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Abstract

A method that estimates the precision matrix of multiple variables in the extreme scope of “ultrahigh dimension”

and “small sample-size” is proposed. Initially, a covariance column-wise screening method is provided in order to

identify a small sub-group, which are significantly correlated, from thousands and even millions of variables. Then,

a regularization of block-diagonal covariance structure of the thousands or millions of variables is imposed, in which

only the covariances of variables in that small sub-group are retained and all others vanish. It is further proven

that under some mild conditions the vital sub-group identified by the covariance column-wise screening method is

consistent. A major advantage of the proposed method is its efficiency - it produces a reliable precision matrix

estimator for thousands of variables within a few of seconds while the existing methods take at least several hours

and even so still yield inaccurate estimators. Empirical data studies and numerical simulations show that the proposed

precision matrix estimation greatly outperforms existing methods in the sense of taking much less computing time

and resulting in much more accurate estimation when dealing with ultrahigh dimensional data.
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1. Introduction

Estimation of the precision matrix Θ has attracted an increasing amount of attentions in recent years for many

statistical problems. In particular, for Gaussian graphical models, the precision matrix characterizes the conditional

dependence among certain random variables, which is vital for us to understand their possible causal structures in

the form of a graph (Lauritzen, 1996). A good estimation for Θ is essential in many scientific areas such as gene5

expression studies (Cai et al., 2011), financial portfolio investment studies (Fan et al., 2013), social network explo-

ration (Lauritzen, 1996). Nowadays obtaining reliable estimation for Θ becomes extremely challenging in these areas

because of the ultrahigh dimensionality of datasets studied. Especially, in some specific fields like genetic analysis,

the number of individuals (sample-size n) is much smaller than the number of variables (dimension p), making the

estimation of precision matrix extremely challenging.10
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1 INTRODUCTION

The sparsity constraint is one of the main ideas used in the literature to estimate Θ under high dimensionality

settings. The `1-penalized optimization, originally pioneered by Tibshirani (1996), is a standard tool to impose spar-

sity on the precision matrix estimator. Yuan and Lin (2007) proposed the penalized maximum likelihood estimation

(MLE) of Θ and Rothman et al. (2008) and Ravikumar et al. (2011) further analysed the convergence rate and sign

consistency of the penalized MLE, respectively. Zhang and Zou (2014) suggested estimating Θ through the so-called15

penalized D-trace loss function. Using the connection between partial correlation coefficients and regression coef-

ficients in Gaussian graph model, Meinshausen and Bühlmann (2006) proposed a neighborhood selection approach

to estimate Θ through column by column. Yuan (2010) turned the lasso regularizer (Tibshirani, 1996) in the neigh-

borhood selection to Dantzig selector (Candes and Tao, 2007). Cai et al. (2011) provided an alternative column-wise

estimation of Θ, which is known as constrained `1-minimization for inverse matrix estimation (CLIME). Liu and Luo20

(2015) further improved the CLIME for better computational performance.

Another major breakthrough was made by Friedman et al. (2008), which combined the penalized MLE and the

neighborhood selection approach and introduced a coordinate descent algorithm known as graphical lasso (glasso) in

order to find the MLE of Θ efficiently. Fan et al. (2009) demonstrated via statistical theories and numerical examples

that the bias resulted by the graphical lasso algorithm can be attenuated when using concave penalty (Fan and Li, 2001)25

and adaptive lasso (Zou, 2006) rather than lasso. Moreover, there is a vast of literature that focused on improving the

computational performance of glasso. For example, Witten et al. (2011) and Mazumder and Hastie (2012) presented

a necessary and sufficient condition that may identify the block diagonal structure of Θ, which leads to significant

computational improvement because it only needs to apply graphical lasso to each block of the block-diagonal matrix.

This paper concentrates on a more extreme scope of precision matrix estimation, for example, a genetic study with30

data having several thousands and even millions of gene expressions but with a sample-size of just several dozens.

Almost all the aforementioned methods are struggling to solve problems in this more extreme scope. For instance, the

`1-penalized estimations such as the glasso and Witten’s method need to specify a tuning parameter in lasso penalty,

but the empirical rule such as cross-validation for choosing the tuning parameter is unstable when the sample-size

is small. Another issue is that there are multiple saddle points in the `1-penalized optimization when sample-size35

is small, which makes the associated algorithm numerically unstable. Moreover, the computing time of the existing

algorithms increases dramatically as the dimension of Θ diverges.

To address these challenges, we propose the block-diagonal (BD) regularization, which identifies a small sub-

group of significantly correlated variables from thousands of variables and vanishes all the insignificant correlations

of variables outside this sub-group. We then approximate the precision matrix by using a BD matrix composed of two40

blocks, where the low-dimensional block corresponds to this small sub-group of the significantly correlated variables,

while the rest high-dimensional block is diagonal. As a result, the estimation of the high-dimensional precision matrix

reduces to the estimation of the low-dimensional block plus the high-dimensional but diagonal block.

An identification procedure called covariance column-wise screening (CCS) is proposed to find the small sub-

group of highly correlated variables. Consider a multivariate variable X = (Xj)p×1 with covariance matrix Σ =
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2 METHODOLOGY

(Σij)p×p. The CCS procedure uses the jth screening statistic

%j =
∑
i 6=j

|Σ̂ini
ij |, (1)

to indicate the significance of the jth component Xj , where Σ̂ini = (Σ̂ini
ij )p×p is an initial covariance matrix estimator.

We retain the dependencies of components that have significantly large screening statistics {%j}. This CCS procedure45

is in spirit of the dependence screening approach, which removes the vast majority of the variables out of the current

model and then refines the analysis as the second stage in the extreme scope of ultrahigh dimension and small sample-

size. Various correlation statistics, such as Pearson correlation coefficient (Fan and Lv, 2008), distance correlation

coefficient (Li et al., 2012), and ball correlation coefficient (Pan et al., 2019), can be employed to measure the impor-

tance of certain variables. The statistical interpretation of %j is clear: the expectation of %j is the sum of non-diagonal50

entries in the jth column of Σ. If a component Xj is independent of the others, %j has an expectation of zero. Hence,

%j is an appropriate quantity to measure the importance of the jth component Xj in our BD regularization.

Compared with the existing approaches, the BD regularization has the following advantages. First, the BD reg-

ularization is not sensitive to the choice of involved tuning parameters. Whereas, almost all the precision matrix

estimations based on `1-penalization encounter numerical instability, due to the fact that different tuning parameters55

in the `1-penalty may lead to different results. Besides, the BD regularization is able to produce a consistent precision

matrix estimator, while the covariance-insured screening method (He et al., 2019) only answers which entries in the

precision matrix are non-zero. Furthermore, our method can identify the sub-group of highly correlated variables by

using an initial covariance matrix estimator Σ̂ini. Although Fan and Kim (2019) proposed an analogous method to

our BD regularization, their method has a major constraint that the sub-group of highly correlated variables must be60

known in advance.

The rest of this paper is organized as follows. In Section 2, we introduce the BD regularization of the precision

matrix in detail and investigate the CCS identification procedure. In Section 3, we provide the simulation studies. In

Section 4, we apply the proposed approach to a real data analysis. Discussion is given in section 5, and all technical

proofs are relegated to the Appendix.65

2. Methodology

Throughout the paper we use the following notations. Consider a multivariate random variableX = (X1, . . . , Xp)
>

that has mean µ = (µ1, . . . , µp)
> and covariance matrix Σ = (Σij)p×p. The precision matrix is defined by

Θ = (Θij)p×p = Σ−1. Besides, assume X = (X1, . . . ,Xn) are n independently identically distributed (i.i.d.)

random samples from X and denote the sample covariance matrix by

S = (n− 1)−1
n∑
i=1

(Xi − X̄)(Xi − X̄)>, (2)

3



2 METHODOLOGY 2.1 Block-diagonal Regularization of Precision Matrix

where X̄ = n−1
∑n
i=1 Xi. For a vector a = (aj)p×1, denote ||a||1 =

∑
j |aj |, ||a||22 =

∑
j a

2
j , ||a||∞ = maxj |aj |.

For a symmetric matrix A = (Aij)p×p, denote A> to be the matrix transpose operator, ||A||1 = maxi
∑
j |Aij |,

||A||2 = σ1(A) and ‖A‖∗ =
∑
j σj(A), where σj(A) is the jth largest eigenvalue of matrix A. We use E(·) to

denote the expectation operator and Pr(·) to denote the probability operator. We write an � bn if there are positive70

constants c and C such that c ≤ an/bn ≤ C. Write an . bn if there exists a constant C such that an ≤ Cbn.

Operators O(·), o(·) are the infinitely large quantity and infinitely small quantity, and OP (·), oP (·) denotes that

relationships hold with probability tending to 1. Notations diag(A) and vec(A) are the diagonalizing operator and

vectorizing operator of A, respectively. Furthermore, the scale of a set M, i.e., the number of elements in M, is

defined as #M.75

2.1. Block-diagonal Regularization of Precision Matrix

In many ultrahigh dimensional statistical problems, a random variableX = (Xj)p×1 can be re-sorted as (XM, XMc)>,

and especially, only the components inM are significantly correlated. As a consequence, the precision matrix Θ can

be rewritten as

Θ =

ΘMM ΘMMc

ΘMcM ΘMcMc

 , (3)

where the absolute values of the off-diagonal entries in ΘMM are substantially larger than the ones in the rest sub-

matrices. The essence of our method is to approximate the above precision matrix through the following BD structured

matrix

B(Θ) =

ΘMM 0

0 diag(ΘMcMc)

 . (4)

We call (4) the BD regularization of (3). In general, the size of M is much smaller than p, which allows to yield

a reliable estimator Θ̂MM by using the more refined methods such as the glasso and CLIME. We then propose to

approximate the precision matrix estimator by

B(Θ̂) =

Θ̂MM 0

0 diag(SMcMc)−1

 , (5)

for real applications with extremely high dimension and small sample-size.

The BD regularization is similar to the diagonal-covariance (DC) regularization (Bickel and Levina, 2004), both

of which originate from the fact that it is almost impossible to explore the precise dependence of ultrahigh dimen-

sional variable X when the sample-size is very small. However, by borrowing information from low-dimensional80

but dominant sub-components XM, the BD regularization makes it possible. In other words, if the low-dimensional

sub-components XM are significantly correlated while the high-dimensional sub-components XMc are almost inde-

pendent, exploring the inner correlations of XM obtains most correlation information of X . From a practical point

4



2 METHODOLOGY 2.2 Covariance Column-Wise Screening

Algorithm 1 Covariance Column-Wise Screening Procedure
Require:

1: A 1-norm consistent covariance matrix estimator Σ̂ini = (Σ̂ini
ij )p×p;

2: A threshold ζ.

Ensure:

3: Calculate screening statistics %j =
∑
i6=j |Σ̂ini

ij | column by column;

4: Employ ζ to divide % = (%1, . . . , %p)
> into two non-intersection subvectors %M̂ and %M̂c with M̂ = {j, %j > ζ}.

of view, the estimation of Θ is equivalent to the estimation of ΘMM. Therefore, the BD regularization enjoys very

light computing consumption and concise implementation.85

We then need to address the following two key issues, in order to make the BD regularization work well. First, we

should provide a procedure to identify the significantly correlated sub-groupM in practice. Second, we need to give

theoretical supports that this identification procedure is able to findM consistently. We address these two issues in

the following two subsections, respectively.

2.2. Covariance Column-Wise Screening90

The identification procedure is exhibited in Algorithm 1, which we call the covariance column-wise screening

(CCS) procedure and it is actually motivated by the sure independence screening (SIS) method (Fan and Lv, 2008).

In fact, the SIS stresses that variables are probably not associated with the response in a regression model if their

covariances are insignificant. Likewise, the BD regularization emphasizes that the jth component Xj can be regarded

as approximately independent of other components if the corresponding screening statistics %j is relatively small. The95

essence of the CCS procedure is to find the gap between {%j , j ∈M} and {%j , j ∈Mc}. Theoretically, there should

exist such a threshold ζ that concretely separates minj∈M %j and maxj∈Mc %j , if Σ can really be approximated by a

block-diagonal matrix.

A 1-norm consistent covariance matrix estimator Σ̂ini is necessary in the identification procedure, as otherwise the

threshold ζ cannot be found theoretically. Here we suggest to take the adaptive thresholding approach (Cai and Liu,

2011) as the first choice for Σ̂ini, because this approach has a cheap computational cost and exhibits high accuracy

in practice. The main idea of adaptive thresholding approach is to shrink the insignificant entries of the sample

covariance matrix S through a generalized thresholding operator Tτ (·), where common choices of Tτ (·) include the

soft-thresholding operator (Tibshirani, 1996) and the smoothly clipped absolute deviation (SCAD, Fan and Li (2001)).

The resulting thresholding covariance estimator has a form Σ̂T = (Σ̂Tij)p×p where

Σ̂Tij = Tτij (Sij)1(i 6= j) + Sii1(i = j), (6)

and 1(·) is the indicator function. Regarding the penalizing parameter τij corresponding to entry Sij , Cai and Liu

5



2 METHODOLOGY 2.3 Asymptotic Properties

(2011) suggested using the adaptive penalizing parameter

τ ada
ij = γ

√
θ̂ijn−1 log p, (7)

where θ̂ij = v̂ar((Xi − µi)(Xj − µj)), which can be estimated by the moment method. Cai and Liu (2011) also

provided an alternative penalizing parameter

τ alt
ij = γ

√
Σ̂iiΣ̂jjn−1 log p, (8)

where the empirical estimators Σ̂ii and Σ̂jj are Sii and Sjj , respectively. Compared to the adaptive penalizing

parameter, this alternative shares the same accuracy but is easier to obtain. Regarding the choice of γ, one may simply

take γ = 2 as its justification was verified by many empirical studies, see, e.g., Cai and Liu (2011). Fan et al. (2013)

proposed an alternative criterion for choosing γ, which finds the minimum of γ that guarantees Σ̂T to be positive

definite. Let Σ̂T (γ) be the adaptive thresholding covariance estimator using γ. Then the optimal γopt is chosen by

γopt = inf

{
γ, σmin(Σ̂T (γ)) > 0

}
. (9)

In general, γopt is very likely less than 2 when n is large, leading to a covariance matrix estimator with lower shrink-

age. On the other hand, γopt may be greater than 2 when n is small, and in this case a positive definite covariance100

matrix estimator can be guaranteed. We utilize this criterion in the numerical studies presented later due to its better

performance than setting γ = 2.

2.3. Asymptotic Properties

In this subsection, we prove that the CCS procedure can identify the “true” sub-group of highly correlated variables

with probability tending to 1. The technical assumptions are listed below, and the rigorous proofs are provided in the105

Supplementary Materials.

Assumption 1 (Exponential-type Tails) Suppose Xi = (Xi1, . . . , Xip)
> and Yij = (Xij −µj)/var(Xij)

1/2 where

µj = E(Xij). There exist positive constants η0, τ0 and r0 such that for ∀|t| < η0, supj E (exp(tY 2
ij)) ≤ r0 < ∞,

and minjk var(YijYik) ≥ τ0.

Assumption 2 (Bounded Eigenvalues) Suppose Σjk = E((Xij −µj)(Xik −µk)) and Σ = (Σjk)p×p. There exists110

a constant ε0 independent of p such that 0 < ε0 ≤ σp(Σ) ≤ σ1(Σ) ≤ ε−1
0 < +∞.

Assumption 1 relaxes the Gaussian distribution restriction to a moment inequality. In the literature, the distribution

satisfying this assumption is called a sub-Gaussian distribution (Cai and Liu, 2011). Assumption 2 describes that the

covariance matrix Σ is always positive definite no matter how large its dimension is, which plays a central role in

large covariance matrix regularization (Bickel and Levina, 2008b).115
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2 METHODOLOGY 2.3 Asymptotic Properties

Assumption 3 (`q Sparse Covariance) Denote

δ̄M = max
j∈M

∑
i∈M,i6=j

|Σij |q, δ̄MMc = max
j∈M

∑
i∈Mc

|Σij |q, δ̄Mc = max
j∈Mc

∑
i∈Mc,i6=j

|Σij |q, δM = min
j∈M

∑
i∈M,i6=j

|Σij |q,

(10)

with q ∈ [0, 1). There exist constants C0 and C1 larger than 0 such that δ̄M + δ̄MMc + δ̄Mc ≤ C1 < ∞ and

maxi Σii ≤ C0.

Assumption 4 (`q Separable Covariance) It is assumed that max{δ̄MMc , δ̄Mc} = o(δM), where δ̄MMc , δ̄Mc and

δM are defined in (10).

Assumption 3 indicates that Σ belongs to the thresholdable class of covariance matrix (Bickel and Levina, 2008a).120

With this assumption, we are able to produce a 1-norm consistent estimator of Σ through certain thresholding ap-

proaches (Bickel and Levina, 2008a; Cai and Liu, 2011; Rothman et al., 2009), which is necessary for the identifica-

tion procedure. Assumption 4 specifies a theoretical gap betweenM andMc, i.e. the minimum `q column sum of

entries in ΣMM dominates the maximum `q column sum of entries in ΣMcM and ΣMcMc .

Theorem 1 (Consistency of Inputting Covariance Matrix) Let Assumption 1-4 and Condition 1 in the Supplemen-

tary Materials hold. If log p = o(n1/3), then

∣∣∣∣Σ̂ini −Σ
∣∣∣∣

1
= OP

(
(n−1 log p)(1−q)/2),

where Σ̂ini is set as the adaptive thresholding covariance estimator Σ̂T (6).125

Theorem 1 indicates that there exists an 1-norm consistent covariance estimator yielded by the adaptive threshold-

ing approach, based on which we can identify the `q significantly correlated sub-groupM. Especially, both the adap-

tive penalizing parameter τij = γ
√

((n−1 log p)θ̂ij) and alternative penalizing parameter τij = γ
√

((n−1 log p)Σ̂iiΣ̂jj)

ensure Theorem 1 must hold.

Theorem 2 (Identifiability of `q Separable Covariance Structure) Let Assumption 1-4 and Condition 1 in the Sup-

plementary Materials hold, and (n−1 log p)1−q)/2 = o(δM). Then there exists a threshold ζ � δM such that

Pr(M̂ ⊂M) ≥ 1−O((log p)−
1
2 p−γ+2), Pr(M⊂ M̂) ≥ 1−O((log p)−

1
2 p−γ+2),

where %j =
∑
i 6=j |Σ̂Tij |, M̂ = {j, %j > ζ}, and γ is the multiplier in penalizing parameters (7) and (8).130

Theorem 2 implies that there exists a threshold ζ such that Pr(M̂ = M) → 1 as p → ∞. Likewise, both the

adaptive one and alternative one are able to guarantee the identification ofM. Note that it may be difficult to find ζ

analytically, due to the failure of the dependence screening approach. We give two criteria to select ψ, which is an

equivalent quantity of ζ, in section 2.4.

7



2 METHODOLOGY 2.4 Selection Criteria of ψ

Theorem 3 (Consistency of the BD precision matrix estimator) Suppose that Assumption 1-4 are satisfied. If

max{δ̄(MMc), δ̄(Mc)} = o(1), then

||B(Θ̂)−Θ||2 = O(δΘ + δ̄
1
q

MMc + δ̄
1
q

Mc),

where δΘ = ||Θ̂MM −ΘMM||2.135

Theorem 3 points out that the estimation error of the BD precision estimator B(Θ̂) is ||B(Θ̂) −Θ||2 = O(δΘ +

δ̄
1/q
MMc + δ̄

1/q
Mc), which declines to zero if the correlations outside the sub-groupM are ignorable. Hence, as long as

we correctly recoverM through the CCS procedure and apply a well-defined method to yield Θ̂MM, the resulting

BD precision estimator B(Θ̂) is guaranteed to be consistent. See Ravikumar et al. (2011) and Rothman et al. (2008)

for theoretical results of sparse precision matrix estimation.140

2.4. Selection Criteria of ψ

We introduce a second method to find M, solving the problem that the cutoff ζ may be difficult to specify in

implementation. Sort %1, %2, . . . , %p as %i1 ≤ %i2 ≤ · · · ≤ %ip and select an appropriate integer ψ ∈ (1, p) such that

M̂ = {ip−ψ+1, ip−ψ+2, . . . , ip}. (11)

Given an appropriate ψ, the cutoff ζ can be chosen as any quantity between %ip−ψ and %ip−ψ+1
. In practice, we need

to properly select the number of retained components ψ. A natural procedure is to use cross-validation criterion,

however, it is extremely time-consuming in ultrahigh dimensional setting. To avoid this problem, we provide two

alternative criteria.145

One criterion is to simply set the number of retained components ψ to be [dn] with d ∈ (0, 1). Indeed, in the SIS

and its related extensions, the number of retained variables is usually set to be [4n/ log p]. In spirit of the SIS, we

suggest to use [4n/ log p] or any other appropriate value to be a selection criterion.

The second criterion is provided as follows. Consider the series of the increasingly ordered screen statistics {%ij}

and their differences {d%i1 , d%i2 , . . . , d%ip−1
}, where d%ij = %ij+1 − %ij . We treat {d%ii} as a random process and150

then employ a change-point recognizer to find its change-point. The cumulative sum control chart (CUSUM, Page

(1954)) is the most common change-point recognizer, of which the principle is to track the cumulative sum c0 = 0

and ci+1 = max(0, ci + Zi −wi), with samples from a general random process {Z1, Z2, . . . } and the corresponding

pre-assigned weights {w1, w2, . . . }. When the value of the j∗th cumulative sum cj∗ exceeds a certain threshold,

the change-point location is detected. The number of retained components is then ψ = p − j∗. In practice, we155

suggest implementing CUSUM on the last s sub-components of {d%ij} where s may be taken as 100, 200 or n for the

simplicity of computation. The choice of s depends on certain prior knowledge, for example, the maximum number

of variables that are expected to be included inM. In the most circumstances, it is believed that s = n is sufficient to

ensure #M≤ s.

8



3 SIMULATION STUDIES

3. Simulation Studies160

3.1. Settings of Simulation

The simulation studies in this section aim to carry out the following analyses: (a) to compare the BD regularization

with its competitors in high dimensional setting, and (b) to explore the performance of the BD regularization in

ultrahigh dimensional setting. For the former one, we consider n = 400, 800 and p = 200sp where sp = (1, 2, 3, 4, 5).

For the latter study, we take n = 500, 1000 and p = 1000sp.165

The `q separable correlation structures are set as follows. Consider the decomposition Σ = diag(Σ)1/2Rdiag(Σ)1/2

where diag(Σ) is the diagonal variance matrix and R is the correlation matrix. As for diag(Σ), we set Σii =

2 cos(2πi/p) + 3. Also, we consider two specific correlation structures for R. Let M =
⋃3
k=1Nk where N1 =

{1, . . . , 30}, N2 = {31, . . . , 100} and N3 = {101, . . . , 200}. Let M1 = N1, M2 = N1 ∪ N2, and M3 = M.

OutsideM the correlation coefficients are set to be exactly zero. For structure I we set

RMM =


RN1N1 RN1N2 RN1N3

RN2N1
RN2N2

RN2N3

RN3N1
RN3N2

RN3N3

 =


cs(0.7) 0.311> 0.111>

0.311> cs(0.3) 0.111>

0.111> 0.111> cs(0.1)

 ,

and for structure II it is

RMM =


RN1N1

RN1N2
RN1N3

RN2N1
RN2N2

RN2N3

RN3N1 RN3N2 RN3N3

 =


ma2(−0.6, 0.3) 0 0

0 ma2(−0.4, 0.2) 0

0 0 ma2(−0.2, 0.1)

 ,

where cs(ρ) denotes the correlation matrix that is of compound symmetry structure with correlation coefficients ρ, and

ma2(ρ1, ρ2) denotes the correlation matrix that is of order-2 moving-average structure with 1st and 2nd autocorrelation

coefficients ρ1 and ρ2.

Furthermore, we use entropy loss of two matrices to assess the estimation error, whose representation is

L(Θ, Θ̂) = trace(Θ̂Θ−1)− log det Θ̂Θ−1 − p,

which aims to assess the discrepancy of eigenvalues of two matrices. In addition to the entropy loss, the computing

time is also counted when comparing the computational efficiency of the precision matrix estimators. The CUP is170

Inter(R) Xeon(R) Platinum 8160 2.10GHz with 256 GB memory. The replication runs are 300.

3.2. Investigation of BD regularization with different tuning parameters

We first investigate whether or not the BD regularization is sensitive to the choice of the tuning parameters, i.e.,

the penalizing parameter in the adaptive thresholding approach and the designated size of the sub-groupM. For this

purpose, we propose the following model set-up for numerical simulations.175

Firstly, We use the adaptive thresholding approach to estimate the initial covariance estimator Σ̂ini, where the

SCAD operator, whose expression is given in the Supplementary Materials, is employed to shrink the elements. We

9
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Figure 1: The entropy loss of different BD precision matrix estimators and inverse of diagonal sample covariance matrix. The results for structure

I are shown in left two panels and those for structure II are in right two panels. Dimension of precision matrix is 200sp where sp = (1, 2, 3, 4, 5).

then implement the CCS procedure to find the sub-groups M̂1, M̂2 and M̂3, which respectively consists of the

indices of the first 30,100 and 200 largest covariance screen statistics {%j}. Without loss of generality, we directly

apply the associated BD structure to the initial covariance estimator Σ̂ini and calculate its inverse as the BD precision

matrix estimator. The involved BD precision matrix estimators are as follows

BD-ada-30 : BM̂1
(Θ̂Tada), BD-ada-100 : BM̂2

(Θ̂Tada), BD-ada-200 : BM̂3
(Θ̂Tada),

BD-alt-30 : BM̂1
(Θ̂Talt), BD-app-100 : BM̂2

(Θ̂Talt), BD-alt-200 : BM̂3
(Θ̂Talt),

BD-sam-30 : BM̂1
(S), BD-sam-100 : BM̂2

(S), BD-sam-200 : BM̂3
(S),

where BM̂(Θ̂Tada) = {BM̂(Σ̂Tada)}−1, with Σ̂Tada estimated from the thresholding approach with adaptive penalizing

parameters (7); BM̂(Θ̂Talt) = {BM̂(Σ̂Talt)}−1, with Σ̂Talt estimated from the thresholding approach with alternative

penalizing parameters (8). We use the BD-sam, i.e., the BD regularization with sample covariance matrix input in

CCS, to confirm that it is necessary to use the thresholding covariance estimators rather than the sample covariance

matrix. In addition, the competitors of the BD regularization are DC regularization.180

The performance of the BD regularization when inputting different covariance matrix estimators in CCS are stud-

ied subsequently. Figure 1 shows the dynamic changes of entropy loss of the different BD precision matrix estimators

as the dimension increases from 200 to 1000. From this figure, we give two comments below.

We first investigate whether or not the choice of penalizing parameter τij corresponding to entry Sij has effects

on the BD regularization. For structure I, the adaptive scheme (7) and alternative scheme (8) share little difference.185

However, for structure II, the former performs uniformly better than the latter. Cai and Liu (2011) has commented that
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Figure 2: The entropy loss of different BD precision matrix estimators and inverse of diagonal sample covariance matrix. The results for structure I

are shown in left two panels and those for structure II are in right two panels. Dimension of precision matrix is 1000sp where sp = (1, 2, 3, 4, 5).

the adaptive scheme is better than the alternative scheme, because it is difficult to choose γ in the alternative scheme,

i.e. τ alt
ij = γ

√
(Σ̂iiΣ̂jjn

−1 log p).

The BD-sam may provide a good precision matrix estimator, provided that the cardinality ofM is chosen reason-

ably. However, when the cardinality is inappropriately chosen, e.g., #M̂ = 200, the BD-sam method may identify190

too many false indices inM and consequently performs worse than the DC regularization. This situation is somewhat

alleviated if the sample-size is boosted. Even so, it still remains the worst, and hence inputting a 1-norm consistent

covariance matrix is really necessary.

3.3. Investigation of BD regularization in ultra-high dimension

We now turn to study if the BD regularization still performs well under the ultra-high-dimensional setting. Figure195

2 shows the dynamic changes of entropy loss of different BD precision matrix estimates when the dimension increases

from 1000 to 5000. We slightly boost the sample-size to n = 500, 1000 because the dimension is now very high.

It is clear from Figure 2 that, for ultrahigh dimensional precision matrix estimation, the BD regularization is

reliable and performs significantly better than the DC regularization. It is because the BD regularization retains

significant entries in a 1-norm consistent covariance matrix estimate, i.e., it maintains the vital correlations of the200

ultrahigh dimensional random variable. On the other hand, the exact precision matrix estimating methods, such as

the glasso and neighborhood selection, can hardly handle such an ultrahigh dimensional precision matrix. In contrast,

the BD regularization still works very well because it enforces certain entries into a small sub-matrix and sets all

the off-diagonal entries outside this sub-matrix to be zero. Therefore, calculating the inverse of Σ is equivalent to

11
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calculating the inverse of the small matrix ΣMM, so that it becomes an easy task to do.205

The adaptive scheme (7) and alternative scheme (8) have little difference for most cases, although Cai and Liu

(2011) proved that the former is better in theory. Actually, in the implementation of the adaptive scheme, we employ

the moment method to estimate θ̂ij in the adaptive penalizing parameter τ ada
ij = γ

√
(θ̂ijn

−1 log p). When p � n,

this moment estimator inevitably causes a great estimation error and consequently worsens the performance of the

adaptive scheme. Moreover, it takes considerable time to calculate the moment estimator θ̂ij , although it may be210

non-iterative in general. Therefore, we suggest the alternative scheme if computational costs are a primary issue.

3.4. Comparison between BD regularization and the competitors

In this subsection, we compare the BD regularization with commonly used competitors including the DC reg-

ularization (Bickel and Levina, 2004), glasso (Friedman et al., 2008), CLIME (Cai et al., 2011), and the adaptive

thresholding approach which directly calculates the inverse of the resulting covariance esitmator (Cai and Liu, 2011).215

The glasso and CLIME are respectively implemented through R packages “glasso” and “fastclime” in R 4.1.2, where

the optimal tuning parameters are determined by Bayesian information criterion (BIC, Schwarz (1978)). On the other

hand, as mentioned in the previous subsections that the adaptive and alternative schemes differ only slightly in iden-

tifying the sub-groupM, for convenience we use the alternative scheme to identifyM and use the adaptive scheme

to estimate the covariance matrix Σ̂MM. This strategy improves the BD regularization in terms of computational ef-220

ficiency, because calculating the moment estimator θ̂ij = v̂ar((Xi−µi)(Xj −µj)) one-by-one becomes costly when

p is large. Furthermore, we combine the BD regularization with the glasso, that is, firstly identifyM using the CCS

procedure with the alternative scheme, and then obtain Θ̂MM using the glasso, where the optimal tuning parameter

in the glasso is also determined by BIC. Although this glasso-based BD regularization may be more time-consuming,

it yields a more accurate precision matrix estimator. For these two BD regularizations, we implement the CUSUM to225

the first 500 differences {dρij} in order to determine the optimal cutoff ψ (see details in section 2.4).

The outputs for the comparisons between the BD regularization and the competitors are shown as follows. Figure

3 shows the dynamic changes of entropy loss and computing time of the BD regularization and its competitors when

p increases from 550 to 1000 and n set as 400. From this figure, we have observed the following findings.

First, with both precision matrix structures, the glasso-based BD regularization performs the best in terms of230

estimation error. It even outperforms the theoretically most accurate glasso, demonstrating that it is capable of pro-

ducing a more accurate precision matrix estimator by incorporating more structural information. Besides, the BD

regularization with the adaptive thresholding approach behaves well, and its estimation error is lower than when the

adaptive thresholding approach is used directly. Furthermore, in our simulations, the CLIME performs poorly: it is

only slightly better than the DC regularization and significantly worse than other methods. This poor performance235

could be due to a lack of maintenance and updates in the R package “fastclime.” We believe that we will achieve a

better result if we carefully implement the CLIME ourselves, yet this result is no better than the glasso.

Second, the BD regularizations with the glasso and adaptive thresholding approach are much more efficient than
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Figure 3: The dynamic changes of entropy loss and computing of the BD regularization and its competitors. The notations “BD-adathr” and

“BD-glasso” refer to the BD regularization with the adaptive thresholding approach and glasso, respectively.

the glasso and CLIME in terms of computation. We present the logarithm of the number of seconds because the

numbers of seconds taken by these two groups of methods are not in the same order of magnitude. It should be noted240

that the precision matrix in the simulations has a dimension of no more than 1000, therefore it does not fall within

the scope of the ultra-high dimension. When the glasso and CLIME are applied to the ultra-high-dimensional scope

where the precision matrix has a dimension of at least several thousand, neither of them can converge in a reasonable

amount of time. This numerical evidence illustrates that the BD regularization, particularly the glasso-based BD

regularization, has a great deal of potential for use in ultra-high dimensional applications.245

3.5. Comparison in misspecificed case

Now we investigate the performance of the BD regularization when the BD structure is misspecified. We generate

the misspecified structure by increasing the sizes of the second and third index sets: N2 = {31 + q, . . . , 100 + q}

and N3 = {101 + q, . . . , 200 + q} where q starts from 20 and ends at 200. As q increases, the resulting structure

of the covariance matrix gradually violates the BD structure – there exists a small sub-group that contains the highly250

correlated variables. The dimension p is set 800 and the sample size n is set 400.

The outputs for the comparisons between the BD regularization and the competitors are shown as follows. Figure

4 shows the dynamic changes of entropy loss and computing time of the BD regularization and its competitors when

q increases from 220 to 400. From this figure, we have observed the following findings.

For structure I, the BD regularization, particularly the glasso-based BD regularization, also suffers from poor255

performance when q is large. This is because the identified sub-group M̂ differs so much from the true one. In
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Figure 4: The dynamic changes of entropy loss and computing of the BD regularization and its competitors under misspecified structures. The

notations “BD-adathr” and “BD-glasso” refer to the BD regularization with the adaptive thresholding approach and glasso, respectively.

contrast, the glasso and CLIME behave stably and are insensitive to the change of q, since they do not impose any

other special structures on the precision matrix besides the sparsity structure. In addition, the adaptive thresholding

approach cannot produce a positive definite estimator when p is large and the underlying structure of the covariance

matrix is complete. Such a problem further causes the entropy loss between it and the true precision matrix is indeed260

an imaginary number with a very large real part. As a consequence, it performs dramatically poorly for large q.

As for structure II, the BD regularization outperforms the others, regardless of how large q is. It could be because

ΣMM is the covariance matrix of a stationary process in structure II, ensuring that the leading eigenvalues of ΣMM

change smoothly as q rises. Such a property makes it easier to estimate the corresponding precision matrix than the

one under structure I. Hence, the BD regularization is not affected by the violation of the structure II.265

In conclusion, the BD regularization is robust to the misspecified structure if this misspecified one is not complex,

e.g., the structure II under which ΣMM is also highly sparse. Whereas, when the misspecified structure is very

complex, for example, the size of M is large and at the same time ΣMM is not sparse, the BD regularization is

expected to perform poorly. The reason for this breakdown is due to that the identified sub-group M̂ is considerably

different fromM. In this case, the traditional methods such as the glasso and CLIME are suggested, although they270

may take substantially more time to complete the estimation of the precision matrix.
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4 REAL APPLICATION

4. Real Application

There are many applications that benefit from the BD regularization, such as discriminant analysis (Bickel and

Levina, 2004), portfolio allocation (Fan et al., 2013), network recovery (Cai et al., 2011), etc. In this section, we

focus on the ultrahigh dimensional linear discriminant analysis (LDA) and discuss other topics in the Supplementary275

Materials.

4.1. Ultrahigh Dimensional Linear Discriminant Analysis

Assume that there exist K different p-variate distributions with mean µ(k) and common precision matrix Θ, and

a label-missing sample X = (Xj)p×1 generated from one of the K different distributions. We treat k∗ as the label of

X , i.e. this sample is considered from the k∗th distribution, if k∗ minimizes the LDA score

δk(X) = −X>Θµ(k) +
1

2
(µ(k))>Θµ(k) − log π(k), (12)

where π(k) is the prior probability of category k. In practice, we may have the training-set with K categories and aim

to discriminate the categories of a new individual in the test-set.

In high-dimensional setting, Θ is hard to estimate if n =
∑K
k=1 nk is comparatively smaller than p, where nk is

the sample-size of category k. For resolving this issue, Bickel and Levina (2004) proposed the DC regularization that

assumes all the features are independent within in each category. Suppose that S = (Sij)p×p is the common sample

covariance matrix for all categories, then the DC-LDA for category k has the score

δDC
k (X) =

p∑
j=1

{−2X>j µ̂
(k)
j + (µ̂

(k)
j )>µ̂

(k)
j

2Sjj

}
− log π(k), (13)

where µ̂(k)
j is the sample mean of jth component for category k. Hastie et al. (2009) provided a detailed introduction280

about this method when applied to genetic research.

We stress that the discrimination efficiency can be greatly enhanced if we retain the significant entries of the

sample covariance matrices because the corresponding components of X are actually correlated. Hence, we employ

the BD regularization and propose a new BD-LDA method whose discriminant score for category k is

δk(X)BD = −X>B(Θ̂)µ̂(k) +
1

2
(µ̂(k))>B(Θ̂)µ̂(k) − log π(k). (14)

This discriminant score can be efficiently calculated, since the significantly correlated block Θ̂MM is of low dimen-

sion.

4.2. Real Data Analysis

We now demonstrate that our BD regularization is able to enhance discrimination efficiency through a real data285

example. The breast cancer data was originally studied by Hess et al. (2006) and is available at the UCSC Xena

(https://xenabrowser.net/datapages/). It includes 21816 gene expressions of 133 samples, where 34
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4 REAL APPLICATION 4.2 Real Data Analysis

samples are with pathological complete response (pCR) and 99 samples are with residual disease (RD). Our aim is to

predict whether or not a subject belongs to the pCR state by BD-Adathr-LDA, BD-Glasso-LDA, DC-LDA, and the

LDA approaches with the precision matrix estimators yielded by the glasso (glasso-LDA) and CLIME (Clime-LDA).290

These methods are implemented in the same way that they were in simulation.

To fairly compare these methods, we choose the same scheme as the one used by Fan et al. (2009) and Cai

et al. (2011). Specifically, the data are randomly divided into a train-set and a test-set, where 5 pCR samples and

16 RD samples constitute the test-set and the rest samples form the train-set. A two-sample t test is then performed

between pCR and RD for each gene to pre-drop partial genes from the discrimination model. For the glasso and295

CLIME, the 113 most significant genes (with the smallest p-values) are retained. As to the BD regularization and DC

regularization, the 20×133 most significant genes are retained where 133 is the number of samples of this data. Next,

we calculate the sample mean µ̂k for category k = 1, 2 and estimate the common sample covariance matrix S. The

prior probabilities π1, π2 are set to be 34/133 and 99/133, respectively. More details of this real data analysis can be

found in the Supplementary Materials.300

We propose to use the specificity, sensitivity, and Mathews’ correlation coefficient (MCC), computing time, and

the number of retained genes to evaluate the discrimination powers for the aforementioned discriminators. The speci-

ficity, sensitivity, and MCC criteria are defined as:

specificity =
TN

TN + FP
, sensitivity =

TP
TP + FN

, MCC =
TN · TP− FN · FP√

(TN · TP)(TN · FP)(FN · TP)(FP · TP)
,

where TP and TN denote the true positive (i.e., pCR) and true negative (i.e., RD), and FP and FN refer to false positive

and false negatives. The larger the three criteria are, the better the discrimination power is. It is worth to mention that

the number of samples in pCR is significantly smaller than the one in RD, which makes the decision boundary shift

to RD. Thus, the specificity is likely to be larger than the sensitivity for the breast cancer data.

The results of the discriminant analysis on breast cancer data are presented in Table 1. It shows that BD-adathr-305

LDA, BD-glasso-LDA, and glasso-LDA have the top discrimination performances in terms of specificity criterion.

The methods of CLIME-LDA is even worse than the DC-LDA because this approach is based on the approximate

estimators of the precision matrix. As for the sensitivity criterion, the proposed BD-glasso-LDA and BD-adathr-LDA

become the best discriminators, while the glasso-LDA suffers from a great reduction of discrimination power. The

reason why the glasso-LDA and CLIME-LDA perform so poorly is that these methods removed too many important310

genes in the two-sample t-test. In fact, when the samples are highly unbalanced, some genes with small discrimination

effects are likely to be removed by the two-sample t-test. Accordingly, these three methods encounter the worse

indices of sensitivity. For the MCC criterion, the proposed BD-glasso-LDA and BD-adathr-LDA still enjoys the

top performance. In addition, although the BD-adathr-LDA handles the discrimination model with a relatively large

dimension, it takes nearly the same time when estimating the precision matrix as the glasso-LDA and CLIME-LDA.315

As for BD-glasso-LDA, its computing time is still within the acceptable range. It indicates that our BD regularization

can efficiently deal with the precision matrix estimation in the extreme case of ultrahigh dimension.
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5 DISCUSSION

Table 1: Comparison of the averaged discrimination error over 100 replications (standard error).

Method Specificity Sensitivity MCC Computing Time Dimension

BD-adathr-LDA 0.6912(0.1335) 0.3542(0.2186) 0.0442(0.2348) 2.8707sec(0.1057) 2660

BD-glasso-LDA 0.6960(0.1352) 0.3840(0.2299) 0.0779(0.2386) 10.6075sec(0.9621) 2660

DC-LDA 0.6764(0.1271) 0.3326(0.2113) 0.0382(0.2443) 2.2310sec(0.0758) 2660

Glasso-LDA 0.7216(0.1203) 0.2973(0.2039) 0.0155(0.2110) 3.5404sec(0.2109) 113

CLIME-LDA 0.6656(0.1331) 0.3113(0.196) -0.0208(0.2056) 3.9970sec(0.2002) 113

In summary, there is strong evidence that the BD regularization largely improves the high dimensional practices

because it retains the majority of the important information on correlations, i.e., significantly large entries in the co-

variance matrix. Whereas, the existing methods such as the DC regularization may lead to less efficient statistical320

inference. This phenomenon confirms that in the extreme scope of ultrahigh dimension and small sample-size, it is

almost impossible to explore the exact pairwise correlations of variables. In contrast, using some powerful regulariza-

tion such as the BD regularization can greatly strengthen the efficiency of statistical inference.

5. Discussion

Generally, there are two options to estimate a high-dimensional precision matrix: a) provide a consistent covari-325

ance matrix estimator Σ̂ and calculate its inverse; b) provide an estimator of Σ such as the maximum likelihood

estimate but estimate Θ̂ directly from samples through certain iterative algorithms.

The drawbacks of the first option are that Σ̂ may be degenerate, the calculation of Σ̂−1 becomes instable and time-

consuming particularly when p� n, and storing an ultrahigh dimensional matrix consumes a lot of computer memory.

The DC regularization is a frequently-used approach that manages to resolve these drawbacks by simply removing all330

off-diagonal elements. However, it is an inconsistent estimator of Θ and can lead to invalid statistical inferences. The

drawbacks of the second option were widely discussed in the literature. For example, in high dimensional setting the

iterative algorithm of maximum likelihood estimation takes substantial computing time and large hardware resources

in order to find the maximizer.

The proposed BD regularization is in the similar manner with the first option as it is an improvement to the DC335

regularization. It shares the similar view with the DC regularization in the sense that precise pairwise correlations

of X are hardly explored in high-dimensional setting due to limited data information. However, unlike the DC regu-

larization that assumes no correlations among all the components of X , the BD regularization considers that a small

number of the components are significantly correlated though the majority of them are not. The resulting estimators of

the precision matrix and the covariance matrix are consistent even if p � n. The innovation of the proposed method340

is to correctly identify these significantly correlated components, and to shrink the pairwise correlations of all other

components to zero. Accordingly, the estimation of a large precision matrix has successfully reduced to a much low-

17



REFERENCES REFERENCES

dimensional one, and the BD regularization is much superior to the DC regularization. Real data analysis in Section

4.2 provides strong evidences that the efficiency of the LDA can be enhanced by accounting for these significantly

large pairwise correlations. Otherwise, the LDA discriminator loses the discrimination power if the correlations are345

ignored completely.
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