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Abstract: Robotics grasp detection has mostly used the extraction of candidate grasping rectangles;
those discrete sampling methods are time-consuming and may ignore the potential best grasp
synthesis. This paper proposes a new pixel-level grasping detection method on RGB-D images.
Firstly, a fine grasping representation is introduced to generate the gripper configurations of parallel-
jaw, which can effectively resolve the gripper approaching conflicts and improve the applicability to
unknown objects in cluttered scenarios. Besides, the adaptive grasping width is used to adaptively
represent the grasping attribute, which is fine for objects. Then, the encoder–decoder–inception
convolution neural network (EDINet) is proposed to predict the fine grasping configuration. In our
findings, EDINet uses encoder, decoder, and inception modules to improve the speed and robustness
of pixel-level grasping detection. The proposed EDINet structure was evaluated on the Cornell
and Jacquard dataset; our method achieves 98.9% and 96.1% test accuracy, respectively. Finally, we
carried out the grasping experiment on the unknown objects, and the results show that the average
success rate of our network model is 97.2% in a single object scene and 93.7% in a cluttered scene,
which out-performs the state-of-the-art algorithms. In addition, EDINet completes a grasp detection
pipeline within only 25 ms.

Keywords: pixel-level reasoning; robotics fine grasping; EDINet deep network

1. Introduction

With the development of visual sensor technology [1], robots widely use visual sensors
to understand the surrounding complex environment, such as segmenting the scene into
component parts, recognizing what these parts are, and eliminating ambiguity between
similar objects, while the visual perception technique has always been an important research
area for robot grasping behaviors development [2–5].

Grasping is a necessary ability for human beings; so long as we look at objects and pay
attention to the surrounding environment, people can easily make the best grasping posture
according to the shape and size of the object and pick it up accurately. However, how to
enable the robot to make accurate and collision-free reliable grasping is still challenging:
the grasping representation and grasping reasoning problems for the physical attributes of
the gripper and the network algorithm are still open problems that are worth exploring.

For robotic grasping representation, a complete gripper configuration should include a
6D grasping pose and grasping width [6]. Thus, it is very complicated to reason all possible
grasping configurations. In order to facilitate the different robotic grasping tasks, the
grasping representation is mapped into the two-dimensional image plane [7–9]. In actual
tasks, this mapping method often sets the size of the gripper to a constant or fixed value,
and the size of the gripper is not potentially related to the size of the objects. Generally,
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most methods maximize the gripper jaw opening and then close the gripper directly. Thus,
these grasping methods will cause the gripper to collide with other objects in a small space,
which can lead to failed grasping.

In the grasping reasoning, the network algorithm outputs the sum of all the gripper
configurations of the object that can be grasped by the robotics. In the previous work, such
as based on the rectangular representation method, multiple discrete grasping candidates
are predicted from RGB or RGB-D images, but it resulted in a time-consuming process
for grasping detection. The improved methods try to shorten the computation time by
preprocessing the candidate rectangle or synchronously extracting the candidate rectangle
and the prediction confidence. However, this method will ignore the potential grasping
pose [10–12].

In order to overcome the above problems, we propose a pixel-level grasping reason-
ing method to generate gripper configurations on each pixel, and an encoder–decoder–
inception network (EDINet) is also proposed for feature extraction and producing fine
gripper configurations and grasping poses. Firstly, a new fine grasping configuration with
an adaptive width for a robotic arm approaches the object to avoid the failed grasping
caused by colliding with the surrounding objects. Secondly, an EDINet model generates
fine grasping configurations on each pixel of grasping area. Pixel-level grasping mapping
avoids omitting the ground truth grasping pose and overcomes the limitations of the
current deep learning grasping methods, including time-consuming reasoning and discrete
sampling of grasping candidates. Our EDINet model can effectively extract multi-scale
features of objects and has good feature extraction ability for different shapes and sizes of
objects. On the Cornell grasp dataset, 98.9% and 97.7% accuracy are obtained in image-wise
and object-wise splitting, respectively. In the actual grasping experiment, our method
achieves a 97.2% success rate in single-object scenes and a 93.7% success rate in cluttered
scenes. On the desktop computer equipped with GPU, it only takes 25 ms for the network
to complete a grasp detection pipeline, which meets the needs of real-time performance.

The main contributions of our work can be summarized as follows:

• We propose a fine grasping representation model to generate the gripper configuration
of parallel-jaw, which can effectively avoid the collision problem for clutter objects.
Besides, the adaptive grasping width is fine for deformed or rigid objects in the
grasping process;

• It is proposed to use the EDINet network to generate pixel-level gripper configurations
to avoid missing potential ground truth grasp poses and reduce calculation time.
The EDINet meets the real-time performance within 25 ms and achieves a very good
balance in the speed and accuracy of grasping reasoning;

• Our system shows out-performance on the Cornell grasp datasets due to proper
network structure, and it has been proven to be effective for novel objects in cluttered
scenes. In actual robot grasping, our method has an average grasp success rate of
97.2% in a single-object scene and an average success rate of 93.7% in a cluttered scene.
Moreover, our method outperforms the state-of-the-art algorithms in real application;

• Our network uses RGB-D multi-modal data to enhance the diversity and saliency of
features so that it is easy to train the model and effectively improve the accuracy and
success rate of grasping detection.

2. Related Work
2.1. Robotic Grasping

Many factors are involved in the actual robot grasping tasks, such as the physical
properties of the objects and the robotics themselves. Thus, the grasping detection meth-
ods are roughly divided into two categories: analytical methods and empirical methods.
The former uses mathematical and physical models, such as kinematics, dynamics, and
geometry, to calculate stable grasping [13,14]. In previous grasping applications, these
methods based on mathematics and physical models played an important role in solving
the grasping problem. These methods involve a complete three-dimensional physical
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model of the object to simulate the grasping operation. Meanwhile, taking various con-
straints into account, the objective function is established to make the grasping more stable.
However, the environment faced by the robot is often unknown, and the three-dimensional
reconstruction of the object cannot be obtained in advance. It is difficult to model the physi-
cal interaction between the robot arm and the object, and it cannot be well transmitted to
the real tasks [15,16]. In the real world, it is easier for robots to use cameras to capture RGB
images and depth images than three-dimensional modeling. The empirical method does
not require the 3D model of the object. The empirical method focuses on using data-driven
and network learning technologies to train a grasping model from sample data and then
use the learning model to detect the grasping posture of unknown objects [9,17–22].

2.2. Grasping Representation

Grasping on the image plane generally includes a grasping center point, grasping
angle, and grasping width. Zhang et al. [15] used a five-dimensional directional rectangle
to represent the gripper configuration. Mahler et al. [23] represented the grasping configu-
ration with a point and an angle. Li et al. [24] used a 6D grasp representation. However,
in practical applications, when the end-effector of the robotic arm reaches the position of
the object to be grasped, the gripper is directly closed from the opened maximum width.
These methods do not take into account the surrounding space of the objects to be grasped.
The maximum opening width of the gripper jaw may collide with other objects, resulting in
grasping failure and minimal closing, easily breaking the deformational, thin, and plastic
objects. That is not a fine grasping representation.

2.3. Network for Grasping

In recent years, due to its excellent feature extraction and generalization ability [22],
deep learning technology can directly perform grasping detection from RGB images, depth
images, and RGB-D images [9,23–26]. The neural network can efficiently calculate and
stably grasp. Lenz et al. [27] used a cascade neural network to detect the grasping position
in the RGB-D images. Among them, the smaller network is responsible for removing
low-probability grasping locations, and the larger network can extract more features. Then,
the network determines the position of the candidate rectangle to obtain the optimal
grasping posture. Chu et al. [28] proposed a model based on the RPN network (region
propositions network), which simultaneously predicts the grasping posture of multiple
targets in RGB-D images, and achieved good detection results. Depierre et al. [29] proposed
a network model with scoring function. The network model evaluates the grasp ability of a
given location and introduces a new loss function that associates the grasping parameter
regression with the grasping ability. Guo et al. [8] used a deep network to train the fruit
dataset to detect the most exposed objects and the optimal grasping posture. However,
their model has no perception of the overall environment and has certain limitations. Li
et al. [30] proposed a neural network for grasping detection that treats the angle learning
problem as a classification rather than a regression problem. Zhang et al. [15] proposed the
oriented anchor frame mechanism, which assigns different default rotation angles to the
reference rectangle, and achieved good results on the Cornell grasp datasets. Nowadays,
multi-modal data are used for grasping detection. Jiang et al. [31] used RGB-D images
to infer the grasp based on a two-step learning process. The first step is to reduce the
space, and the second step is to calculate the optimal grasping pose. In many cases, deep
networks need to process millions of parameters [32–34] and use sliding windows to process
candidate grasping objects. These methods lead to long computational grasping time. Song
et al. [13] used the single-stage grasping detection network of the region proposal network
and used the oriented anchors to predict the five-dimensional rectangle grasping model.
Asif et al. [35] fused the CNN structure with hierarchical features to generate grasping
posture and confidence at the global, regional, and pixel levels of the image to overcome
the limitations of a single model. Kumra et al. [36] proposed a deep CNN network that
uses residual layers to predict robust grasping. These algorithms will lead to ignoring some
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potential grasps and fail to generate dense predictions, which makes it difficult to predict
the grasping properties of the object.

3. Robot Grasp Representation

As shown in Figure 1, a fine grasping representation model with adaptive width is
defined on the basis of five-dimensional grasping, as follows:

Gr = (Pr, φr, wr−o, wr−c, Qr) (1)

where the grasping Gr refers to a grasp in robot workspace, the center position Pr = (xr, yr, zr)
of the gripper is in the Cartesian coordinate, φr is the rotation angle around the z axis. wr–o and
wr–c are the opening and closing width when the gripper approaches and picks up the object,
respectively. Compared to the position and rotation representation alone, the increase in the
gripper width allows for fine grasping performance. Qr is the grasp confidence for representing
the success rate of grasping.
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We detect a grasping representation from the RGB image I = R3×h×w and the depth
image D = Rh×w with height h and width w, which can be defined as:

Gi = (xi, yi, φi, wi−o, wi−c, Qi) (2)

where Pi = (xi, yi) is the grasp center in the image coordinates, and φi is the rotation angle
in the camera coordinate, which represents the rotation scalar of each point required to
grasp the object of interest, and the rotation range is in

[
−π

2 , π
2
]
. wi−o and wi−c are the

width of the image to be grasped at each point corresponding with gripper opening and
closing. Qi is the grasp confidence of each point in the image, and its scalar value is between
0 and 1. The closer the value to 1, the greater the success rate of grasping. Our goal is to
infer a set of grasping G = (G1, G2, . . . , Gk) that maximizes the grasp success rate given a
possible grasping k:

{G∗i } = argmax
|G|=k

∑
Gi∈G

Prob(Qi = 1|I, D, Gi), (3)
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In order to command a robot to execute a grasp task, the pixel grasping detection
should be transformed into gripper configuration. It involves system calibration and robot
moving model, as follows: 

Gr = TrcTciG∗i

Trc =

[
R T
0 1

]−1

Tci =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

−1
(4)

where Tci represents the conversion function from 2D image coordinates to camera coordi-
nates, in which fx and fy are focal lengths and (u0, v0) are the optical center coordinates.
Trc is the conversion from camera coordinates to robot workspace, in which R and T are
the rotation matrix and translation matrix from the world coordinate system to the camera
coordinate system, respectively.

4. Proposed Methods
4.1. The Robotics Grasping System

The overview of the robotics grasping system is shown in Figure 2. It is divided into
two modules: the grasping reasoning module and the grasping planning module, where
the reasoning module is used to predict the appropriate grasping representation in the
image space. Firstly, the RGB images are preprocessed, cropped, and resized, and the depth
images are processed to remove invalid values. Subtract the mean value of the depth map
and concentrate the value near 0 to maintain the depth invariance [37]. Second, the format
RGB-D multi-model images are used to EDINet for grasping angle, grasping width, and
appropriate grasping posture inference with the highest grasping confidence. After that,
the eye-to-hand model is used to convert the grasping pose from camera coordinates to
robot coordinates. Finally, the grasp planning module performs the tasks, such as execution
and placement.
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In our system, the grasp planning module is completed on the robot operating system
(ROS). The ROS provides a related interface to connect the robot arm. It uses inverse
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kinematics to calculate the planned motion trajectory and then performs grasp and place
actions; thus, our grasping system is suitable for most manipulator operations.

4.2. The EDINet Architecture

In this work, the grasp detection with deep network structure is regarded as the pixel-
reasoning problem. Considering the inference speed, the network should be lightweight
with fewer parameters, and the networks should also use modules that reduce the number
of parameters. As well as considering the accuracy of the network, the network should
have a suitable depth. Thus, in Figure 3, we try to design a new EDINet network that
consists of encoder module, decoder module, inception module, and up-sampling module,
which is proposed to quickly generate the optimal grasping configurations.
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(d) up-sampling module.

In our EDINet architecture, as shown in Figure 3a, the encoder module consists of two
convblocks and a residualblock. In convblocks, the batch normalization layer can speed
up the network convergence, and the ReLU function can enhance the nonlinearity of the
network. The residualblock can solve the problem of deep network degradation through
identity mapping. The encoder module performs feature extraction on the inputting
images. It can also extract the gripper configurations information and map it into low
dimensional distribution.

In Figure 3b, we use decoder module to perform up-sampling and map the gripper
configuration feature to a higher dimensional space. Considering the encoder model
easily loses the spatial information of the grasp pose during the down-sampling step, we
adopt a direct connection between the encoder and the decoder [37]. Bypassing the spatial
information and going directly from the encoder to decoder improves accuracy and reduces
processing time. In our new encoder–decoder model, the output of the encoder is used as
the input of the decoder to generate the dense features of the gripper configuration. After
this stage, the network completes the preliminary feature extraction and generates coarse
gripper configurations.

With the increase in the number of convolutional layers, we find that the network will
cause the following problems: (1) gradient vanishing, and it is difficult to optimize training
the model; (2) too many parameters may also lead to over-fitting matters. These problems
will cause the model to output an inaccurate gripper configuration. Thus, to solve these
problems, as can be seen from Figure 3c, this paper uses inception module to increase the
width and depth of the network. Considering the grasping angle, grasping width, and
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grasping area of different scale objects are all related to the edge information, the network
uses 1 × 1, 3 × 3, and 5 × 5 convblocks to increase the receptive field, which enables the
network to extract the features of the different scale objects and fuse the grasping pose
information. The network also uses 1 × 1 convolutional layer in each branch to reduce
the network parameters and the number of channels. In general, the inception module
extracted gripper configuration features from the four branches and obtained the multi-
scale features, which can effectively avoid gradient vanishing and over-fitting problems.

In Figure 3d, the up-sampling module consists of three deconvblocks; the up-sampling
module used to accurately restore the grasping area due to the grasping area is smaller
than object mask. The network can reason the grasp quality, grasp angle, grasp width of
each pixel in the grasp region, and then the point with the maximal quality detected by
network as the best grasp point. The optimal grasping model is established by using grasp
point, grasp angle, and grasp width.

4.3. Grasping Training

In order to train the proposed model, the label data require processing, as follows:

• Grasp confidence: We regard the grasp confidence as a binary label and express it with
a score between 0 and 1. The closer it is to 1, the higher the success rate of grasping.

• Grasp width: In order to achieve depth invariance, we set the grasping width Wi−o
and Wi−c in the range of [0,Wmax], and Wmax is the maximum width of the gripper.
In the training process, we first scale it to [0,1] and then use the camera parameters
and the measured depth to calculate the grasp width.

• Grasp Angle: Set the area of the grasp rectangle to δt and encoding the angle as a vector
component on the unit circle produces a value in the range [–1,1] and eliminates the
possibility of discontinuity when the angle surrounds ±π

2 . We use φ = arctan sin(2δt)
cos(2δt)

to represent the grasp angle.

The proposed EDINet is running on an ubuntu16.04 system with an Intel Core i9-
10900K CPU and NVIDIA GeForce 3090 GPU. We use the Adam optimizer to optimize and
train the network. The initial learning rate is set to 0.001. The network is trained end-to-end
for 110 epochs. The learning-rate decays stepwise at rate of 0.5 times every 55 epoch.

4.4. Loss Function

Considering the traditional loss function L2(x) = x2 uses the square calculation, when
x is greater than 1, it will magnify the error; thus, it may cause the gradient explosion
problem. Further, the derivative of the loss function L1(x) = |x| is constant and non-
derivative at 0, which may cause the model to oscillate and not be conducive to the
convergence of the network, while, as shown in the Equation (5), the loss function Smooth
L1 perfectly avoids the flaws of L1 and L2. Smooth L1 can limit the gradient in two ways.
When the difference between the prediction value and the ground truth is too large, the
gradient value will not be too large. When the difference between the prediction value and
the ground truth is small, the gradient value is small enough. Based on the experiments
studying the performance of above loss functions, the smooth L1 loss function is the best
choice in this paper.

Smooth L1 =

{
0.5x2 i f |x| < 1∣∣x∣∣−0.5 otherwise

(5)

In the prediction task, the loss function of cosine grasping angle can be defined as:

Lcos 2φ = − 1
N

N

∑
i

smooothL1(cos 2φi − cos 2
Λ
φi), (6)
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where cos 2φi is the true value and cos 2
Λ
φi is the predicted value. Similarly, the loss function

of the sine grasping angle can be defined as:

Lsin 2φ = − 1
N

N

∑
i

smooothL1(sin 2φi − sin 2
Λ
φi), (7)

where sin 2φi is the true value and sin 2
Λ
φi is the predicted value. In the prediction task, we

can define the loss function of grasping width as:

Lw = − 1
N

N

∑
i

smoothL1(wi −
Λ

wi) (8)

In the task of grasping and detecting, the total loss function can be defined as:

Ltotal = Lcos 2φ + Lsin 2φ + Lw (9)

4.5. Pixel-Level Grasping Detection

The pixel-level grasping detection method proposed in this paper is modified on the
basis of Ref. [38]. In order to make the predicted grasping rectangle close to the labeled
grasping rectangle, we introduce the grasping region. Firstly, the input image is initialized
with all pixels being 0, and the image size is the same as the original image size. The pixels
are set to 1 in the label regions, and other pixels are still set to 0. Pixels with a value of 1
constitute the grasping region and generate ground truth of grasping quality. Similarly,
the same operation is performed on the grasping width and grasping angle and generates
ground truth of grasping angle and grasping width. Since the length L of the labeled
grasping rectangle is longer than the width of object, we select the area of length L/4
around the center as the grasp region. We take the point with the maximal grasping quality
in the grasping region as the grasping point (x, y). At the same time, the grasping point
with maximal grasping quality is taken as the center of the predicted grasping rectangle.
The goal of the network is to make the predicted grasp rectangle close to the ground truth.
An object may have multiple grasp regions. If multiple grasping rectangles need to be
detected, we use the point with the maximal grasp quality in each grasping area as the
grasping point to generate the corresponding grasping pose (see Figure 4a). If only a single
grasping rectangle needs to be detected, the network directly searches all grasp regions and
selects the pixel point with the global maximal grasp quality as the center of the predicted
grasping rectangle (see Figure 4b).
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5. Implementation Details
5.1. Training Dataset

Cornell and Jacquard grasp datasets are commonly used in robot grasping train-
ing, so, in this work, we use these two public datasets to train and evaluate our model.
The Cornell grasp dataset contains approximately 885 RGB-D images with a resolution of
640 × 480 pixels and 240 different real objects. It includes 5110 positive sample grasps and
2909 negative sample grasps manually labeled. Our pixel-level grasping means that we
should improve the dataset to provide multiple grasping labels for each image and have
the most realistic estimate of the grasp map. We also augment the dataset by data aug-
mentation (cropping, rotating, scaling) to enhance the quality of the dataset. The Jacquard
grasp dataset is larger than the Cornell grasp dataset, which is based on CAD model; this
grasp dataset contains 54 K RGB-D images and annotations manually marking the grasp
location. The dataset has a total of more than 1 million grasp examples; thus, the Jacquard
grasp dataset is large enough to train our network model without data enhancement.

5.2. Metrics for Grasp Detection

If the following two conditions are met, the predicted result of network is deemed to
possess reliable grasping:

(1) The rotation angle difference between the predicted grasp rectangle and the ground
truth rectangle is less than 30◦;

(2) The Jaccard index between the predicted grasping rectangle and the ground truth
rectangle is more than 0.25, where the Jacquard index is defined as:

J(G,
∧
G) = G ∩

∧
G/G ∪

∧
G (10)

In which G is the predicted value and
Λ
G is the labelled grasp (ground truth).

5.3. Test in Datasets

We test the grasping detection accuracy and robot grasping success rate of our method
on household objects. In experiments, 50 common household objects were selected. Each
object is different in size and shape, and there is almost no similarity between them. Each
object is tested with 10 different grasping positions and directions for a total of 500 grasp
attempts. In actual work, the robot must not only grasp in an isolated environment but
also grasp objects in a cluttered environment. We choose 50 unknown and novel objects
and choose 15 objects from these 50 objects to randomly create a cluttered scene to test the
grasping performance.

6. Results and Analysis

In this section, we evaluate the performance of IEDNet on the Cornell and Jacquard
grasp datasets. In order to test the generalization ability of the network, we use image-wise
(IW) and object-wise (OW) splitting to show the promotion ability of the model to any
type of object. The IW is used to test the generalization ability of the network model when
objects have different poses, and the OW is for new objects grasping.

6.1. Ablation Experiment on Network

In this test, we conducted an ablation experiment to assess the impact of each model
for the EDINET networks. The network is evaluated on the Cornell grasp dataset with
the RGB-D images. Firstly, we use the encoder–decoder module but without residualblock
as the baseline. Table 1 shows the results of the network with different modules, and one
can see that the baseline obtained an accuracy of 94.9% and 94.7% in IW splitting and OW
splitting, respectively. The encoder–decoder module with residualblock (see Figure 3a)
increases the accuracy by 1.3% and 1.2%, respectively, because the residualblock is perfect
for solving the problem of deep network degradation through identity mapping. The in-
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ception module (see Figure 3c) improves the network grasping accuracy by 2.1% and 1.4%
because it increases the receptive field, which enables the network to extract different scale
features to fuse the grasping pose information. The up-sampling module (see Figure 3d)
increases accuracy by 0.6% and 0.4% because the deconvblocks can effectively reduce the
loss of detailed information during the up-sampling process.

Table 1. Ablation experiment results on EDINet.

Baseline Encoder–Decoder Inception Module Up-Sampling Module IW (%) OW (%)
√

94.9 94.7√ √
96.2 95.9√ √ √
98.3 97.3√ √ √ √
98.9 97.7

6.2. Test Results on the Cornell Grasp Dataset

The IW and OW data splits are used in accordance with the cross-validation setup,
the same as the previous works [39,40]. As shown in Table 2, EDINet is compared with the
state-of-the-art grasping detection algorithms; the results show that our network obtains
the maximum accuracy rate with less scene information. The EDINet achieves the best
accuracy of 98.9% and 97.7% in IW and OW splitting, respectively. Works such as those of
Refs. [19,24,38,41–52] use grasping rectangles to represent gripper configurations without
considering grasping width, and those of Refs. [35,51,53,54] use candidate grasping rectan-
gles for sampling and sorting. These algorithms will lead to ignoring some potential grasps
and fail to generate dense predictions. The grasping pose predicted by their network is a
set of discrete grasping rectangles, which is inconsistent with the actual grasping attributes
of the object. However, the EDINet proposed in this paper is a pixel-level network that
directly generates gripper configurations on each pixel, which is more in line with the
grasping properties of objects. Additionally, the works in Refs. [30,33,43,50] use discrete
sampling, resulting in long computation times. However, we use EDINet to directly output
the grasp pose on each pixel, which can solve time-consuming problems.

In addition, compared with other methods [34,36,39,53], our network has fewer pa-
rameters, and the grasping detection speed is faster. Asif et al. [34] use a set of up-sampling
to predict the gripper configurations on the pixel, but only using the up-sampling layers
cannot adapt to objects of different scales. However, our network introduces the inception
module to improve the adaptability to different scales, which can improve the feature
extraction ability of the network and improve the accuracy of grasping detection. For the
network constructed in Ref. [38], our method is slightly slower than it, but the accuracy of
our network is much higher. Thus, compared with these methods, our network achieves a
good balance in terms of speed and accuracy.

The Jaccard index in Equation (10) is important for evaluating the performance of
grasp detection methods; thus, our method is also investigated under the different Jaccard
indexes, and we set the Jaccard index to 0.20, 0.25, 0.30, 0.35, and 0.40, respectively, to test
the network detection performance. Table 3 provides the results of different Jaccard indexes
on the grasping detection accuracy based on the Cornell grasp dataset. From the results,
we can see that, for IW splitting and OW splitting, the grasping detection accuracy of the
proposed method decreases with the Jaccard index increasing. However, compared with
other methods, our method still has high accuracy. The results also show that our method
has excellent performance under different Jaccard indexes, which reflects the stable grasp
detection ability for unknown objects and novel objects.
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Table 2. Evaluation results on Cornell grasp dataset.

Authors Algorithm
Accuracy (%)

Speed (ms)
IW OW

Wang et al. [21] DDNet 96.1 95.5
Yu et al. [22] TsGNet 93.13 92.99
Yu et al. [26] SE-ResUNet 98.2 97.1 25

Park et al. [32] DNNs 97.7 96.1 7
Song et al. [13] RPN 96.2 95.6
Asif et al. [35] DGDG 97.5 111

Kumra et al. [36] ResNet-50x2 89.2 88.9 103
Morrison et al. [38] GG-CNN 73 69 19
Ainetter et al. [39] Det_Seg_refine 98.2 32

Cao et al. [41] RSEN 96.4 - -
Chen et al. [42] FCN 82.8 81.9
Zhou et al. [43] FCGN, Resnet101 97.7 96.6 117
Shao et al. [44] SAE+BN+SAE 95.51 - -

Depierre et al. [45] Grasp Regression 95.2 - -
Yu et al. [46] Multilevel CNNs 95.8 96.2 -

Liu et al. [47] Mask-RCNN
Q-Net, Y-Net 95.2 - -

Redom et al. [48] AlexNet 88.0 87.1 76
Asif et al. [49] GraspNet 90.2 90.6 24
Guo et al. [50] ZF-net 93.2 89.1 -

Karaoguz et al. [51] GPRN 88.7 - 200
Kumra et al. [52] GR-ConvNet 97.7 96.6 20

Chu et al. [53] FasterRcnn 96.0 96.1 120
Zhang et al. [54] ROI-GD 93.6 93.5 40

Ours
EDINet-RGB 97.8 96.6 24

EDINet-D 95.5 93.2 24
EDINet-RGBD 98.9 97.7 25

Table 3. Grasp detection accuracy on Cornell dataset with different Jaccard indexes.

Authors Splitting Jaccard Index

0.20 0.25 0.30 0.35 0.40

Song et al. [13]

IW (%)

- 95.6 94.9 91.2 87.6
Chu et al. [28] - 96.0 94.9 92.1 84.7

Zhou et al. [43] 98.31 97.74 96.61 95.48 -
Ours 99.1 98.9 98.2 97.2 96.7

Song et al. [13]

OW (%)

- 97.1 97.1 96.4 93.4
Chu et al. [28] 96.1 92.7 87.6 82.6

Zhou et al. [43] 97.74 96.61 93.78 91.53 -
Ours 98.9 97.7 97.6 97.1 96.5

In Figure 5, we visualized the grasping detection results on the Cornell dataset.
When the RGB images are used to train the network, an accuracy of 97.8% is obtained
in IW splitting and an accuracy of 96.6% is obtained in OW splitting. When only using
the depth images to train the network, the EDINet can achieve an accuracy of 95.5% in
IW splitting and an accuracy of 93.2% in OW splitting. When the RGB-D multimodal
data are used as the training input, our EDINet module achieves accuracies of 98.9% and
97.7% in IW and OW splitting, respectively. Experiments show that the RGB-D multi-
modal dataset is conducive to the network reasoning performance, which can improve
the grasping detection accuracy. The Cornell dataset has been enhanced to improve the
overall performance of the EDINet network. The term grasp detection pipeline is often
used as a measure of grasp detection speed [38,43,51]. The EDINet only completes a grasp
detection pipeline within 25 ms, which means that the inference speed of our network
reaches 1/0.025 s = 40 fps, which can meet real-time applications.
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Figure 5. Grasping detection results on the Cornell dataset: (a) the evaluation results using RGB
images, (b) the results using depth images, (c) the results using RGB-D image. The blue rectangle
refers to the opening width when the gripper approaches the object, and the red “I” represents the
closing width when the gripper picks up the object.

6.3. Test Results on the Jacquard Dataset

Since the Jacquard grasp dataset is much larger than the Cornell grasp dataset, in this
test, we do not use OW splitting and data enhancement. We trained on 80% of the Jacquard
grasp dataset and validated on the remaining 20%. In order to verify the superiority of our
algorithm, we compared with the state-of-the-art algorithms on the Jacquard grasp dataset.
The results are shown in Table 4, and Figure 6 shows the visualized grasping detection
results. When only RGB images are used, the EDINet achieves an accuracy of 95.5%, and,
when only the depth images are used for the network, our model obtains an accuracy of
94.9%; when RGB-D images are used to test our network, the method achieves the best
grasping detection accuracy of 96.1%; thus, our method outperforms the state-of-the-art
algorithms. Since the depth image can provide spatial information of objects and our
network uses RGB-D multi-modal data, which can enhance the diversity and saliency of
features, it is effective improve the detection accuracy and success rate of grasping.

Table 4. Evaluation results on the Jacquard grasp dataset.

Authors Algorithm Accuracy (%)

Song et al. [13] RPN 91.5
Yu et al. [26] ResUNet 95.7

Ainetter et al. [39] Det_Seg_refine 94.86
Liu et al. [47] Mask-RCNN Q-Net, Y-Net 92.1

Depierre et al. [45] Grasping Regression 85.74
Morrison et al. [38] GG-CNN2 84

Kumra et al. [52] GR-ConvNet 94.6
Depierre et al. [55] AlexNet 74.2

Ours
EDINet-RGB 95.5

EDINet-D 94.9
EDINet-RGBD 96.1
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Figure 6. Grasping detection results on the Jacquard grasp dataset: (a) the results using RGB images,
(b) the results using depth images, (c) the results using RGB-D images. The blue rectangle refers to
the opening width when the gripper approaches the object, and the red “I” represents the closing
width when the gripper picks up the object.

7. Robot Fine Grasping
7.1. Adaptive Closing Width Test

In conventional grasping methods, after the grasping configurations are generated, the
gripper will be closed directly (set the gripper to “close” in the code) [16,27,38]. As shown
in Figure 7a, when using these methods to grasp thin or fragile objects, the properties of
the objects are often destroyed to a large extent.
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Figure 7. Robot close grasping test results. (a) The conventional grasping method directly closing;
it easily broke the objects; (b) our grasping method with adaptive closing width, which is fine for
objects. The blue rectangle refers to the opening width when the gripper approaches the object, and
the red “I” represents the closing width when the gripper picks up the object.

In this paper, we proposed the adaptive closing width (Wi−c). When robot grasped an
object, in the code program command, we did not choose to fully close the gripper jaws but
to make the gripper jaws close to Wi−c. Here, setting up Wi−c is mainly used for grasping
thin or fragile objects. As shown in Figure 7b, we define that the width of the object as
Wobj. When Wi−c must be less than Wobj, the object can be grasped successfully. Since Wi−c
closely related to Wi−o, we define Wi−c = µWi−o. We tested five cases of µ = 0.1, 0.2, 0.3, 0.4,
and 0.5, respectively. In each case, the robotic arm grasped the objects 100 times. In the
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three cases of µ = 0.1, 0.2, 0.3, due to the large degree of closure of the gripper jaws, it
is easy to damage the objects when grasping thin plastic, paper cups, and other objects.
When µ = 0.5, the robotic arm grasping heavier objects may cause unstable grasping and
the objects may fall off. When µ = 0.4, the gripper jaw will be closed to the appropriate
width, which will achieve great results in actual grasping. As Figure 7b shows, when robot
grasped an object, the opening degree of the gripper changes from Wi−o to Wi−c, so the
damage to the objects will be minimized. When grasping a rigid object, it is difficult to
deform the object, and the actual closing degree of the gripper is the Wobj.

7.2. Grasping with Adaptive Opening Test

Most existing grasping methods set the opening of the gripper to the empirical
value [30,31], but the gripper has no potential relationship with the size of the objects,
such as the authors of Ref. [20] using a point and angle to represent the configuration of
the gripper. This method sets the grasping width to a constant. As Figure 8a shows, in
actual grasping, these methods are likely to collide with other objects when the gripper
approaches and picks up the object. To solve this problem, we propose an adaptive opening
width Wi−o, which generates adaptive grasping configurations according to the grasping
attributes of the object. As Figure 8b shows, in the actual grasping experiment, the ma-
nipulator moves to about 5 cm above the object to be grasped and adjusts the grasping
configurations with adaptive grasping width Wi−o.
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8. Unknown Objects Grasping
8.1. Single Target Grasping Test

Our system has also carried out a grasping test on novel and unknown objects that
do not appear in the Cornell and Jacquard grasp datasets. The grasping point with the
maximal quality tends to appear in the middle of the grasping region, which makes the
grasping stable. We used 50 household objects to evaluate the grasping performance of our
robot arm. Each object was placed in 10 different positions. A total of 500 grasps of these
objects were performed, and the robot completed 486 successful grasps, with a success rate
of 97.2%. In Table 5, we compare with other works and show the performance in grasping
novel objects. Besides, Figure 9 shows the detection and grasping on many objects. Based
on the experimental results in Table 2 (speed) and Table 5 (accuracy), our method also
achieves a very good balance in the speed and accuracy of the real-world grasping task,
which is superior to the other state-of-the-art methods.
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Table 5. Results on single objects.

Authors
Household Objects

Accuracy (%)

Li et al. [12] 92
Lilai et al. [20] 91.5
Yu et al. [22] 90

Morrison et al. [38] 92
Yu et al. [46] 95.82
Liu et al. [47] 94.6

Kumra et al. [52] 95.4
Chen et al. [56] 93.5
Sun et al. [57] 75.2
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8.2. Cluttered Grasping Test

We further tested our method’s grasp ability in cluttered scenarios. Figure 10 shows
the robot-grasped objects in different cluttered environments. In each experiment, we
randomly selected 15 objects from 50 household objects. We shake the 15 test objects placed
in the box and then dump them in the robot workspace. The robot grasps multiple times
until the objects are cleared. We performed a total of 300 grasps in 20 experiments; the
grasping success rate reached 93.7% (281/300), while we adopt the grasping configuration
the same as in Ref. [34], and, regardless of grasping width, the grasping success rate only
reached 88% (264/300). The performance of different algorithms in grasping unknown
objects in a cluttered environment is also compared in Table 6. Compared with other
methods, our method has a higher grasping success rate in cluttered scenes. In the actual
grasping task, the works [34,54,58] do not consider the influence of grasping width on
surrounding objects, which is likely to cause grasping failure due to collision problems
(Figure 8a). Additionally, the works [38,57] do not take into account the adaptive grasping
closing width, which is easy to damage the objects when grasping thin plastic, flexible,
and other objects. On the contrary, according to the grasping properties of the object, our
network generates adaptive gripper configurations on the pixels. The adaptive grasping
width effectively avoids collisions during the grasping process. Experiments have proved
that our grasping method is better than other state-of-the-art methods; our network can be
generalized to all types of targets and can perform stable grasping.
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Table 6. Results in cluttered scenarios.

Authors
Objects in Clutter

Accuracy (%) Adaptive Grasping Width

Yu et al. [22] 90 NO
Asif et al. [35] 90 NO

Morrison et al. [38] 87 NO
Liu et al. [47] 90.2 NO

Zhang et al. [54] 87 NO
Sun et al. [57] 75.2 NO
Li et al. [58] 87 NO

Ours
88 NO

93.7 YES

Discussion: When evaluated on the same dataset, our network is superior to the state-
of-the-art methods [17,24,38,39,45–47,52], which achieve higher grasping detection accuracy.
Our network can perform pixel-level inference and prediction, which generates adaptive
gripper configurations. In actual grasping tasks, the pixel-reasoning and robotic fine
grasping representation proposed in this work can effectively solve the collision problem
in the grasping process, thereby enabling the robot to effectively avoid grasping failure.
Compared with other state-of-the-art grasping methods [47,57,58], our method has a higher
success rate of grasping, and our method is comparable in grasping detection speed.

In the experiment, there are two main types of failed grasping: (1) when approaching
an object, the gripper is blocked by other objects and objects do not have enough space for
the parallel-jaw gripper (see Figure 11). (2) The object falls while being lifted.
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9. Conclusions

In this paper, a pixel-level grasping detection method on RGB-D images was proposed.
Firstly, a fine grasping representation was introduced to generate the gripper configuration
of the parallel-jaw, which can effectively resolve the gripper approaching conflicts and
improve the applicability to clutter objects. Besides, the adaptive grasping width is used
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to adaptively represent the grasping attributes, which are fine for objects that are grasped.
Then, the EDINet structure is proposed to predict the fine grasping model, and it is
evaluated on the public grasp dataset. Pixel-level mapping avoids the lack of a ground
truth grasping pose. It also avoids the time-consuming calculation and discrete sampling
of the grasping candidate rectangles, which effectively solves the limitations of the current
deep learning grasping technology. The experiments show that our method outperforms
other state-of-the-art algorithms in grasping detection for unknown objects in a single
object scene or cluttered scene.
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ware, X.Z. (Xunyu Zhong); validation, X.Z. (Xungao Zhong), Q.L. and X.Z. (Xunyu Zhong); formal
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curation, X.Z. (Xunyu Zhong); writing—original draft preparation, C.S. and X.Z. (Xungao Zhong);
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(Xunyu Zhong). All authors have read and agreed to the published version of the manuscript.
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