Simulated tibiofemoral joint reaction forces for three previously studied gait modifications in healthy controls

4 5

6 Matt Prebble, PhD, MPH

- 7 Sports Medicine, Assessment, Research, and Testing (SMART) Lab
- 8 School of Kinesiology,
- 9 George Mason University,
- 10 Manassas, Virginia, 20109
- 11 e-mail: mprebble@gmu.edu
- 12

13 Qi Wei, PhD

- 14 Associate Professor
- 15 Department of Bioengineering,
- 16 George Mason University,
- 17 Fairfax, Virginia, 22030
- 18 e-mail: qwei2@gmu.edu
- 19

20 Joel Martin, PhD

- 21 Associate Professor
- 22 Sports Medicine, Assessment, Research, and Testing (SMART) Lab
- 23 School of Kinesiology,
- 24 George Mason University,
- 25 Manassas, Virginia, 20109
- 26 e-mail: jmarti38@gmu.edu
- 27

28 Oladipo Eddo, PhD

- 29 Assistant Professor
- 30 Sports Medicine, Assessment, Research, and Testing (SMART) Lab
- 31 College of Education, School of Kinesiology,
- 32 George Mason University,
- 33 Manassas, Virginia, 20109
- 34 e-mail: oeddo@gmu.edu
- 35
- 36 Bryndan Lindsey, PhD
- 37 Post-Doctoral Fellow
- 38 Human Performance and Biomechanics Group
- 39 Applied Physics Laboratory,
- 40 The Johns Hopkins University,
- 41 Laurel, Maryland, 20723

42	
43	Nelson Cortes, PhD ¹
44	Professor
45	School of Sport, Rehabilitation and Exercise Sciences
46	University of Essex
47	Wivenhoe Park, Colchester, Essex, CO4 3SQ.
48	Telephone: +44 (0)1206 874277
49	Email: <u>n.cortes@essex.ac.uk</u>
50	
51	
52	
53	ABSTRACT
54	Gait modifications, such as lateral trunk lean (LTL), medial knee thrust (MKT) and toe-in gait (TIG), are
55	frequently investigated interventions used to slow the progression of knee osteoarthritis. The Lerner knee
56	model was developed to estimate the tibiofemoral joint reaction forces (JRF) in the medial and lateral
57	compartments during gait. These models may be useful for estimating the effects on the JRF in the knee as
58	a result of gait modifications. We hypothesized that all gait modifications would decrease the JRF
59	compared to normal gait. Twenty healthy individuals volunteered for this study (26.7 \pm 4.7 years, 1.75 \pm
60	0.1 m, 73.4 \pm 12.4 kg). Ten trials were collected for normal gait as well as for the three gait modifications:
61	LTL, MKT, and TIG. The data was used to estimate the JRF in the first and second peaks for the medial and
62	lateral compartments of the knee via OpenSim using the Lerner knee model. No significant difference from
63	baseline was found for the first peak in the medial compartment. There was a decrease in JRF in the
64	medial compartment during the loading phase of gait for TIG (6.6%) and LTL (4.9%) and an increasing JRF
65	for MKT (2.6%) but none were statistically significant. A significant increase from baseline was found for
66	TIG (5.8%) in the medial second peak. We found a large variation in individual responses to gait
67	interventions which may help explain the lack of statistically significant results. Possible factors influencing
68	these wide range of responses to gait modifications include static alignment and the impacts of variation
69	in muscle coordination strategies used, by participants, to implement gait modifications.
70	Keywords: Gait modification, knee osteoarthritis, joint reaction forces, OpenSim

¹ Corresponding author.

Corresponding Author: Nelson Cortes (<u>n.cortes@essex.ac.uk</u>), BIO-22-1097

71 INTRODUCTION

72 Osteoarthritis (OA) of the knee is a major cause of disability and affects more 73 than 19% of the adult population over the age of 45 in the United States [1, 2]. Excessive 74 joint reaction forces (JRF) have been implicated in the development and progression of 75 knee OA [3, 4]. Gait modifications are a promising non-invasive intervention used to 76 reduce JRFs in the knee as evidence suggests that they may slow the progression of the 77 disease [5-7]. A number of gait modifications have been identified that may help reduce 78 the JRF in the medial compartment of the knee. Three common modifications 79 investigated include lateral trunk lean (LTL) [6-14], medial knee thrust (MKT) [7-9, 11, 80 15-19], and toe-in gait (TIG) [7-9, 11, 17, 20]. A systematic review of gait interventions 81 [7] found that when paired with real-time biofeedback (RTB), the three interventions 82 chosen for this study show the greatest potential to reduce the knee adduction moment 83 (KAM) in patients with knee OA. Real-time biofeedback can help improve the adoption 84 of gait interventions and allow for the magnitude of modifications to be tailored to 85 subject specific responses. 86 Many studies investigating gait modifications rely on surrogate measures, such 87 as KAM and the knee flexion moment (KFM), to assess knee loads [17, 21-29]. In studies 88 investigating knee OA it has been demonstrated that there is an association between

89 KAM is and disease progression [30-33] while the contribution of KFM is less clear. One

- 90 study found that both KAM and KFM equally contributed to estimates of total knee joint
- 91 moments but that as the disease progressed KAM influenced increased while KFM
- 92 influence decreased [30]. While some studies have found a connection between KFM

and knee OA, especially in the first peak [20, 32], others have failed to show a strong
connection [31, 34].

95 The LTL modification has been shown to reduce KAM when the trunk angle is modified by a sufficient amount [6, 9, 35, 36] but it has also been reported that the 96 97 modification may lead to discomfort in the spine and ipsilateral knee and hip joints [6]. 98 The MKT modification with real-time visual feedback has also been shown to reduce 99 KAM in healthy subjects [9, 15, 36, 37]. A subject specific simulation study on a patient 100 with grade 2 medial knee OA suggested that MKT could reduce both the first and second 101 knee adduction torque peaks [16]. After gait retraining the patient was able to closely 102 reproduce the knee adduction torgue reductions, calculated by the simulation study, 103 while walking in a laboratory setting [16]. The TIG modification using RTB has been 104 shown to also reduce peak KAM in some studies [17, 35], however, other research has 105 not demonstrated a significant decrease in KAM when using TIG with visual RTB [9, 38]. 106 A study in healthy controls using TIG without RTB showed a statistically significant 107 reduction in first peak KAM but found no reduction in JRF as estimated by a 108 musculoskeletal model [39]. While some studies have found that KAM may provide a 109 reasonable indicator for the JRF at the first peak of stance, the relationship between 110 KAM and the joint contact force is not as strong for the second peak of stance [20, 34]. 111 Additionally, research in children and adolescent's has indicated that KAM may not be a 112 good predictor of knee joint contact force independent of leg alignment [40]. 113 With the advancement in computing power computational models are becoming 114 a common approach to directly estimate JRFs in the knee during gait [41-48]. While it is

Corresponding Author: Nelson Cortes (n.cortes@essex.ac.uk), BIO-22-1097

115	impractical to measure JRFs in-vivo [49], computational models are capable of
116	estimating internal forces during functional movements (i.e. walking, running, crouch
117	gait) [45, 46, 50-54]. OpenSim is an open-source software application for modeling,
118	simulating, and analyzing movement [47]. It provides a flexible and robust tool that can
119	be used by researchers to simulate how altered movement patterns can affect internal
120	joint loading [41-47, 55-64]. Lerner et al. (2015) developed an OpenSim model (Lerner
121	model) that allows for the direct estimation of the medial and lateral JRF in the knee.
122	Previous research has identified muscle forces as a major determinant of
123	simulated compressive tibiofemoral contact forces thus variations in muscle activity
124	greatly influence the accuracy of knee JRF predictions [50, 65]. The weighted static
125	optimization objective function minimizes the sum of squared muscle activations while
126	incorporating individual muscle weighting values as described in detail in previous
127	research [52]. A common finding in past studies was that a weighted static optimization
128	approach provides improved results over the default OpenSim static optimization (SO)
129	[44, 45, 52, 66] by allowing researchers to reduce the force output in muscles that are
130	causing increased error in JRF estimates. Many of these studies use in vivo data from
131	instrumented knee implants to determine the weights for the objective function by
132	minimizing the difference between the experimental and in vivo data [44, 45]. This is an
133	infeasible approach to take when trying to estimate the effects of gait interventions in
134	healthy or pathological subjects where no in vivo data is available. In order to
135	implement the Lerner model an alternative approach to using in vivo data is needed for
136	determining appropriate weights for muscles that exhibit larger than expected

Corresponding Author: Nelson Cortes (<u>n.cortes@essex.ac.uk</u>), BIO-22-1097

137	activations and forces as calculated by SO. Ensuring a proper weight for the model is
138	important to reduce the overestimation of JRF in the model.
139	The purpose of this study was to examine the effect of three commonly studied
140	gait interventions using RTB on the simulated JRF in a cohort of healthy participants. We
141	hypothesized that all three interventions would reduce the first peak joint reaction force
142	compared to baseline values. A second purpose of the study was to evaluate a visual
143	inspection method for identifying muscles and weights for the weighted SO approach.
144	METHODS
145	Participants
146	Twenty healthy individuals were recruited from the university community to
147	participate in the study. Their dominant limb was determined by identifying their
148	preferred leg in a kicking task [67]. Eligibility criteria included no reported knee, hip, or
149	back pain that required treatment within the prior six months and no previous lower
150	limb or back surgery. Exclusion criteria included any cognitive impairment that would
151	impact motor learning and existing neurological or musculoskeletal impairments that
152	would affect gait. All participants provided written informed consent prior to
153	participation and the study was approved by the George Mason University Institution
154	Review Board. Participant demographics are presented in Table 1.
155	Instrumentation
156	Prior to data collection, retroreflective markers were attached to the lower
157	extremities and trunk (53 markers) as shown below in Fig. 1. One cluster was located on
158	the lower back and four clusters were placed bilaterally on the thigh and shank

159	segments. Twelve tracking markers were placed on various anatomical locations and ten
160	markers were placed on the feet. Ten calibration markers were used for static and
161	dynamic calibration trials. For the static calibration trial participants stood motionless on
162	a single force plate with their feet parallel to the anterior-posterior axis of the
163	laboratory. Visual3D software (C-Motion, Germantown MD, USA) used data from the
164	static trial to generate a kinematic model for each participant which included the trunk,
165	pelvis, thigh, shank, and foot segments. For the dynamic calibration trial participants
166	complete three clockwise rotations of the pelvis [68]. The data from the dynamic
167	calibration was used to estimate hip joint center for the model. Calibration markers
168	were removed before data collection. During data collection marker trajectories were
169	tracked using eight high-speed motion analysis cameras (Vicon, Oxford, England)
170	sampling at 200 Hz. Ground reaction force (GRF) was collected using four floor
171	embedded force plates sampling at 1000 Hz (Bertec, Columbus, OH). The force plates
172	were aligned in a single 2.4 m long row.
173	Data Collection
174	Baseline trials
175	Participants walked at a self-selected speed along a 6-meter laboratory walkway.
176	Timing gates (Brower Timing Systems, Draper, UT, USA) were positioned at the start and
177	end of four in-line force plates (2.4 meters long) and were used to measure the average
178	walking speed per trial. For a trial to be valid, one full contact with a force plate by the
179	dominant limb was required. Participants completed 10 valid baseline trials.

180 Gait modification trials

181	Gait modification parameters were individualized for each participant using their
182	mean and standard deviation (sd) from baseline trials. Ranges for each gait modification
183	were created so that gait parameters fell within a range of 1–3 <i>sd</i> greater (TIG and LTL)
184	or lesser (MKT) than baseline for the first five trials and 3–5 <i>sd</i> greater or lesser than
185	baseline for the second five trials. The 1–3 <i>sd</i> range was considered a small modification
186	while the 3–5 <i>sd</i> range was considered a large modification. In total six target ranges
187	were calculated for each participant: small and large LTL, small and large MKT, and small
188	and large TIG.
189	Standardized verbal instructions, as described in previous research [69], were
190	provided before implementing each modification. Participants were allowed to
191	complete as many practice trials as desired to become comfortable with each
192	modification and additional verbal feedback was provided during practice trials as
193	needed. Gait modification trials were completed in a fixed order: LTL, MKT, and TIG.
194	Successful trials required at least one clean foot strike on the force plate, with the
195	dominant limb, and an average gait speed \pm 5% relative to baseline average speed.
196	Unsuccessful trials were not counted towards the 10 required for each modification.
197	For each of the 3 gait modification strategies studied, participants performed ten
198	trials using RTB. The visual feedback was delivered using Visual3D via a line graph
199	projected on a wall in front of the lab walkway as shown in Fig. 2. The graph indicated
200	the angle of the current gait modification parameter during the stance phase of gait and
201	was updated during each step of the dominant limb. A range representing the lower and
202	upper limits of the gait modification parameter (1–3 or 3–5 <i>sd</i>) was displayed on the

203	graph (i.e. the green	band in Fig. 2). Participants r	modified their gait according to

204 provided cues so that the line representing the gait parameter fell within the calculated

205 range. If during a trial a participant fell outside the provided range, they were instructed

- to adjust their gait on the subsequent trial.
- 207 Musculoskeletal Simulation of Walking

208 Recorded data were first imported to Visual3D (C-Motion, Germantown MD, 209 USA) for pre-processing as described in previous research [9]. OpenSim compatible 210 format files were then exported from Visual3D. Prior to export, Visual3D runs inverse 211 kinematics on the data and provides kinematic and kinetic .mot files for each trial. The 212 exported files were used to create three dimensional simulations for the stance phase of 213 gait using OpenSim 3.2. To simulate the muscle forces required to reproduce the 214 measured kinematics and kinetics SO was run on the data using OpenSim 3.2. Prior to 215 SO, the gait2392 model was scaled to each subject's height and weight. In addition to 216 the default SO cost function for minimizing the sum of the muscle activations squared 217 [47] each trial was also iteratively run through a weighted SO function based on 218 previously described methods [44, 45, 52]. OpenSim 3.2 was used for this process 219 because the weighted SO plug-in was built to be compatible with this version of the 220 software and has not yet been updated to work with the latest version of OpenSim [70]. 221 In order to identify muscles and corresponding weights the results of SO were 222 visually inspected to identify any muscles identified in previous research that 223 contributed to increase knee load estimates (e.g. quadriceps's, hamstrings, calves) and 224 that had a force that was 2 to 3 times greater than estimated forces from other lower

Corresponding Author: Nelson Cortes (n.cortes@essex.ac.uk), BIO-22-1097

225	extremity muscle groups. A weight of 2 was initially applied to that muscle group and a
226	weighted SO was re-run and the results visually inspected to determine the effect of the
227	weight on the muscle force outputs. The weight was increased until the weighted SO
228	output for the identified muscle fell within a comparable range to the other lower
229	extremity muscles.
230	If there were multiple muscles with extreme force estimates, then muscles were
231	weighted and evaluated in a set order for all gait intervention trials. The order was to
232	apply a weight to the gastrocnemius (GAS) muscles followed by weights applied to the
233	GAS and the vastus lateralis (GAS-VL) muscle, then to the GAS, VL, and vastus
234	intermedius/vastus medialis (GAS-VI-VL-VM) muscles, and finally to the GAS, VL, VI, VM,
235	and the rectus femoris (GAS-VI-VL-VM-RF) muscles. The muscle weight values started at
236	two and were systematically adjusted until the muscle force output values from the
237	weighted SO did not show any large spikes in the SO output.
238	After the default SO and the weighted SO was completed, the knee JRFs for the
239	medial and lateral compartment were computed using the OpenSim JointReaction
240	analyses on the scaled Lerner model using OpenSim 3.3 which is capable of resolving the
241	JRFs in the knee into medial and lateral components [44].
242	Statistical Analysis
243	Descriptive statistics were reported while a within-group repeated measures
244	analysis of variance (RM ANOVA) was used to compare JRF of participants' dominant
245	limb across the four different gait conditions. A RM ANOVA was used with both the
246	medial and lateral JRF for the first and second peaks during the stance phase of gait.

Corresponding Author: Nelson Cortes (<u>n.cortes@essex.ac.uk</u>), BIO-22-1097

247 Prior to running the RM ANOVA, data was checked for outliers and normality. Next,

248 Mauchly's test of sphericity was assessed. If the data failed the assumption of sphericity,

249 a Greenhouse-Geisser correction was used. If results were significant for the RM ANOVA

250 pairwise comparisons were calculated. Statistical analyses were performed using the

251 ggstatsplot [71] package in R version 4.1.0 (R Foundation, Vienna, Austria,

252 <u>https://www.R-project.org</u>) with an alpha level set at 0.05 *a priori*.

253 **RESULTS**

264

254 Mean JRF by gait conditions for the first and second peaks in both the medial 255 and lateral knee compartment are shown below in Table 2. Post hoc analysis of the data 256 indicated that the averages for JRF in both the small and large conditions did not differ 257 significantly from each other, therefore, the results were combined into a single average 258 across the three interventions for statistical analysis. Therefore, the statistical analysis 259 consisted of 10 trials each for the baseline, LTL, MKT, and TIG.. Previous analysis 260 indicated that subjects had a difficult time getting the modification to accurately fall 261 within the prescribed bandwidth but were generally able to meet the lower bound of 262 the prescribed modification [9]. 263 The main effects of the RM ANOVA for the vertical JRFs are presented in Fig. 3

difference between conditions (F(1.7, 32.3)=1.70, p=.20). For the second peak in the

through 66. For the first peak JRF in the medial compartment there was no significant

266 medial compartment there was a statistically significant difference between conditions

267 (F(1.8, 34.4)=4.71, p=0.02). Pairwise comparisons indicated that the TIG condition had a
268 smaller JRF compared to baseline (p=0.04).

269	For the first peak JRF in the lateral compartment there was a statistically
270	significant difference between conditions (F(1.8, 34.7)=10.56, p=0.0004). Pairwise
271	comparisons indicated an increased JRF for MKT compared to baseline (p=0.01). For the
272	second peak in the lateral compartment there was a statistically significant difference
273	between conditions (F(3.0, 57.0)=3.81, p=0.01). However, pairwise comparisons
274	indicated no significant difference between any condition and baseline.
275	Mean JRF (normalized by body weight) during the stance phase of gait is shown
276	for the four gait conditions in both the medial and lateral compartments in Fig. 7.
277	DISCUSSION
278	This study compared the effects of three gait modifications on the simulated
279	JRFs in the medial compartments of the knee in healthy participants. The primary
280	purpose was to determine if LTL, MKT, and TIG reduced the JRFs in the medial
281	compartment of the knee in healthy individuals. Our hypothesis was not supported by
282	the data, which showed no statistically significant difference between baseline and any
283	of the gait interventions in the medial compartment during the loading phase (e.g. first
284	peak) of gait.
285	For individuals at risk for, or diagnosed with, medial compartment knee OA,
286	reducing the JRF in the first peak is generally thought to be of high importance and gait
287	interventions are commonly found to reduce either KAM or JRF in the first peak. While
288	there was decreasing JRF in our study, the results were not statistically significant. The
289	LTL modification has been shown to reduce KAM in healthy and pathological
290	populations [9, 12, 72, 73]. One study did find that a healthy participant, when given

291	verbal queues, could increase their JRF by using LTL type modification [74]. While this is
292	counter to what would be expected we had a similar finding in our unpublished study
293	that used data from a participant with an instrumented knee implant performing LTL.
294	In contrast to the LTL, the MKT modification showed an increasing JRF but it was
295	also not significant. The MKT has been shown to decrease both KAM and JRF in previous
296	studies [9, 15, 16, 75, 76]. One issue related to MKT is that of the three studied gait
297	modifications we found MKT was the most difficult for participants to adopt, and
298	therefore, the lack of results in our study could be due to inconsistent implementation
299	of the MKT intervention [9]. If some participants were not able to correctly implement
300	MKT it could have led to spurious data that obscured the results of the entire group.
301	Overall, our results for MKT contradict previous research [72, 76, 77] with one possible
302	explanation being that the outcome of gait interventions can be subject-specific [9, 78]
303	and may be influenced by parameters such as anatomical alignment [79, 80], body mass
304	index [81, 82], and individual gait biomechanics [78]. From a modeling perspective
305	calculated JRF values are influenced by muscle activation and force estimates [74] so
306	increased muscle activity, used by the model to match participant kinematics, during
307	stance phase in MKT may influence the magnitude of the JRF in the first peak.
308	During TIG participants exhibited decreasing JRF but the results were also not
309	statistically significant. Previous research on KAM in TIG has been inconclusive [78, 83-
310	86] so these results were not unsurprising. However, a recent study that used
311	musculoskeletal modeling with TIG found no change in JRF even with a decrease in KAM
312	so our results are consistent with their findings [39].

313	While the second peak in the medial compartment may be less important for
314	subjects with knee OA [20, 34], our data indicated a statistically significant difference
315	between conditions for the propulsion phase of gait in the medial compartment (p=.02).
316	The post-hoc pairwise comparisons indicated that TIG in the second peak produced a
317	greater JRF then baseline (p=.04). Previous research on TIG has found inconclusive
318	results on the effect of TIG on KAM so this isn't necessarily unexpected [11]. As shown in
319	previous research the Lerner knee model may overestimate the JRF in the second peak
320	of the medial compartment in normal gait [44] and unpublished data from our lab found
321	larger error in the second peak when using MKT or LTL gait. While the weighted SO can
322	reduce the error greatly [44, 87] the errors can still be 20% or large, as compared to the
323	less than 10% error in the medial compartment for MKT and LTL gait.
324	One of the main goals of these gait interventions is to reduce the JRF in the
325	medial compartment, however, a consequence may be that the load is transferred to
326	another compartment. While our data did not find statistically significant reductions in
327	JRFs in the medial compartment, there was a statistically significant difference from
328	baseline in the lateral compartment for both the first (p=.004) and second (p=.01) peaks.
329	Post hoc tests indicated that the JRF during MKT increased from baseline (p=.01) in the
330	first peak but did not increase from baseline in the second peak. One factor to consider
331	for this data is that in an unpublished validation study with the model it was found to
332	overestimate JRF in the lateral compartment to a greater extent than in the first peak of
333	the medial compartment, especially when applied to MKT and LTL interventions.

Therefore, the results in the lateral compartment may be skewed due to limitations ofthe model.

336 Data from previous research [87] suggests that this modeling approach can 337 provide robust results for simulated JRFs in the medial compartment during the loading 338 phase. Therefore, one possible explanation for lack of results is the intervention does 339 not have a large effect on JRFs in the knee during the first peak. Another possibility is 340 that there could be a large variation in individual responses to gait interventions that 341 are averaged out in the aggregated data. Fig. 8 shows a summary of the responses to 342 each intervention as a percentage increase or decrease from their baseline JRF values by 343 study participant. Three participants had large (i.e. >30%) reductions in their baseline 344 values while five had large increases. In addition, some individuals showed an increase 345 from baseline for some gait modifications but a decrease for others. Previous research 346 has reported a similar finding when evaluating KAM in all three modifications [9]. There 347 has also been research that showed individual variation in the response to toe-in gait 348 [78] and toe-out gait [85]. It is possible that no single variable contributes to an 349 individual's response but that it is a combination of several variables. For example, a 350 participant's response may be affected by the level of strength in their leg muscles 351 interacting with static knee alignment, BMI, and/or other variables. 352 While research has demonstrated that gait modifications with RTB may help 353 reduce the JRF in the medial compartment of the knee one limitation to this approach is 354 that the majority of feedback is focused on joint kinematics, such as joint angles. Muscle 355 contraction across a joint also contributes to JRF and recent research has shown that

Corresponding Author: Nelson Cortes (n.cortes@essex.ac.uk), BIO-22-1097

356	providing RTB of muscle activation patterns allows individuals to alter their JRF by
357	changing the activation patterns of their muscles during gait [88]. This recent study
358	found that participants were able to reduce knee JRF, during late stance, in a normal
359	walking gait by 12% (\pm 12) by shifting their muscle activation patterns from the
360	gastrocnemius to the soleus muscle. It is possible that in gait modification studies
361	participants are using different muscle coordination strategies to meet the RTB targets
362	during modification. For example, someone trying to use MKT may unintentionally
363	increase their knee JRF as a result of the particular muscle contraction strategies they
364	use to meet the kinematics of the movement pattern. In addition to factors like static
365	alignment these differences in movement coordination strategies may be contributing
366	to the results shown in Fig 8 and offer a possible additional consideration for why some
367	participants show decreasing JRF while others show increasing JRF. An alternative
368	approach that may be worth investigating is providing RTB of both kinematic and muscle
369	activation patterns, to subjects performing gait modifications, in order to gain a better
370	understanding of each element's relative contribution to JRF.
371	There are several limitations to this study. First, while the results of the visual
372	inspection method for identifying muscles and corresponding weights for the weighted
373	SO was successful, it lacked objective metrics for decision criteria. An improved
374	approach to the process would be to take a statistical measure, such as the mean of all
375	lower extremity muscles forces, during the second half of stance, and for any muscle
376	with an excessive force estimate increase the weight until the muscle force estimate is
377	within 1 or 2 standard deviations of that median value. However, more work should be

Corresponding Author: Nelson Cortes (<u>n.cortes@essex.ac.uk</u>), BIO-22-1097

378	done to further evaluate this process for identifying muscle weighting and identifying
379	the optimal appropriate range could be developed experimentally. Another limitation to
380	this analysis was a lack of imaging data for participants. This did not allow us to
381	accurately determine static knee alignment and contact locations and reduced the
382	benefit of the Lerner model. The Lerner model has modifiable parameters which lets
383	you adjust the knee alignment in the frontal plane as well as the contact locations
384	between the tibia and femur. While we did attempt to estimate the values from
385	Visual3D, the estimate of knee alignment calculation from the software differs from the
386	approach described by Lerner et al [44, 89] in their validation study and we were not
387	confident enough in the values to use them for this study. Lastly, it is also possible that
388	the sample size may not have been large enough to provide the power to detect
389	differences in our data.

390 CONCLUSION

391 This study did not find the hypothesized decrease in simulated JRF in the medial 392 compartment of the knee for TIG, LTL, and MKT. Lack of results may be as a result of 393 individual variation in response to gait modifications. Factors involved in this variation 394 may include static alignment of the lower extremity or muscle coordination patterns 395 used to meet gait modification targets. It is possible that gait interventions cannot be 396 uniformly applied to all participants with the expectation that they will all respond with 397 reductions in JRF. Individual factors may lead some participants to have decreased JRF 398 as a result of a modification while others may experience increased JRF. It is also 399 possible that there may be variation within an individual in how they respond to

Corresponding Author: Nelson Cortes (n.cortes@essex.ac.uk), BIO-22-1097

- 400 different gait modifications with some leading to reduced JRF and others increasing JRF.
- 401 Future work should be done to develop a greater understanding of how different factors
- 402 contribute to individual responses in JRFs as a result of gait modification.
- 403

404 **ACKNOWLEDGEMENT**

- 405 The work presented in this paper was supported in part by the NIH grant R01EY029715
- 406 to Dr. Qi Wei. Any opinions, findings, conclusions and/or recommendations expressed in
- 407 this publication are those of the authors and do not necessarily reflect the views of the
- 408 National Institutes of Health.

409 **NOMENCLATURE**

BMI	Body mass index
F	Female
GAS	Gastrocnemius
GAS-VL	Gastrocnemius and vastus lateralis
GAS-VI-VL-VM	Gastrocnemius, vastus intermedius vastus lateralis, and vastus medialis
GAS-VI-VL-VM-RF	Gastrocnemius, vastus intermedius vastus lateralis, vastus medialis, and
	rectus femoris
JRF	Joint reaction force
КАМ	Knee adduction moment
KFM	Knee flexion moment

kg	Kilogram
L	Left
LTL	Lateral trunk lean
Μ	Male
т	Meter
МКТ	Medial knee thrust
Ν	Number
OA	Osteoarthritis
R	Right
RM ANOVA	Repeated measures analysis of variance
sd	Standard deviation
SO	Static optimization
TIG	Toe-in gait

411 **REFERENCES**

- [1] Cross M., Smith E., Hoy D., Nolte S., Ackerman I., Fransen M., Bridgett L.,
 Williams S., Guillemin F., Hill C. L., Laslett L. L., Jones G., Cicuttini F., Osborne
 R., Vos T., Buchbinder R., Woolf A., March L., 2014, "The global burden of hip and
 knee osteoarthritis: estimates from the global burden of disease 2010 study," Ann
 Rheum Dis, 73(7): 1323-30. https://doi.org/10.1136/annrheumdis-2013-204763
- 417 [2] Lawrence R. C., Felson D. T., Helmick C. G., Arnold L. M., Choi H., Deyo R. A.,
- Gabriel S., Hirsch R., Hochberg M. C., Hunder G. G., Jordan J. M., Katz J. N.,
 Kremers H. M., Wolfe F., National Arthritis Data W., 2008, "Estimates of the
 prevalence of arthritis and other rheumatic conditions in the United States. Part II,"
 Arthritis Rheum, 58(1): 26-35. https://doi.org/10.1002/art.23176
- [3] Ratzlaff C. R., Koehoorn M., Cibere J., Kopec J. A., 2012, "Is lifelong knee joint
 force from work, home, and sport related to knee osteoarthritis?," Int J Rheumatol,
 2012: 584193. https://doi.org/10.1155/2012/584193
- 425 [4] Sharma L., Hurwitz D. E., Thonar E. J., Sum J. A., Lenz M. E., Dunlop D. D.,
 426 Schnitzer T. J., Kirwan-Mellis G., Andriacchi T. P., 1998, "Knee adduction moment,
 427 serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis,"
 428 Arthritis Rheum, 41(7): 1233-40. https://doi.org/10.1002/1529-
- 429 0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
- 430 [5] Ferrigno C., Stoller I. S., Shakoor N., Thorp L. E., Wimmer M. A., 2016, "The
 431 feasibility of using augmented auditory feedback from a pressure detecting insole to
 432 reduce the knee adduction moment: A proof of concept study," J Biomech Eng,
 433 138(2): 021014. https://doi.org/10.1115/1.4032123
- Hunt M. A., Simic M., Hinman R. S., Bennell K. L., Wrigley T. V., 2011,
 "Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time biofeedback," J Biomech, 44(5): 943-47. https://doi.org/10.1016/j.jbiomech.2010.11.027
- 438 [7] Eddo O., Lindsey B., Caswell S. V., Cortes N., 2017, "Current evidence of gait
 439 modification with real-time biofeedback to alter kinetic, temporospatial, and
 440 function-related outcomes: A review," International Journal of Kinesiology & Sports
 441 Science, 5(3): 21-35. https://doi.org/10.7575/aiac.ijkss.v.5n.3p.35
- 442 [8] Fregly B. J., 2012, "Gait modification to treat knee osteoarthritis," HSS J, 8(1): 45443 48. https://doi.org/10.1007/s11420-011-9229-9
- Lindsey B., Eddo O., Caswell S. V., Prebble M., Cortes N., 2020, "Reductions in peak knee abduction moment in three previously studied gait modification strategies," Knee, 27(1): 102-10. https://doi.org/10.1016/j.knee.2019.09.017
- 447 [10] Miller R. H., Esterson A. Y., Shim J. K., 2015, "Joint contact forces when
 448 minimizing the external knee adduction moment by gait modification: A computer
 449 simulation study," Knee, 22(6): 481-89. https://doi.org/10.1016/j.knee.2015.06.014
- 450 [11] Simic M., Hinman R. S., Wrigley T. V., Bennell K. L., Hunt M. A., 2011, "Gait modification strategies for altering medial knee joint load: a systematic review,"
 452 Arthritis Care Res (Hoboken), 63(3): 405-26. https://doi.org/10.1002/acr.20380
- 432 Arthints Care Res (Hoboken), 65(5): 403-20. https://doi.org/10.1002/act.20380
 453 [12] Simic M., Hunt M. A., Bennell K. L., Hinman R. S., Wrigley T. V., 2012, "Trunk
 454 lean gait modification and knee joint load in people with medial knee osteoarthritis:
 455 the effect of varying trunk lean angles," Arthritis Care Res (Hoboken), 64(10): 1545456 53. https://doi.org/10.1002/acr.21724

- [13] Hunt M. A., Birmingham T. B., Bryant D., Jones I., Giffin J. R., Jenkyn T. R.,
 Vandervoort A. A., 2008, "Lateral trunk lean explains variation in dynamic knee
 joint load in patients with medial compartment knee osteoarthritis," Osteoarthritis
 Cartilage, 16(5): 591-99. https://doi.org/10.1016/j.joca.2007.10.017
- 461 [14] Mundermann A., Asay J. L., Mundermann L., Andriacchi T. P., 2008, "Implications
 462 of increased medio-lateral trunk sway for ambulatory mechanics," J Biomech, 41(1):
 463 165-70. https://doi.org/10.1016/j.jbiomech.2007.07.001
- 464 [15] Ferrigno C., Wimmer M. A., Trombley R. M., Lundberg H. J., Shakoor N., Thorp L.
 465 E., 2016, "A reduction in the knee adduction moment with medial thrust gait is
 466 associated with a medial shift in center of plantar pressure," Med Eng Phys, 38(7):
 467 615-21. https://doi.org/10.1016/j.medengphy.2016.03.008
- [16] Fregly B. J., Reinbolt J. A., Rooney K. L., Mitchell K. H., Chmielewski T. L., 2007,
 "Design of patient-specific gait modifications for knee osteoarthritis rehabilitation,"
 IEEE Trans Biomed Eng, 54(9): 1687-95.
- 471 https://doi.org/10.1109/TBME.2007.907637
- [17] Jackson B., Gordon K. E., Chang A. H., 2018, "Immediate and short-term effects of
 real-time knee adduction moment feedback on the peak and cumulative knee load
 during walking," J Orthop Res, 36(1): 397-404. https://doi.org/10.1002/jor.23659
- [18] Kinney A. L., Besier T. F., Silder A., Delp S. L., D'Lima D. D., Fregly B. J., 2013,
 "Changes in in vivo knee contact forces through gait modification," J Orthop Res,
 31(3): 434-40. https://doi.org/10.1002/jor.22240
- [19] Walter J. P., D'Lima D. D., Colwell C. W., Jr., Fregly B. J., 2010, "Decreased knee
 adduction moment does not guarantee decreased medial contact force during gait," J
 Orthop Res, 28(10): 1348-54. https://doi.org/10.1002/jor.21142
- [20] Richards R. E., Andersen M. S., Harlaar J., van den Noort J. C., 2018, "Relationship
 between knee joint contact forces and external knee joint moments in patients with
 medial knee osteoarthritis: effects of gait modifications," Osteoarthritis Cartilage,
 26(9): 1203-14. https://doi.org/10.1016/j.joca.2018.04.011
- [21] Tan H. H., Mentiplay B., Quek J. J., Tham A. C. W., Lim L. Z. X., Clark R. A.,
 Woon E. L., Yeh T. T., Tan C. I. C., Pua Y. H., 2020, "Test-retest reliability and
 variability of knee adduction moment peak, impulse and loading rate during
 walking," Gait Posture, 80: 113-16. https://doi.org/10.1016/j.gaitpost.2020.05.029
- 489 [22] Wang S., Chan K. H. C., Lam R. H. M., Yuen D. N. S., Fan C. K. M., Chu T. T. C.,
- Baur H., Cheung R. T. H., 2019, "Effects of foot progression angle adjustment on
 external knee adduction moment and knee adduction angular impulse during stair
 ascent and descent," Hum Mov Sci, 64: 213-20.
- 493 https://doi.org/10.1016/j.humov.2019.02.004
- 494 [23] Tomoya T., Mutsuaki E., Takuma I., Yuta T., Masayoshi K., 2019, "A mathematical 495 modelling study investigating the influence of knee joint flexion angle and extension 496 moment on patellofemoral joint reaction force and stress," Knee, 26(6): 1323-29.
 497 https://doi.org/10.1016/j.knee.2019.10.010
- 498 [24] Nie Y., Wang H., Xu B., Zhou Z., Shen B., Pei F., 2019, "The relationship between
 499 knee adduction moment and knee osteoarthritis symptoms according to static
 500 alignment and pelvic drop," Biomed Res Int, 2019: 7603249.
- 501 https://doi.org/10.1155/2019/7603249

- 502 [25] Konrath J. M., Karatsidis A., Schepers H. M., Bellusci G., de Zee M., Andersen M.
 503 S., 2019, "Estimation of the knee adduction moment and joint contact force during 504 daily living activities using inertial motion capture," Sensors (Basel), 19(7): 1681.
 505 https://doi.org/10.3390/s19071681
- 506 [26] Luc-Harkey B. A., Franz J. R., Blackburn J. T., Padua D. A., Hackney A. C.,
 507 Pietrosimone B., 2018, "Real-time biofeedback can increase and decrease vertical
 508 ground reaction force, knee flexion excursion, and knee extension moment during
 509 walking in individuals with anterior cruciate ligament reconstruction," J Biomech,
 510 76: 94-102. https://doi.org/10.1016/j.jbiomech.2018.05.043
- [27] Telfer S., Lange M. J., Sudduth A. S. M., 2017, "Factors influencing knee adduction moment measurement: A systematic review and meta-regression analysis," Gait
 Posture, 58: 333-39. https://doi.org/10.1016/j.gaitpost.2017.08.025
- [28] Teng H. L., MacLeod T. D., Link T. M., Majumdar S., Souza R. B., 2015, "Higher
 knee flexion moment during the second half of the stance phase of gait is associated
 with the progression of osteoarthritis of the patellofemoral joint on magnetic
 resonance imaging," J Orthop Sports Phys Ther, 45(9): 656-64.
 https://doi.org/10.2519/jospt.2015.5859
- 519 [29] Creaby M. W., 2015, "It's not all about the knee adduction moment: the role of the
 520 knee flexion moment in medial knee joint loading," Osteoarthritis Cartilage, 23(7):
 521 1038-40. https://doi.org/10.1016/j.joca.2015.03.032
- [30] Asay J. L., Erhart-Hledik J. C., Andriacchi T. P., 2018, "Changes in the total knee
 joint moment in patients with medial compartment knee osteoarthritis over 5 years,"
 J Orthop Res, 36(9): 2373-79. https://doi.org/10.1002/jor.23908
- [31] Chang A. H., Moisio K. C., Chmiel J. S., Eckstein F., Guermazi A., Prasad P. V.,
 Zhang Y., Almagor O., Belisle L., Hayes K., Sharma L., 2015, "External knee
 adduction and flexion moments during gait and medial tibiofemoral disease
 progression in knee osteoarthritis," Osteoarthritis Cartilage, 23(7): 1099-106.
 https://doi.org/10.1016/j.joca.2015.02.005
- [32] Chehab E. F., Favre J., Erhart-Hledik J. C., Andriacchi T. P., 2014, "Baseline knee
 adduction and flexion moments during walking are both associated with 5 year
 cartilage changes in patients with medial knee osteoarthritis," Osteoarthritis
 Cartilage, 22(11): 1833-39. https://doi.org/10.1016/j.joca.2014.08.009
- [33] Erhart-Hledik J. C., Chehab E. F., Asay J. L., Favre J., Chu C. R., Andriacchi T. P.,
 2021, "Longitudinal changes in tibial and femoral cartilage thickness are associated
 with baseline ambulatory kinetics and cartilage oligomeric matrix protein (COMP)
 measures in an asymptomatic aging population," Osteoarthritis Cartilage, 29(5): 68796. https://doi.org/10.1016/j.joca.2021.02.006
- [34] Holder J., Trinler U., Meurer A., Stief F., 2020, "A systematic review of the
 associations between inverse dynamics and musculoskeletal modeling to investigate
 joint loading in a clinical environment," Front Bioeng Biotechnol, 8: 603907.
 https://doi.org/10.3389/fbioe.2020.603907
- 543 [35] Shull P. B., Lurie K. L., Cutkosky M. R., Besier T. F., 2011, "Training multi544 parameter gaits to reduce the knee adduction moment with data-driven models and
 545 haptic feedback," J Biomech, 44(8): 1605-09.
- 546 https://doi.org/10.1016/j.jbiomech.2011.03.016

- 547 [36] Simic M., Hinman R. S., Wrigley T. V., Bennell K. L., Hunt M. A., 2011, "Gait modification strategies for altering medial knee joint load: a systematic review,"
 549 Arthritis Care Res (Hoboken), 63(3): 405-26. https://doi.org/10.1002/acr.20380
- [37] Barrios J. A., Crossley K. M., Davis I. S., 2010, "Gait retraining to reduce the knee
 adduction moment through real-time visual feedback of dynamic knee alignment," J
 Biomech, 43(11): 2208-13. https://doi.org/10.1016/j.jbiomech.2010.03.040
- [38] Richards R., van den Noort J. C., van der Esch M., Booij M. J., Harlaar J., 2018,
 "Gait retraining using real-time feedback in patients with medial knee osteoarthritis: Feasibility and effects of a six-week gait training program," Knee, 25(5): 814-24. https://doi.org/10.1016/j.knee.2018.05.014
- [39] Cui W., Wang C., Chen W., Guo Y., Jia Y., Du W., Wang C., 2019, "Effects of ToeOut and Toe-In Gaits on Lower-Extremity Kinematics, Dynamics, and
 Electromyography," Applied Sciences, 9(23): 5245.
- [40] Holder J., Drongelen S., Meurer A., Stief F. Statistical comparison of contact forces
 and moments in the knee joint during walking in participants with and without
 valgus malalignment. ESMAC: Gait & Posture, 2020:155-56.
- 563 [41] Eskinazi I., Fregly B. J., 2016, "An open-source toolbox for surrogate modeling of
 564 joint contact mechanics," IEEE Trans Biomed Eng, 63(2): 269-77.
 565 https://doi.org/10.1109/TBME.2015.2455510
- [42] Xu H., Bloswick D., Merryweather A., 2015, "An improved OpenSim gait model
 with multiple degrees of freedom knee joint and knee ligaments," Comput Methods
 Biomech Biomed Engin, 18(11): 1217-24.
- 569 https://doi.org/10.1080/10255842.2014.889689
- [43] Martelli S., Valente G., Viceconti M., Taddei F., 2015, "Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location,"
 Comput Methods Biomech Biomed Engin, 18(14): 1555-63. https://doi.org/10.1080/10255842.2014.930134
- [44] Lerner Z. F., DeMers M. S., Delp S. L., Browning R. C., 2015, "How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces," J Biomech, 48(4): 644-50.
- 577 https://doi.org/10.1016/j.jbiomech.2014.12.049
- 578 [45] Knarr B. A., Higginson J. S., 2015, "Practical approach to subject-specific
 579 estimation of knee joint contact force," J Biomech, 48(11): 2897-902.
 580 https://doi.org/10.1016/j.jbiomech.2015.04.020
- [46] Gerus P., Sartori M., Besier T. F., Fregly B. J., Delp S. L., Banks S. A., Pandy M.
 G., D'Lima D. D., Lloyd D. G., 2013, "Subject-specific knee joint geometry
 improves predictions of medial tibiofemoral contact forces," J Biomech, 46(16):
 2778-86. https://doi.org/10.1016/j.jbiomech.2013.09.005
- [47] Delp S. L., Anderson F. C., Arnold A. S., Loan P., Habib A., John C. T.,
 Guendelman E., Thelen D. G., 2007, "OpenSim: open-source software to create and
 analyze dynamic simulations of movement," IEEE Trans Biomed Eng, 54(11): 194050. https://doi.org/10.1109/TBME.2007.901024
- 589 [48] Otten E., 2003, "Inverse and forward dynamics: models of multi-body systems,"
 590 Philos Trans R Soc Lond B Biol Sci, 358(1437): 1493-500.
- 591 https://doi.org/10.1098/rstb.2003.1354

592 [49] Hart D. A., Martin C. R., Scott M., Shrive N. G., 2021, "The instrumented sheep 593 knee to elucidate insights into osteoarthritis development and progression: A 594 sensitive and reproducible platform for integrated research efforts," Clin Biomech 595 (Bristol, Avon), 87: 105404. https://doi.org/10.1016/j.clinbiomech.2021.105404 596 [50] Demers M. S., Pal S., Delp S. L., 2014, "Changes in tibiofemoral forces due to 597 variations in muscle activity during walking," J Orthop Res, 32(6): 769-76. 598 https://doi.org/10.1002/jor.22601 599 [51] Lerner Z. F., Haight D. J., DeMers M. S., Board W. J., Browning R. C., 2014, "The 600 effects of walking speed on tibiofemoral loading estimated via musculoskeletal 601 modeling," J Appl Biomech, 30(2): 197-205. https://doi.org/10.1123/jab.2012-0206 602 [52] Steele K. M., Demers M. S., Schwartz M. H., Delp S. L., 2012, "Compressive 603 tibiofemoral force during crouch gait," Gait Posture, 35(4): 556-60. 604 https://doi.org/10.1016/j.gaitpost.2011.11.023 [53] Seth A., Sherman M., Reinbolt J. A., Delp S. L., 2011, "OpenSim: a musculoskeletal 605 606 modeling and simulation framework for in silico investigations and exchange," 607 Procedia IUTAM, 2: 212-32. https://doi.org/10.1016/j.piutam.2011.04.021 [54] Gu W., Pandy M. G., 2020, "Direct validation of human knee-joint contact 608 609 mechanics derived from subject-specific finite-element models of the tibiofemoral 610 and patellofemoral joints," J Biomech Eng, 142(7): 071001. https://doi.org/10.1115/1.4045594 611 [55] Meireles S., De Groote F., Reeves N. D., Verschueren S., Maganaris C., Luyten F., 612 613 Jonkers I., 2016, "Knee contact forces are not altered in early knee osteoarthritis," 614 Gait Posture, 45: 115-20. https://doi.org/10.1016/j.gaitpost.2016.01.016 615 [56] Haight D. J., Lerner Z. F., Board W. J., Browning R. C., 2014, "A comparison of 616 slow, uphill and fast, level walking on lower extremity biomechanics and 617 tibiofemoral joint loading in obese and nonobese adults," J Orthop Res, 32(2): 324-618 30. https://doi.org/10.1002/jor.22497 619 [57] Richards C., Higginson J. S., 2010, "Knee contact force in subjects with symmetrical 620 OA grades: differences between OA severities," J Biomech, 43(13): 2595-600. 621 https://doi.org/10.1016/j.jbiomech.2010.05.006 622 [58] Winby C. R., Lloyd D. G., Besier T. F., Kirk T. B., 2009, "Muscle and external load 623 contribution to knee joint contact loads during normal gait," J Biomech, 42(14): 2294-300. https://doi.org/10.1016/j.jbiomech.2009.06.019 624 625 [59] Uicker J. J., Sheth, P. N. Matrix methods in the design analysis of multibody systems. 626 Charlottesville, VA: University of Virginia, 2007. [60] Shelburne K. B., Torry M. R., Pandy M. G., 2006, "Contributions of muscles, 627 628 ligaments, and the ground-reaction force to tibiofemoral joint loading during normal 629 gait," J Orthop Res, 24(10): 1983-90. https://doi.org/10.1002/jor.20255 630 [61] Taylor W. R., Heller M. O., Bergmann G., Duda G. N., 2004, "Tibio-femoral loading during human gait and stair climbing," J Orthop Res, 22(3): 625-32. 631 632 https://doi.org/10.1016/j.orthres.2003.09.003 633 [62] Hurwitz D. E., Sumner D. R., Andriacchi T. P., Sugar D. A., 1998, "Dynamic knee 634 loads during gait predict proximal tibial bone distribution," J Biomech, 31(5): 423-635 30. https://doi.org/10.1016/S0021-9290(98)00028-1

636	[63] Schipplein O. D., Andriacchi T. P., 1991, "Interaction between active and passive
637	knee stabilizers during level walking," J Orthop Res, 9(1): 113-19.
638	https://doi.org/10.1002/jor.1100090114
639	[64] Morrison J. B., 1970, "The mechanics of the knee joint in relation to normal
640	walking," Journal of Biomechanics, 3(1): 51-61. https://doi.org/10.1016/0021-
641	9290(70)90050-3
642	[65] Herzog W., Longino D., Clark A., 2003, "The role of muscles in joint adaptation and
643	degeneration," Langenbecks Arch Surg, 388(5): 305-15.
644	https://doi.org/10.1007/s00423-003-0402-6
645	[66] Knarr B. A., Higginson J. S., Zeni J. A., 2016, "Change in knee contact force with
646	simulated change in body weight," Comput Methods Biomech Biomed Engin, 19(3):
647	320-23. https://doi.org/10.1080/10255842.2015.1018193
648	[67] Cortes N., Quammen D., Lucci S., Greska E., Onate J., 2012, "A functional agility
649	short-term fatigue protocol changes lower extremity mechanics," J Sports Sci, 30(8):
650	797-805. https://doi.org/10.1080/02640414.2012.671528
651	[68] Schwartz M. H., Rozumalski A., 2005, "A new method for estimating joint
652	parameters from motion data," J Biomech, 38(1): 107-16.
653	https://doi.org/10.1016/j.jbiomech.2004.03.009
654	[69] Eddo O. O., Lindsey B. W., Caswell S. V., Prebble M., Cortes N., 2019,
655	"Unintended Changes in Contralateral Limb as a Result of Acute Gait Modification,"
656	J Appl Biomech, 36(1): 13-19. https://doi.org/10.1123/jab.2019-0031
657	[70] Steele K. M., Tresch M. C., Perreault E. J., 2015, "Consequences of biomechanically
658	constrained tasks in the design and interpretation of synergy analyses," J
659	
660	Neurophysiol, 113(7): 2102-13. https://doi.org/10.1152/jn.00769.2013 [71] Patil I., 2021, "Visualizations with statistical details: The 'ggstatsplot' approach.,"
661	Journal of Open Source Software, 6(61): 3167. https://doi.org/10.21105/joss.03167
662	[72] Gerbrands T. A., Pisters M. F., Theeven P. J. R., Verschueren S., Vanwanseele B.,
663	2017, "Lateral trunk lean and medializing the knee as gait strategies for knee
664	osteoarthritis," Gait Posture, 51: 247-53.
665	https://doi.org/10.1016/j.gaitpost.2016.11.014
666	[73] Tokuda K., Anan M., Takahashi M., Sawada T., Tanimoto K., Kito N., Shinkoda K.,
667	2018, "Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis
668	patients," J Biomech, 66: 10-17. https://doi.org/10.1016/j.jbiomech.2017.10.016
669 670	[74] Pizzolato C., Reggiani M., Saxby D. J., Ceseracciu E., Modenese L., Lloyd D. G., 2017 "Biofeedback for acit retraining based on real time estimation of tibiofemoral
670	2017, "Biofeedback for gait retraining based on real-time estimation of tibiofemoral isint contact foreas," IEEE Trans Neural Syst Bababil Eng. 25(0): 1612-21
671 672	joint contact forces," IEEE Trans Neural Syst Rehabil Eng, 25(9): 1612-21.
672	https://doi.org/10.1109/TNSRE.2017.2683488
673	[75] Schache A. G., Fregly B. J., Crossley K. M., Hinman R. S., Pandy M. G., 2008, "The
674 675	effect of gait modification on the external knee adduction moment is reference frame
675	dependent," Clin Biomech (Bristol, Avon), 23(5): 601-08.
676	https://doi.org/10.1016/j.clinbiomech.2007.12.008
677 678	[76] Fregly B. J., D'Lima D. D., Colwell C. W., Jr., 2009, "Effective gait patterns for
678 (70	offloading the medial compartment of the knee," J Orthop Res, 27(8): 1016-21.
679	https://doi.org/10.1002/jor.20843
680	[77] Meyer A. J., D'Lima D. D., Besier T. F., Lloyd D. G., Colwell C. W., Jr., Fregly B.
681	J., 2013, "Are external knee load and EMG measures accurate indicators of internal

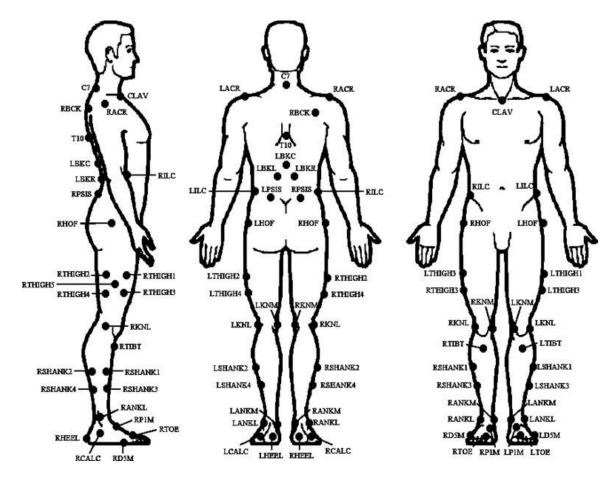
- 682 knee contact forces during gait?," J Orthop Res, 31(6): 921-29.
- 683 https://doi.org/10.1002/jor.22304
- [78] Uhlrich S. D., Silder A., Beaupre G. S., Shull P. B., Delp S. L., 2018, "Subject-specific toe-in or toe-out gait modifications reduce the larger knee adduction
 moment peak more than a non-personalized approach," J Biomech, 66: 103-10. https://doi.org/10.1016/j.jbiomech.2017.11.003
- [79] Hoch M. C., Weinhandl J. T., 2017, "Effect of valgus knee alignment on gait
 biomechanics in healthy women," J Electromyogr Kinesiol, 35: 17-23.
 https://doi.org/10.1016/j.jelekin.2017.05.003
- [80] Clement J., Toliopoulos P., Hagemeister N., Desmeules F., Fuentes A., Vendittoli P.
 A., 2018, "Healthy 3D knee kinematics during gait: Differences between women and men, and correlation with x-ray alignment," Gait Posture, 64: 198-204.
 https://doi.org/10.1016/j.gaitpost.2018.06.024
- [81] Sharma L., Lou C., Cahue S., Dunlop D. D., 2000, "The mechanism of the effect of obesity in knee osteoarthritis: the mediating role of malalignment," Arthritis Rheum, 43(3): 568-75. https://doi.org/10.1002/1529-0131(200003)43:3<568::AID-ANR13>3.0.CO;2-E
- [82] Silva F. R., Muniz A. M. d. S., Cerqueira L. S., Nadal J., 2018, "Biomechanical alterations of gait on overweight subjects," Research on biomedical engineering, 34(4): 291-98. https://doi.org/10.1590/2446-4740.180017
- [83] Lynn S. K., Kajaks T., Costigan P. A., 2008, "The effect of internal and external foot rotation on the adduction moment and lateral-medial shear force at the knee during gait," J Sci Med Sport, 11(5): 444-51. https://doi.org/10.1016/j.jsams.2007.03.004
- [84] Bechard D. J., Birmingham T. B., Zecevic A. A., Jones I. C., Giffin J. R., Jenkyn T.
 R., 2012, "Toe-out, lateral trunk lean, and pelvic obliquity during prolonged walking in patients with medial compartment knee osteoarthritis and healthy controls," Arthritis Care Res (Hoboken), 64(4): 525-32. https://doi.org/10.1002/acr.21584
- [85] Hunt M. A., Takacs J., 2014, "Effects of a 10-week toe-out gait modification
 intervention in people with medial knee osteoarthritis: a pilot, feasibility study,"
 Osteoarthritis Cartilage, 22(7): 904-11. https://doi.org/10.1016/j.joca.2014.04.007
- [86] Charlton J. M., Hatfield G. L., Guenette J. A., Hunt M. A., 2018, "Toe-in and toe-out walking require different lower limb neuromuscular patterns in people with knee osteoarthritis," J Biomech, 76: 112-18.
- 715 https://doi.org/10.1016/j.jbiomech.2018.05.041
- [87] Prebble M., Wei Q., Eddo O., Lindsey B., Caswell S. V., Cortes N., 2019,
 "Preliminary analysis: The effects of gait interventions on knee joint contact forces in healthy adults," Medicine & Science in Sports & Exercise, 51(6S): 703.
- 719 https://doi.org/10.1249/01.mss.0000562592.89136.7b
- [88] Uhlrich S. D., Jackson R. W., Seth A., Kolesar J. A., Delp S. L., 2022, "Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force," Sci Rep, 12(1): 9842. https://doi.org/10.1038/s41598-022-13386-9
- [89] Tsushima H., Morris M. E., McGinley J., 2003, "Test-retest reliability and intertester reliability of kinematic data from a three-dimensional gait analysis system," J
 Jpn Phys Ther Assoc, 6(1): 9-17. https://doi.org/10.1298/jjpta.6.9
- 726

Figure Captions List

- Fig. 1 Marker placement for data collection. Individual tracking markers (22 markers) were attached to the manubrium, 7th cervical vertebrae, right scapula, 10th thoracic vertebrae, and bilaterally to the posterior and lateral calcaneus, 5th distal metatarsal, 1st proximal metatarsal, 2nd metatarsophalangeal joint, tibial tuberosity, lateral iliac spine, posterior superior iliac spine, and acromion. Three tracking markers were arranged to form a triangular cluster and were attached to the lumbar region. Four tracking clusters (18 markers) were placed on the lateral aspect of the thigh and shank. Ten calibration markers were attached bilaterally to the lateral and medial malleoli, lateral and medial knee joint lines, and greater trochanters[9]
- Fig. 2 Example of visual feedback graph provided to participants that was projected onto the laboratory wall during each trial
- Fig. 3 Repeated measures ANOVA for the mean joint reaction force (N) in the 1st peak in the medial compartment for baseline, lateral trunk lean, medial knee thrust, and toe-in gait
- Fig. 4 Repeated measures ANOVA for the mean joint reaction force (N) in the 2nd peak in the medial compartment for baseline, lateral trunk lean, medial knee thrust, and toe-in gait

- Fig. 5 Repeated measures ANOVA for the mean joint reaction force (N) in the 1st peak in the lateral compartment for baseline, lateral trunk lean, medial knee thrust, and toe-in gait
- Fig. 6 Repeated measures ANOVA for the mean joint reaction force (N) in the 2nd peak in the lateral compartment for baseline, lateral trunk lean, medial knee thrust, and toe-in gait
- Fig. 7 Mean joint reaction force (normalized by body weight) in the medial and lateral knee compartments for baseline, lateral trunk lean, medial knee thrust, and toe-in gait
- Fig. 8 Percentage reduction in joint reaction force from baseline values, by individual participant, for toe-in gait, lateral trunk lean, and medial knee thrust

729	Table Caption List				
	Table 1	Participant characteristics			
	Table 2	Peak mean (± <i>sd</i>) joint reaction forces during gait for baseline, lateral trunk			
		lean, medial knee thrust, and toe-in gait for the first and second peak in			
		the medial compartment and the first and second peak in the lateral			
		compartment			
730					



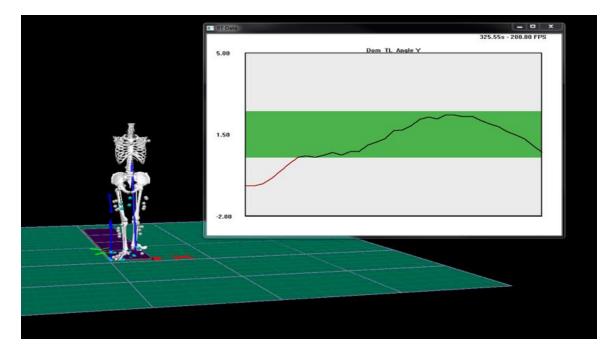
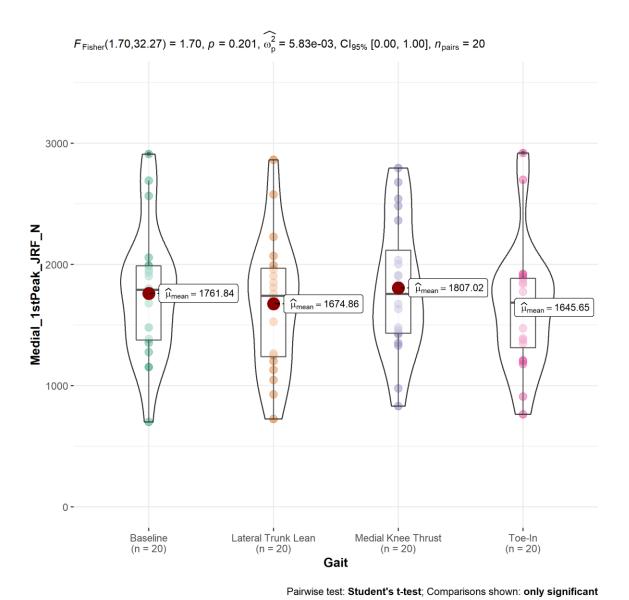
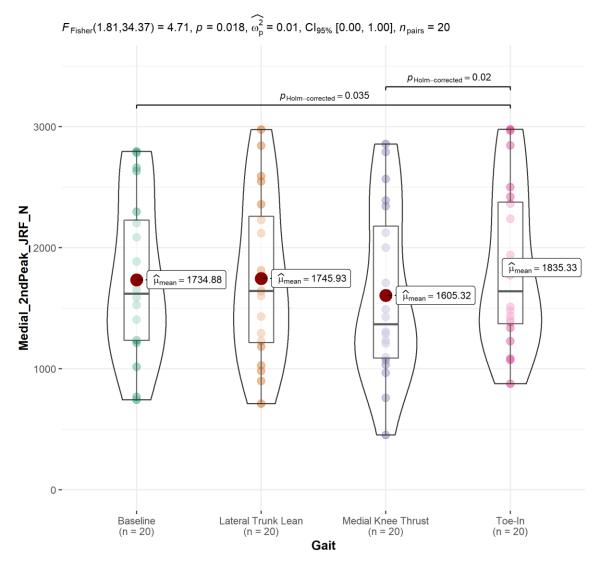


Fig. 1 Marker placement for data collection. Individual tracking markers (22 markers) were attached to the manubrium, 7th cervical vertebrae, right scapula, 10th thoracic vertebrae, and bilaterally to the posterior and lateral calcaneus, 5th distal metatarsal, 1st proximal metatarsal, 2nd metatarsophalangeal joint, tibial tuberosity, lateral iliac spine, posterior superior iliac spine, and acromion. Three tracking markers were arranged to form a triangular cluster and were attached to the lumbar region. Four tracking clusters (18 markers) were placed on the lateral

aspect of the thigh and shank. Ten calibration markers were attached bilaterally to


741 the lateral and medial malleoli, lateral and medial knee joint lines, and greater

742 trochanters[9]


746 Fig. 2 Example of visual feedback graph provided to participants that was

747 projected onto the laboratory wall during each trial

748

- 750 Fig. 3 Repeated measures ANOVA for the mean joint reaction force (N) in the 1st
- peak in the medial compartment for baseline, lateral trunk lean, medial knee thrust,
 and toe-in gait

753

 $\label{eq:pairwise test: Student's t-test; Comparisons shown: only significant$

- 755 Fig. 4 Repeated measures ANOVA for the mean joint reaction force (N) in the 2nd
- 756 peak in the medial compartment for baseline, lateral trunk lean, medial knee thrust,
- 757 and toe-in gait

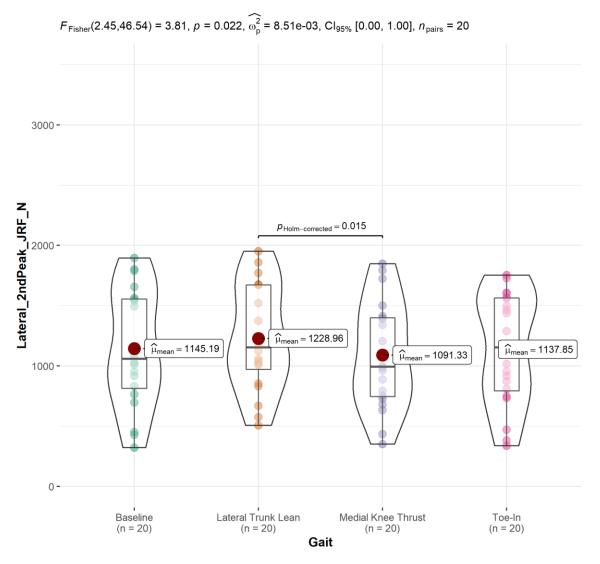



Fig. 5 Repeated measures ANOVA for the mean joint reaction force (N) in the 1st

- 760 peak in the lateral compartment for baseline, lateral trunk lean, medial knee thrust, 761
- 762 and toe-in gait

Pairwise test: Student's t-test; Comparisons shown: only significant

763

Pairwise test: Student's t-test; Comparisons shown: only significant

764

765 Fig. 6 Repeated measures ANOVA for the mean joint reaction force (N) in the 2nd

766 peak in the lateral compartment for baseline, lateral trunk lean, medial knee thrust,

767 and toe-in gait

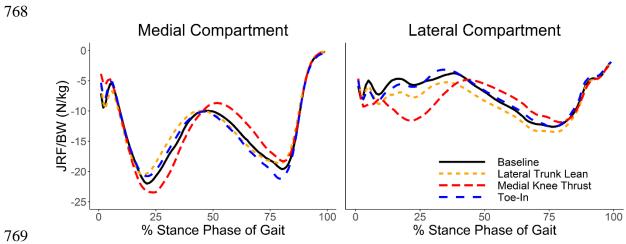
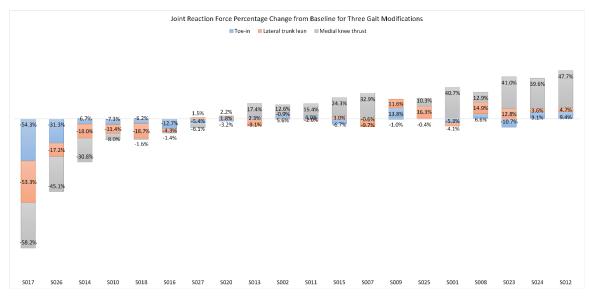



Fig. 7 Mean joint reaction force (normalized by body weight) in the medial and 771

lateral knee compartments for baseline, lateral trunk lean, medial knee thrust, and 772 toe-in gait 773

774 775

- 776 Fig. 8 Percentage reduction in joint reaction force from baseline values, by
- 777 individual participant, for toe-in gait, lateral trunk lean, and medial knee thrust

778 779 Table 1 Participant characteristics

Characteristics	Mean (<i>sd</i>)
Ν	20
Gender (<i>M/F</i>)	12/8
Dominant Limb (<i>R/L</i>)	18/2
Age (years)	26.7 (4.7)
Height (<i>m</i>)	1.75 (0.1)
Mass (<i>kg</i>)	73.4 (12.4)
BMI	23.9 (3.0)

781 **Table 2 Peak mean** (±*sd*) joint reaction forces during gait for baseline, lateral trunk

782 lean, medial knee thrust, and toe-in gait for the first and second peak in the medial

783 compartment and the first and second peak in the lateral compartment

784

	Med_1stPeak_FY Mean (±sd)	Med_2ndPeak_FY Mean (± <i>sd</i>)	Lat_1stPeak_FY Mean (± <i>sd</i>)	Lat_2ndPeak_FY Mean (± <i>sd</i>)
Baseline	1761.84	1734.88	867.50	1145.19
	(±166.40)	(±170.65)	(±122.46)	(±88.48)
LTL	1674.86	1745.93	950.56	1228.96
	(±185.31)	(±228.67)	(±164.65)	(±143.37)
MKT	1807.02	1605.32	1134.84	1091.33
	(±249.57)	(±245.75)	(±183.07)	(±161.62)
TIG	1645.65	1835.33	862.05	1137.85
	(±159.61)	(±182.29)	(±107.33)	(±100.73)