stromule activity also appears to be an important specialized 

feature of environmental sensing and signaling activities concentrated in particular cell types and 

activated under any condition that limits photosynthesis (Mullineaux et al. 2020; Breeze and 

Mullineaux, 2022).The epidermal sensory plastid is also a system of choice for investigating plastid 

perinuclear associations. These plastids can position in close nuclear proximity, with movement 

controlled by the actin cytoskeleton (Sheahan et al. 2004).  During cell division, this association can 

serve to ensure distribution of sufficient plastids to each daughter cell. Epidermal plastid-nuclear 

associations can involve physical connection, with plastids able to surround the nucleus and attach 

to the nuclear membrane via membrane contact sites; this activity is influenced by trafficking 

through the perinuclear space, which is contiguous with the endoplasmic reticulum (Kwok and 

Hanson, 2004; Higa et al. 2014; Breeze and Mullineaux 2022). Recent evidence shows that plastid 

perinuclear association in epidermal cells occurs in response to plant environmental stress (Savage 

et al. 2021). Actin-mediated attachment of plastids to the nucleus is necessary for the high light 

avoidance response, in which blue light-induced movement of the nucleus requires attachment to 

plastids (Higa et al. 2014). This plastid-nuclear attachment relies on plastid division components that 

include PLASTID DIVISION1 and 2 (PDV1, PDV2) and PARALOG OF ARC6 (PARC6) (Higa et al. 2014; 

Itoh et al. 2018).  

 

Mutant studies of plastid morphology show that PARC6, a factor that positions the plastid for 

division in vascular plants, functions predominantly to regulate non-mesophyll plastid morphology 

and stromule activity (Itoh et al. 2018; Ishikawa et al. 2020). Additional genetic factors differentially 

regulate non-mesophyll plastid development, such as TGD5, a component of lipid metabolism that 

influences sensory plastid but not mesophyll chloroplast development (Itoh et al. 2021). TGD5 is a 

protein that participates in endoplasmic reticulum-to-plastid transport for thylakoid lipid assembly. 

This alternative pathway for lipid trafficking appears to be preferred for epidermal and also root 

plastid development (Obata et al. 2021). 

 

Transcription factors GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and 

CYTOKININ-RESPONSIVE GATA1 (CGA1) regulate plastid development such that ectopic 

overexpression induces enhanced chlorophyll production and chloroplast-like thylakoid 

development in epidermal and vascular parenchyma cell plastids (Chiang et al. 2012). These various 

observations are evidence of nuclear-directed plastid functional differentiation between adjacent 
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cell types, and incorporation of this type of mutant analysis helps to define plant tissues that share 

plastid types and developmental programs. 

 

Identifying likely components of the sensory plastid proteome 

Several components of the sensory plastid proteome are shared with the mesophyll chloroplast in a 

manner that permits for specialized functions in the two plastid types.  These plastid targeted 

proteins are often encoded by duplicate genes where assignment to a putative sensory plastid 

versus mesophyll chloroplast function can be made by in silico analysis of publicly available 

expression data. With ePlant (Waese et al. 2017), for example, incorporation of MutS HOMOLOG 1 

(MSH1) as a standard for sensory plastid-specific (Virdi et al. 2016; Beltran et al. 2018) and PSBO1, 

an extrinsic subunit of Photosystem II, as a standard for mesophyll chloroplast-localized proteins can 

facilitate initial assignment of expression for other candidates to one plastid type or the other. 

Discrimination is based largely on comparison of leaf and root expression patterns in response to 

environmental change, with MSH1 expressing moderately throughout the plant and in epidermal 

and root vascular tissues and PSBO1 showing strong leaf and above-ground expression and nearly 

undetectable root signal under most conditions tested (Figure 1). 

Putative protein assignment to sensory plastid can be followed by genetic and biochemical analyses 

for further confirmation, often producing interesting observations that further elaborate sensory 

plastid function in environmental sensing. for example, the Arabidopsis CHLOROPHYLL A/B BINDING 

PROTEIN UNDEREXPRESSED (CUE1, a.k.a. PPT1) gene encodes a phosphoenolpyruvate/phosphate 

translocator protein located on the inner membrane of the sensory plastid, and a cue1 mutation 

produces a reticulate (dark-green leaf venation) phenotype (Li et al. 1995; Voll et al. 2003). This 

mutant phenotype reflects vascular tissue-associated expression and can be complemented by 

supplementation with aromatic amino acids, indicative of shikimate pathway influence (Voll et al. 

2003). The CUE1 protein is enriched in sensory plastid proteome studies (Beltran et al. 2018) and 

CUE1 shows sensory plastid-associated expression in silico (Fig. 1). The homologous locus, PPT2, 

encodes the mesophyll chloroplast PEP translocator protein (Hilgers, et al., 2018) and shows 

mesophyll chloroplast-associated expression in silico.  cue1 mutant serves as second site suppressor 

of ros1 mutations (Shen et al. 2009); ROS1 encodes a demethylase that modulates nuclear cytosine 

methylation genome-wide, serving as a rheostat for dynamic methylome adjustment (Williams et al. 

2015).  
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The shikimate pathway gives rise to numerous products vital to plant defense and stress response 

(Maeda and Dudareva, 2012). The first enzyme of the shikimate pathway is 3-deoxy- d-arabino-

heptulosonate-7-phosphate synthase (DAHPS), which converts PEP to 3- dehydroquaianate.  The 

enzyme is encoded by two genes in Arabidopsis, DAHPS1 and DAHPS2 (Tzin & Galili, 2010). In silico 

expression profiling indicates that DAHPS1 is likely localized to the sensory plastid, and DAHPS2 to 

the mesophyll chloroplast (Fig. 1); DAHPS1 also localizes to the sensory plastid by proteome analysis 

(Beltran et al 2018). DAHPS1 is induced in response to wounding and pathogen infection (Keith et al. 

1991;Gorlach et al. 1995) while DAHPS2 is constitutively expressed (Maeda and Dudareva, 2012). 

These observations suggest that gene duplication and differential accumulation in the two plastid 

types further specialize this enzyme for environmentally-responsive shikimate-related functions. 

 

Other genetic components of the shikimate pathway are similarly configured. For example, 

shikimate kinase catalyzes a regulatory step in the pathway, converting shikimate to 

shikimate 3-phosphate (Tzin & Galili, 2010). Again, Arabidopsis encodes two SK isoforms, 

SK1 and SK2 with SK1 predicted to accumulate in the sensory plastid and SK2 in the 

mesophyll chloroplast, based on in silico data.  The shikimate pathway controls aromatic 

amino acid biosynthesis, and the branch point between phenylalanine and tyrosine 

biosynthesis lies at conversion of arogenate to tyrosine by arogenate dehydrogenase (TyrA). 

In Arabidopsis, TyrA is encoded by two genes, TyrA1 and TyrA2 with TyrA2 protein 

enriched in the sensory plastid proteome (Beltran et al. 2018). For tryptophan biosynthesis, a 

first step is catalyzed by anthranilate synthase (AS), which functions as a heterotetramer of 

two alpha and two beta subunits (Niyogi et al., 1993; Poulsen et al., 1993). Two genes encode 

the AS alpha subunit in Arabidopsis, ASa1 and ASa2 with one ASb1. In silico analysis 

indicates ASa1 to be a candidate for sensory plastid localization and ASa2 for mesophyll 

chloroplast, while ASb1 encompasses both patterns of expression. Consistent with this 

prediction, Asa1 is regulated in response to wounding or pathogen stress while Asa2 is 

constitutively expressed, hinting at how TRP pathway product synthesis is regulated for plant 

defense (Bohlmann et al. 1995; Nyogi and Fink, 1992). Similarly, ICS1 and ICS2 are 

duplicate genes encoding isochorismate synthase, which converts chorismate to 

isochorismate in phylloquinone biosynthesis. Both enzymes also participate in salicylic acid 

biosynthesis, important to plant defense (Catinot et al. 2008) and responsive to sensory 

plastid perturbation (Shao et al. 2017; Yang et al. 2020). These genes are differentially 
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regulated  and ICS2 localizes to vascular tissue, implying sensory plastid association ( 

Macaulay et al. 2017). 

 

As evidenced by cue1, the reticulate leaf mutant phenotype is characteristic of sensory plastid 

dysfunction.  As many as 14 reticulata phenotype mutants have been associated with the sensory 

plastid by protein enrichment in the sensory plastid proteome (Beltran et al. 2018). Most show some 

version of a darker green venation with pale interveinal leaf tissue. Several of these mutants are 

related to the shikimate pathway, display vascular parenchyma-specific or vascular enriched 

expression patterns, and can be complemented by aromatic amino acid supplementation (Lundquist 

et al. 2014). Aromatic amino acid metabolism can affect plant defense. For example, phenylalanine 

pools and phenylpropanoid metabolism influence effector-triggered immunity (Yoo et al 2020). The 

Reticulata-related proteins also serve to interconnect photoperiodic growth, amino acid biosynthesis 

and ROS metabolism during Arabidopsis leaf development (Perez-Perez et al. 2013).  

 

Blue-native gel analysis of a reticulata mutant reveals changes in lipid remodeling, amino acid 

metabolism and plastid division components (Lundquist et al. 2017). Sensory plastids, while 

overlapping with mesophyll chloroplasts in several proteome factors, appear to implement these 

factors to confer novel capabilities for environmental responsiveness and development. 

Investigation of stress-responsive plastid proteins can sometimes identify root counterparts to 

above-ground pathways, again differentiating sensory plastid from mesophyll chloroplast 

functions. The genes encoding NADP
+
 oxidoreductases are distinguished by their function in 

photosynthetic chloroplasts (LFNR1 and LFNR2) versus non-photosynthetic plastids (RFNR1 

and RFNR2) (Grabsztunowicz et al. 2021). RFNR types respond to low temperature stress in 

the root (RFNR2) and ozone treatment in the leaf (RFNR1), where these oxidoreductases 

accumulate primarily within vascular and epidermal tissues. Recognizing these differential 

patterns of localization, expression and environmental responsiveness will likely reveal 

additional sensory plastid features in future studies. 
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Assigning some retrograde signaling components to putative sensory plastid-specific responses 

The sensory plastid proteome is characterized by particular proteins specific to this plastid type. 

Putative sensory plastid-specific proteins include SAL1(ALX8, FRY1), a component of organellar 

retrograde signaling, and MutS HOMOLOG 1 (MSH1), an organellar DNA binding protein. 

 

The redox-regulated phosphatase SAL1 is predominantly expressed within vascular tissue and 

localizes to both mitochondria and plastids to regulate levels of 3’-phosphoadenosine 5’-phosphate 

(PAP) by dephosphorylation to AMP (Estavillo et al., 2011). PAP is a byproduct of sulfur metabolism 

and is transferred to the nucleus, where it inhibits XRN type exoribonucleases (Estavillo et al., 2011; 

Litthauer & Jones, 2018).  These exoribonucleases target miRNAs, comprising a means for broad 

influence on plant stress responses. Tocopherols derived from tyrosine in the sensory plastid (via the 

shikimate pathway) serve to upregulate PAP (Fang et al., 2019). This process is dependent on CUE1 

(PPT1) (Fang et al, 2019) on the sensory plastid inner envelope (Beltran et al. 2018; Lundquist et al. 

2014).  

 

Plastid-derived 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is a high-energy sulfate donor for 

sulfation reactions that must be transported to the cytosol and Golgi apparatus for sulfotransferase 

reactions.  A thylakoid ADP/ATP carrier, PAPST1 (TAAC), has been shown to transport PAPS across 

the plastid envelope and to favor PAP and ATP as substrates (Gigolashvili et al. 2012). Expression 

analysis of the PAPST1 protein indicates its accumulation in epidermis, vascular tissues, meristem 

and reproductive tissues, but not mesophyll (Gigolashvili et al. 2012). 

 

 

The MSH1 system triggers sensory plastid-specific signaling 

The plant-specific gene MSH1 encodes a dual-targeted mitochondrial and plastid DNA binding 

protein that localizes to the sensory plastid but not the mesophyll chloroplast (Xu et al., 2011). MSH1 

participates in stabilizing the mitochondrial and plastid genomes by suppressing illegitimate 

recombination (Davila et al. 2011; Xu et al. 2011). The msh1 mutant has a variable and pleiotropic 

phenotype that reprograms development (Xu et al. 2012) , involving altered plastoquinone pool, 

delayed growth and maturation, altered circadian clock effects and enhanced abiotic and biotic 
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stress response  (Shao, et al., 2017; Virdi et al., 2016; Xu et al., 2011; Xu et al., 2012).  MSH1 RNAi-

suppressed plants produce progeny showing msh1 stress memory effects that are heritable 

indefinitely (Virdi et al., 2015; Xu et al., 2012). Transition to this epigenetic memory state is 

dependent on the RNA-directed DNA methylation (RdDM) pathway (Yang et al. 2020).  

 

Nuclear epigenetic changes are triggered by plastid perturbation in the msh1 mutant (Xu et al. 2012; 

Virdi et al. 2016). These unusual effects can be further studied through grafting of msh1 as rootstock 

with wild type scion. Next-generation graft progeny from these experiments are measurably 

enhanced in growth vigor and yield over wild type, effects that are also RdDM-dependent (Kundariya 

et al. 2020). The effects of MSH1 depletion on nuclear DNA methylation repatterning and gene 

expression reveal gene networks that contribute to the unusual phenotypic changes in plant growth 

and stress response (Kundariya et al. 2020; Yang et al. 2020).  

 

It is unclear how disruption of a plastid DNA binding protein triggers nuclear epigenetic effects. 

Studies suggest that instability of the plastid genome triggers nuclear genome responses.  For 

example, plastid genome instability induced by treatment with DNA gyrase inhibitors such as 

ciprofloxacin (CIP) can impact cell cycle and manifest in endoreduplication and plastid DNA 

fragmentation (LePage et al. 2013; Zampini et al. 2015; Duan et al. 2020). Likewise, the Arabidopsis 

triple mutants whirly1 (why1) / why3 / type1-polymerase (polb1) and why1/why3/plastid DNA 

recombinase1 (recA1) display plastid genome instability. These mutants and treatments result in a 

wide range of stress-responsive, growth and developmental phenotypes (LePage et al. 2013; Duan et 

al. 2020), some similar to those of msh1 plants (Xu et al. 2011; Beltran et al. 2018). Different 

monocot and dicot msh1 mutant plant species show a leaf variegated phenotype, which is strongly 

associated with sensory plastid genome instability in cells of the vasculature and epidermis but also 

impact on chloroplast function in mesophyll tissue. The why1/why3/polb1, why1/why3/recA1 and 

msh1 mutants have a lowered photosynthetic efficiency in green parts of variegated tissues and 

show increased reactive oxygen species (ROS) levels by dye staining (Xu et al 2011; LePage et al. 

2013; Duan et al 2020). Elevated ROS lead, in turn, to a reconfiguration of nuclear gene expression 

associated with responses to excess light intensity, which affects a range of cellular functions 

(LePage et al. 2013; Beltran et al 2018; Duan et al 2020). A failure of such plants to induce 

anthocyanin pigmentation in their leaves upon exposure to excess light intensities was taken as 

evidence for increased photo-oxidative stress tolerance associated with improved seed yield and/or 
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increased shoot biomass (LePage et al 2013; Xu et al. 2011). However, at least the why1/why3/polb1 

plants are hypersensitive to paraquat (methyl viologen; LePage et al 2013), an observation that has 

not so far been reconciled with the above explanation. 

 

The CIP-triggered phenomenon requires SUPPRESSOR OF GAMMA RADIATION1 (SOG1), a gene that 

encodes a putative nuclear transcription factor responsive to DNA damage. The gene is thought to 

participate in a ROS-activated retrograde signaling pathway that regulates the expression of cell 

cycle genes (Duan et al. 2020). Epidermal and vascular parenchyma sensory plastids are enriched for 

proteins involved in responses to cadmium ion compared with mesophyll chloroplasts (Beltran et al. 

2018) and why1/why3/polb1 plants are enriched for altered expression of genes coding for 

glutathione redox processes (LePage et al 2013). SOG1 also regulates the induction of tolerance to 

cadmium toxicity and the accompanying oxidative stress (Hendrix et al. 2020). 

 

Plants respond to cadmium exposure by substantially increasing their glutathione content as the 

biosynthetic precursor of phytochelatins and to combat increased oxidative stress (Cobbett and 

Goldsbrough, 2002; Semane et al 2006; Hendrix et al. 2020).  Glutathione (as the reduced form GSH) 

could play a central role in signaling of sensory plastid genome instability for several reasons. First, 

GSH levels and redox state are critical for viability of root apical meristems and progression through 

the cell cycle (Vernoux et al 2000; Maughan and Foyer, 2006). The mutant root meristemless1 (rml1) 

encodes a defective plastid-targeted -glutamylcysteine synthase (GSH1) that catalyzes the first step 

in glutathione biosynthesis. The rml1 mutant may provide the link between glutathione content and 

consequently its redox state to the way in which retrograde signaling from sensory plastids with 

compromised genomes could initiate an epigenetic response.  A further linkage is that glutathione-S-

transferases (GSTs) catalyze conjugation of GSH to anthocyanins to allow accumulation in epidermal 

cell vacuoles (Marrs 1996; Kytridis et al. 2006; Li et al. 2011). Diminution of GSH content, as in msh1 

plants, would indirectly inhibit anthocyanin accumulation and a consequent lower pigmentation of 

their leaves. Third, a light intensity -dependent spreading variegation in tobacco over-expressing 

E.coli GSH1 in dysfunctional plastids might be similar to phenotypes displayed by msh1 plants of 

various species (Creissen et al. 1999; Xu et al. 2011).  
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Plastid-associated stress signaling   

Plastids participate in plant stress response but the retrograde signaling pathways that function in 

sensory plastid signaling have not been defined. Aspects of plastid-nuclear stress signaling originally 

attributed to mesophyll chloroplasts may, in some cases, be properties of sensory plastid stress 

response behaviors. In Arabidopsis, chloroplast-induced programmed cell death (PCD) pathways are 

initiated by the ROS singlet oxygen (1O2) that is generated during severe photoinhibition (Dogra et al. 

2018; Dogra and Kim 2020). The flu1 (fluorescent in blue light1) mutant, which accumulates photo-

toxic porphyrin biosynthetic intermediates that generate 1O2 (Op den Camp et al. 2003), shows a 

transcriptome profile that overlaps significantly with that of why1/why3/polb1 plants (LePage et al. 

2013). The oxidative stress tolerance of plastid genome instability mutants, accompanied by 

susceptibility to photoinhibition, could point to 1O2 being involved in their phenotypes. But whether 

these properties belong to mesophyll or sensory plastids is not known.  

 

Three retrograde signaling pathways initiated by 1O2 have been identified thus far and could provide 

both intracellular and systemic components in sensory plastid signaling. The EXECUTOR genes EX1 

and EX2 participate in 1O2 signaling by promoting and suppressing respectively the formation of 

specific oxidized chloroplast FtsH2 peptides that could be mobile signal transducers from the 

chloroplast (Dogra et al. 2019; Dogra and Kim 2020). Recently, EX1/EX2 have been shown to 

suppress the endoplasmic reticulum unfolded protein response (UPR), which potentially links 

chloroplast-directed PCD to a wide range of environmental stresses, including pathogen infection, 

heavy metal toxicity and heat stress (Beaugelin et al 2020; Breeze and Mullineaux 2022).  

 

However, EX1and EX2 expression, deduced in silico, localizes predominantly within photosynthetic 

tissues of the plant, and there is no indication of any specific function or expression in sensory 

plastids. The ex1/ex2 double mutant does not suppress a lesion mimic phenotype that is produced 

by the myoinositol phosphate synthase1(mips1) mutant commonly used in the study of PCD. The 

mips1 mutant is dependent on light and chlorophyll biosynthesis for lesion formation (Meng et al. 

2009) and the MIPS gene is, likewise, expressed in photosynthetic chloroplast-containing tissues 

based on in silico evaluation. However, the mips1 phenotype is suppressed by mutants of SAL1 

(Bruggeman et al. 2016), the nuclear-encoded gene that regulates levels of 3’phosphadenosine-5-

phosphate (PAP) and expresses in sensory plastid-containing cells (Estavillo et al. 2011). PAP 

movement from the plastid to the nucleus alters activity of 5’-3’ exoribonucleases that target micro-
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RNAs, increasing abiotic stress responsive gene expression (Estavillo et al., 2011; Litthauer & Jones, 

2018; Fang et al. 2019). Whether these observations reflect distinct mesophyll (EX1/EX2) versus 

sensory plastid (SAL1) properties is not yet clear.  

 

1O2-production in chloroplasts produces a cocktail of lipid peroxides and oxidized carotenoid 

derivatives that, in turn, give rise to a mix of reactive carbonyl species, molecules that can trigger 

PCD and are blocked by detoxifying enzymes, most notably GSTs (Marrs 1996; Mano et al. 2019; 

D’Alessandro et al. 2018; Muñoz and Munné-Bosch 2020). Lipid peroxidation products include 

oxylipins leading to jasmonic acid (JA) production. This process sets up a broad defensive response 

against stress conditions, especially in mutants such as chlorina1, which is highly susceptible to 

photoinhibition and production of 1O2 (Ramel et al. 2012; Ramel et al. 2013). Prominent among the 

oxidized carotenoid products is -cyclocitral, which can be used to elicit 1O2-induced oxidative stress 

resistance and drive expression and activation of the transcription factor (TF) SCARECROW LIKE14 

(SCL14).  This factor, in turn, is proposed to drive a network of NAC TFs that regulate the expression 

of genes coding for detoxifying enzymes (D’Alessandro et al 2018). SOG1 is not among these NAC 

TFs, but linkage to a -cyclocitral-directed route remains a possibility for transmitting signals from 

sensory plastids. 

 

Based on the phenotypes of unstable plastid genome mutants, 1O2-mediated signaling from 

compromised or dysfunctional plastids is a distinct possibility. However, other retrograde signaling 

molecules and pathways that have been described should be considered. The plastid isoprenoid 

biosynthetic intermediate methylerythritol cyclodiphosphate (MEcPP) is a retrograde signal that 

drives UPR and SA-mediated signaling in response to pathogen infection, wounding and high light 

intensities (Xiao et al. 2012; Walley et al. 2015). However, the ceh1 mutant, which accumulates high 

levels of MEcPP, does not display the phenotypes associated with unstable plastid genome mutants, 

suggesting that this pathway may not be prominent in considerations here. 

 

Hydrogen peroxide (H2O2) signaling in response to high light intensities provides possibilities for 

transmitting plastid-sourced signals within cells, between cells and systemically across the plant 

(Exposito-Rodriguez et al. 2017; Galvez-Valdivieso et al. 2009; Karpinski et al. 1999; Rossel et al. 

2007; Miller et al. 2007; Mittler and Berkowitz 2001). In vivo, H2O2 is sufficiently stable to be mobile 
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(D’Autreaux and Toledano 2007; Exposito-Rodriguez et al. 2017), and several of the plastid genome 

unstable mutants appear to have higher levels based on dye staining methods and induction of 

antioxidant protection (Beltran et al. 2018; Duan et al. 2020; LePage et al. 2013). Therefore, H2O2 has 

attracted interest as a signal transducer or one that participates in cascades of cell-to-cell 

transmission to propagate a signal systemically (Karpinski et al. 1999; Miller et al. 2007). Questions 

remain about how signaling specificity involving the ubiquitous H2O2 molecule might operate 

(Mullineaux et al. 2020), but invoking a role for Ca2+ and calcium-dependent and mitogen-activated 

protein kinases for retrograde signaling in the msh1 mutant is consistent with a role for H2O2 in 

transmitting signals from sensory plastids (Beltran et al 2018). A further point to consider is that not 

all sensory plastids may engage in retrograde signaling to the nucleus (Exposito-Rodriguez et al. 

2017; Mullineaux et al. 2020) and this raises the question of whether, in any particular cell type, all 

plastids engage in driving environmental sensing and signal transmission to the rest of the cell and 

the plant. For example, abscisic acid (ABA) is produced in vascular parenchyma during high light 

intensity exposure, when it occurs under low humidity conditions that trigger a transitory drop in 

leaf water status (Fryer et al., 2003; Galvez-Valdivieso et al., 2009). The ABA is secreted into bundle 

sheath cells (BSCs) where it activates two distinct signaling routes; a SNF1-RELATED PROTEIN 

KINASE2.6 (SnRK2.6) -PROTEIN PHOSPHATASE2C (PP2C ) module and a G-PROTEIN ALPHA SUBUNIT1 

(GPA1)-directed signaling pathway (Galvez-Valdivieso et al., 2009;  Gorecka et al., 2014). The action 

of SNRK2.6-PP2C is further enhanced in its induction of genes coding for antioxidant defenses by 

H2O2-directed retrograde signaling, most likely by inhibiting the bundle sheath cell protein 

phosphatase isoforms. This vascular parenchyma-directed ABA signaling pathway appears to be 

confined to bundle sheath cells, playing little, if any, role in the response of mesophyll tissues 

(Galvez-Valdivieso et al. 2009; Gorecka et al. 2014). Since vascular parenchyma cells are deemed to 

have sensory plastids, then here we have one example of how sensory plastids transmit a signal (in 

this case activation of ABA biosynthesis) and consequently integrate a second environmental 

component (a transient change in leaf water status) to modulate a retrograde signaling response to 

a distinct environmental challenge in a neighboring cell type. 

 

Summary comments 

We contend that sensory plastids and mesophyll chloroplasts are distinct, raising new questions 

important to our understanding of plant metabolism, environmental sensing and land plant 

evolution (Figure 2). Addressing these questions will present considerable experimental challenges, 

but recognizes that the entire nature, distribution and importance of specialized plastids may have 
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been underestimated. While there are, as yet, no definitive descriptions of how plastid-to-nucleus 

intracellular signaling and transduction occur cell-to-cell and systemically, the above brief 

descriptions provide characteristics and components worthy of investigation and models to be 

developed further. The sensory plastid was first described in studies of the msh1 mutant, with a 

defining part of its impact on transgenerational epigenetic processes (Beltran et al 2018; Dopp et al. 

2021). Similarly, SAL1 signaling effects on miRNA stability and nuclear stress-associated gene 

expression comprises another distinctive system for understanding sensory plastid-induced nuclear 

response to environmental change as does the signaling between vascular parenchyma and bundle 

sheath cells. These emerging systems, and others, serve to establish new benchmarks for testing the 

impact of any plastid retrograde signaling process or mutant. With increasing awareness of the 

partitioning of functions across different plastid types, future studies will inevitably serve to enrich 

our understanding of distinct plastid proteome compositions, functional features, and influence on 

plant growth and defense phenotypes. 
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Figure legend 

 

Figure 1. Heatmap-based visualization of gene expression variation for selected nuclear genes 

encoding plastid proteins. The heatmap viewer function within ePlant (Waese et al. 2017; Bio-

Analytical Resource for Plant Biology) was used to visually compare transcriptome data across more 

than 350 samples, with corresponding subcellular localization of the gene products. Each line on the 

heat map corresponds to a different data point, with band intensity proportional to expression level. 

Data are shown for MSH1 (At3G24320), PsbO1 (At5G66570), CUE1/PPT1 (At5G33320), PPT2 

(At3G01550), DAHPS1 (At4G39980) and DAHPS2 (At4G33510). This type of in silico analysis permits 

preliminary assignment of MSH1-like or PSBO1-like expression patterning as a first indicator of 

sensory plastid or mesophyll chloroplast localization, respectively. From data shown, we tentatively 

classify MSH1, CUE1 and DAHPS1 as sensory plastid-localized, with PSBO1, PPT2 and DAHPS2 as 

mesophyll chloroplast candidates. 

 

Figure 2. Modeling sensory plastid biology. A model of sensory plastid behavior in an epidermal or 

vascular perenchyma cell adjacent to mesophyll photosynthetic cells. Important questions remain 

regarding the regulation of protein cell-specific accumulation and cell type-specific signaling.  

Sensory plastid response to environmental change can trigger nuclear epigenomic and miRNA-

directed changes via cell-type specific signaling processes that elicit changes in stress response, 

metabolism and growth. A photosynthetic mesophyll cell in this model is expected to be distinct in 

its signaling repertoire, responding primarily to changes in light quality, quantity, and stress effects 

to trigger changes in nuclear and plastid photosynthetic gene expression.  
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Figure 2 
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