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Abstract

A time-series data that depends on sunlight, such as solar photovoltaic generation

output, principally consists of double sinusoidal components since solar irradiance

reaches the Earth’s surface while it spins and orbits. In addition, a part of solar en-

ergy is absorbed in the atmosphere by water vapour, dust, and ozone. In other words,

geographical coordinates and regional weather conditions influence the data patterns.

Therefore, this study focuses on developing a novel forecasting model to capture dou-

ble seasonal patterns by adopting the spatial information of the data such as sunshine

duration, cloudiness, and geographical coordinates. To explain an intra-day cyclical

movement, a sine wave function with a predicted magnitude is considered to be inte-

grated as a main part of the proposed model. Besides, an additive seasonal exponential

smoothing model, which is a classical decomposition approach widely used for short-

term forecasts, plays a role in adjusting the step-by-step error of forecasting over the

daily pattern of the sine wave. Aggregated (intra-day to daily) data and regional daily

weather-related variables are a real-world data set used in an empirical analysis by a

regression model. The numerical results showed how the performance of the proposed

model at different time horizons (e.g., one-step and one-period ahead forecasts) com-

pared with existing models by the mean error (ME), mean absolute error (MAE), and

root mean square error (RMSE).

Moreover, we present an application of the proposed forecasting model using a

stochastic programming (SP) model to optimise electricity usage in a household with

a photovoltaic system and an electric vehicle (EV). The several types of solar panel
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electricity systems, including on-grid and hybrid, with EV battery incentive schemes

will be developed by the two-stage SP model to investigate how to balance day-ahead

electricity supply and demand and minimise daily electricity costs.
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Preface

I launched this topic with the problem of increasing the value of data by incorporating

spatial information into a statistical-based optimisation approach. My problem initially

aims to study how to set bid prices for renewables-based electricity for energy suppli-

ers. After considering the issue for a while, energy storage development seems to be

an important key to the energy revolution for a successful shift from fossil fuel energy

generation to new renewable energy. Therefore, the objective has been reframed to

concern increasing the potential of energy storage by focusing on a PV power statisti-

cal forecast and stochastic programming model for day-ahead planning of household

electricity consumption. My raised issues hopefully make readers interested and de-

cide to read the thesis. Also, I deeply expect these aims’ results to be more valuable

and worthwhile for their application.
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Chapter 1

Introduction

This chapter gives reasons why we are going to focus on developing a spatial fore-

casting model and method for a multiple seasonality time series, and also presents the

main objectives of this study.

1.1 Background

Solar Photovoltaic (PV) forecasts

For decades, renewable energy and energy storage technologies have been developed

to conserve natural resources and reduce global carbon emissions from fossil fuels

[5, 6]. Numerous worldwide energy leaders are shifting their output away from fossil

fuels and toward renewable energy sources such as solar, wind, hydro, and biomass,

which are frequently referred to as clean energies. Renewable energy accounted for

more than a quarter of worldwide power consumption by the end of 2018, and its ca-

pacity has increased by 8%, led by wind energy and solar PV[7]. Renewable electricity

generation in the UK accounted for 35.8 per cent of total supply in 2019, led by wind,

bioenergy, solar photovoltaic, and hydropower [8]. Renewable energy sources are clas-

sified in a given location by taking into account existing energy flows and geographical

and temporal changes [9]. Solar panels and tiny wind turbines are two examples of fea-
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sible domestic renewable energy deployments in the United Kingdom [10, 11]. Solar

PV adoption has accelerated in recent years, as the International Energy Agency (IEA)

declared solar photovoltaic (PV) power to be the new king of energy, as it is continu-

ously less expensive than fossil-fuel power plants. However, major uncertainties exist

in the generation of electricity from natural resources; for example, solar energy and

wind turbine systems are highly dependent on weather conditions[12].

Therefore, to reduce the uncertainty caused by natural conditions, forecasting tools

are one of the solutions for understanding variation sources. By examining the rela-

tionship between horizons, models, and activities in Fig 1.1, it was determined that sta-

tistical approaches seem to be appropriate for projecting intra-day to day-ahead energy

consumption in residential (small-scale of spatial resolution) energy systems (HES).

What is the most effective statistical response approach for its applications? The sta-

tistical models that are viable are dependent on the data available to forecasters, such

as the photovoltaic system, historical power production statistics, and weather condi-

tions [13, 14]. As may well be noticed, several of the smartphone applications related

to renewable energy attempt to forecast PV output to help owners balance and plan

their energy usage.

For instance, PV Forecast: Solar Power Generation Forecasts [15] is a mobile ap-

plication that provides hour-by-hour forecasts of solar roof electricity generation for

the next 48 hours and daily forecasts for the next 7 days for any location, making it

the ideal tool for PV rooftop owners to connect the system without using Bluetooth

or Wi-Fi. The information in the output, which is provided to the user for optimizing

self-consumption (Household PVs), is calculated using parameter inputs such as PV

system capacity, sun altitude and azimuth, sunrise and sunset times, daylight duration

time, and solar noontime.
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Figure 1.1: Model classification according to spatial and temporal resolutions [1].

The uncertainty of solar energy

In general, solar power production is uncertain due to meteorological variables such as

clouds that can block sunlight from the sun. It brings about numerous problems relating

to an inefficient allocations of resources. In the context of photovoltaic power potential,

maximizing the self-consumption efficiency of electricity generation, planning energy

usage, and storing electricity for later use all appear to be possible options without

requiring end-user behaviour change.

Energy storage technologies are a key success factor to unlocking the full potential

of sustainable renewables[16], allowing energy produced by clean, affordable sources,

like wind and solar power, to be stored for later use. Moreover, batteries will be crucial

factor in the transition from fossil fuels to renewable energy. According to the char-

acteristics of storage technologies[17], battery solutions are an essential to balance

demand and supply in household (as electricity end-user) during a day for improving

renewable energy self-consumption.



4

1.2 Solar-based time series

In order to clarify the concept and terminology of multiple seasonality time series

connected with the sunlight at every spot on earth - which is discussed throughout this

study - we shall define the concept and terms involved as follows.

Solar radiation

Solar radiation, also known for short as sunlight, refers to the electromagnetic radia-

tion released by the sun. Solar radiation is a renewable source of energy that may be

captured and converted into usable forms of energy such as heat and electricity using a

variety of technologies. The amount of solar radiation reaching any given area on the

Earth’s surface varies by the distance from Earth to the sun, and the Earth’s rotation.

In other words, the solar intensity varies according to geographic location, time of day,

season, local landscape, and local weather.

Components of the solar-based time series

Classical methods of time series analysis are concerned with decomposing a series

into four fundamental components: trend, seasonal variations, cyclical variations, and

irregular components. The solar-based time series is a univariate data affected by the

sun, the daily pattern of time series that results directly from the earth’s exposure to

the sun (see Figure 1.2(b)) varies according to the amount of sunlight that reaches the

earth’s surface at indifferent rotation and orbit places (see the earth’s repeated move-

ments in Figure 1.2(a)). To have a better understanding of the earth’s movement, the

following three features are critical to consider.

• The earth rotates on its axis, resulting in daily non-negative sine wave patterns

as shown in Figure 1.2(d);

• Sine wave patterns at each location according to geographical coordinates have

different sunrise and sunset times even though the location has the same local
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time, i.e. there are different daytime lengths according to spatial data due to the

earth’s axis tilt;

• The earth’s orbit movement on the ecliptic plane results in seasons of the year.

Figure 1.2(c) illustrates the annual maximum of solar irradiance (power per unit

area received from the Sun) on the planet’s surface as a function of the distance

between the earth and the sun in an elliptical orbit, as depicted graphically in

Figure 1.2(a). For example, when solar energy reaches the earth’s surface in

summer (near-side), as illustrated in Figure 1.2(a)), it results in a higher solar

intensity than when solar energy reaches the earth’s surface in winter (far-side),

as peak daily solar power generation exhibits upper and lower amplitude bounds

for each period, as illustrated in Figure 1.2(c).

(a) Earth’s rotation and orbit
(Source: Berger and Loutre, 1994b, as cited in
Berger and Yin, 2012 [18])

(b) Solar-based time series characteristics

(c) Daily peak solar-based time series (d) High-frequency time series each day

Figure 1.2: The solar-based time series with high-frequency: (a) orbital and rotational
characteristics of the Earth with 365.256-day sidereal period and 24-hour period, re-
spectively, (b) the data that generate by the sunlight throughout four years, (c) daily
peak of time series throughout four orbital Earth, and (d) the daily cycle of time series
patterns.
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Therefore, in all of the above-mentioned, the components of data in relation to

sunlight, contain the following:

• first-seasonal (intra-day) variations by the earth as it spins on its axis1,

• second-seasonal (annual) variations by the earth as it orbits the sun (meteorolog-

ical Seasons)2,

• irregular component caused by the uncertainty of weather and other random fac-

tors.

Recently, there has been no statistical literature that has looked at the components of

solar-based time series. So, this study will focus on how to make a short-term spatial

forecasting model. The main objectives of this study are as follows:

1. Clarifying the concept of a solar-based time series

2. Developing spatial forecasting for double-sinusoidal time series by combining a

short-term forecasting model with a causal model included

• Data aggregation of the time series and related weather conditions for re-

gression analysis,

• Boundary value analysis of non-negative forecast defined by spatial infor-

mation such as latitude and longitude,

• Additive seasonal exponential smoothing,

• Spatial exponential smoothing.

– Model

– Method
1Earth currently has an axial tilt of about 23 degrees approximately away from vertical, the North

Pole stays in full sunlight all day in the summer, and falls in the twilight until early October during the
Autumn

2The Earth’s orbit is elliptical, with the Sun nearer one end than the other. This means Earth’s
distance from the Sun varies year-round.
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3. Applying a two-stage stochastic programming model for increasing the poten-

tial of energy storage for HES based on 24-hourly PV outputs simulated by the

proposed approach.

The remainder of this report is organised as follows. The second chapter examines

the literature on statistical forecasting approaches for single and multiple seasonality

time series, ranging from classical to state-of-the-art models. Furthermore, causal fore-

casts involved are thought to be the relationship between weather predictions and peak

PV output. Chapter 3 describes how to develop a spatial model by combining a short-

term forecasting technique with a causal forecast. Also, actual data from three different

daytime places are used to analyse the robustness of the proposed model, in terms of

spatial scale, in comparison to the statistical models involved, using the ME, MAD,

and RMSE criteria. Chapter 4 presents its application by using a two-stage stochastic

programming approach for planning electricity consumption associated with house-

hold energy systems (HES) when an electric vehicle (EV) and energy storage are used.

Based on UK household electricity survey data, a two-stage programming approach

was used to balance intra-day electricity use in PV-installed households and energy

batteries. The final chapter discusses the proposed model’s findings and its application

to HES.
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Chapter 2

Literature review

This chapter provides history and theoretical background on univariate time series with

single and multiple seasonal patterns based on exponential smoothing approaches used

to capture and explain characteristics of time series concerning what issues the pro-

posed model deal with. In addition, we will explore solar PV forecasting tools and

their application on electricity control in solar-panel households.

2.1 Exponential Smoothing

[19] This section gives a brief summary of how exponential smoothing forecasting has

changed over time, as shown by the history timeline in Table 2.1 until 2014, when

TBATS with regressors was created, as well as how ETS taxonomy was developed

because of innovative exponential smoothing findings.

A simple exponential smoothing (SES) algorithm was developed during World War

II by Robert G. Brown for fire-control information on the submarine position[20].

Brown improved the concept and created techniques for trend detection and season-

ality detection, and introduced exponential smoothing into inventory management,

planning, and control in 1956[21]. During the 1950s, Charles C. Holt worked inde-

pendently of Brown to create a comparable approach for exponential smoothing ad-

ditive trends and a completely new method for smoothing seasonal data, i.e. the data
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Table 2.1: Timeline: A brief history of exponential-smoothing approaches

PY Findings Title
1956 SES Exponential Smoothing (originated during World War

II[20]) for Predicting Demand[21], Robert G. Brown
(1923-2013): the father of exponential smoothing

1957 Holt Forecasting seasonals and trends by exponentially weighted
moving averages, reprinted 2004[22], i.e. no trend, ad-
ditive and multiplicative trend, non-seasonal, and addi-
tive seasonal series with additive or multiplicative error
structure are examined

1960 Holt-Winters Forecasting Sales by Exponentially Weighted Moving Av-
erages (+ multiplicative seasonal effect) [23]

1969 ETS(3x3) Exponential Forecasting: Some New Variations, the ETS
taxonomy originated[24]

1985 ETS(2x4x3) Exponential smoothing: The state of the art (added addi-
tive damped trend into the ETS)[25]

1991 PI Prediction intervals (PIs) for multiplicative Holt-
Winters[26]

2001 Forecasting Models and Prediction Intervals for the Mul-
tiplicative Holt-Winters Method[27]

2002 A state space framework for automatic forecasting using ex-
ponential smoothing methods[28]

2003 HWT Short-term electricity demand forecasting using double
seasonal exponential smoothing[29]

2003 + Damped T Exponential smoothing with a damped multiplicative
trend[30]

2006 ETS(2x5x3) Exponential smoothing: The state of the art — Part II
(added multiplicative damped trend into the ETS) [31]

2008 Forecasting time series with multiple seasonal pat-
terns[32]

2008 An evaluation of methods for very short-term load forecast-
ing using minute-by-minute British data (+ weather fore-
casts)[33]

2010 Triple S Triple seasonal methods for short-term electricity demand
forecasting[34]

2011 TBATS Forecasting time series with complex seasonal patterns
using exponential smoothing[35] [Multiple seasonality
(non-integer seasonal length) exponential smoothing
based method + ARIMA + Box-Cox transformation]

2012 Forecasting intraday time series with multiple sea-
sonal cycles using parsimonious seasonal exponential
smoothing[36]

2014 + Covariates TBATS with regressors[37]
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with no trend, additive and multiplicative trend, non-season and additive seasonality

with additive or multiplicative error are examined by exponential smoothing. Holt’s

first research was reported in an ONR brief in 1957 but remained unpublished until

2004[22]. However, Holt’s concept received widespread attention in 1960. Winters

in 1960 established the Holt-Winters forecasting system by putting Holt’s ideas to the

test using actual data for capturing multiplicative seasonality in a publication[23].

Pegals (1969) initially proposed an extension and flexibility of exponential smooth-

ing based on the concept of time series components. Each method is denoted by a pair

of letters (T, S) denoting one of three types of trend and seasonality, namely none (N),

additive (A), or multiplicative (M) [24], as illustrated in the model with ∗ in Table 2.2.

For example, (N, N) denotes an simple exponential smoothing (SES) method; (A, N)

is an exponential smoothing method with no seasonal effect and an additive trend, also

known as the Holt’s linear method; (A, A) is an exponential smoothing method with

an additive trend and seasonal effect, also known as the Holt-Winters’ method; and so

on.

Gardner (1985) later extended it and included it into the ETS taxonomy, based

on the same concept. ETS is an acronym for Error-Trend-Seasonality and describes

how the components interact. The ETS incorporates an additive damped trend with

two distinct effects of error: additive and multiplicative[25]. Thus, the ETS allows for

possible 2 x 4 x 3 = 24 models.

Taylor (2003) developed double additive seasonality exponential smoothing, shortly

Holt-Winters-Taylor (HWT), to accommodate the the intraday and intraweek cycles in

intraday data[29], also introduced the multiplicative damped trend component which

has performed well in numerous empirical studies after that[30].

Gardner (2006) provides a summary of the evolution of Brown and Holt’s original

work since the 1950s, as well as some of its most significant concepts. In addition to

a single seasonal pattern, extended smoothing may handle seasonal patterns in their

whole, including their level and trend components. Due to its simplicity of usage and
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ability to compete with more complex approaches such as a regression-based model

or a seasonal ARIMA model, this method has been frequently used to generate point

predictions with a monthly or quarterly (low-frequency) seasonal pattern. Additionally,

the ETS is updated using a multiplicative damped trend by Taylor, which means that

the ETS may be supported by 2 x 5 x 3 = 30 exponential smoothing models[31] as

displayed characteristics as Fig 2.1, ETS models with additive or multiplicative error

in Table 2.2, and expressed well-known exponential smoothing equations in Table 2.3

with the model notations in Table 2.4.

Table 2.2: ETS Components and Models

Trend component
Seasonal component

N
(None)

A
(Additive)

M
(Multiplicative)

N (None) NN∗ NA∗ NM∗

A (Additive) AN∗ AA∗ AM∗

Ad (Additive damped) AdN AdA AdM
M (Multiplecative) MN∗ MA∗ MM∗

Md (Multiplecative damped) MdN MdA MdM

Taylor (2007) presented a new result for forecasting very high-frequency electric-

ity demand by employing an innovative state-space model. The method implicitly

assumes an identical daily seasonal pattern for all days, while the state-space model

allows the daily seasonal pattern to be different according to different types of days

[32, 38]. Moreover, Taylor still found that combining the method based on weather

forecasts with the Holt-Winters’ adaptation resulted in forecasts that outperformed all

other methods beyond about an hour ahead [33]. A new triple seasonal Holt-Winters

exponential smoothing method, which incorporates the third seasonal component (an-

nual pattern) into the existing double seasonal Holt-Winters method with daily and

weekly patterns, which was published three years later [34].

While many researchers are familiar with time series forecasting, they have dif-

ficulty with certain types of time series data. For the first time, the length of a time

series expressed as a decimal number, such as the length of the Lunar calendar, has
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been considered when developing forecasting techniques. De Livera et al. (2011) pro-

posed the TBATS model, which is capable of handling complex seasonalities (e.g.,

non-integer seasonality, non-nested seasonality, and large-period seasonality) without

imposing seasonality constraints, enabling the generation of detailed, long-term fore-

casts [35]. The model was developed by combining an exponential smoothing state

space model with Box-Cox transformation, ARMA errors, Trend and Seasonal com-

ponents, to capture and forecast time series. TBATS with regressors was presented

in 2014 by Hyndman using “Automatic Time Series Forecasting” with R to include

regression variables, i.e. , covariates in a time series model[37, 39].

Table 2.3: The linear forms of the well-known exponential smoothing for ETS Com-
ponents [4]

ETS Model Smoothing method Remark

ANN
yt = lt−1 + et

lt = lt−1 + αet

ŷt = l̂t−1

l̂t = l̂t−1 + α(yt − ŷt)
SES (1956)

AAN
yt = lt−1 + bt−1 + et

lt = lt−1 + bt−1 + αet

bt = bt−1 + αυet

ŷt = l̂t−1 + b̂t−1

l̂t = l̂t−1 + b̂t−1 + α(yt − ŷt)

b̂t = b̂t−1 + αυ(yt − ŷt)

Holt (1957)

AAA

yt = lt−1 + bt−1 + st−m + et

lt = lt−1 + bt−1 + αet

bt = bt−1 + αυet

st = st−m + γet

ŷt = l̂t−1 + b̂t−1 + ŝt−m

l̂t = l̂t−1 + b̂t−1 + α(yt − ŷt)

b̂t = b̂t−1 + αυ(yt − ŷt)

ŝt = ŝt−m + γ(yt − ŷt)

Holt-Winters
(1960)

AAdN
yt = lt−1 + bt−1 + et

lt = lt−1 + bt−1 + αet

bt = ϕbt−1 + αυet

ŷt = l̂t−1 + b̂t−1

l̂t = l̂t−1 + b̂t−1 + α(yt − ŷt)

b̂t = ϕb̂t−1 + αυ(yt − ŷt)

Additive
Damped
trend (1985)

AAdA

yt = lt−1 + bt−1 + et

lt = lt−1 + bt−1 + αet

bt = ϕbt−1 + αυet

st = st−m + γet

ŷt = l̂t−1 + b̂t−1

l̂t = l̂t−1 + b̂t−1 + α(yt − ŷt)

b̂t = ϕb̂t−1 + αυ(yt − ŷt)

ŝt = ŝt−m + γet

Multiplicative
Damped
trend (2003)

As all the above-mentioned, the exponential smoothing can not accommodate more

than one seasonal pattern in its traditional structure but is excellent for the short-term

forecast because it only considers one seasonal pattern in its calculations. This limita-
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Figure 2.1: Time series corresponding to the ETS models with different types of error,
trend and seasonality [2]
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Table 2.4: Notation for the well-known exponential smoothing models

Symbol Definition
lt level component of the series in period t
bt trend component of the series in period t
st season component of the series in period t
α Smoothing parameter for the level of the series, 0 ≤ α ≤ 1
υ Smoothing parameter for the trend, 0 ≤ υ ≤ 1
γ Smoothing parameter for seasonal indices, 0 ≤ γ ≤ 1
ϕ Damping paramete, 0 ≤ ϕ ≤ 1
m Number of periods in the seasonal cycle
yt Observed value of the time series in period t
ŷt Forecast for 1 periods ahead from origin t, i.e., ŷt = ŷt−1(1)
et One-step-ahead forecast error at time t, i.e., yt − ŷt
l̂t Estimated local level at time t
b̂t Estimated trend at time t
ŝt Estimated seasonal indices in period t

tion of the forecasting approach has not been recognized in high-frequency time series

such as minutely-to-hourly time series, and so on until multiple seasonality methods

are developed. However, these methods request a long horizon of time series and a

high memory to recognise parameters for each seasonality for a time series observed

on a very frequent basis (hourly or half-hourly). As a result, a solar-based time se-

ries, which is defined in Chapter I as double-seasonal high-frequency data, is unlikely

to be suitable for multiple seasonal exponential smoothing methods such as ETS and

TBATS. All of the strengths of these solutions can be used to capture each component

of data and to reduce the amount of data required and memory used in a forecasting

procedure.

Covariates are a feasible factor to apply to study a relation to the amplitude of sinu-

soidal annual characteristics (the second seasonal component of the solar-based time

series as illustrated in Figure 1.2(c)) caused by the Earth’s orbits in order to simplify

and reduce the amount of memory required for parameter estimation. The magnitude

of sine waves in each period of time (day) shown in Figure 1.2(d) directly depends on

which the solar radiation have a relationship with sunshine duration [40–44] and cloud

cover [40, 45–49] as coveriates, i.e. a regression model can be used to describe the so-
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lar radiation and its relationship with geographical and weather conditions. Therefore,

in this study, a multiple regression model as a causal model is a model used to forecast

a daily peak PV generation which is a part of sinusoidal function.

2.2 Solar PV generation forecasting

Solar radiation requires reliable forecast information to make efficient use of the fluc-

tuating energy output of PV systems. Solar irradiance, which refers to the amount of

solar radiation received per unit area by a given surface (W/m2), will be mentioned in-

stead of radiation when discussing the electricity generation output from photovoltaic

systems.

In the perspective of harvesting energy from the sunlight, stakeholders of a PV

electricity market contain grid operators, electricity retailers, end-users, and govern-

ment from four different parts such as generator, transmission, distribution, and cus-

tomer. Electricity demands are frequently predicted from a resident-based (end-user)

perspective for home energy systems (HES) with photovoltaics (PV)[50–52]. Another

aspect is considered in this study: residential PV systems with varying capacity sizes

are forecasted using the proposed spatial model for day-ahead electricity planning in

households. Spatial data, such as coordinates and regional weather conditions (covari-

ates), have a significant impact on the intra-day and daily patterns of solar-based time

series, the following reviews involve conditions in solar PV generation output.

Diagne et al. (2013) look at solar irradiance forecasting methods in detail, includ-

ing statistical approaches and techniques based on pictures of clouds. They also de-

scribe the current methods for predicting solar irradiance to help with method selection

and to find future solar irradiance forecasting methods for small-scale grid manage-

ment. Methods for predicting seasonality based on historical data of solar irradiance

have been used successfully in time series forecasting for short time horizons up to one

hour [1].
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Barbieri et al. (2017) define temporal resolution relative to the spatial range of

observation for various forms of input data and show how cloud elements influence

the accuracy of a power forecast. In addition, time-series models can capture short-

term features employing whole-sky cameras (clouds) for residential load balancing and

transmission scheduling. Nonetheless, cloud types that correspond to cloud categories

are depicted in a spectrum of blockage altitudes that varies [53].

A model that uses the Fourier series is known as the exponential smoothing state

space model (ESSS, also known as the ETS). Its forecasting performance is compared

with classic forecasting approaches like as ARIMA, ARMA, and so on, and it is dis-

covered that the ESSS model produces more accurate predictions over a short-term

forecasting horizon. It has also been observed that the accuracy of the model increases

when the inputs have a high correlation factor with the outputs of the model [54–56].

2.3 Theoretical background

2.3.1 Single seasonal exponential smoothing

The solar-based time series data used in this study indicate double additive seasonal-

ity, so among the various forms of exponential smoothing methods, we starts with the

single additive seasonal exponential smoothing method (Holt-Winters, 1960) for fore-

casting time series. Assuming that seasonal time series can be decomposed into three

unobserved components — level, trend, and season — the Holt-Winters method has

been widely adopted as a standard forecasting technique.

The error correction form of the simple exponential smoothing model for forecast-

ing an observed series (yt) at time t consist of three updating equations for a level (lt),

a trend (bt), and a seasonal pattern (st) for t = 1, 2, ..., n as expressed the AAA model
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(Table 2.3) states as:

yt = lt−1 + bt−1 + st−m + εt, εt ∼ N(0, σ2)

lt = lt−1 + bt−1 + αεt

bt = bt−1 + αυεt

st = st−m + γεt,

where m is the length of the seasonal pattern. α, υ and gamma are smoothing pa-

rameters for the level, trend, and seasonal components, respectively. As a result of the

additive Holt-Winters technique, we define the h prediction at the time t as

ŷt+h|t = lt + hbt + st+h−m,

and one-step-ahead forecast error at the time t as

et = yt − ŷt|t−1 = yt − (lt−1 + bt−1 + st−m).

Prediction intervals are a crucial component of the forecasting process, designed

to reflect the uncertainty in point forecasts. Utilizing theoretical formulas based on the

best-fitting model is the most frequent way for computing PIs. For the additive error

model with a single source of error εt ∼ N(0, σ2), a 100(1 − θ)% prediction interval

(PI) for h-step forecast is

[
ŷt+h|t − z θ

2
σ̂, ŷt+h|t + z θ

2
σ̂
]

where θ is a significance level for PI, z θ
2

is the θ
2

upper quantile of the standard normal,

and σ̂ is an estimate of the single source of error of the h-step forecast distribution.

This limitation of the Holt-Winters method is inapplicable to time series containing

two or more seasonal patterns. If the standard Holt-Winters method must be applied to
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multiple seasonalities, we must select only one of the possible seasonal patterns.

2.3.2 Double seasonal exponential smoothing

More than one seasonal pattern cannot be accommodated by the existing Holt-Winters

method due to its limitation to a single season, as discussed in the previous subsec-

tion. Taylor (2003) proposed a novel variant of the exponential smoothing approach,

called the double seasonal Holt-Winters exponential smoothing method with two sea-

sonal patterns. In addition to the current seasonal index s1,t, a new seasonal index s2,t

was added to the new extra updating equation to expand the standard Holt-Winters

approach.

The error-correction form of the additive double seasonal Holt-Winters exponential

smoothing technique is given using four update equations for each component.

yt = lt−1 + bt−1 + s1,t−m1 + s2,t−m2 + εt, εt ∼ N(0, σ2),

lt = lt−1 + bt−1 + αεt,

bt = bt−1 + αυεt,

s1,t = s1,t−m1 + γ1(1− α)εt,

s2,t = s2,t−m2 + γ2(1− α)εt,

where s1,t and s2,t are the seasonal indices with seasonal lengths m1 and m2, s.t. m1 ≤

m2, respectively. α, υ, γ1 and γ2 are smoothing parameters for the level, trend, first and

second seasonal components, respectively. The h-step-ahead forecast at time t is

ŷt+h|t = lt + hbt + s1,t+h−m1 + s2,t+h−m2 ,

and one-step-ahead forecast error at the time t as

et = yt − ŷt|t−1 = yt − (lt−1 + bt−1 + s1,t−m1 + s2,t−m2).
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As mentioned by Taylor et al. (2006), the double seasonal Holt-Winters method

requires no model specification, whereas the double seasonal exponential smooth-

ing method inherits the simplicity and robustness of traditional exponential smooth-

ing methods. As with other exponential smoothing techniques, the double seasonal

Holt-Winters exponential smoothing technique may not provide accurate prediction

intervals for point forecasts [57].

2.3.3 Innovations state space models for exponential smoothing

Innovations state space models for exponential smoothing identified by three relatives:

Error, Trend, and Seasonality (ETS). Based on the type of error, trend and seasonality,

Pegels (1969) proposed a taxonomy, which was then developed further by Hyndman

et al. (2002) and refined by Hyndman et al. (2008). According to this taxonomy, here

defines a three-character string as shown in Table 2.2.

The ETS components have well-defined meanings. Additionally, ETS enables 30

models expressing a variety of error, trend, and seasonality characteristics. Table 2.2

and Figure 2.1 illustrates various time series with deterministic levels, trends, season-

ality, and time series with an additive error term. The combination of ETS models

obtained linear forms from the above components as expressed in Table 2.3.

The ETS model with a single source of error [58, Appendix A.4]

Gould et al. (2008) have made a contribution by extending the single seasonal in-

novations state-space model to accommodate innovations state-space models with ei-

ther single or double seasonality that accommodate more than one seasonal pattern

[32]. The state-space model for the double additive seasonal Holt-Winters exponential



20

smoothing method is derived and written by

yt = lt−1 + bt−1 + s1,t−m1 + s2,t−m2 + εt, εt ∼ N(0, σ2)

lt = α1(yt − s1,t−m1 − s2,t−m2) + (1− α1)(lt−1 + bt−1)

bt =
α2

α1

(lt − lt−1) + (1− α2

α1

)bt−1

s1,t =
α3

1− α1

(yt − lt − s2,t−m2) + (1− α3

1− α1

)s1,t−m1

s2,t =
α4

1− α1

(yt − lt − s1,t−m1) + (1− α4

1− α1

)s2,t−m2 ,

where the ranges of the parameters of the structural model are

0 < α1,
α2

α1

,
α3

1− α1

,
α4

1− α1

< 1.

Therefore, the innovations state-space technique for the double seasonal Holt-Winters

method is essentially identical to Taylor (2003)’s original concept. Because the smooth-

ing parameters (α, υ, γ1, γ2) of Taylor’s double seasonal Holt-Winters technique should

range from 0 to 1,

2.3.4 Exponential smoothing state space model with Box-Cox trans-

formation, ARMA errors, Trend and Seasonal components

(TBATS)

A TBATS model is a forecasting technique for a time series with complex seasonal

patterns using exponential smoothing originally proposed by De Livera et al. (2011)

that combines many of the components of statistical models into one single automated

framework. The details of the model are as follows:

• Trigonometric terms for seasonality

• Box-Cox transformation for heterogeneity

• ARMA errors for short-term dynamics
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• Trend (possibly damped)

• Seasonal (including multiple and non-integer periods)

The TBATS model can be expressed mathematically by the following equations:

Box-Cox transformation:

y
(ω)
t =


1
ω
(yω − 1), ω ̸= 0

log yt, ω = 0
,

Seasonal periods:

y
(ω)
t = lt−1 + ϕbt−1 +

T∑
i=1

S
(i)
t−mi

+ dt,

Global and local trend:

lt = lt−1 + ϕbt−1 + αdt,

bt = (1− ϕ)b+ bt−1 + υdt,

ARMA error:

dt =

p∑
i=1

ϕidt−i +

q∑
j=1

εt−j + εt,

Fourier seasonal terms:

S
(i)
t =

ki∑
j=1

S
(i)
j,t ,

S
(i)
j,t = S

(i)
j,t−1cosλ

(i)
j + S

∗(i)
j,t−1sinλ

(i)
j + γ

(i)
1 dt,

S
∗(i)
j,t = −S(i)

j,t−1sinλ
(i)
j + S

∗(i)
j,t−1cosλ

(i)
j + γ

(i)
2 dt.
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Where yt is a time series at time t, y(ω)t represents Box-Cox transformation of yt with

the parameter ω, lt is the local level in period t, bt is the short-term trend in period t,

ϕ is the trend damping parameter, S(i)
t denotes the ith seasonal component at time t,

m1,m2, ...,mT refer to the length of seasonal periods, dt represents an ARMA(p, q)

process and εt is a Gaussian white noise process with zero mean and constant vari-

ance σ2. The smoothing parameters are given by α, υ, γ
(i)
1 , γ

(i)
2 for i = 1, 2, ..., T ,

and λ
(i)
j = 2πj

mi
for j = 1, 2, ..., ki. S

(i)
j,t represents the stochastic level of ith sea-

sonal component and S∗(i)
j,t represents the change in the stochastic level of ith seasonal

component over time. Finally, ki = mi

2
denotes the required number of harmonics

for the ith seasonal component. In general form, the TBATS model is designated as

TBATS(ω, ϕ, p, q, {m1, k1} , {m2, k2} , ..., {mT , kT}).

In conclusion, the TBATS model is extremely versatile and can handle a wide va-

riety of time series, making it especially suitable for data with large seasonal periods

and multiple seasonal periods. Despite the fact that the model’s point forecasts may

appear accurate, the prediction intervals it generates are frequently overly large. In ad-

dition, the automation makes things pretty slow, particularly for very long time series,

because it must evaluate a multitude of potential ways of assembling the model.

The motivation behind the TBATS, which adds a Fourier series (a periodic func-

tion) into the exponential smoothing state-space model for capturing various non-

nested and non-integer seasonal components of high-frequency time series, is now

acknowledged. In particular, the example provides an illustration of how to use a peri-

odic function to capture the non-integer seasonal pattern that is a partial characteristic

of solar-based time series formed by the influence of the Earth’s orbit around the sun.
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Chapter 3

Spatial forecasting model

The PV generation output is a solar-based time series that indicates a very distinct

length of double seasonality (intra-day and annual patterns). According to Taylor

(2008) and Gould, et.al.(2008), double seasonal exponential smoothing methods for

high-frequency time series under different patterns of days by weather forecasts [32,

33] a good performance in numerous empirical studies. In addition, in order to fore-

cast, the TBATS model needs a significant amount of data storage for historical data

with high frequency and seasonality. As a consequence of this, we really need to un-

derstand how to simplify the method so that it can be applied in the real world by

making use of the fewest possible model parameters and reducing the amount of work

that needs to be done computationally. In order to simplify the process of parameter

estimation and cut down on the amount of memory needed, we are going to develop

a spatial model. Estimation was broken down into two stages by the proposed model:

(1) regression analysis on aggregating time series data to daily, and (2) smoothing and

initial determinations on a time-series frequency.

3.1 Basic principles in solar radiation

Every location on Earth’s surface receives sunlight for at least a portion of the year.

As shown in Figure 1.2, the amount of solar radiation that reaches any given spot
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on the Earth’s surface varies based on geographic location, time of day, season, local

landscape, and local climate. Because the Earth is spherical, the rotation of the Earth

around its tilted axis creates a daily cycle of the Sun’s power that varies in duration

based on geographic coordinates. Additionally, the Earth has an elliptical orbit around

the sun and is closer to the sun during a portion of the year, as shown in Figure 1.2(a),

which divides the year (orbital period) according to the distance between the Earth and

the sun, also known as a season.

Figure 3.1 shows that geographic location information, including London, Beijing,

New York, Tokyo, New Delhi, and Sydney, have impacted the variation in sunrise

and sunset times, and sunshine duration, which affects directly both solar electricity

generation time and solar radiation pattern.

(a) Solar radiation cycle on 1st July 2018 in different places

(b) Seasonal and weather conditions affected by the Earth’s orbit and rotation

Figure 3.1: The idea behinds sine wave function: (a) sunrise and sunset time in differ-
ent places around the world, and (b) the Earth’s orbit and rotation.
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The following section is going to give the details of how incorporating spatial infor-

mation into statistical-based forecasting approaches over the basic physical principles

of photovoltaics (PV).

3.2 Spatial forecasting analysis

The intensity of solar radiation, as energy input from the sun to photovoltaic cells, on

the Earth’s surface on a daily rotation has a sine wave or sinusoid pattern. Therefore, a

day-ahead forecasting model of the solar intensity mainly runs on a sinusoidal model

based on the season of the year by applying local-weather conditions.

3.2.1 Sinusoidal model with explanatory variables

Let {ys⃗,t}, t = 1, 2, ..., n represents a high-frequency time series with double seasonal

cycles reflected by the sunlight, namely a solar-based time series as defined in Section

1.2. The data is generated and measured on Earth’s surface at position s⃗ = (x1, x2)

with reference to global positioning system (GPS) coordinates, s.t. x1, x2 represent

the latitude and longitude of a location in decimal, respectively. For example, GPS

coordinates of University of Essex, United Kingdom (Latitude: 51.8763 Longitude:

0.9449), i.e., s⃗ = (51.88, 0.94). The solar-based time series has general characteristics

as shown in Figure 1.2(b). Solar irradiance on any point of the earth’s surface has

principally a sine wave pattern on daytime with different frequency, day length, and

magnitude, depending on spatial information and weather conditions.

The general formulation of the sine wave is expressed by

ψt = Asin(2πft+ φ) + V, t = 1, 2, ..., T

where ψt represents observations at time t, A is an amplitude, f is a frequency of

period, φ is a horizontal shift, and V is a vertical shift.
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We highlight the sine function used to detect both the daily and annual seasonal-

ity of the data, which is the horizontal shift (φ) and the vertical shift (V ) adjusted by

spatial and weather-related data. In other words, geographical information where the

measured data will be used to determine the duration between sunrise and sunset (the

range of positive values of the data each day) and daily frequency, whereas the mete-

orological information, e.g., sunshine duration and cloud cover [59], used to analyse

in a regression model to forecast the daily magnitude as annual seasonal characteris-

tics. Therefore, the adjusted sine function will be an asymmetric non-negative curve

corresponding to the diurnal variation of solar radiation.

According to the regression model, we assume that the daily seasonal factor is an

observed dependent variable aggregated by daily peak or average of the observed time

series depending on the application of the model. Also, meteorological variables, con-

sidered as explanatory variables [60, 61] measure sunshine duration and cloud cover

which are provided by an atmospheric model from a meteorological authority, such as

Met Office, National Oceanic and Atmospheric Administration (NOAA), or weather

forecasts mobile applications. Therefore, the non-negative sine function used to de-

scribe daily seasonal shapes of solar-based time series for a daylight cycle at different

(latitude) locations given weather-related covariates can be expressed as the following

equations:

ψs⃗,t =
As⃗,j

2
sin(2πfjtj −

π

2
) +

As⃗,j

2
, t ∈ [us⃗,t, vs⃗,t]

Ãs⃗,j = β0 + β1xs⃗,1j + β2xs⃗,2j + · · ·+ βkxs⃗,kj + ηj, ηj ∼ N(0, σ2
a)

(3.1)

where

3.2.2 Spatial exponential smoothing model

The seasonal exponential smoothing model, also known as Holt-Winters (HW), is the

generalised approach to deal with the seasonal variation which originally rely on three

basic models, simple exponential smoothing (local level), trend corrected exponential
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ψs⃗,t represents the seasonal component value at the s⃗-position and time t,
As⃗,j

2
denotes the s⃗-position true amplitude at seasonal period j, j =
⌈t/m⌉, when m is a frequency of the time series,

Ãs⃗,j denotes the s⃗-position observed amplitude value with observation er-
rors at seasonal period j, i.e. As⃗,j = E(Ãs⃗,j),

us⃗,t, vs⃗,t denote sunrise and sunset time series indices (staring and ending
point of sine function) in period j, respectively, s.t. m∗(j−1)+1 ≤
us⃗,t < vs⃗,t ≤ m ∗ j calculated by Almanac for Computers (1990),
i.e. us⃗,t = m ∗ (j− 1)+ ⌈sunrise time⌉, vs⃗,t = m ∗ (j− 1)+ ⌈sunset
time⌉

fj is a frequency of the function at period j s.t. fj = 1
nj
, nj = vs⃗,j −

us⃗,j + 1,
tj represents the new time index in period j over the daylight time s.t.

tj = t− us⃗,j + 1,
β0, β1, . . . , βk denote regression coefficients,
xs⃗,1j, . . . , xs⃗,kj represent regression variables as meteorological information at po-

sition s⃗ and period j, which can be predicted by the atmospheric
model, and

ηj denotes a Gaussian random disturbance in period j with zero mean
and variance σ2

a.

smoothing (trend), and additive/multiplicative seasonal variation (season). Speaking

of which, the model is suitable to explain one seasonal time series characteristic for

short-term forecasting.

In the case of a high-frequency time series that has double seasonal cycles and

shows a huge difference between two seasonal frequencies (e.g. if a half-hourly time

series consists of daily and annual seasonal patterns), the frequency for the first and the

second seasonalities will be 48 and 48 × 365.25636 = 17,532.30528 (365.25636 days

is the orbital period of the earth around the Sun), respectively. The double seasonal

exponential smoothing methods expanded by [29] and the TBATS approach developed

by [35] which can accommodate two seasonalities, need a high data-storage of the pre-

vious seasonal data for forecasting. Therefore, it is important to know how to simplify

the method for practical use by using the least possible number of model parameters

and reducing the computational burden.

The sun’s total solar irradiance changes slowly over time [62]. In other words, it is

unlikely to make a difference to PV generation, i.e. there is no significant change in the
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long-term trend. Therefore, the high-frequency time series of sunlight as a climate time

series basically consists of a slowly varying trend, multiple and nested seasonality.

The current study attempts to replace the sine wave model as periodic phenomena

Equation 3.1 with the seasonal component of additive seasonal exponential smooth-

ing model. The adjusted sine function plays an important role in a-day-ahead forecast

while exponential smoothing provides one-step-ahead procedures for detecting and

adjusting to changes in the previous state. Therefore, the spatial exponential smooth-

ing model with covariates for solar-based time series can be expressed in the error-

correction form by

ys⃗,t = lt−1 + bt−1 + st + εt, εt ∼ N(0, σ2),

lt = lt−1 + bt−1 + αεt,

bt = bt−1 + υεt,

st = ψs⃗,t + γεt−1,

ψs⃗,t = As⃗,jsin(2πfjtj − π/2) + As⃗,j, t ∈ [us⃗,t, vs⃗,t],

Ãs⃗,j = β0 + β1xs⃗,1j + β2xs⃗,2j + . . .+ βkxs⃗,kj + ηj, ηj ∼ N(0, σ2
a),

(3.2)

where lt, bt, st denote the local level, trend, and spatial seasonal components of time

series at time t, respectively, and α, υ, γ are the smoothing values as in the traditional

approaches. The model has manifested that the local and trend states depended on

previous states whilst seasonal state depended mainly on spatial seasonal factor and

previous states of error.

3.3 Two-stage estimation

Suppose that a solar-based time series, {ys⃗,t}, t = 1, 2, ..., n, consists of daily and an-

nual seasonal cycles with frequencym and 365.256×m, respectively, and {xs⃗,1, xs⃗,2, . . . , xs⃗,⌈n/m⌉}

is an explanatory variable (daily data) which has a linear relationship with daily peak

of the time series {As⃗,1, As⃗,2, . . . , As⃗,⌈n/m⌉}. For example, a half-hourly solar PV gen-
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eration time series has daily and annual frequency equal to 48 and 17532.288, respec-

tively.

The traditional procedure of exponential smoothing requires estimation of the smooth-

ing parameters and the initial states. However, the spatial exponential smoothing model

is simply the merger between exponential smoothing and spatial/covariate model with

the different time intervals, i.e., the exponential smoothing fitted by high-frequency

time series in small time units such as every minute, half-hourly, hourly, whereas the

regression model fitted by daily observations.

The likelihood function of parameters including the smoothing parameters, initial

values, and regression coefficients given the observations and covariates is defined by

L(θθθ, z0|ys⃗, xs⃗) =
n∏

t=1

f(ys⃗,t|xs⃗,⌈t/m⌉, θθθ, z0)

=

⌈n/m⌉∏
j=1

m∏
i=1

f(ys⃗,m(j−1)+i|xs⃗,j, As⃗,j, θθθ, z0), if m(j − 1) + i ≤ n

=

⌈n/m⌉∏
j=1

m∏
i=1

f(ys⃗,m(j−1)+i|As⃗,j, θθθ \ θθθ1, z0)f(As⃗,j|xs⃗,j, θθθ1)

where

z0 = {l0, b0}, θθθ = {θθθ1, θθθ2, σ2}, θθθ1 = {β0, β1, . . . , βk, σ2
a}, θθθ2 = {α, υ, γ}.

Observe that the full likelihood, which is a product of two conditional functions

with different time intervals, is too computationally expensive to estimate using direct

existing methods. Therefore, we propose to approximate the model parameters under

two-stage approaches as shown in the flowchart in Figure 3.2. Also, the historical time

series data set used in the proposed model is divided into two segments: training data

for model fitting and test data set for validation.
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Figure 3.2: The spatial exponential smoothing model building process

3.3.1 Stage 1: Estimation of regression coefficients

In the first stage, the multiple linear regression model, Ãs⃗,⌈t/m⌉ defined in Equation 3.1

can be rewrite in matrix notation as follows

Ãs̃ = Xs⃗βββ + ηηη,ηηη ∼ N(0, σ2
aI)

where

Ãs̃ =



Ãs⃗,1

Ãs⃗,2

...

Ãs⃗,⌈t/m⌉,


,Xs⃗ =



1 xs⃗,11 · · · xs⃗,1k

1 xs⃗,21 · · · xs⃗,2k
...

...
...

1 xs⃗,⌈t/m⌉1 · · · xs⃗,⌈t/m⌉k


,βββ =



β0

β1
...

βk,


, ηηη =



η1

η2
...

η⌈t/m⌉,


We wish to approximate the regression coefficients, βββ, which minimise the resid-
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uals sum of the squares, S(βββ) =
∑⌈t/m⌉

j=1 η2j = ηηη′ηηη = (Ãs̃ − Xs⃗βββ)
′(Ãs̃ − Xs⃗βββ), i.e.

minimising the amount of the covariates variance that is not explained by the regression

model, namely using an ordinary least squares (OLS) method.

Thus, the least squares estimators of βββ is given by

β̂̂β̂β = (X′
s⃗Xs⃗)

−1(X′
s⃗Ãs̃), (3.3)

such that E[β̂ββ|Xs⃗] = βββ,V[β̂|Xs⃗] = σ2
a(X

′
s⃗Xs⃗)

−1, and an estimator of the population

variance of the covariates, σ2
a, is estimated by substituting β̂̂β̂β into the residual sum of

square, then

SSRes = (Ãs̃ − Xs⃗β̂̂β̂β)
′(Ãs̃ − Xs⃗β̂̂β̂β) = Ã′

s̃Ãs̃ − β̂̂β̂β′X′
s⃗Ãs̃.

Therefore, the least squares estimators of σ2
a is

σ̂2
a = SSRes/(⌈t/m⌉ − k + 1). (3.4)

This stage of the application would predict the expected value of daily peak solar-

based time series pattern via sine wave model corresponding to real weather throughout

the year via daily expected weather conditions.

3.3.2 Stage 2: Determining the optimal values of smoothing pa-

rameters

Regarding the sine wave cycle as daily pattern, there is no significant change in local

level and trend components, and also solar-based time series at the beginning of the

period (midnight) should be zero except for the places that are able to harvest the

midnight sunlight in the summer. Therefore, the initial state values z0 = {l0, b0} are

assumed to be fixed with zero values. Substituting (3.3)-(3.4) and initial values z0 into
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the likelihood function, we get the reduced form of the likelihood as

L∗(α, υ, γ, σ2) =

⌈n/m⌉∏
j=1

m∏
i=1

f(ys⃗,m(j−1)+i|As⃗,j, α, υ, γ, σ
2)f(As⃗,j|xs⃗,j, β̂0, β̂1, . . . , β̂k, σ̂2

a)

=
n∏

t=1

f(ys⃗,t|As⃗,⌈t/m⌉, α, υ, γ, σ
2)

=
1

(2πσ2)n/2
exp

(
−1

2σ2

n∑
t=1

ε2t

)

Focusing on the population variance σ2 by maximising the likelihood function, thus

σ̂2 = n−1

n∑
t=1

ε2t .

Therefore, smoothing parameters, α, υ, γ, will be subsequently estimated as arbitrary

parameters using gradient projection methods for solving (0,1)-bound constrained non-

linear optimisation problem. Refer to the Broyden-Fletcher-Goldfarb-Shanno algo-

rithm (BFGS) is a method that tries to solve a general nonlinear optimization problem

without any constraints. Thus, a limited memory BFGS method, also known as L-

BFGS-B is a version of BFGS that lets “box” constraints, which are restrictions of the

form 0 ≤ α, υ, γ ≤ 1, be suitable for estimating all (0,1)-bound smoothing parameters.

[63].

3.4 Numerical study

3.4.1 Measuring forecast accuracy

As mentioned above, we need to know how the performance of the proposed approach

and relevant methods when applied in real-life situations for forecasting pv generation

one-step ahead up to one-day ahead. The diagnostic checks in this study look at the

residuals of both training and test data sets. The one-step-ahead forecast errors for
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training data are given by

et = yt − ŷt−1(1) = yt − ŷt.

To evaluate various the aspects of the performance such as the overall forecast bias,

the error characteristics and values, we compared forecast errors using the mean error

(abbreviated ME), mean absolute error (MAE), and root mean square error (RMSE),

defined as

ME =
1

n

n∑
t=1

et

MAE =
1

n

n∑
t=1

|et|,

RMSE =

√√√√ 1

n

n∑
t=1

e2t .

3.4.2 The empirical data

To explore the possibility of applying the proposed approach to the solar-based time

series, a description of the characteristics of the effect of the sun on earth and how the

spatial component can be utilised is provided in this section.

According to the regression model in equation 3.2, the accuracy of the proposed

model mainly relies on the seasonal component as the direction of daily patterns of the

data. Thus, this study focuses on what daily measured meteorological conditions val-

ues should be considered to predict the characteristic of photovoltaics output. Based

on statistical approaches, there is a strong relationship between the pattern of solar

PV output and solar irradiance in a clear-sky day [61]. However, it is not easy to

measure solar power in many areas due to the cost and maintenance of the measuring

equipment. At this point, the relationship between global solar radiation and sun-

shine duration plays an important role in estimating the global solar power [43, 44].

Several expressions have been used to estimate global solar radiation from sunshine
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hours [59, 64–66]. Moreover, atmospheric conditions such as cloud cover variations

are also the most important condition to reduce incoming radiation by up to 90 percent

by reflecting the radiation back into space which mainly affects the daily profiles of

pv generation [67–69]. Therefore, cloud cover variations and sunshine duration will

be considered as explanatory variables in regression analysis. In this study, these re-

gressors are assumed to be weather-related information obtained from other practical

methods (see e.g. in [70, 71]).

In order to examine the performance of the proposed model in comparison with

existing models, a data set of historical high-frequency pv time series and relevant me-

teorological information were derived from the PVOutput project1 and some solar pv

farm in the UK, and also sunshine hours provided by nearby weather station . Three

different geographical coordinates as shown in Figure 3.3 were adopted in this numer-

ical study.

3.4.3 Solar-PV Generation Data in Cambridge, East Midlands (United

Kingdom)

From June 1 to August 31, 2013, there are 4,416 half-hourly PV generation observa-

tions from the Cambridge solar farm. The first two months are used for model training,

and the remaining for evaluation. Also, daily sunshine duration as a weather-related

covariate during the given period measured at the Digital Technology Group (DTG),

the University of Cambridge, is used to reflect real weather as a second seasonal com-

ponent of data.

The relationship between daily peak time series, which is the maximum amount of

time series each day, and sunshine hours as modeled by the regression model in Equa-

tion 3.2, was found in the training estimation stage to be significant with a Pearson’s

correlation coefficient equal to 0.4215.

1the PV output data is available at https://pvoutput.org
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Figure 3.3: Solar radiation map of the UK (source: MCS Design Guide), and average
annual sunshine hours of study points.

Table 3.1 displays the results of the performance evaluation of training for all

models, including the simple seasonal exponential smoothing (SES) or Holt-Winters

model, the autoregressive integrated moving average (ARIMA), the spatial exponen-

tial smoothing (Sp-Exp), and the TBATS model for one seasonal pattern. The number

of parameters, the error measurement, and the amount of time spent computing are

included in these results (unit: second). To evaluate the performance of the proposed

model to the previously popular extremely short-term forecast models for forecast-

ing high-frequency time series one day in advance using the test data set, the results

are illustrated separately into two parts based on forecasts horizon: one-step ahead and

24-hour(one-period)-ahead forecasts shown in Table 3.2 and the graph puzzle (24-hour

ahead of a particular day) of the test sample forecasts in Figure 3.4.

The limitation of the high-frequency time series is the amount of the data produced.

It is not enough to detect second seasonality by ARIMA and TBATS. These methods
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require at least two years of data, i.e. the methods need 24 × 365.25 × 2 = 17,532

observations at least. This numerical example, therefore, compares the results in terms

of short-term forecasts up to one-period-ahead for high-frequency data. It is noticeable

that SES achieved the results by giving a small number of parameters and mean errors

(ME) and reducing the computational time for model fitting. TBATS is likely to be the

best training model but holds the biggest number of parameters, excluding seed values.

Moreover, it suits the data in the given period.

Table 3.1: The performance results of short-term forecasts models involved for solar-
based time series.

Model Parameters
Error measurement

ME MAE RMSE Comp. time (sec.)

SES 4 -2.865 88.252 189.772 0.021
ARIMA 6 8.487 81.312 163.315 80.333
TBATS 9 11.761 68.179 132.631 30.385
Sp-Expa 7 0.034 72.765 138.703 184.688
a Smoothing parameters searched by L-BFGS-B algorithm, and coefficient of
determination (R2) for regression model equals 0.5146

The problem with point of Sp-Exp is its high computational burden under the two-

stage estimation approach spent which is smoothing search operations. Therefore,

Sp-Exp has the highest estimation time, but it is better than double-seasonal methods

like ARIMA and TBATS for one-step-ahead forecasting. Moreover, the performance

of Sp-Exp is highly dependent on the correlation of the weather-related input and daily

magnitude. Thus, the forecasting accuracy of the proposed model can be improved by

entering more covariates [61], which will be shown in the next application.

3.4.4 Solar-PV Generation Data in Plymouth, Southwest England

(United Kingdom)

This application examines the model with the time series, which has higher frequency

than the previous example, on significantly different location, and adds more weather-

related conditions, such as cloud cover. Cloud is a mass of particle in the sky that
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Table 3.2: The comparative assessment of all forecasting methods for one-step-ahead
and one-day-ahead forecasts during 1st - 31st August 2013.

1-step-ahead (1488 iterations) 1-day(48s)-ahead (31 iterations) Comp.time/day

Model ME MAE RMSE ME MAE RMSE (sec.)

SES 9.824 100.882 190.805 140.380 190.006 333.918 0.043
ARIMA 11.984 105.543 202.938 36.692 159.749 280.547 163.399
TBATS -2.179 191.154 379.944 91.980 167.132 292.645 6.980
Sp-Exp 0.279 93.918 167.820 -138.513 205.882 326.492 0.751

directly absorb solar power before reaching the earth’s surface cloud cover was con-

sidered in the regression model.

The historical 15-minute PV output time series of 5.800 kilowatts (kW) solar PV

farm with cloud conditions in Plymouth, PL5 (coordinates in decimal: 52.2437, 0.117613)

during 1st April - 30th June 2019 is provided by the PV-Output project. The 5-km

gridded sunshine duration data from Plymouth Live Weather Station covers approx-

imately a solar farm. Therefore, sunshine hours collected at the station can be used

[59] to forecast daily peak PV generation. In addition, cloud conditions during the

periods are measured at four levels of cover (clear sky, partly cloudy, mostly cloudy,

and cloudy). As can be seen in Table 3.3, the covariate model used for magnitude pre-

diction accounts for 78.09% of the overall variance (R-squared values 0.7809) based

on sunshine duration and cloud cover variables.

It is noticeable that the proposed model still keeps less processing time than ARIMA

and TBATS while error measurements have no significant difference for one-period-

ahead forecasts as shown in Table 3.3. Besides, a five-days example in Figure 3.5

displays the role of the sine wave model used to predict the expected daily PV genera-

tion.
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(a) One-step ahead forecasts

(b) One-day (48-step) ahead forecasts

Figure 3.4: Comparing the one-step ahead forecasts (48 iterations on 1 August 2013)
and and one-period (1 August 2013): actual data (solid), SES(dashed), ARIMA (dot-
dash), TBATS (longdash), Sp-Exp (twodash).

Table 3.3: The estimation results of short-term forecasts models involved for solar-
based time series

Model training One-day-ahead (30 iterations) Comp. time / day

Model ME MAE RMSE ME MAE RMSE (sec.)

SES -6.522 209.375 407.141 -29.252 503.629 819.350 0.437
ARIMA 3.012 273.808 551.466 12.454 414.712 720.056 33.797
TBATS 51.846 194.049 365.302 160.761 350.065 595.442 9.731
Sp-Expa 5.247 187.024 353.712 -252.847 469.656 735.845 2.495
a The coefficient of determination (R2) for regression model is equal to 0.7809.



39

Figure 3.5: Five days of day-ahead forecasts: actual data (solid), SES(dashed), ARIMA (dotdash), TBATS (longdash), Sp-Exp (twodash).
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Chapter 4

Its Application via Stochastic

Programming

This chapter focuses on an application of the developed forecasting model to optimize

the energy storage utilization in a home with a solar photovoltaic (PV) system and an

electric vehicle (EV). Consideration is given to developing a two-stage linear stochas-

tic programming (SP) model to propose and investigate the different residential energy

connections of electric vehicle batteries (EVB) to the residential solar photovoltaic

(PV) system and to home appliances in order to determine the efficacy of deploying

EVB in future households. The novel forecasting model (as demonstrated by the equa-

tion 3.1) plays a crucial role in simulating potential 24-hour-ahead solar-panel outputs

as one of the system parameters in order to achieve an optimal solution of the system

under solar PV generation uncertainty. In addition, the CPLEX optimization studio

is utilized to address the large-scale mathematical programming problem and conduct

stochastic numerical investigations.

4.1 Renewable energy for households

For decades, renewable energy and energy storage technologies have been developed

to conserve natural resources and minimize global carbon emissions from fossil fuels
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[5–7]. Numerous global energy leaders tend to shift output away from fossil fuels and

toward renewables such as solar, wind, and biomass, which are frequently referred

to as clean energies. Solar power and wind turbine systems, for example, are highly

reliant on the weather conditions and so are subject to great uncertainty. The fact that

electricity generation from natural resources is largely unregulated by people and may

not fit the demand pattern is one of the greatest obstacles. According to numerous

sources, energy storage increases the fraction of energy consumption at the site of

generation, i.e. energy self-consumption [72–75]. The key to success is in the approach

to forecasting and the utilization of energy storage to carry energy from the generation

periods to the consumption periods.

More than a quarter of the world’s electricity consumption was met by renewable

sources by the end of 2018, and their capacity grew by 8 percent, led by wind and solar

[7]. Wind power, bio-energy, solar photovoltaic (PV), and hydropower account for the

majority of the renewable electricity produced in the United Kingdom in 2019 (35.8

percent of the total). Renewable energy sources are characterized at a specific location

by taking into account the existing energy flows and the spatial & temporal variations

[76]. In the United Kingdom, solar panels and small wind turbines are examples of

suitable residential renewable energy deployments [10, 77]. Particularly, solar PV

adoption has increased rapidly over the past few years as the International Energy

Agency (IEA) declared that solar PV power is the new king of electricity because it is

consistently cheaper than fossil-fuel power plants [78].

It is common knowledge that significant uncertainties exist in renewable energy

generation, such as solar power and wind turbine systems, which are highly depen-

dent on weather conditions. In addition, this type of renewable energy generation does

not typically correspond to the daily consumption patterns of households. Various

home appliances, such as kitchen and cooking appliances, washing machines and tum-

ble dryers, refrigerators and freezers, microwaves, ovens, toasters, humidifiers, coffee

makers, televisions, DVD players, video games, telephones, laptops, etc., are avail-
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Figure 4.1: The average household electricity consumption profile for a typical UK
home (Watts) [3]

able for household electric end-uses. The electricity consumption of these end-uses is

contingent upon lighting and dwelling size, local temperature, utility cost, consumer

lifestyles, etc. Figure 4.1 illustrates the usage profile of home appliances and peak

periods throughout the day based on the survey results of 250 British households in

2010-2011 [3, 52]. It can be observed that daily electricity profiles and peak demand

occur between 6 and 9 p.m., which corresponds to the time for cooking, lighting, and

audiovisual demands after work hours, which also corresponds to the time of high

(peak load) prices. One way to reduce electricity costs is to purchase electricity during

off-peak hours and transport it to meet peak demand, while another is to maximize

self-consumption when a home has its own renewable energy generators such as solar

panels. By installing electricity storage, both objectives can be attained (e.g. batteries).

According to numerous publications [79–83], self-consumption, i.e., the use of

electricity on the site of its generation, is one of the most efficient forms of energy

consumption, and its level can be enhanced by the deployment of energy storage. As a

result of technological and material advancements, solar PV panels and energy storage

have become increasingly affordable [79–81, 84]. It can be inferred that the quality

of weather forecasting and the optimal use of energy storage are the primary factors

influencing the deployment of renewable energy at the residential level.

Alternatively, electric vehicles (EVs) play a crucial role in achieving the environ-
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mental objectives of lowering local air pollution and combating climate change. In

many nations, efforts are made to promote the development and use of electric vehicles

(EVs) in order to lower pollution levels by establishing EV policy support measures

in various forms of government policies, such as financial incentives, tax breaks, etc.

[85, 86]. The global market for electric vehicles (EVs) developed significantly over

the past decade, fueled by favorable policies and technology developments at all levels

of government [87]. In addition to these policies, the fact that an EV is powered by a

battery and the driver takes it home with them leads to discussions about using the EV

battery to power home electronics, also known as EV-to-house power supply. In 2021,

for instance, Mitsubishi Motors Corporation and the Electricity Generating Authority

of Thailand have agreed to build a system that would allow electric vehicles to power

homes for other purposes [88]. In addition, Tesla’s battery supplier, a leader in energy

storage and EV technology, has announced plans to introduce a cheaper battery with a

million-mile lifespan [89].

Based on the analysis above, it is critical to have an optimal control system to

coordinate the operations of renewable energy resources and demand, given the uncer-

tain distributed renewable generation (e.g., micro wind turbines, on-roof solar panels

for local communities and households) and various consumption needs. Home energy

management energy management system (HEMS), which could serve in this capacity,

can be viewed as a demand response tool conceptualized on the basis of solar energy

management system [90]. Existing literature on HEMS has presented a number of

optimization models and techniques, such as stochastic dynamic programming (SDP)

[91], convex programming [92], mixed integer linear programming (MILP) [93] and

stochastic programming (SP) [94, 95] to optimize energy usage in smart homes with

renewable energy, energy storage system (ESS), and Plug-in electric (PEV).

Schram et al. (2018), for instance, proposed a simulation model for optimizing the

residential battery with various household load profiles and PV systems. In addition,

stochastic management of energy storage is one of the crucial areas to investigate in
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order to reveal the potential of renewable energy sources [96]. Mathematical optimiza-

tion, model predictive control, and heuristic control are used to improve the energy

efficiency of household appliances [97]. The operating policies, including vehicle-to-

home supply and peak-load shifting [93], have been proposed and implemented in an

effective manner.

Most existing works design and optimize a system based on the communication

between devices and smart meters for real-time monitoring of electricity consumption

in households with real-time pricing (RTP). In this study, we assume that the hourly

charging rate of batteries can be pre-set in smart meters based on a forecast of weather

conditions, electricity prices, and demand for the following 24 hours.

The supportive policies of energy storage systems, such as electric vehicle batteries

(EVBs) and residential energy storage, are viewed as a means of managing day-ahead

electricity consumption. In addition to the difficulty of managing HEMS as a demand

response tool to improve the energy load consumption based on the price of electricity,

solar PV forecasting is crucial for coping with parameter system uncertainty.

4.2 Stochastic programming

Stochastic programming is a way to model optimization problems where there are a lot

of things we do not know. In deterministic optimization problems, all of the parame-

ters are known, but in real-world problems, almost all of the parameters are unknown.

Robust optimization is a way to solve problems when only a small number of parame-

ters are known. The goal here is to find a solution that works with all of these pieces

of information and is better in some way. In a similar way, stochastic programming

models take advantage of the fact that the data’s probability distributions can be known

or estimated. Here, the goal is to find a policy that works for all (or almost all) possible

data instances and makes the expectation of a function of decisions and random vari-

ables as good as possible. In a broader sense, these models are created, numerically
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solved, and analysed in such a way that a decision-maker can learn something useful in

a variety of applications ranging from finance to transportation to energy optimization.

Two-stage stochastic programming [98]

Two-stage stochastic programming involves making decisions for two different time

periods based on a set of random parameters determined by either previous experience

or the results of some kind of survey. The objective function for formulating two-

stage stochastic programming with fixed recourse consists of two parts: the first-stage

forecast and the second-stage fixed decisions based on the results of the experiment.

Both parts are included in the objective function. Instead of making a few adjustments

to the requirements and technological assets, the constraints are more like standard

optimization techniques.

The fundamental concept behind two-stage stochastic programming is that the most

appropriate choices should be formulated on the basis of the information that is readily

available at the time that the choices are being formulated, rather than on the basis of

future observations. In the field of stochastic programming, the two-stage formula-

tion is very widespread. The following is an example of the general formulation of a

stochastic programming problem with two stages:

min
x∈X

{g(x) = f(x) + E[Q(x, ξ)]},

where Q(x, ξ) is the optimal value of the second-stage problem,

min
y

{q(x, ξ)|T (ξ) +W (ξ)y = h(ξ)}.

The classical two-stage linear stochastic programming (SP) models can be per-

formed as

min
x∈Rn

g(x) = cTx+ E[Q(x, ξ)],
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subject to

Ax = b

x ≥ 0,

where x ∈ Rn is the first-stage decision variable vector, and Q(x, ξ) is the optimal

value of the second-stage problem, s.t.

min
y∈Rm

q(ξ)Ty,

subject to

T (ξ)x+W (ξ)y = h(ξ)

y ≥ 0,

where y ∈ Rm is the second-stage decision variable vector, and ξ(q, T,W, h) is a

random vector of the data of the second-stage problem. In this formulation, the first

step requires us to make a decision about x in the here-and-now, before the realisation

of the uncertainty data ξ is known. In the second stage, once we have a realisation of ξ

and are able to do so, we optimise our behaviour by finding a solution to an appropriate

optimization problem.

4.3 Default setting and system parameters

Figure 4.2 represents the electricity flow inside a household that has a solar PV system,

a home battery, and an EV. Demands are classified into three categories, i.e., EV, typical

home appliances, and small appliances. It shows the default system where all devices

are connected to the grid. A home battery is installed and connected to the solar panel

to increase self-consumption. Electricity generated by solar panels or pulled from the



47

grid can directly supply home appliances and/or charge the home battery, while the

home battery can supply the appliances as well. We assume that solar panels can

directly supply home appliances without going through the home battery. A stochastic

programming model will be developed in this work to explore the optimal usage of

batteries under this connection setting under different solar PV generation levels and

home battery capacities. The EV is driven by its own battery, which can be charged

from the grid. Due to the voltage and existing restrictions, direct charge from the

solar panel to the EV battery is prohibited by this default layout. In later discussions,

however, we will lift this restriction to explore the potential usage of EV batteries in

balancing demands and supply, and look into the possibility of replacing home batteries

with EV batteries in a household with renewable energy supply.

Figure 4.2: Graphical representation of home energy consumption and battery usage
concepts

4.4 Day-ahead probabilistic PV generation forecast

The proposed forecasting model with exogenous variables at the day ahead horizon

generates scenarios for the hourly output of peak PV generation over the next twenty-

four hours.
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The time-series methodology is one of the three major categories for micro-scale

and intra-day resolutions in solar PV power forecasting, according to [99]. Particularly,

exponential-based and ARIMA-based approaches are suitable for short-term solar PV

planning [100–104]. The majority of these methods utilize meteorological data as ex-

ogenous variables, such as solar radiation, sunshine hour, weather conditions, cloud

cover, etc. The intensity of solar radiation or sunlight, which is a direct input of PV

through solar panels, reaches the earth’s surface and has a strong correlation with satel-

lite (images) data [45, 105], historical solar radiation data [95, 106], cloud conditions

[40, 45–49], and sunshine duration [40–44]. It also depends on coordinates, season,

time of day, cloud cover, and altitude, among other variables.

A model for forecasting proposed by Chitsuphaphan et al. (2020) [95, Section. 2(E)]

incorporates local information, such as coordinate, and weather-related conditions, into

the exponential-based method that can simulate solar PV output for the following day.

To forecast the day-ahead solar PV output in micro-scale resolution for residential

energy consumption as a stochastic variable, the cloud cover, which includes five lev-

els such as sunny, partly cloudy, mostly cloudy, cloudy, and rainy, is considered as

an independent variable (as an indicator variable that represents categorical data). A

five-level categorical variable represents cloud cover. In the regression analysis (as a

causal model), cloud conditions are transformed to be a 4-dimensional dummy vari-

able xs⃗,1j, xs⃗,2j, xs⃗,3j, xs⃗,4j , with (0, 0, 0, 0) standing for sunny (fine sky), (1, 0, 0, 0)

standing for partly cloudy, (0, 1, 0, 0) standing for mostly cloudy, (0, 0, 1, 0) standing

for cloudy and (0, 0, 0, 1) standing for rainy, where s⃗ indicates the PV’s coordinates

(latitude and longitude) and j denotes the jth day.

Let (Ps⃗,j, xs⃗,j) represents a historical data set of the peak-PV generation and a cloud

forecast vector, i.e. xs⃗,j = (xs⃗,1j, xs⃗,2j, . . . , xs⃗,4j), at s⃗ position on day j, and At
S|xs⃗,j

denotes an amount of hourly-t solar electricity generation given xj . Therefore, the

forecasting model by using five levels of cloudiness used to simulate the scenarios of
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hourly electricity supply for second-stage problem of the SP model is

At
S|xs⃗,j =

P̂s⃗,j

2
sin

(
2πfjtj −

π

2

)
+
P̂s⃗,j

2
+ εt, εt ∼ N(0, σ2), t ∈ [us⃗,j, vs⃗,j],

= 0, elsewhere,

Ps⃗,j = β0 + β1xs⃗,1j + β2xs⃗,2j + β3xs⃗,3j + β4xs⃗,4j + ηj, ηj ∼ N(0, σ2
a),

where P̂s⃗,j represents the magnitude forecast at s⃗−position on day j when xs⃗,j given,

β0, β1, β2, β3, β4 denote regression coefficients, ηj denotes a normally distributed dis-

turbance term, s.t. E[ηj] = 0,V[ηj] = σ2
a, us⃗,j, vs⃗,j denote sunrise and sunset time

index, respectively, fj denotes a frequency of sine wave function s.t. fj = 1
nj
, nj =

vs⃗,j − us⃗,j + 1, tj denotes a new time index on day j, s.t. tj = t− us⃗,j + 1.

Figure 4.3 displays forecasts for the next four days of the 24-hour outputs of PV

generation based on the model that was applied given different cloudiness conditions

on July 1, 3, 6, and 10, 2019 with partly cloudy, fine, cloudy, and costly cloudy, respec-

tively. As can be seen, the hourly forecast for each day relies heavily on the sinusoidal

function that is derived from the daily cloudiness forecast.

Figure 4.3: The 24-hour ahead solar PV output forecast when giving different states of
cloud cover using real data for model training

The historical time series and cloud cover conditions (five levels of cloudiness)

are serviced to download by the PVOutput platform (see https://pvoutput.org/). The

data set is used to estimate the parameters of the forecasting model and simulate the

scenarios afterward. In the UK, a 3 kW solar panel system, which requires at least 21
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square metres of surface area to install, can sufficiently generate electricity for daily

consumption of a small-to-medium household size (1 - 3 residents). Therefore, we will

generate three sets of solar electricity scenarios (Aω
S, ω ∈ Ω, s.t.|Ω| = 20) based on 1,

2, and 3 kW peak PV system.

4.5 Optimization model

4.5.1 Notations and parameters

To develop the two-stage SP models for household power systems with PV genera-

tion system and EV. Model parameters, decision variables and abbreviations are firstly

declared to represent components of system programming as shown in Table 4.1.

4.5.2 System layouts and models

To understand the different roles played by each component of the household energy

system, we look into different systems with respect to the availability of batteries

and/or connections between batteries and devices. Table 4.2 summarizes the detailed

systems we are examining with the connection links demonstrated in Figure 4.4. These

scenarios are going to be compared with the default setting as displayed in Figure 4.2.

Note that these proposed systems take into account both the current applicability

and the potential future development of solar PV and energy storage devices. The

on-grid system is the simplest system for a home with solar PV and an EV, as it is

connected to the grid and all consumption is drawn directly from the grid when needed.

To investigate how batteries assist in transporting energy from the generation phase

(cheap hours) to the demand phase (peak hours) so as to maximise self-consumption,

the default system (Figure 4.2) is proposed, which reflects the standard configuration of

a household with solar PV, an electric vehicle (EV), and home energy storage (battery)

using state-of-the-art technology. The hybrid system, on the other hand, improves the

default system by allowing power transmission from home battery to EV battery so
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Table 4.1: Abbreviations and system notations

Indicators Definition
S solar PV generation system
G regional electricity grid
E electric vehicle battery (EVB)
B home battery
V electric vehicle
T typical household appliances or major appliances used for routine housekeep-

ing tasks such as cooking, washing laundry, or food preservation
D small household appliances including portable/semi-portable machines such

as microwave ovens, toasters, humidifiers, coffeemakers, and other electronic
devices

Indices
i electricity supply sources, i ∈ {S,G}
j power demand categories, j ∈ {V, T,D}
k energy storage, k ∈ {E,B}
t time intervals, t ∈ {1, 2, ..., h}, where h = 24

Parameters
P t
i [£/kW], cost of electricity from resource i at time t, i ∈ {S,G}, t ∈

{1, 2, ..., h}
At

i [kW], amount of electricity supply from source i at time t, i ∈ {S,G}, t ∈
{1, 2, ..., h}

U t
j [kW], amount of electricity demand from category j at time t, j ∈

{V, T,D}, t ∈ {1, 2, ..., h}
Ck [kW], capacity of energy storage k, k ∈ {E,B}
δt indicator showing if EV is available at home during interval t, t ∈ {1, 2, ..., h}
ρ conversion rate of power transmission
γ energy selling price as a proportion to the lowest ToU tariff (when selling of

energy is allowed)
Variables

xti,j [kW], amount of electricity transmission from i to j at time t, i ∈ {S,G}, j ∈
{V, T,D}, t ∈ {1, 2, ..., h}

yti,k [kW], amount of electricity transmission from i to k at time t, i ∈ {S,G}, k ∈
{E,B}, t ∈ {1, 2, ..., h}

wt
k,k′ [kW], amount of electricity transmission between energy storage at time t,

k, k′ ∈ {E,B}, t ∈ {1, 2, ..., h}
ztk,j [kW], amount of electricity transmission from k to j at time t, k ∈ {E,B}, j ∈

{V, T,D}, t ∈ {1, 2, ..., h}
ltk [kW], storage level of type k battery at time t, k ∈ {E,B}, t ∈ {1, 2, ..., h}
st [kW], amount of surplus electricity generated from solar PV during interval

t, t ∈ {1, 2, ..., h}

that excess solar PV generation will not be wasted if it exceeds standard household

consumption.

On top of the structure of the hybrid system and the on-grid system, additional
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Table 4.2: Household power system setups

Systems
Residential power systems with solar PV and EV

including B allowing charge allowing T& D allowing selling
of E from B supplied from E energy to the grid

Default System Yes No No No
(a) Hybrid System Yes Yes No No
(b) Hybrid System
with EVB Supply

Yes Yes Yes No

(c) On-grid System No No No Yes
(d) On-grid System
with EVB Supply

No No Yes Yes

Figure 4.4: Alternative layouts of home electric systems

transmission options from the EV battery to home appliances are proposed for the other

two systems. Incorporating/replacing the home battery with an EV battery is enabled

by doing so. Given that EV is a global trend for the next generation of vehicles, these

systems provide information on the optimal use of EV batteries in a broader household

energy context. Note that all links to EV batteries are only valid when the vehicle is

parked at home.
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SP model for the default setting

Default system, as shown in Figure 4.2, is a modern PV system that combines solar

panels and battery storage in one place. The electricity generated from solar panels

can be consumed right away or be stored in home battery for later usage. This can

improve self-consumption and ease the load and pressure on the grid. In addition, the

home battery can also be used as a route to reduce energy bills by carrying electricity

from off-peak hours to peak hours. We assume that the EV battery can only be charged

at home from the grid, so essentially the two storage systems are not interacting with

each other and the EV system is not influenced by the power supply from solar panels.

To simplify the problem structure, a two-stage SP is designed, with the first-stage

deciding proactively the best amount to pull from the grid into the energy storage (EV

and home battery), and the second stage reacting to the actual supply and demand to

minimize the overall cost.

Let ytG,k, k ∈ {E,B} and ltE be the first-stage variables and (xti,j)
ω, (ztB,j)

ω, (ytS,B)
ω,

(ltB)
ω,∀i ∈ {S,G},∀j ∈ {T,D},∀k,∀t, ∀ω be second-stage recourse variables, where

ω denotes the outcome of the random weather condition. The objective function of the

two-stage SP model to minimise total daily electricity cost under weather conditions is

expressed by

min
∑
t

∑
k

P t
Gy

t
G,k + Eω∈Ω

[
φ(ytG,k, ω)

]
,

s.t.

EV battery flows (BEV-to-EV linkage shows energy transfer during travel time t):

ρδtytG,E − U t
E = ltE − lt−1

E ,∀t,
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EV battery capacity (BEV level at node B in period t lies between 0 and capacity):

0 ≤ ltE ≤ CE,∀t,

EV battery daily power cycle (Start the day with the same energy at node E):

l24E = l0E

Non-negativity (Non-negative grid-to-battery electricity transmission is prohibited):

ytG,k ≥ 0,∀k, ∀t,

where φ(ytG,k, ω) represents the optimal objective of the second-stage problem under

scenario ω. The second-stage problem can thus be written as

φ(ytG,k, ω) = min
∑
t

∑
j∈{T,D}

P t
G(x

t
G,j)

ω,

s.t.

Solar PV supply (The power used to run appliances and stored in a home battery

doesn’t exceed a solar PV system’s output in period t under the scenario):

∑
j∈{T,D}

(xtS,j)
ω + (ytS,B)

ω ≤ (At
S)

ω,∀t,∀ω

Home battery flow (Total pull and push electricity at node B in period t under the

scenario):

ρ
[
ytG,B + (ytS,B)

ω
]
−

∑
j∈{T,D}

(ztB,j)
ω = (ltB)

ω − (lt−1
B )ω,∀t,∀ω
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Electricity demands (In period t, total electricity from energy suppliers and home bat-

teries meets home appliance demand at nodes T and D under the scenario):

∑
i∈{S,G}

(xti,j)
ω + (ztB,j)

ω = U t
j ,∀j ∈ {T,D},∀t, ∀ω

Home battery supply (Under the scenario, a home battery’s energy supply cannot ex-

ceed battery level in period t):

∑
j∈{T,D}

(ztB,j)
ω ≤ (ltB)

ω,∀ω

Home battery daily power cycle (start the day with the same energy at node B under

the scenario):

(l24B )ω = (l0B)
ω,∀ω

Home battery capacity (Home battery level at node B in period t under the scenario

lies between 0 and capacity):

0 ≤ (ltB)
ω ≤ CB,∀t,∀ω

Non-negativity (The transmission of electricity between nodes is greater than or equal

to zero in period t under the scenario):

(ytS,B)
ω ≥ 0,∀t,∀ω

(xti,j)
ω ≥ 0,∀i,∀j ∈ {T,D},∀t,∀ω

(ztB,j)
ω ≥ 0,∀j ∈ {T,D},∀t, ∀ω

where (At
S)

ω represents the 24-hour PV output that are generated by the forecasting

model in Section 4.4, which only become available in second stage.
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SP model for (b) Hybrid System with EVB Supply

(b) Hybrid System with EVB Supply is an extension of the hybrid system by allowing

home appliances be supplied from the electric vehicle battery (EVB). This system is

motivated by the fact that normally the house occupiers come back home together

with the EV, so that the EVB connection is available during the peak demand hours.

By pushing remaining energy from EVB to supply home appliances when parking at

home, one can further reduce the electricity purchase from the grid during peak rate

hours. This would enable the maximum usage of the EV battery as an energy storage,

which is available to be charged during the off-peak night hours and to be discharged to

supply home appliances during the peak hours. This scenario should work well when

the home battery is relatively small. Major differences from system (a) lie in three

constraints:

EV battery flow:

ρδt
[
ytG,E + (wt

B,E)
ω
]
−

∑
j∈{T,D}

δt(ztE,j)
ω − U t

E = (ltE)
ω − (lt−1

E )ω,∀t,∀ω

EV battery supply:

∑
j∈{T,D}

δt(ztE,j)
ω + U t

E ≤ (ltE)
ω,∀t,∀ω

Electricity demands:

∑
i∈{S,G}

(xti,j)
ω + (ztB,j)

ω + δt(ztE,j)
ω = U t

j ,∀j ∈ {T,D},∀t,∀ω

where (ztE,j)
ω ≥ 0, j ∈ {T,D} denotes the electricity flow from EV battery to home

appliances in hour t.
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SP model for (c) On-grid System

(c) On-grid System is a benchmark system which has no home battery installed. The

excess solar electricity after supplying home appliances at time t, denoted by st, can

be uploaded to the grid to get power credits. This is shown by the link between the

solar panel and the grids in Figure 4.4. Provided that the surplus can be sold back to

the grid at a discounted price with discount rate γ, the objective function for second

stage problem has to be updated to include the income.

min
∑
t

P t
Gy

t
G,E + Eω∈Ω

[
φ(ytG,E, ω)

]
,

s.t.

EV battery flow:

ρδtytG,E − U t
E = ltE − lt−1

E ,∀t,

EV battery daily power cycle:

l24E = l0E,

EV battery capacity:

0 ≤ ytG,E ≤ CE,∀t,

with the second-stage problem written as

φ(ytG,E, ω) = min
∑
t

P t
G

∑
j∈{T,D}

(xtG,j)
ω − γP t

G(s
t)ω

 ,
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s.t.

Solar PV supply:

∑
j∈{T,D}

(xtS,j)
ω + (st)ω ≤ (At

S)
ω,∀t,∀ω

Electricity demands:

∑
i∈{S,G}

(xti,j)
ω = U t

j ,∀j ∈ {T,D}, ∀t, ∀ω

Non-negativity:

(xti,j)
ω ≥ 0,∀i,∀j ∈ {T,D}, ∀t, ∀ω

(st)ω ≥ 0,∀t,∀ω

where (st)ω ≥ 0 denotes the surplus electricity generated from solar panels in hour t.

Note that as there is no storage available, this surplus has to be uploaded to the grid,

disregard whether this uploading is paid or not.

SP model for (d) On-grid System with EVB Supply

(d) On-grid System with EVB Supply is an extension of the on-grid system. It as-

sumes no home battery but allows home appliances to be driven by EV battery. Es-

sentially we assume the EV battery takes the role of home battery. While a major

difference lies in the fact that the EV battery is not available throughout the day and

it can only be charged/used when the EV is parked at home, so it will miss the peak

hours of solar generation and therefore has limited ability to store surplus solar power

generations. The EV batter is more likely to serve only as a tool to bring cheaper
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electricity to peak hours. The SP model can be modified based on the one for on-grid

system.

EV battery flow (moved to the second stage as it now depends on scenario ω):

ρδtytG,E −
∑

j∈{T,D}

δt(ztE,j)
ω − U t

E = (ltE)
ω − (lt−1

E )ω, ∀t, ∀ω

EV battery daily power cycle (moved to the second stage as it now depends on scenario

ω):

(l24E )ω = (l0E)
ω,∀ω

Electricity demands:

∑
i∈{S,G}

(xti,j)
ω + δt(ztE,j)

ω = U t
j ,∀j ∈ {T,D}, ∀t, ∀ω,

4.6 Numerical Results

4.6.1 Experiment settings and system parameters

To draw valuable insights from solving the proposed SP model, we set the problem

parameters to reflect practical situation according to reliable sources.

Electricity supply: At
i, i ∈ {S,G} In practice, the electricity grid can supply as

much energy as what is needed by a household, so this problem has no constraints on

the amount of electricity from the grid (At
G). On the other hand, how much electricity

we can generate from the PV system installed at home is under significant uncertainty,

which has to be predicted to feed into the model.

The electricity output from solar panels depends on several factors such as size, ca-
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pacity, location, and weather conditions. In the UK, most residential solar PV systems

installed typically have a capacity between 1 kW and 4 kW by taking around 8 - 28

square metres (m2) of space. In this study, we will examine into three different peak

PV generation capacities at 1 kW, 2 kW and 3 kW in clear sky conditions (sunny day)

and study how electricity storage would act in these three settings. Re-scaled according

to the chosen capacities, the spatial exponential smoothing model as presented in sec-

tion 4.4 is used to generate 20 random scenarios of the 24-hour electricity generation,

which are used as the {(At
S)

ω, t = 1, ..., 24, ω = 1, ..., 20} values in the model.

Electricity demand: U t
j , j ∈ {V, T,D} The households consumption data (without

EV), i.e., U t
T and U t

D, are extracted from the household electricity survey [52]. In this

study we deploy the average household consumption data over all household types, so

as to explore the optimal household electricity system settings under the typical UK

consumption pattern. Devices (excluding EV) in households are categorised into two

groups, i.e., major appliances (white goods) and small appliances & electronic devices

(brown goods). Figure 4.5 summarises the hourly consumption level of these two

categories (green and orange lines), together with other key information of the system

like average daily PV generation and electricity price patterns. It can be seen that

the peak demand occurs between 6-9 p.m., which is the typical cooking and family

entertaining time after working hours. High peak-load price applies to this period’s

consumption, which forms the major part of high electricity bills.

For the EV consumption (U t
V ), we consider urban commuter driving profiles by

assuming specifications as follows: (a) the household has an EV with 30 kWh battery,

with a typical daily consumption of 10 kWh, (b) the EV is only charged at home and its

available time ranges from 7 pm to 7 am the next morning. Let δt be binary indicators

stating the available charging time at home for the EV which is set to one between 7

pm - 7 am.



61

Figure 4.5: Average 24-hour UK household electricity profile and PV generation
curves on summer weekdays

Electricity prices: P t
i , i ∈ {S,G} For electricity price we take a typical time-of-

use (TOU) electricity tariff that is provided by the eastern region household electricity

surveys [52]. A day is divided into four time intervals and each has its own electricity

prices (P t
G) as shown by the red line in Figure 4.5. On the other hand, we assume

that the electricity generated by solar panels (P t
S) is free of charge by ignoring the

installation and maintenance costs. When customer upload energy back to the grid

they receive credits for doing so and this is called Feed-in-tariff. In this study we test

through different levels of Feed-in-tariff, γ, between 30 - 60% of the lowest price of

the TOU tariffs.

Energy storage capacity: Ck, k ∈ {E,B} Being consistent with industrial produc-

tion, here we assume that a 30 kW (CE) lithium-ion electric-vehicle battery is installed

which provides up to 160 km range per charge. As for the home battery CB, we are

aiming to find the influence of it so we examine into the options ranging from 0-30
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kWh. The battery round-trip efficiency is the fraction of energy put into the storage

that can be retrieved afterwards. Here we set it to 80% according to [107].

4.6.2 Scenarios of solar PV generation

In this subsection we fit the forecasting model of Section 4.4 to a real dataset recorded

at a solar farm in Cambridge during 1st - 30th June 2019. This dataset consists of

1,440 observations of half-hourly PV outputs with cloud cover conditions (five levels

of cloudiness). The fitted model is then rescaled according to home PV capacity so as

to generate simulation scenarios for our stochastic programming models.

In regression analysis (first stage of the proposed model), the aggregated-daily PV

output as a dependent variable is modelled with weather conditions using enter (vari-

able selection) method.

Table 4.3: Forecasting estimation

Stage Parameter
Estimate Remark

1 kW 2 kW 3 kW (Cloud level)

1st stage

β0 0.805 1.610 2.414 Fine
β1 -0.025 -0.051 -0.076 Partly cloudy
β2 -0.041 -0.081 -0.122 Mostly cloudy
β3 -0.391 -0.782 -1.173 Cloudy
β4 -0.660 -1.321 -1.981 Showers
σ2
a 0.009 0.037 0.083

2nd stage σ2 0.014 0.055 0.137

The estimation results from the forecasting model as presented in Table 4.3 shown

estimates which is used to simulate possible PV supplies. Therefore, the 1 kW PV

generator for 24-hour ahead (on 1st July 2019, j = 31) PV outputs at time t = 720

when giving weather conditions and spatial information as follows: (a) a clear-sky

day (fine), i.e. xs⃗,31 = (0, 0, 0, 0), (b) the sunrise and sunset times on that day in

Cambridge is 04.42 [sunrise time falling in 04.00-04.59 or the 5th hour of the day

(us⃗,31 = 24∗ (31−1)+ ⌈4.42⌉ = 725), so the first hour for solar PV generation output

of the day at time 725] and 21.24 (vs⃗,31 = 720 + ⌈21.24⌉ = 742), respectively, i.e., a

frequency of sine function on j = 31 equals fj = 1
vs⃗,j−us⃗,j+1

= 1
18

, is written by
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At
S|s⃗,xs⃗,31 =

P̂s⃗,31

2
sin

[
1

9
π(t− 724)− π

2

]
+
P̂s⃗,31

2
+ εt, εt ∼ N(0, σ2), t ∈ [725, 742],

= 0, elsewhere,

Ps⃗,31 = β̂0 + ηj, ηj ∼ N(0, σ̂2
a),

where (β̂0, σ̂2
a, σ̂) for 1 kW to 3 kW peak PV system capacity are (0.805,0.009,0.014),

(1.610,0.037,0.055) and (2.414,0.083,0.137), respectively.

To feed in the stochastic programming model we generate 20 random scenarios of

hourly solar PV output for a specific weather condition, e.g., sunny, which form the

inputs of the second-stage optimization model.

4.6.3 Results of SP models

To evaluate the energy efficiency of the proposed systems, we test them with the pa-

rameters listed above. Experiments are conducted using ILOG CPLEX V12.9.0 on an

Intel Core i9-7940X 3.1GHz. Figure 4.6 shows a comparison of the energy bills under

different system settings as presented in Section 4.5.2.

0 1 2 3 4 5 10 15 20 30

HB capacity (KW)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
1KWh SP generation

=0.3
=0.4
=0.5
=0.6

=0.3

=0.4

=0.5

=0.6

0 1 2 3 4 5 10 15 20 30

HB capacity (KW)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
2KWh SP generation

=0.3

=0.4

=0.5

=0.6

=0.3

=0.4

=0.5

=0.6

0 1 2 3 4 5 10 15 20 30

HB capacity (KW)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
3KWh SP generation

=0.3

=0.4

=0.5

=0.6

=0.3

=0.4

=0.5

=0.6

default system

system (a)

system (b)

system (c)

system (d)

Figure 4.6: Daily household consumption costs by solar PV and battery capacities
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Figure 4.6 shows the daily energy bills payable by the household under different

system settings with different level of PV generation and Home Battery (HB) capaci-

ties. Note that some results are the same for different systems; to display them clearly

some lines are thickened in Figure 4.6 and having another line drawn on top of it.

Not surprisingly, the daily usage cost decreases with increased size of solar PV

capacity. The cost also decreases with an increased size of home battery, under the

same solar PV generation. Upper limits on the home battery capacity can be identified

for each system setting from the results. The larger the solar PV generation is, the

higher HB should be installed to facilitate full usage of the power generated. According

to Figure 4.6, suitable capacity of HB for 1 kWh, 2 kWh and 3 kWh PV under the

default systems are, respectively, 3 kW, 4 kW and 5 kW. Higher home battery capacity

won’t decrease the electricity bill further. While the best capacity of HB under systems

(a) and (b) are, 3 kW, 10 kW and 15 kW for 1 kWh, 2 kWh and 3 kWh PV generation.

System (b) (allowing EVB supply to home appliances) saves electricity bill by

5.6 − 15% when no HB is installed in the household, and by 3.3 − 5% when HB

capacity is very low (HB=1). This is achieved by using the EVB to carry low-cost

electricity from off-peak hours to peak hours. The saving is getting smaller as the solar

PV generation is getting higher. If we take a closer look we can see that the electricity

bills are roughly the same for system (b) when HB=0, regardless the size of the solar

PV. This is because the EVB operates independently with the solar system if there’s

no home battery connecting them. On the other hand, the cost of the default system

when HB=0 decreases with the increased generation capacity of solar PV, so the gap

between system (b) and the default system becomes less significant.

System (a) (allowing transmission from HB to EVB) converge to default system

when home battery capacity is low and converge to system (b) when home battery

capacity is high. Indeed, when HB capacity is low, it carries less energy than the

household demands so there won’t be surplus to supply the EVB. When HB capacity

is high, however, allowing EVB supply to home appliances won’t add further value
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to the system. In addition, savings achieved by system (a) become more significant

when solar system gets larger; it saves 21% (58%) the daily electricity bill by allowing

transmission from HB to EVB on top of the default system with 2 kWh (3 kWh) solar

generation. Comparing the 2 kWh results with that of 3 kWh, it is not hard to see that

both systems are restricted by the battery size until the HB capacity reaches 5 kW (they

have same decreasing pattern until HB = 5 kW). Further savings can only be achieved

with higher solar generation.

For system (c) and (d), their results are shown in the figures by the scatters aligned

on the left of each graph, because they don’t have home batteries (HB = 0). The scat-

ters are labelled with the selling price rate considered, e.g., γ = 0.3 one can sell the

surplus electricity at 0.3 ∗ min{P t
G, t = 1, ..., h} pounds per kW. When selling price

is zero system (c) is identical to the default system (and system (a)) with HB = 0,

while system (d) is identical to system (c) with HB = 0. We can see from the results

that when selling is allowed, the daily bill decreases approximately linearly with the

increase of the selling price. System (d) saves around 20% on system (c) by allowing

EVB supply to home appliances when γ = 0.3, and the savings increase with the size

of solar panels. When γ = 0.3, system (d) leads to similar daily bill to system (a) and

(b) with the highest possible home battery installed, and System (d) is certainly better

than system (a) and (b) when γ = 0.4 or higher.

Managerial insights:

• when HB=0 (is low), allowing EVB supply to home appliances saves 9 − 20%

(5− 8%) the daily bill. So assume EV is everywhere we can reduce the HB size

and use EVB as alternative storage and supply.

• when home battery is large (over 10 kW), allowing transmission from HB to

EVB saves 39− 86% the daily bill with minimum 2 kWh solar generation.

• When solar generation is higher than 2 kWh, allowing HB supply to EVB (Sys-
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tem (b)) become a good idea as this would increase the self-consumption of the

electricity generated by the solar panel.

• Overall results: EV battery cannot fully replace HB because a) it cannot be

charged by solar panel due to low voltage, b) it’s not at home when solar gener-

ates electricity.
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Chapter 5

Conclusions and Discussion

This study aims to: (a) define the solar-based time series used to explain the data that

consists of two seasonal patterns with significant different lengths like the amount of

hourly electricity generated from the PV system; (b) develop the forecasting model

and method incorporating with spatial information, such as GPS coordinates, weather-

related conditions (e.g. sunshine duration, cloud, etc.), to simulate a 24-hour (or many

consecutive days) solar PV generation output in advance for balancing household elec-

tricity demand and supply; and (3) propose and investigate the different residential

energy connections of electric vehicle batteries (EVB) to the residential solar pho-

tovoltaic (PV) system and to home appliances in order to determine the efficacy of

deploying EVB in future households using a two-stage stochastic programming ap-

proach.

5.1 Conclusion

Weather-related information, such as sunshine duration and cloud conditions from

weather forecasts, can reflect the daily peak of solar irradiation (the magnitude of the

adjusted sine wave function) by the regression model before it is transformed into PV

energy via the solar panel. The sinusoidal model with the magnitude obtained in the

first stage of the spatial forecasting model, which is used to replace a traditional sea-
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sonal component of Holt-Winters’s exponential smoothing to predict the daily charac-

teristics of the solar-based time series, plays an important role in extending the range

of forecasts from one step up to a day ahead. While remaining components of the

spatial forecasting model are applied to detect and adjust the short-term pattern for a

step-by-step forecast in the second stage.

To estimate and run the forecasting model, the model needs a small sample size

of the data. Relevant models, on the other hand, need at least two sidereal periods of

the time series in order to train the model. The incorporation of a covariate into the

regression model is another method that can be utilised to mitigate forecasting errors.

The optimal solutions for the default system and four different connections be-

tween batteries, devices, and selling electricity policy under parameter setting without

considering the PV installation and maintenance costs of the PV system and home bat-

tery (HB) are totally explained in Chapter 4. In light of our findings, we would like to

provide additional details regarding the potential for EVB to power home appliances.

The average UK household consumes approximately 10 kWh of electricity per day1,

depending on its size, the appliances used, and the season. This means that a typical

battery of an electric vehicle (EVB) with a capacity of 30 kWh, as configured in our

systems, can store enough energy to meet the energy demands of a typical home for a

couple of days. In other words, EVB supply to power home energy systems (HES) as

set forth in systems (b) and (d) are effective solutions if the load profiles in households,

which are reflected by power consumption behaviours, are not allowed to change.

5.2 Discussion

From the beginning of this study to its conclusion, it was challenging to propose the

best model and method for a specific time series. In addition, we also design various

residential energy systems for battery and device connections in an effort to discover
1Celia Topping, ”Average electricity usage in the UK: how many kWh does your home use?”,

18 March 2021, URL: https://www.ovoenergy.com/guides/energy-guides/how-much-electricity-does-a-
home-use
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new findings in EVB-supportive energy management. We have used the spatial model

to investigate the potentials of residential energy management based on the current

parameter settings, which include things like the amount of energy that is lost dur-

ing transmission and the average efficiency of solar panels, among other things. It’s

possible that some of these studies will be revised in the future to take into account

developments in energy storage and photovoltaic solar technology.

5.2.1 Future Research

In the future, if the following problems in both the statistical and optimization sections

have optimal solutions, the proposed methodology will yield superior

• In the event that the weather conditions have changed from a sunny day, which

was used as the basis for the solar PV output simulation in Section 4.4, to a day

that is either partly cloudy, mostly cloudy, cloudy, or rainy as shown an example

of the next-day forecast in Figure 4.3, the results of the two-stage SP model

will probably be affected. This is because the simulation was performed using a

sunny day as the basis.

• To reduce the amount of energy drawn from the grid and to smooth the home en-

ergy system over consecutive days with varying weather conditions, it is neces-

sary to investigate the correlation between energy storage levels at the beginning

of each day for a more effective solution.

• Weather forecasting using digital image processing, such as a weather camera,

can be applied to the proposed model for optimising the management of house-

hold energy consumption in real time.

• Estimating prediction intervals for the proposed forecasting by using a state-

space model, which is a generalisation of the exponential smoothing model. For
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estimating the PIs, the bootstrap method and the Monte Carlo Markov Chain

(MCMC) methods can also be considered.

• In order to simulate the outputs from PV household systems for the purpose of

long-term electricity planning, the weather forecasts for multiple days in a row

that are provided by meteorological authorities can be applied to the model that

was developed.

• In order to simulate the outputs from PV household systems for the purpose of

long-term electricity planning, the weather forecasts for multiple days in a row

that are provided by meteorological authorities can be applied to the model that

was developed.

• There are reliable methods from existing pieces of literature for forecasting elec-

tricity demand that is better suited for specific types of buildings or households

than survey (empirical) data.

• Under the influence of solar variation and climate change, the developed method

is possibly applied to forecast solar-based time series related, such as a dam’s

evaporation rate, for sustainable water management in agriculture, etc.

5.2.2 Limitations of the Study

The findings of this study have to be seen in light of some limitations as following.

Lack of previous research studies: The currently available research on forecasting

models was developed for a diverse range of data applications. It is not suitable for a

particular time series, such as a high-frequency time series with double seasonality, a

non-negative spatial-and-temporal time series, or another similar type of time series.

Thus, there is a lack of prior research on the use of spatial information in statistical

modelling for double seasonality data characterised by huge different seasonal lengths.
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Lack of spatial information for the study: The proposed spatial forecasting model

needs to know how the weather is in the area where the solar PV system is located.

Because of this, information about a particular area may not always be available that

is why only two data set are analytical study in Section 3.4.
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Appendix A

Sunrise and sunset calculation

According to the seasonal equation as 3.2, this section will demonstrate how the sunrise

and sunset time calculate by spatial information. Considering the Earth’s axis and a

rotation of the Earth that the Earth spins around its axis and rotates around the sun at

the same time, that is why we have different daytime, nighttime, and season depend

on geography. Now, we are interested in what time the sunrise and sunset are each

position and how to determine a new index of the time series for the proposed model.

The algorithm to calculate the sunrise and sunset time following [108] published by

Nautical Almanac Office consists of the following steps:

Inputs:

day, month, year: date of sunrise/sunset
latitude, longitude: location for sunrise/sunset
zenith1 Sun’s zenith for sunrise/sunset

offical = 90◦ 50’
civil = 96◦

nautical = 102◦

astronomical = 108◦

Notice:
1. Longitude is positive for East and negative for West.
2. The trigonometry functions in the algorithm calculated in degree.

Calculation:
1the point on the celestial sphere directly above an observer on the Earth.
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1. The day of the year, N .

N =

⌊
275 ∗month

9

⌋
−

⌊
month+ 9

12

⌋
∗
⌊
1 +

year − 4 ∗ ⌊year4 ⌋+ 2

3

⌋
+ day − 30

2. Convert the longitude to hour value, lngHour, and calculate an approximate

time, t.

lngHour =
longitude

15

t =


N +

(
6−lngHour

24

)
, rising time

N +
(
18−lngHour

24

)
, setting time

3. The Sun’s mean anomaly, M .

M = (0.9856 ∗ t)− 3.289

4. The Sun’s true longitude, L.

L =M + (1.916 ∗ sin(M)) + (0.020 ∗ sin(2 ∗M)) + 282.634

Notice: L potentially needs to be adjusted into the range [0,360) by adding/subtracting

360.

5. The Sun’s right ascension, RA.

RA =
1

15

[
atan(0.91764 ∗ tan(L)) + 90 ∗

{⌊
L

90

⌋
−
⌊
atan(0.91764 ∗ tan(L))

90

⌋}]

6. The Sun’s declination, sinDec.

sinDec = 0.39782 ∗ sin(L)

cosDec = cos(asin(sinDec))
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7. The Sun’s local hour angle, H .

cosH =
cos(zenith)− sinDec ∗ sin(latitude)

cosDec ∗ cos(latitude)

H =


1
15

∗ [360− acos(cosH)], rising time

1
15

∗ [acos(cosH)], setting time

Notice: if cosH > 1 or cosH < −1, the sun never rises and sets on this location

(on the specified date).

8. Local mean time of rising/setting

T = H +RA− (0.06571 ∗ t)− 6.622

9. Adjust back to UTC, UT .

UT = T − lngHour

Note: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting

24.

10. Convert UT value to local time zone of latitude/longitude, localT .

localT = UT + localOffset

Sunrise and sunset time index:

Sunrise and sunset time index of time series at time t over the position s⃗ = (x1, x2) are
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respectively as follows:

us⃗,t = m ∗ (j − 1) + ⌈2 ∗ f(x1, x2, zenith, date, sun.mode = 1, UTC)⌉

vs⃗,t = m ∗ (j − 1) + ⌈2 ∗ f(x1, x2, zenith, date, sun.mode = 2, UTC)⌉

where j, j = ⌈t/m⌉ denotes a seasonal period.

To start with defining a time series in time order and inputs spatial data such as lati-

tude and longitude, (x1, x2), of a data collecting location, sun’s zenith angle (approxi-

mately 90◦), time zone (including daylight saving time in position), and subsequently

calculate the above sunrise-sunset seasonal time index as the following formulas. For

example, calculating sunrise and sunset time on 22nd September 2018 in Colchester,

(Coordinate: 51◦53′35′N, 0◦54′16′E). The results form above formulas for sunrise is

6.6812502 (6:40 am), and sunset time is 18.9322 (6:55 pm). Therefore the seasonal

time index for sunrise and sunset assuming the given day is a first day of a half-hourly

time series (m = 48) are 14 and 38, respectively.
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