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1 Introduction

The standard practice in discussing research results has gradually shifted from coefficients to sub-

stantive quantities of interest (King, Tomz and Wittenberg, 2000). The norm today is to compute

substantive effects for competing scenarios and compare them. To convey the uncertainty around

specific estimates, researchers typically report the standard (usually 95%) confidence interval (CI).

When comparing two quantities of interest, though, the use of the standard CI can be misleading

and may lead to incorrect inferences. The problem is that when two CIs overlap, the associated

estimates may or may not be statistically different. Simply put, on its own, the CI does not provide

the information necessary to ascertain whether the compared estimates are, in fact, distinct. This is

a most consequential limitation, as researchers often examine a given quantity of interest in relation

to other estimates, not in isolation. Indeed, hypothesis testing typically entails assessing whether

two quantities of interest are statistically different. Whether we compare two sample means (e.g.,

the treated and untreated experiment groups), or results from either simple (e.g., the probability

of y in the presence and absence of a given factor) or more complex models (e.g., the conditional

effect of x at different values of the interacting variable z), judging significance of differences lies

at the heart of empirical analysis. Upon showing that the current practice is not fit for purpose and

should be revised, I introduce a comprehensive solution to the overlap problem.

One common mistake associated with the CI overlap is to conclude that the compared esti-

mates are statistically indistinguishable. This approach is more conservative than standard tests,

and, as a result, the estimates may still be statistically different. When this is the case, researchers

fail to reject the null hypothesis (type II error). One may argue that this is mainly a theoretical

rather than a practical problem, since analysts are familiar with and know how to interpret the

standard CI. This assumption is overly optimistic. In the health sciences, a nonexhaustive search

identified more than 60 articles, in 22 different peer-reviewed journals, that either use or recom-

mend the overlap method to examine significance of differences (Schenker and Gentleman, 2001,
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182). Similarly, in a survey of researchers who had published in journals in psychology, behav-

ioral neuroscience, and medicine, Belia et al. (2005) find that over 30% misinterpret overlapping

confidence intervals. Even if researchers were aware of this problem, it is unlikely that the larger

audience (e.g., policy makers, nontechnical readers) is equally well informed. Practically, the “use

of a single visualization with overlapping and nonoverlapping confidence intervals leads many to

draw such [wrong] conclusions, despite the best efforts of statisticians toward preventing users

from reaching such conclusions” (Wright, Klein and Wieczorek, 2019, 165).

More sophisticated researchers, who know better than to equate overlapping CIs with sta-

tistical insignificance, use at times conjectures or rules of thumb to infer whether the compared

estimates are statistically distinct. This can lead to wrongly accepting the research hypothesis

(type I error). The two most oft-used heuristics to judge significance of differences are (i) whether

the coefficient on the factor whose effect we evaluate is statistically significant, and (ii) whether

only one (not both) of the estimates is significant. Both reasonings are problematic. In non linear

models, whether a substantive effect is significant cannot be inferred reliably from the significance

status of the associated coefficient (Greene, 2009).1 Similarly, just because one of the compared

estimates is indistinguishable from zero and the other one is not, does not mean they are necessarily

different from each other (Gelman and Stern, 2006; Gill, 1999).

Given the recent shift to substantive effects in the discussion of empirical results, the problem

of the CI overlap, or a lack thereof, will likely amplify. As this study makes clear, when assessing

substantive differences (i.e., differences larger than zero), the standard CI is never informative –

not even on the off chance that there is no overlap. Practically, two estimates may be substantively

indistinguishable even if the associated 95% CIs do not overlap. This is a counterintuitive finding

that may take by surprise even seasoned researchers, who are used to associate a lack of CI overlap

1 Specifically, for any variable k there is no “guarantee that both the estimated coefficient, θk,

and the associated partial effect, δk
[
e.g., ∂ Pr(y)

∂k

]
, will both be statistically significant, or statistically

insignificant” (Greene, 2009, 487).
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with statistical significance. I am not aware of any work that alerts analysts not to infer substantive

differences from nonoverlapping CIs.

There are two general solutions to circumvent the CI overlap problem.2 One solution is to

assess the difference in estimates (DE). If the first or second difference is statistically significant

(insignificant), the original estimates are distinct (indistinguishable).3 The other solution is to re-

port significance of differences intervals (SDIs)–a different type of uncertainty interval that, unlike

the standard CI, can be used for direct comparisons (Afshartous and Preston, 2010; Goldstein and

Healy, 1995; Schenker and Gentleman, 2001; Tryon, 2001). While the CI captures the uncer-

tainty around a single estimate, the SDI reflects the uncertainty around both compared estimates

as well as the dependence between them (i.e., whether they are independent, or either positively

or negatively correlated). In effect, SDIs are relational intervals in the sense that they convey be-

tween estimates information. SDIs are designed such that when they do not overlap the compared

estimates are distinct, even if the standard 95% CIs overlap.

The SDI approach is increasingly popular among political scientists, with many recent stud-

ies adopting this technique (e.g., Adams, Ezrow and Wlezien, 2016; Arceneaux et al., 2016; Chiba,

Johnson and Leeds, 2015; Fulton and Dhima, 2021; Johns and Davies, 2019; Karpowitz, Monson

and Preece, 2017; Komisarchik, Sen and Velez, Forthcoming; Radean, 2019). However, they all

employ a generic solution that makes several simplifying assumptions. Specifically, the SDI level

employed in the respective analyses presupposes the compared estimates are normally distributed,

independent, and have identical standard errors. As these are very restrictive and unrealistic as-

sumptions, these studies may have drawn incorrect inferences from the data. I provide a compre-

2 This is the case within frequentist framework, as Bayesian methods provide other solutions.
3 I use the term first difference to indicate the difference between two expected or predicted

values, e.g., Pr(y|(x + 1))−Pr(y|x). The second difference captures the difference between two

first differences, such as the conditional effect of x in the presence and absence of the moderating

variable z, e.g.,
[
Pr(y|(x+ 1), z = 1)−Pr(y|x, z = 1)

]
−
[
Pr(y|(x+ 1), z = 0)−Pr(y|x, z = 0)

]
.
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hensive solution that relaxes theses assumptions, allowing the SDI to be used in all settings.

For a broader assessment of the practice in the discipline, I examine all 2016 articles pub-

lished in American Journal of Political Science (AJPS) and The Journal of Politics (JOP). The

survey reveals that the overlap problem is widespread. In 55% of the studies, the estimates’ CIs

overlap and no additional clarifying information is provided (e.g., tests examining significance

of differences). As a result, in a majority of cases we cannot tell whether the empirics support

the research hypothesis or supplementary analysis. Taken together with the similar results from

other fields (e.g., Belia et al., 2005; Schenker and Gentleman, 2001), this finding suggests that the

overlap problem is not a discipline specific issue, but one that affects social sciences generally.

The starkest finding of the survey is that political scientists do not make good use of exist-

ing techniques to examine the difference in estimates. Specifically, most studies only report the

compared estimates with the 95% CI, without conducting significance of differences tests. This

may create more confusion than clarity, as oft-used heuristics (e.g., overlapping CIs, whether the

associated coefficient is significant, or only one of the estimates is different from zero) cannot and

should not replace standard tests. In sum, the current practice is not fit for purpose and should be

revised. While I compare the DE and SDI methods and show the latter’s advantage, ultimately

either approach can be used to judge if two point estimates are distinct. Choosing one over the

other may be a matter of taste, but employing one of the two ought not to be optional.

This study makes several contributions. First, I derive a universal formula that can assess

significance of differences from any given value, not just zero. Focusing on differences from zero

retains the flaws associated with the null hypothesis significance testing, in the sense that it devotes

excessive attention to statistical significance at the expense of substantive or practical significance.

Second, I expand the SDI method to accommodate comparisons between samples with unequal

number of observations (e.g., treated and untreated experimental groups, different survey waves),

and between skewed distributions (e.g., the household income in the U.S., probability of civil war

onset). More specifically, I introduce an original technique to compute empirical SDIs, which are
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derived numerically based on the estimates’ actual values or percentiles. To date, technical studies

have considered only formula-based solutions to the overlap problem (i.e., standard error-based

SDIs). Analytical solutions, however, are not applicable when researchers (i) employ percentile

intervals, or (ii) compare unpaired and unequal samples. Third, I provide an easy-to-use Stata

software that automatically computes SDIs.4

2 Assessing significance of differences

Theoretically, the limitation of overlapping CIs is straightforward: absent additional significance

of differences tests, we cannot reach any conclusion. Put differently, we can neither accept nor

reject the research hypothesis. Practically, however, this ambiguity leads many practitioners to

incorrectly conclude that the estimates are either statistically similar or distinct. By directly com-

paring two estimates with overlapping CIs, some researchers deduce that the two are statistically

indistinguishable. Other analysts indirectly compare such estimates by assessing whether they are

both distinct from a third value, typically zero. This usually happens when the researcher compares

two marginal effects and concludes they are distinct if only one (not both) is different from zero

(i.e., statistically significant). Neither of these conclusions is warranted.

To illustrate the problem, let us consider two analyses from Grossman et al. (2016) about the

effect of ethnicity-based court composition on judicial outcomes in Israel. Figure 1a and 1b repro-

duce their incarceration rate and prison term results, conditional on the ethnicity of the accused.5

Summarizing the findings (p. 44), the authors conclude that

4 Afshartous and Preston (2010) also provide a computer code, but with limited capabilities.

Specifically, their program cannot accommodate samples with unequal number of observations, or

asymmetric distributions. Moreover, it can assess only differences from zero and no other value,

rendering it impractical for substantive significance. My software has none of these limitations.
5 These are the results from Figure 2 Model 4 (p. 59), which is the model specification with the

full set of covariates and the best AIC model fit (Grossman et al., 2016, 55).
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Figure 1: The effect of courts’ ethnic composition on judicial outcomes
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(b) Prison term
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Note: Figure 1a and 1b reproduce the results from Figure 2 Model 4, in Grossman et al. (2016, 59). They illustrate the
impact of mixed court panels on incarceration rate and prison term, respectively, conditional on the accused’s ethnicity.

[. . . ] appeal outcomes for Jewish defendants are independent of panels’ ethnic composition. By
contrast, panel composition is highly consequential for Arab defendants, who receive more lenient
punishments when their case is heard by a panel that includes at least one Arab judge, compared to
all-Jewish panels. The magnitude of these effects is sizable: a 14–20% reduction in incarceration and
a 15–26% reduction in prison sentencing.

Per the authors’ assessment, both incarceration rate and prison sentencing analyses support

the theoretical expectation that the effect of mixed court panels is conditional on the defendant’s

ethnicity. The overlap between the 95% CIs around the estimated effects, however, should give us

pause in agreeing with the study’s conclusion. As I show below, in one of the analyses the effect of

judicial diversity is not statistically different between the two ethnic groups. Despite the fact that

only the estimate for Arab defendant is significant (but not for Jewish defendant), the substantive

effects are, in fact, not distinct. This practically means that the effect of mixed panels on judicial

outcomes may actually be homogenous across ethnic cleavages, not heterogeneous as the theory

implies. Since the two analyses are seemingly equivalent, which one supports the theory, and

which one does not? From the information provided one cannot tell.

This example concerns first differences (i.e., differences between predicted values), but if we
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were to consider studies with overlapping CIs comparing different quantities of interest (such as

estimated coefficients (e.g., Lowande and Augustine Potter, 2021), expected values (e.g., Kitchens,

2021), observed means or percent rates of different groups (e.g., Jackman, 2014), etc., the problem

would be the same. Regardless of how the estimates are computed or measured, overlapping CIs

render informed readers unable to determine whether the empirics supports the hypothesis, and

may mislead nontechnical readers (Wright, Klein and Wieczorek, 2019). My literature survey

reveals this is a widespread problem, with most practitioners reporting the compared estimates

with the 95% CI instead of the difference (for more details see A survey of the literature section).

2.1 The significance of differences interval

Do we face an impossible situation? On the one hand, we are encouraged to discuss substantive

effects rather than coefficients (King, Tomz and Wittenberg, 2000). Since “the point estimate is

simply a best guess,” we also need to acknowledge the uncertainty around estimated effects via

CIs (McCaskey and Rainey, 2015, 89, emphasis added). On the other hand, the use of the standard

CI around the estimates to be compared can be misleading and may lead to incorrect inferences.

To circumvent the CI overlap problem, one can employ either the DE or the SDI method.

In this section I first review the lesser-known SDI approach, and then compare the two alternative

solutions. Next I introduce an original technique to compute empirical SDIs, thereby extending

the SDI method to asymmetric distributions and unpaired sample data. Lastly, I present a new

procedure to compute SDIs that can convey substantive significance.

Standard error-based SDIs

Standard error-based intervals are typically used when the (asymptotic) distribution of a given

quantity of interest is normal. Alternative solutions for normal distributions have already been de-

rived (see Afshartous and Preston, 2010; Schenker and Gentleman, 2001; Tryon and Lewis, 2009),

but I revisit this case for several reasons. The first reason is to provide the intuition behind the

overlap problem. Under the normality assumption, the mean and standard error of the difference
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distribution can be expressed in terms of the corresponding elements of the two original distribu-

tions (see Eq. (1)). As a result, it is easier to trace the root of the problem. Second, the current

understanding of the issue offers a baseline against which to evaluate my new technique to assess

nonzero differences, and the technique to compute empirical SDIs. Third, I formally derive the

possible range of the standard error-based SDIs, which is a novel piece of information.

Let us say we have two quantities of interest, Q1 and Q2, and want to know whether they are

statistically distinct. One solution is to check whether the standard CI of the difference, (Q1−Q2),

includes zero. To simplify the notation by not having to consider both CI bounds, let us assume

that Q1 > Q2. In this case Q1 and Q2 are statistically different if(
Q1 −Q2

)
− z
√
SE2

1 + SE2
2 − 2ρSE1SE2 >0(

Q1 −Q2

)
>z
√
SE2

1 + SE2
2 − 2ρSE1SE2, (1)

where SE1 and SE2 are the standard errors, z is the standard score, and ρ is the correlation level.

This is the formula used by standard tests to check for significance of differences. By contrast, with

the overlap method, the two quantities of interest are deemed statistically different if the lower CI

bound of the higher statistic does not overlap with the upper CI bound of the lower statistic

Q1 − zSE1 >Q2 + zSE2(
Q1 −Q2

)
>z
(
SE1 + SE2

)
. (2)

The difference between standard tests and the overlap method is reflected in the unequal

width of the respective
(
Q1 − Q2

)
intervals. Since the left-hand sides in Eq. (1) and (2) are

equal, but the right-hand sides are not, the two methods are bound to produce different results. To

have the intervals around the compared estimates correctly indicate significance of differences, the

difference between Q1’s lower interval bound and the upper Q2 bound must match the value of

the lower CI bound of (Q1 − Q2). To ensure results equivalence, for Q1 and Q2 we need to use a

significance of differences zd-score that satisfies the following equality
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(Q1 − zdSE1)− (Q2 + zdSE2) = (Q1 −Q2)− z
√
SE2

1 + SE2
2 − 2ρSE1SE2

(Q1 −Q2)− zd(SE1 + SE2) = (Q1 −Q2)− z
√
SE2

1 + SE2
2 − 2ρSE1SE2

−zd(SE1 + SE2) = −z
√
SE2

1 + SE2
2 − 2ρSE1SE2

zd =
z
√
SE2

1 + SE2
2 − 2ρSE1SE2

SE1 + SE2

. (3)

Thus, the zd-score is a function of four distinct parameters, and its value cannot be deter-

mined from the standard z-score alone. Figure 2 illustrates the non-monotonic relation between

the zd- and z-score. Specifically, it shows the zd-score required to indicate significance of dif-

ferences at the 0.05 level, for different combinations between five correlation levels (ρ(Q1, Q2) =

{−1, −0.75, 0, 0.75, 1}), and standard error ratios, SE1

SE2
, ranging from 1/40 to 40/1.6 As a refer-

ence point, the dashed line at the very top of the plot indicates the value of the standard z-score

associated with the 0.05 significance level: 1.96.

The flat solid line at the top of the graph indicates that, irrespective of the standard error ratio,

when ρ = −1, zd equals the standard z-score. This is zd’s highest possible value. Conversely, zd

reaches its minimum value, 0, when ρ = 1 and the two quantities of interest have identical standard

errors, SE1

SE2
= 1. As the value of the standard error ratio moves away from 1, the zd level increases

and approaches the standard z-score value. The dot in the middle of the graph identifies the zd-

score associated with the 83.5% interval, the generic level employed in empirical research (e.g.,

Adams, Ezrow and Wlezien, 2016; Arceneaux et al., 2016; Chiba, Johnson and Leeds, 2015; Fulton

and Dhima, 2021; Johns and Davies, 2019; Karpowitz, Monson and Preece, 2017; Komisarchik,

Sen and Velez, Forthcoming; Radean, 2019). This interval level corresponds to a scenario where

Q1 and Q2 are independent, ρ = 0, and have equal standard errors, SE1

SE2
= 1. The isolated value

clearly illustrates the limited applicability of the solution adopted by many practitioners.

6 To graph this in a two dimensional space we need to reduce the number of parameters. In

Online Appendix A.1 I show that the zd-score can also be written as a function of the SE1

SE2
ratio.
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Figure 2: The zd-score required to indicate significance of differences at the 0.05 level
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Note: The zd-score required to indicate significance of differences at the 0.05 level, for different combinations between
five correlation levels, ρ(Q1, Q2) = {−1,−0.75, 0, 0.75, 1}, and standard error ratios, SE1

SE2
, ranging from 1/40 to 40/1.

More generally, the possible range for the zd-score is [0, z].7 When zd = 0 no SDIs are

required to indicate significance of differences; Q1 and Q2 are statistically distinct provided that

the point estimates are different,Q1 6= Q2. When zd = z, the SDI has the same width as the standard

CI. This is the only case when the overlap method and standard significance of differences tests

provide the same answer.

All values within the zd range are possible in practice since quantities of interest can be

either positively or negatively correlated. Positive correlations are more likely when there is an

overlap between the observations used to compute the compared estimates, but alternative scenar-

ios can lead to “either positive or negative correlations, even where there is no overlap in the sets

of elements used for the two estimates” (Schenker and Gentleman, 2001, 185).

7 In Online Appendix A I present the formal proof by optimizing the zd function, Eq. (3).
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The formal definition of the SDI

The above discussion focused primarily on the SDI’s practical ability to indicate significance of

differences. Next I formally define this type of uncertainty interval, along the lines of the respective

concept for an equivalent CI. The SDIs are relational intervals in the sense that they convey between

estimates information, namely, whether the point estimates are statistically different. In this sense,

the SDI conveys information about the difference in estimates parameter, Qdiff = (Q1−Q2). Since

the SDI level is computed such that the CI bounds of the difference can be expressed in terms of

the SDI bounds of the compared estimates, we have

P
(
LQdiff[1,...,∞] < Qdiff < UQdiff[1,...,∞]

)
= 1− α

P
(
(LSDI

Q1[1,...,∞] − USDI
Q2[1,...,∞]) < Qdiff < (USDI

Q1[1,...,∞] − LSDI
Q2[1,...,∞])

)
= 1− α, (4)

where LQdiff and UQdiff indicate the lower and upper CI limits of Qdiff. [1, . . . ,∞] indicates that the

(1 - α)% CI is calculated repeatedly in an (infinitely) long sequence of valid applications. LSDI
Q∗

and

USDI
Q∗

represent the lower and upper SDI limits of the respective quantities of interest. Lastly, P is

the probability of Qdiff falling within the respective bounds, and α is the significance level.

Given the probability in Eq. (4), we can interpret the SDI as follows. Under (infinitely)

many repeated applications, (1 - α)% of the
[
(LSDI

Q1
− USDI

Q2
), (USDI

Q1
− LSDI

Q2
)
]

intervals will contain,

on average, the true value of the difference in estimates Qdiff.

2.2 Conveying statistical significance via SDIs

Before looking at practical applications, it is important to consider the performance of the SDI

method. To check whether SDIs perform in practice as the theory implies, I conduct a series of

simulations detailed in Online Appendix B. The Monte Carlo simulations vary the sample size and

the difference in means between the compared estimates. As expected, precision increases as either

the number of observations or the difference in estimates grows larger. For normal samples with

1,000 cases and over, the accuracy is extremely high (100%) as the SDI method is able to pick up

even on small differences. When comparing distributions (e.g., the distribution of postestimation
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quantities of interest such as predicted values or marginal effects), accuracy is all but guaranteed

since sample size is not an issue and results are directly derived from Eq. (3).

To illustrate how SDIs can be used to judge significance of differences, I revisit the ex-

ample from Grossman et al. (2016) about the effect of judicial diversity in multiethnic societies.

Figure 3a1 and 3a2 show the effect of mixed panels with SDIs. Since the required SDI level is

case specific, the two analyses have different interval levels, that is, 73.1% and 67.8%. Given the

SDIs’ properties, significance of differences can be inferred directly from their overlap, or the lack

thereof. In Figure 3a1 the associated SDIs do not overlap, so the estimates are statistically different

at the 0.05 level. By contrast, the SDIs overlap in Figure 3b2. This means that mixed court panels

are likely to impose similar prison sentences regardless of the ethnicity of the accused. This finding

does not square with the claim that judicial diversity has a positive effect in multiethnic societies.

By using different line patterns, SDI graphs can also outline whether individual estimates

are statistically significant. For example, in Figure 3a I use solid lines for the SDI if a particular

effect is significant at the 0.05 level (e.g., the estimate when the defendant is Arab), and dashed

lines otherwise (e.g., the estimate for Jewish defendant). Thus, the SDI level indicates whether

the estimates are statistically different from each other, whereas the SDI pattern indicates whether

they are different from zero. However, one ought not to report this additional piece of information

by default. To the contrary, in order to be effective graphs should display the minimum amount

of information required to get the point across. Knowing whether the individual estimates are

statistically significant is neither necessary nor sufficient to assess the hypothesis.

Thus, unlike the compared estimates with the 95% CI results (Figure 1), the SDI results

suggest the two analyses are not equivalent. To illustrate how one would calculate “by hand” the

SDI that led to the different conclusion, I use the actual results from the prison term analysis to

demonstrate the process. The first step is to calculate the point estimate and standard error of the

effect of mixed court panels, for both Arab and Jewish defendants. Following Grossman et al., I

use the margins command for this task. The respective quantities of interest are QJ = -1.40107
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Figure 3: The effect of courts’ ethnic composition on judicial outcomes

(a) The SDI method
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(b) The DE approach
(b1–b2) The difference in estimates with the standard CI
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(b3–b4) The compared estimates with the standard CI
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and SEJ = 0.854486, and QA = -2.755442 and SEA = 1.004028, for a Jewish and Arab accused.

Using the formula Q∗ ± zSE∗, I next compute the standard CI. For a 95% interval z equals 1.96,

and the respective CIs are [-3.08, 0.27] for QJ , and [-4.72, -0.79] for QA (see Figure 1b). Since

QJ ’s CI contains 0 this estimate is not statistically significant, whereas QA is. But this does not

mean that QJ and QA are statistically different.

To directly compareQJ andQA we require SDIs, for which we need to calculate the adjusted

zd-score. Using the formula from Eq. (3) we have

zd =
z
√
SE2

J + SE2
A − 2ρSEJSEA

SEJ + SEA

=
1.96
√

0.8544862 + 1.0040282 − 2× 0.498764× 0.854486× 1.004028

0.854486 + 1.004028

= 0.990663, (5)

where ρ(QJ , QA) = 0.498764, a statistic most softwares would calculate. The respective zd-score

corresponds to a 67.8% SDI level (i.e., (1−2(1−Φ(zd)))×100 = 67.8, where Φ is the cumulative

standard normal distribution). Using the familiar Q∗ ± zdSE∗ formula, we can now compute the

significance of differences intervals. The respective SDIs are [-2.27, -0.55] for QJ , and [-3.75,

-1.76] for QA (see Figure 3a2). Since the associated SDIs overlap, we conclude that mixed court

panels are likely to impose similar prison sentences regardless of the ethnicity of the accused.

2.3 The SDI vs. the DE approach

Technically, the SDI and DE approach provide the same answer on significance of differences.

Parsimony and susceptibility to misinterpretation are two common criteria to discriminate between

techniques that yield the same result, with the SDI method having a comparative advantage.

Specifically, the SDI method is more informative that the bare-bone DE variant (where just

the difference is reported), and more parsimonious than the comprehensive DE approach (where

both the estimates and their difference are reported). This is because the SDI method encodes three

pieces of information into a single set of results: (1) the sign and (2) size of the compared estimates
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(expressed on the scale of the variable of interest), as well as (3) whether the estimates are statisti-

cally distinct. The SDI results also invite fewer mistakes since the interpretation of this uncertainty

interval is consistent and not context-specific (i.e., when SDIs do not overlap the compared esti-

mates are distinct, and when they do overlap the estimates are statistically indistinguishable).

Figure 3b1 and 3b2 illustrate the bare-bones DE alternative, and outline the (second) differ-

ence with the standard CI for the incarceration rate and prison term analyses. As expected, the DE

results convey the same information as their SDI counterparts. In Figure 3b1, the 95% CI of the

difference does not cross the zero line, and therefore the associated predicted probabilities are sta-

tistically different. In contrast, the CI of the difference contains zero in Figure 3b2. Substantively,

this means that Jewish and Arab defendants receive statistically similar prison sentences.

The bare-bones DE variant can be underwhelming. By itself, the difference does not reveal

the values used to create it, which is necessary to assess the rate of change. A difference of 1 can

represent either a 100% or a 1% increase in y depending on whether the start value is 1 or 100.

Also, placing the difference in estimates at the forefront of the empirical analysis weakens the

link between theory and empirics. Our theories and hypotheses are generally framed around the

estimates to be compared (e.g., the probability of y is higher (lower) in the presence (absence) of

x), and typically do not engage with the difference (e.g., whether it has a substantive meaning). The

difference is often just an empirical tool for comparison, one measured on a different metric “with

a different mean, standard deviation, and standard error” (Tryon and Lewis, 2009, 182). This is

why, for many researchers, the theoretical quantity of interest are the estimates not the difference.8

8 Conditional hypotheses, for instance, typically take the following form: “The marginal effect

of X on Y is positive at all values of Z; this effect is strongest when Z is at its lowest and declines in

magnitude as Z increases” (Berry, Golder and Milton, 2012, 659). Notably, the typical formulation

does not explicitly acknowledge that, to be conditional on Z, the effect of X at low and high Z val-

ues must be statistically different. This explains in part why virtually all authors report interaction

effect graphs that outline the effect of X with the 95% CI at various levels of Z. But only a minority

15



To convey all this information, the researcher needs to additionally report the compared es-

timates. For the prison term analysis, instead of the reporting solely the SDI results in Figure 3a2,

one would need to graph Figure 3b2 and 3b4. Since it entails two sets of results, the comprehen-

sive DE variant is less parsimonious than the SDI method. Having two sets of empirical evidence

creates redundancy (with the analyst needing to clarify what each set of empirical evidence con-

tributes to answering the research question), and may lead to confusion. This is particularly the

case when overlapping CIs send mixed signals to less technical readers. For example, the CIs of

the compared marginal effects overlap in Figure 3b4. Ideally, readers should know that this piece

of information does not elucidate whether the two effects are distinct, and would sift through the

other results for a definitive answer. In practice, however, the CI overlap “leads many to draw

such [wrong] conclusions, despite the best efforts of statisticians” (Wright, Klein and Wieczorek,

2019, 165). The SDI has the comparative advantage of reporting a single set of results, where even

overlapping intervals have an unambiguous interpretation (i.e., the estimates are not statistically

distinct). As a result, it is less likely to lead readers astray.

One may argue that the DE approach has the advantage of employing the standard CI, an

interval type analysts are already familiar with. Yet surveys from multiple disciplines reveal that the

CI’s widespread use is not necessarily correlated with accurate understanding or correct usage. For

instance, Greenland et al. (2016, 337) note that “[m]isinterpretation and abuse of statistical tests,

confidence intervals [. . . ] remain rampant” even among professionals. The problem is certainly

more acute among researchers with a nontechnical background or practitioners. Another issue is

that the interpretation of the CI for the difference and compared estimates may vary. While the

CI of the first difference can be used to assess whether the effect is statistically significant, the

CI around the original estimates (e.g., means of different groups, expected or predicted values),

cannot serve this function. Case in point, the CI of predicted probabilities cannot contain negative

directly assess whether the effect of X varies with Z, by examining the difference in the effect of

X between specific values of Z.
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values. This adds to the challenge of a consistent and correct interpretation of the standard CI.

Having a specialized interval designed to judge significance of differences ought to signal

that employing other types of intervals (e.g., the CI) for this task is inappropriate. This could

also encourage researchers to engage more meaningfully with the standard CI. Practitioners rarely

discuss or interpret the CI9 – except to assess statistical significance. But this is not the main feature

of the CI, and is not even generally applicable. Put differently, acknowledging the information CIs

cannot convey, may spur practitioners to discuss what the reader should infer from the reported CI.

Theoretical considerations aside, a practical issue with the DE method is that researchers

have to calculate the second difference by hand, which is taxing and error-prone. The second

difference is necessary, for instance, to compare conditional effects (e.g., the effect of x in the

presence and absence of z). Yet many easy-to-use softwares do not calculate this quantity of

interest (e.g., Clarify (King, Tomz and Wittenberg, 2000), SPost (Long and Freese, 2014)).

3 Empirical SDIs

To my knowledge, existing technical studies have considered only analytical, formula-based solu-

tions to the overlap problem (Afshartous and Preston, 2010; Goldstein and Healy, 1995; Schenker

and Gentleman, 2001; Tryon, 2001). However, numerical solutions are required for specific types

of analyses. This is the case, for instance, when researchers (i) employ percentile- rather than

standard error-based intervals, or (ii) compare unpaired and unequal samples. In what follows I

introduce an original technique to calculate empirical SDIs for scenarios where formula solutions

9 The technical definition of the CI is fairly abstract and rarely invoked. Strictly speaking, the CI

contains information that can be used to infer the frequency with which a very large number of CIs

include the unknown population parameter. Specifically, if one calculates the 95% CI repeatedly

in a long sequence of valid applications, 95% of them will contain, on average, the true effect size.

Any single CI, however, either contains the true effect or not, and the probability of that being the

case is either one or zero (Greenland et al., 2016, 344).
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are not appropriate. These numerical procedures are canned in my easy-to-use software.

3.1 Percentile-based SDIs

For various reasons, researchers sometimes report percentile- rather than standard error-based CIs.

This is particularly the case when dealing with skewed distributions where, instead of being a

center value, the mean can be (very) close to one of the end points of the distribution’s range

(see Online Appendix C for a practical example). Because standard error intervals are symmetric

around the point estimate, the CI may contain unrealistic extrapolations on one side of the mean.

Specifically, the bounds can “include values that exceed the range of the statistic being estimated

(e.g., a bound for a predicted probability could be negative or greater than one)” (Xu and Long,

2005, 539). Percentile intervals are more flexible than their symmetric standard error counterparts,

and cannot exceed the range of the statistic. That said, it is beyond the scope of this study to

compare the merits of percentile- and standard error-based intervals. I simply note that the former

are fairly common in practice, and are the default choice of several softwares. As examples, Clarify

reports only percentile CIs and SPost automatically reports bootstrapped percentile CIs.

When employing percentile CIs, one cannot use the zd-score formula to calculate the re-

quired SDI level. Importantly, this is the case regardless of whether the compared distributions are

normal or skewed. There are two main reasons for this. First, if there are theoretical reasons to

calculate percentile CIs for the compared distributions, these reasons likely apply to the difference

distribution as well. Yet, when using the zd formula, we assume a standard error-based CI for the

difference. Second and more importantly, there is no guarantee that the difference between the

lower and upper percentile bounds of Q1 and Q2, respectively, is not greater than the lower stan-

dard error CI bound of Qdiff. When the percentile difference is larger, one may wrongly conclude

that the compared estimates are distinct (type I error).10

10 Take the simple case of two independent normal distributions with equal standard errors, for

which the required SDI level is 83.5%. For this interval level, the associated zd-score is 1.386,
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While using a standard error-based technique to determine the interval level for percentile

bounds is far from ideal, currently there is no alternative solution. Indeed, all three applications that

employ narrower percentile intervals to indicate significance of differences use a formula-derived

interval level (see Adams, Ezrow and Wlezien, 2016; Arceneaux et al., 2016; Chiba, Johnson and

Leeds, 2015). Next I present a new technique to compute SDIs based solely on the percentiles of

the estimates’ sampling distributions.

The obstacle in deriving a purely percentile-based solution is that there is no one-to-one cor-

respondence between the percentiles of two random distributions, Q1 and Q2, and the percentiles

of the difference distribution, Qdiff. Consequently, when using the distribution percentiles to calcu-

late SDIs we cannot employ a predetermined formula. Alternatively, we can reverse-engineer the

required percentile level for Q1 and Q2 by obtaining the Qdiff distribution first. We then calculate

its 2.5th percentile, which is Qdiff’s lower 95% CI bound. Next, we need to empirically identify the

pair of Q1 and Q2 percentiles whose difference matches that value. We achieve this by calculating

the lower interval bound for Q1 (i.e., the kth percentile value of Q1) and the upper bound for Q2

(i.e., the (100−k)th percentile), for candidate values of k. As we increase k from the theoretical

minimum value of 2.5, we will eventually find a value k such that the difference between the kth

percentile value of Q1 and the (100−k)th percentile value of Q2 matches the value of Qdiff’s 2.5th

and the upper Q1 and lower Q2 interval bounds are, as a percentage, 8.25 and 91.75 (i.e., (100 −

83.5)/2). While (Q1−1.386×SE1)−(Q2+1.386×SE2) = Qdiff−1.96×SEQdiff by definition, the

difference between the respective percentiles does not necessarily satisfy even the weaker condition

(8.25th pct.Q1
− 91.75th pct.Q2

) ≤ Qdiff − 1.96× SEQdiff . In the simulations I ran for this relatively

liberal test with normal distributions, the false positive rate was 15% (i.e., the percent of cases

where the difference in percentiles was larger). The issue is that we try to match observed values

(i.e., Q1’s and Q2’s percentiles) with a computed value (i.e., the analytically derived CI bound

of Qdiff), without there being a direct link. A foolproof percentile-based solution requires using

observed values for the difference distribution as well.
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Figure 4: An illustration of the percentile-based method
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Note: Finding the zd-score for Q1 and Q2 by evaluating candidate (P1, P2) percentile pairs. The goal is to find the
pair whose difference matches the value of the 2.5th percentile of the difference distribution

(
Q1 −Q2

)
.

percentile. This k gives us the required SDI level as (100−2k)%.

Let us consider a practical example. For ease of comparison to the standard error-based

results, let Q1 and Q2 follow a particular bivariate normal distribution: (Q1, Q2) ∼ N
(
(1.96 ×

√
2), 0, 1, 1; 0

)
. Given these specific values, Qdiff’s 2.5th percentile is exactly zero,11 and the re-

quired SDI level is approximately 83.5%. Figure 4a plots the mean of Q1 and Q2, which are

indicated by solid square marks, as well as the lower interval bound of the higher statistic, Q1, and

the upper bound of Q2 (the solid horizontal lines). The percentile difference, P1 − P2, is indicated

on the left-hand side of the y-axis. The SDI level associated with a given (P1, P2) pair is displayed

on the right-hand side.

For example, at the bottom of the plot are graphed Q1’s 2.5th and Q2’s 97.5th percentiles (k

= 2.5), which corresponds to a 95% interval. The percentile difference associated with the 95%

11 2.5th pct.Qdiff
= Qdiff− zSE(Qdiff) = [(1.96×

√
2)− 0]− 1.96

√
12 + 12 − 2× 0× 1× 1 = 0.

(Q1, Q2) ∼ N (µQ1 , µQ2 , σQ1 , σQ2 ; ρ(Q1, Q2)) indicates that Q1 and Q2 follow a bivariate normal

distribution with the respective means, µ, standard errors, σ, and correlation level, ρ.
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interval, −1.148, is really off from the 0 target. Since the 95% interval is too wide, we need to

calculate the (P1 − P2) difference for smaller and smaller intervals until we obtain a percentile

difference very close to 0. As the interval level decreases, so does the difference between the

corresponding percentiles. Around the 83% level, the associated P1 and P2 values are so close that

we need to zoom in to see whether the percentiles overlap (Figure 4b). The percentile difference is

0 at the 83.42% SDI level (i.e., k = 8.288). However, multiple digit precision intervals are seldom

necessary in practice. The one digit precision SDI level associated with a percentile difference no

larger than 0, is the 83.5% interval.

As this is only a schematic illustration, in Online Appendix C I present the procedure more

systematically using an example with non normal distributions. I also discuss how to increase the

level of precision when multiple digit SDIs are required. The procedure to compute percentile

SDIs is analogous to the one concerning t distributions, which I introduce in the next section.

3.2 The case of t distributions for unpaired and unequal samples

In many political science applications scholars make inferences from (sub)samples of the pop-

ulation. When the sample size is relatively small or the standard deviation of the population is

unknown, the t distribution is advised rather than the normal distribution. With appropriate substi-

tutions, the zd formula in Eq. 3 can be used to calculate the analogous significance of differences

td-score as long as we have matched or paired observations (e.g., patient data over time where the

researcher has multiple readings on the same subjects). However, we need a different procedure

to compare unpaired samples with unequal number of observations (e.g., different survey waves,

treated and untreated experimental groups). The problem is that in the aforementioned formula

there is a single unknown, that is, the td-score. When the compared samples have different degrees

of freedom, the td1- and td2-score are distinct unknowns for the same SDI level. As a result, there

is no analytical solution to the equation

(Q1 − td1SE1)− (Q2 + td2SE2) = Qdiff − tdiffSEdiff
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(Q1 −Q2)− (td1SE1 + td2SE2) = Qdiff − tdiffSEdiff

td1SE1 + td2SE2 = tdiffSEdiff

T
(
df1,

1

2
αd

)
SE1 + T

(
df2,

1

2
αd

)
SE2 = T

(
dfdiff,

1

2
α
)
SEdiff, (6)

where T
(
df, 1

2
α
)

is the function for the survivor Student’s t distribution, df is the degrees of free-

dom, and α is the significance level.

Analogous to the procedure to compute percentile SDIs, we can solve numerically for the

required SDI level for Q1 and Q2, by obtaining first the lower 95% CI bound of Qdiff, Qdiff −

T
(
dfdiff,

1
2
× 0.05

)
SEdiff. Next, we need to empirically identify the pair of Q1 and Q2 interval

bounds whose difference matches that value. We achieve this by calculating the lower bound for

Q1 (i.e., the kth interval) and the upper bound for Q2 (i.e., the (100−k)th interval), for candidate

values of k. k is the significance level in percentage points, 1
2
αd × 100, and αd is the significance

level for the SDI. By iteratively increasing k, we will eventually find the required k value.

For a concrete example, let us say we have two samples, Q1 ∼ (60, 10, 2) and Q2 ∼ (40,

5, 4). The numbers in parentheses are the sample’s number of observations, mean, and standard

deviation, respectively. Qdiff is distributed as Student’s t with n1 + n2 − 2 degrees of freedom,

mean Qdiff = Q1 −Q2, and standard error SEdiff =

{
(n1−1)s21+(n2−1)s22

n1+n2−2

}1/2

×
(

1
n1

+ 1
n2

)1/2

(Gos-

set [Student, pseud.], 1908). n∗ and s∗ represent the original samples’ number of observations and

standard deviations, respectively. The formulas for the standard error of the difference and its de-

grees of freedom presuppose that the underlying populations represented by the two samples have

equal variances. This modeling decision is meant to keep the example relatively simple. However,

my easy-to-use software can compute SDIs for applications with unequal standard deviations, in

which case the researcher has the option to calculate the approximate degrees of freedom using

either the Satterthwaite’s (1946) or Welch’s (1947) formula.

Table 1 outlines, step-by-step, the procedure to compute standard error-based SDIs for sam-

ples with different degrees of freedom. Recall that the procedure requires to identify the pair of
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Table 1: Computing standard error-based SDIs for unpaired and unequal samples

Qdiff Q1 Q2
Bound SDI

Difference Level

Bound Percent Bound Percent Bound Percent
B1 −B2 (100−2k)

Value (α2 × 100) Value (k) Value (100−k)

2.949 0.05% 9.106 0.05% 7.250 99.95% 1.856 99.9 %
...

...
...

...
...

...
...

...
3.800 2.50% 9.483 2.50% 6.279 97.50% 3.204 95.0 %

...
...

...
...

...
...

...
...

4.191 9.20% 9.653 9.20% 5.855 90.80% 3.798 81.6 %
4.193 9.25% 9.654 9.25% 5.853 90.75% 3.801 81.5 %

...
...

...
...

...
...

...
...

4.999 49.95% 10.000 49.95% 5.001 50.05% 4.999 0.1%

Note: Q1 ∼ (60, 10, 2) and Q2 ∼ (40, 5, 4) are two samples with the respective number of observations, mean,
and standard deviation. The first six columns show, in increments of 0.05 percentage points, the interval bounds and
corresponding percentages (i.e., k = 1

2αd × 100) for Qdiff, Q1, and Q2. The last two columns indicate the bound
difference, B1 −B2, and the SDI level associated with a given (B1, B2) pair, respectively.

kth
Q1

and (100−k)th
Q2

interval bounds whose difference matches the value of the difference distribu-

tion’s lower CI bound. The first two columns show Qdiff ’s lower bound values and corresponding

percentages, ranging from 0.05% to 49.95%, in increments of 0.05 percentage points.12 The in-

crement step used here is suited to compute one digit precision SDIs. We can increase the level of

precision by employing smaller increments. Since we are interested in significance of differences

at the 0.05 level, the Qdiff ’s value of interest is the one associated with the 2.5 percent, 3.800. This

value is highlighted in the table. The following four columns present the same information for Q1

and Q2. The only difference is that Q2’s interval bounds are sorted in descending order.

The last step is to calculate the difference for all (B1, B2) interval bound pairs, and then

12 To keep things concise, only a limited number of values are shown in the table. The upper

interval value, k = 49.95%, is a theoretical limit. Since the SDI level equals (100−2k)%, a higher

number would lead to either zero or negative values. In practice this means that for any k ≥ 50,

Q1 and Q2 are statistically different as long as the point estimates are distinct, Q1 6= Q2.
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search for the one with a value matching Qdiff’s lower 95% CI bound. The last two columns

capture the bound difference and the associated SDI level. For example, on the second row the

3.204 difference corresponds to the
(
2.5th

Q1
, 97.5th

Q2

)
bound pair, as indicated by the percentages in

the fourth and sixth columns. Given that in this case k = 2.5, the associated SDI level is (100−2k)

= 95%. The difference that is the closest to but not larger than 3.800, is the one associated with the

81.6% SDI. The respective value, 3.798, and SDI level are also highlighted in the table.

4 The SDI for substantive significance

Not to make big claims about small effects that are inconsequential in practice, researchers are

encouraged to check whether the reported estimates are also substantively meaningful, not just sta-

tistically significant. To test for real-world significance one should first determine a range of sub-

stantively insignificant effects, [−m,m], where |m| is a theoretically derived value for the smallest

meaningful effect. An estimate is substantively meaningful if its entire confidence interval lies out-

side of the insignificant effects region (Gross, 2015; Rainey, 2014). This estimation-based CI test

is related to equivalence tests or tests of design, which are used to check whether the data are con-

sistent with the identification assumptions or theory (Hartman and Hidalgo, 2018; Lakens, 2017).

While there are some differences when it comes to statistical power in small sample, these tests

yield similar results in most cases and “are effectively indistinguishable with reasonable sample

sizes” (Hartman and Hidalgo, 2018, 1004). This means there are no differences when comparing

postestimation quantities of interest (e.g., predicted values, marginal effects), as sample size is not

an issue when dealing with distributions.

The SDI procedure for meaningful differences draws on the estimation-based CI approach.

When judging substantive significance, the two quantities of interest are meaningfully different

if the Qdiff’s lower CI bound is greater than m, or
(
Qdiff − zSEQdiff

)
− m > 0. To have the

intervals around the compared estimates correctly indicate substantive differences, we need to

use a significance of differences score for Q1 and Q2 that accounts for the meaningful value m.
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Specifically, zd|m must satisfies the following equality

(Q1 − zd|mSE1)− (Q2 + zd|mSE2) =

[
(Q1 −Q2)− z

√
SE2

1 + SE2
2 − 2ρSE1SE2

]
−m

zd|m =
z
√
SE2

1 + SE2
2 − 2ρSE1SE2 +m

SE1 + SE2

. (7)

Practically, the zd-score discussed in the literature is a special case of the zd|m-score, where

m = 0. The range of the zd|m-score is
[

m
SE1+SE2

,
(
z + m

SE1+SE2

)]
.13 Notably, compared to the

statistical significance case where zd ≤ z, zd|m can be larger than z. As a result, the SDI may be

wider than the standard CI. This is consequential because it means that when outlining substantive

significance, confidence intervals are never informative, not even on the off chance that they do

not overlap. Specifically, two estimates may be substantively insignificant even if their CIs do

not overlap, as wider SDIs might. I am not aware of any work that alerts analysts not to infer

substantive differences from nonoverlapping CIs.14

5 A survey of the literature

Some may argue that the overlap problem is a well known issue, of which people are both aware

of and know how to address. While the limitations of standard CIs are well understood in the

methodology literature, the practice at large does not reflect this knowledge. For a more systematic

assessment of the current practice in the discipline, I examine all 2016 AJPS and JOP articles.15

13 In Online Appendix D I present the formal proof for this.
14 In Online Appendix D.1 I present a practical example on employing substantive SDIs.
15 An article was included in the survey if either the hypothesis entails a comparison (e.g., inter-

action effects), or it engages in estimates comparison in the empirical section. The latter captures

studies that directly compare expected or predicted values, as well as articles that report the first or

second difference. Articles that focus solely on coefficient interpretation and do not compute post-

estimation quantities of interest are not included. This is because in this scenario the CI overlap

problem cannot arise. Political theory and game theoretical studies without an empirical analysis
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Table 2: A survey of the 2016 AJPS & JOP Articles

Standard CI
Narrower No

Overlap No Additional Additional Intervals Intervals
Method Tests Tests Total

All Articles 8 (8%) 49 (51%) 27 (28%) 2 (2%) 11 (11%) 97 (100%)

Cannot Ascertain Signif-
6 (6%) 37 (38%) 0 (0%) 2 (2%) 8 (8%) 53 (55%)

icance of Differences

Note: The numbers indicate the frequency for each category, and, in parentheses, the overall percentage.

Table 2 provides a summary of the literature survey. In the first column, the top value indi-

cates that out of a total of 97 articles, eight (8%) employ the overlap method to judge significance

of differences. In two of these analyses the 95% CIs do not overlap, and, therefore, the conclusion

that the estimates are statistically distinct is technically correct. The remaining six articles, though,

reference the CI overlap as evidence that the corresponding estimates are not statistically different.

This conclusion is not warranted.

The second category represents the bulk of the articles, roughly 51%, which do not invoke

the CI overlap–or a lack therefore–as evidence. The problem is that they do not reference any other

test results either to back the conclusion. The aforementioned Grossman et al. (2016) study falls

into this category. Practically, these studies simply point out that one estimate is nominally higher

than another estimate, or that only one of the two is statistically significant. Crucially, they do not

present evidence to clarify whether or not the compared estimates are distinct. If the analyst did

conduct significance of differences tests but did not mention them, the problem is that the reader

cannot independently assess the strength of undisclosed evidence. If no such tests were conducted,

the conclusion rests on ill-advised conjectures and the inferences may be inaccurate.

In the third column are the studies that compute and report the difference in estimates, about

are also excluded. Lastly, the AJPS Workshop articles are not included because they focus on

methodological issues rather than theory building and hypothesis testing.
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28%. It turns out that a popular approach is to present two sets of findings: the compared estimates

with the 95% CI, as well as the associated first or second difference. Among these articles, Rueda

and Stegmueller’s (2016, 483) study stands out as being the only one that explicitly advises readers

that it is not “correct to infer the significance of the difference from our (non-)overlapping confi-

dence intervals.” For this information, they refer readers to a separate in-text table. By reporting

the difference in estimates, many more articles implicitly acknowledge that one cannot evaluate the

hypothesis by examining only the compared estimates and their CIs. Having two sets of empirical

evidence, however, creates redundancy and may lead to confusion.

Two articles, acknowledged in the fourth column, employ narrower intervals to convey sig-

nificance of differences: Adams, Ezrow and Wlezien (2016), and Arceneaux et al. (2016). Specif-

ically, they both report 83.5% SDIs to indicate significance of difference at the 0.05 level. This

interval level, however, requires that the compared estimates are normally distributed, indepen-

dent, and have identical standard errors. Yet neither article mentions whether all three conditions

are simultaneously met to warrant the use of this particular level.

The fifth column captures the articles that report only the point estimates. The decision not

to report the CI at all, may be indicative of a growing realization that this interval type conveys

tangential information that often cannot be used to answer the research question. While a few of

these studies use the text to clarify whether the compared estimates are statistically different, most

of them simply call attention to the fact that one estimate is nominally higher than another estimate.

The starkest finding of the survey is that political scientists do not make good use of existing

techniques to convey significance of differences. The numbers in the second row of Table 2 indicate

the frequency and the overall percentage of articles for which one cannot determine whether the

compared quantities of interest are statistically distinct. An article was included in this category if,

in at least one of the analyses, the CIs overlap and there is no additional clarifying information.16

16 I employ a liberal approach to coding these articles. Besides the studies that expressly mention

having had conducted formal significance of differences tests, the articles that describe estimates

27



Among the five categories, only the articles that examine the difference in estimates are foolproof.

Overall, informed readers cannot ascertain whether there is empirical support for the research

hypothesis or supplementary analysis in 55% of the cases. More problematically, these studies can

mislead nontechnical readers (Wright, Klein and Wieczorek, 2019). Thus, while the CI overlap

may seem like an unlikely problem for methodologists, it is a widespread problem in practice.

6 Conclusion

Researchers automatically report the standard CI around point estimates because we are taught to

always acknowledge the uncertainty around estimated effects. Yet, different types of intervals (e.g.,

confidence intervals, prediction intervals, tolerance intervals) convey different information and

they are not interchangeable. Consequently, researchers must ensure they report the appropriate

interval type for their analysis. Linking the reported uncertainty back to the research question

is crucial because hypotheses are rarely expressed in terms of the level of uncertainty (e.g., the

uncertainty around ŷ is larger at lower values of x, but it becomes smaller as x increases). When

comparing estimates, the use of the standard CI can be misleading and may lead to incorrect

inferences. For direct comparisons, significance of differences intervals are advised. SDIs are

designed such that when they do not overlap the estimates are distinct, even if the 95% CIs overlap.

Confidence intervals are so ubiquitous in empirical research that we tacitly assume everyone

knows when and how to employ them. This assumption in turn makes it easy to dismiss the

CI overlap problem as a fringe issue, which it is not. A survey of the health sciences literature

identifies scores of articles that misuse the CI (Schenker and Gentleman, 2001, 182), and my

survey reveals that it is a widespread problem in political science as well. Specifically, more than

half of the articles do not provide the evidence required to assess whether the compared estimates

are statistically different. The large share of problematic studies aside, it is worth noting that

as either “statistically” or “significantly” different are also excluded.
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they are published in a wide range of outlets. Schenker and Gentleman count 22 different peer-

reviewed journals, and both journals I surveyed published such articles. Thus, absent a conscious

reevaluation, the review process alone is unlikely to properly address this problem.

To conclude, the practical problem with reporting CIs around compared estimates is that

when there is overlap, the estimates may or may not be statistically different. As a result, we

can neither accept nor reject the research hypothesis. While nontechnical readers are particularly

likely to draw wrong conclusions from overlapping CIs (Wright, Klein and Wieczorek, 2019), the

lack of a definitive answer invites mistakes even among professionals. The latter often turn to

ill-advised conjectures or heuristics to judge significance of differences. What is more, given the

recent shift in results discussion to meaningful effects, the problem will likely amplify. Since the

SDI for substantive significance can be wider than the equivalent CI, the latter is never informative

when assessing meaningful differences, not even on the off chance that the associated CIs do

not overlap. One practical solution to circumvent these problems is to employ the SDI method.

I expand the SDI method to accommodate unpaired samples, asymmetric distributions, and, for

substantive significance, differences larger than zero. I also provide an easy-to-use Stata software

that automatically computes SDIs.
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Online Appendix A: Standard error-based SDIs

In the main text, when discussing the range of the significance of differences zd-score, I only

note the minimum and maximum possible values. Here I present step-by-step the zd function

optimization procedure, which allows one to formally derive the zd’s extreme values. Recall that

the zd-score formula is

zd =
z
√
σ2
1 + σ2

2 − 2ρσ1σ2
σ1 + σ2

, (A1)

where σ1 and σ2 are the standard errors of the two quantities on interest, Q1 and Q2, ρ is the

correlation parameter, and z is the standard score. Moreover, σ1 > 0, σ2 > 0, and −1 ≤ ρ ≤ 1.

To find the minimum and maximum of zd, we set the first partial derivatives with respect to

ρ, σ1, and σ2 to 0, treating the standard z-score as a constant.

∂
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(A3)

Given the symmetry of the expression in Eq. (A1), ∂
∂σ2
zd = 0 =⇒ (σ2 − σ1)(1 + ρ) = 0.
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In summary,

∂

∂σ1
zd = 0

(σ1 − σ2)(1 + ρ) = 0 (A4)

=⇒ ∂
∂σ1
zd = 0 when

either σ1 = σ2 or ρ = −1.

∂

∂σ2
zd = 0

(σ2 − σ1)(1 + ρ) = 0 (A5)

=⇒ ∂
∂σ2
zd = 0 when

either σ1 = σ2 or ρ = −1.

∂

∂ρ
zd = 0

σ1σ2 = 0 (A6)

=⇒ ∂
∂ρ
zd = 0 when

either σ1 = 0 or σ2 = 0.

The first partial derivative with respect to ρ, Eq. (A6), leads to unfeasible values, as neither

σ1 nor σ2 can be 0. This means that zd’s extrema lie on the boundary. Since both the numerator

and denominator in Eq. (A1) are functions of the same variables, σ1 and σ2, whether zd reaches its

minimum or maximum depends on the values of the numerator’s extra parameter, ρ. In particular,

zd is maximized when the numerator reaches its maximum. This requires −2ρσ1σ2 to be at its

largest. Given that both σ1 and σ2 are positive, this is the case when ρ takes its lowest negative

value, −1.

zd =
z
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Thus, zd = z whenever ρ = −1.

Conversely, the numerator reaches its minimum, and, consequently, zd is minimized, when
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−2ρσ1σ2 is at its lowest. This is the case when ρ takes its highest positive value, 1.
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Since
√

(σ1 − σ2)2 cannot be negative, its minimum value is 0. This is the case when σ1 = σ2.

Therefore, zd = 0 when ρ = 1 and σ1 = σ2.

A.1 The zd-score as a function of the standard error ratio

In the main text I note that to graph the correspondence between the z- and zd-score in a two

dimensional space, we need to consolidate the number of parameters. Let r be the ratio between

the estimates’ standard errors such that r = SE1

SE2
. Base on this ratio, SE1 = rSE2 and the zd-score

formula becomes

zd =
z
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Online Appendix B: Simulations on the performance of the SDI
method

To check whether the SDI method performs well in practice, I conduct a series of simulations

to assess the performance of standard error- and percentile-based SDIs (for normal and skewed

distributions, respectively). As a reference point I also report the corresponding DE results. All

in all there are 64 scenarios, where I vary the sample size (N ∈ {10000, 1000, 100, 10}) and

the difference in means between the compared estimates. Q1 and Q2 are randomly drawn from a

bivariate normal distribution, (Q1, Q2) ∼ N
(
(1.96×

√
2 + d), 0, 1, 1; 0

)
1, where d ∈ {0, 0.3, 0.5,

1}. The last three values of d represent thirty percent, a half, and one full standard error (σ = 1).

When d = 0, the lower 95% CI bound of the difference distribution is exactly 0,Qdiff−zSE(Qdiff) =

[(1.96×
√

2+0)−0]−1.96
√

12 + 12 − 2× 0× 1× 1 = 0. When d = 1, the value of the CI bound

is 1. In effect, d represents the distance between the lower CI bound and 0, with positive values

indicating that Q1 and Q2 are statistically different. To obtain skewed distributions, I exponentiate

Q1 and Q2.

Table B1 shows the results of 10,000 simulations for each combination of N and d values.

The test results represent the percent of cases in which Q1 and Q2 are found to be statistically

distinct. The first thing to note is that, as expected, the DE and SDI results are the same. Thus, there

are no accuracy costs associated with adopting the SDI method. Generally, precision increases as

either the number of observations or the difference between estimates grows larger.

With sample sizes of 1,000 cases and over, the tests’ accuracy is extremely high (100%) as

they are able to pick up even on small differences (d = 0.3). Importantly, when the lower CI bound

of the difference distribution is 0 (d = 0), the test results are slightly above 0 half of the times

(e.g., 50.27% when N = 10,000), and just below 0 the other half. The 50-50 ratio indicates that

1 (Q1, Q2) ∼ N (µQ1 , µQ2 , σQ1 , σQ2 ; ρ(Q1, Q2)) indicates that Q1 and Q2 follow a bivariate

normal distribution with the respective means, µ, standard errors, σ, and correlation level, ρ.
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Table B1: Simulations on the performance of the SDI method

(a) Normal distributions (b) Skewed distributions

The relative difference d The relative difference d
N 0 0.3 0.5 1 0 0.3 0.5 1

DE method 10,000 50.27 100 100 100 50.32 100 100 100
SDI method 50.27 100 100 100 50.32 100 100 100

DE method 1,000 51.15 99.98 100 100 51.01 99.18 100 100
SDI method 51.15 99.98 100 100 51.01 99.18 100 100

DE method 100 51.58 89.61 98.01 100 55.37 81.88 91.26 99.22
SDI method 51.58 89.61 98.01 100 55.37 81.88 91.26 99.22

DE method 10 54.47 69.21 76.61 91.11 77.28 86.64 90.03 96.14
SDI method 54.47 69.21 76.61 91.11 77.28 86.64 90.03 96.14

Note: The values represent the percent of cases in which the tests report that Q1 and Q2 are statistically distinct.
Standard error-based intervals are employed for normal distributions, and percentile intervals for skewed distributions.

the tests are not biased either for or against finding statistical significance when there is none. This

is the hardest test among the four d-value scenarios. For small samples, the tests’ performance

substantially improves as the difference grows larger. When N = 10, the tests picks up on the

distinction between Q1 and Q2 in more than 90% of the cases once d equals 1.

With a reasonable sample size, the results are substantively similar for skewed distributions.

When both the sample size and difference between estimates are small, though, the results may be

off. For example, when N = 10 and d = 0, the tests report statistical significance in 77.28% of the

cases (this value is 50.32% for N = 10,000). This is to be expected because, when using observed

values as interval bounds, we need many observations to capture subtle differences. With a sample

of 10, for instance, all uncertainty intervals higher than 90% are practically indistinguishable as

90.1th = 90.2th , . . . , = 99.9th percentile. Only with samples over 1,000 observations we can have

distinguishable, 1-digit precision percentiles.
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Online Appendix C: Percentile-based SDIs

In the main text I formally outline the steps required to compute SDIs based on the quantities of

interest’s percentiles. Moving from theory to practice, I also present a schematic illustration of

the process employing two normally distributed quantities of interest. The choice of the specific

distributional form was for practical reasons to facilitate the comparison to the standard error-

based results. Here I discuss the procedure more systematically using an example that relaxes the

normality assumption. Specifically, first I randomly draw Q1 and Q2 from the following bivariate

normal distribution, (Q1, Q2) ∼ N
(
(1.96×

√
2), 0, 1, 1; 0

)
,2 with 1,000 observations each. I then

exponentiate Q1 and Q2 to obtain right-skewed distributions, Q1
′ = exp(Q1) and Q2

′ = exp(Q2).

The kernel density plots in Figure C1 outline the resultant distributions along with the respective

difference distributions.

On the left hand side, Figure C1a, the normal distributions have the familiar curved bell

shape. Moreover, the percentile- and standard error-based CIs of the normal difference distribution

are very similar, Figure C1a3. As neither crosses zero (i.e., the red vertical line), they both indi-

cate that the difference is statistically significant. The results, however, are quite different for the

skewed difference distribution, Figure C1b3. Specifically, the lower bound of the standard error

CI, which is symmetric around the mean µ, crosses the zero line. More problematically, it includes

values that Qdiff
′ does not actually contain. In contrast, the percentile CI includes only observed

values and it does not cross zero. In effect, it suggests that the difference is statistically significant,

i.e., Q1
′ and Q2

′ are distinct. For skewed distributions, percentile intervals are generally advised.

Table C1 outlines, step-by-step, the procedure to compute percentile-based SDIs using the

actual values of Q1
′, Q2

′ and Qdiff
′. Recall that the procedure requires to identify the pair of kth

Q1
′

and (100−k)th
Q2
′ percentiles whose difference matches the value of the difference distribution’s

2 (Q1, Q2) ∼ N (µQ1 , µQ2 , σQ1 , σQ2 ; ρ(Q1, Q2)) indicates that Q1 and Q2 follow a bivariate

normal distribution with the respective means, µ, standard errors, σ, and correlation level, ρ.
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Figure C1: Percentile- and standard error-based CIs for normal and skewed distributions
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Note: In Figure C1a3 and C1b3, µ indicates the mean of the difference distributions. The dashed horizontal line
represents the standard error-based 95% CI around the mean, while the solid horizontal line the percentile-based 95%
CI. The vertical line indicates the zero threshold. For statistical significance, the 95% CI should not cross the zero line.



Table C1: Computing percentile-based SDIs

Qdiff
′ Q1

′ Q2
′ Percentile SDI

Difference Level

Percentile Percent Percentile Percent Percentile Percent
P1
′ − P2

′ (100−2k)
Value Value (k) Value (100−k)

−11.770 0.05% 0.525 0.05% 21.578 99.95% −21.053 99.9 %
...

...
...

...
...

...
...

...
0.283 2.50% 2.204 2.50% 7.023 97.50% −4.819 95.0 %

...
...

...
...

...
...

...
...

2.512 8.05% 4.139 8.05% 3.862 91.95% 0.277 83.9 %
2.513 8.10% 4.162 8.10% 3.856 91.90% 0.306 83.8 %

...
...

...
...

...
...

...
...

14.334 49.95% 15.875 49.95% 1.001 50.05% 14.874 0.1%

Note: The first six columns show, in increments of 0.05 percentage points, the percentiles and corresponding percent-
ages for Qdiff

′, Q1
′, and Q2

′. The last two columns indicate the percentile differences, P1
′ − P2

′, and the SDI level
associated with a given (P1

′, P2
′) percentile combination, respectively.

2.5th percentile. The first two columns show theQdiff
′ percentile values and corresponding percent-

ages, ranging from 0.05% to 49.95%, in increments of 0.05 percentage points.3 The increment step

used here is suited to compute one digit precision SDIs. We can increase the level of precision by

employing smaller increments.4 Since we are interested in significance of differences at the 0.05

3 To keep things concise, only a limited number of values are shown in the table. The upper

percentile value, k = 49.95%, is a theoretical limit. Since the SDI level equals (100−2k)%, a

higher number would lead to either zero or negative values. In practice this means that for any

k ≥ 50, Q1
′ and Q2

′ are statistically different as long as the point estimates are distinct, Q′1 6= Q′2.

Compared to the standard error-based approach, this corresponds to a scenario where zd = 0.
4 Realistically, the level of precision is conditional on the sampling distribution’s number of

observations, N . One simple formula to compute the pth percentile, denoted as xi, is i = p/100×

N . xi refers to the x in ascending order for i = 1, 2, . . . , N . When N = 100, for instance, only

the integer percentiles are differentiated, e.g., 2nd 6= 3rd percentile, but 2.1th = 2.2th , . . . , = 2.9th

percentile. Practically, with Clarify’s default output (i.e., 1,000 realizations of a given quantity of
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level, the value of interest is Qdiff
′’s 2.5th percentile, 0.283, which is highlighted in the table. The

following four columns present the same information for the two original distributions, Q1
′ and

Q2
′. The only difference is that Q2

′’s percentiles are sorted in descending order.

The last step is to calculate the percentile difference for all (P1
′, P2

′) pairs, and then search

for the one with a value matching the 2.5th
Qdiff

′ percentile. The last two columns capture the per-

centile difference and the associated SDI level. For example, on the second row the −4.819 dif-

ference corresponds to the
(
2.5th

Q1
′ , 97.5th

Q2
′
)

percentile pair, as indicated by the percentages in the

fourth and sixth columns. Given that in this case k = 2.5, the associated SDI level is (100−2k) =

95%. The percentile difference that is the closest to but not larger than 0.283, is the one associated

with the 83.9% SDI. The respective value, 0.277, and SDI level are also highlighted in the table.

interest), we can meaningfully compute only one digit precision percentiles.
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Online Appendix D: SDIs for substantive significance

In the main text, when discussing the range of the zd|m-score for meaningful differences, I only

note the minimum and maximum possible values. Here I present step-by-step the zd|m function

optimization procedure, which allows one to formally derive the zd’s extreme values. Recall that

the zd|m-score formula is

zd|m =
z
√
σ2
1 + σ2

2 − 2ρσ1σ2 +m

σ1 + σ2
, (D1)

where σ1 and σ2 are the standard errors of the two quantities on interest, Q1 and Q2, ρ is the

correlation parameter, z is the standard score, and m is the minimum value for a meaningful effect.

Moreover, σ1 > 0, σ2 > 0, and −1 ≤ ρ ≤ 1.

To find the minimum and maximum of zd|m, we set the first partial derivatives with respect

to ρ, σ1, σ2, and m to 0, treating the standard z-score as a constant.

∂

∂ρ
zd|m = 0

∂

∂ρ

[
z
√
(σ21 + σ22 − 2ρσ1σ2) +m

σ1 + σ2

]
= 0

1

σ1 + σ2
× ∂

∂ρ

[
z
√
(σ21 + σ22 − 2ρσ1σ2) +m

]
= 0

∂

∂ρ

[
z
√
(σ21 + σ22 − 2ρσ1σ2)

]
+

∂

∂ρ
m = 0

z × ∂

∂ρ

√
(σ21 + σ22 − 2ρσ1σ2) + 0 = 0

∂

∂ρ

√
(σ21 + σ22 − 2ρσ1σ2) = 0 (the same as line four in Eq. (A2))

...

σ1σ2 = 0 (D2)
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∂

∂σ1
zd|m = 0

∂

∂σ1

[
z
√

(σ21 + σ22 − 2ρσ1σ2) +m

σ1 + σ2

]
= 0

∂

∂σ1

[
z
√

(σ21 + σ22 − 2ρσ1σ2)

σ1 + σ2

]
+

∂

∂σ1
m = 0

z × ∂

∂σ1

[√
(σ21 + σ22 − 2ρσ1σ2)

σ1 + σ2

]
+ 0 = 0 (the same as line three in Eq. (A3))

...

(σ1 − σ2)(1 + ρ) = 0 (D3)

Given the symmetry of the expression in Eq. (D1), ∂
∂σ2
zd|m = 0 =⇒ (σ2 − σ1)(1 + ρ) = 0.

∂

∂m
zd|m = 0

∂

∂m

[
z
√

(σ21 + σ22 − 2ρσ1σ2) +m

σ1 + σ2

]
= 0

1

σ1 + σ2
× ∂

∂m

[
z
√
(σ21 + σ22 − 2ρσ1σ2) +m

]
= 0

∂

∂m

[
z
√
(σ21 + σ22 − 2ρσ1σ2)

]
+

∂

∂m
m = 0

1 = 0 (D4)

In summary,

∂

∂σ1
zd|m = 0

(σ1 − σ2)(1 + ρ) = 0 (D5)

=⇒ ∂
∂σ1
zd|m = 0 when either

σ1 = σ2 or ρ = −1.

∂

∂σ2
zd|m = 0

(σ2 − σ1)(1 + ρ) = 0 (D6)

=⇒ ∂
∂σ2
zd|m = 0 when either

σ1 = σ2 or ρ = −1.
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∂

∂ρ
zd|m = 0

σ1σ2 = 0 (D7)

=⇒ ∂
∂ρ
zd|m = 0 when either

σ1 = 0 or σ2 = 0.

∂

∂m
zd|m = 0

1 = 0 (D8)

=⇒ unfeasible values.

The first partial derivatives with respect to ρ, Eq. (D7), and m, Eq. (D8), lead to unfeasi-

ble values. This means that zd|m’s extrema lie on the boundary. Since both the numerator and

denominator in Eq. (D1) are functions of the same variables, σ1 and σ2, whether zd|m reaches its

minimum or maximum depends on the values of the numerator’s extra parameter, ρ. Both z and

m are exogenously determined. In particular, zd|m is maximized when the numerator reaches its

maximum. This requires −2ρσ1σ2 to be at its largest. Given that both σ1 and σ2 are positive, this

is the case when ρ takes its lowest negative value, −1.

zd|m =
z
√
σ2
1 + σ2

2 − 2ρσ1σ2 +m

σ1 + σ2

=
z
√
σ2
1 + σ2

2 − 2× (−1)× σ1σ2 +m

σ1 + σ2

=
z
√
σ2
1 + σ2

2 + 2σ1σ2 +m

σ1 + σ2

=
z
√

(σ1 + σ2)2 +m

σ1 + σ2

=
z
√

(σ1 + σ2)2

σ1 + σ2
+

m

σ1 + σ2

= z +
m

σ1 + σ2
(D9)

Thus, zd|m = z + m
σ1+σ2

whenever ρ = −1.

Conversely, the numerator reaches its minimum, and, consequently, zd|m is minimized, when
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−2ρσ1σ2 is at its lowest. This is the case when ρ takes its highest positive value, 1.

zd|m =
z
√
σ2
1 + σ2

2 − 2ρσ1σ2 +m

σ1 + σ2

=
z
√
σ2
1 + σ2

2 − 2× 1× σ1σ2 +m

σ1 + σ2

=
z
√
σ2
1 + σ2

2 − 2σ1σ2 +m

σ1 + σ2

=
z
√

(σ1 − σ2)2 +m

σ1 + σ2

=
z
√

(σ1 − σ2)2
σ1 + σ2

+
m

σ1 + σ2
(D10)

Since
√

(σ1 − σ2)2 cannot be negative, its minimum value is 0. This is the case when σ1 = σ2.

Therefore, zd|m = m
σ1+σ2

when ρ = 1 and σ1 = σ2.

D.1 An application to interaction effects between continuous variables

Building on an analysis from Rainey (2014), in what follows I illustrate how SDIs can be employed

to indicate substantive significance.5 The original analysis concerns the effect of electoral permis-

5 The SDI for substantive significance is similar to the interval for statistical equivalence (ISE)

that has been developed to examine whether, at the beginning of an experiment, the experimental

and control groups are matched (Tryon and Lewis, 2009, 178-179). There are at least three notable

differences between the ISE and the SDI. First, the two types of intervals serve different purposes.

The ISE is designed to gauge whether the upper CI bound of the difference distribution is lower

than a given value, i.e., ∆ in their notation (see the first full paragraph on page 179, and Figure 3 on

page 177). The SDIs, however, are meant to capture whether the lower CI bound of the difference

is higher than the meaningful value m. Second, the ISE does not incorporate the external value ∆

(see Eq. (15), p. 179). In contrast, the zd|m-score is a function of the estimates’ standard errors and

correlation level plus the m value. Third, the ISE cannot be larger than the standard CI. The SDI

for substantive significance, however, can be either smaller or larger than the CI.
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siveness (measured by the size of district magnitude) on the effective number of political parties.

Based on a U.S.–U.K. comparison, Rainey first determines the range of substantively insignificant

effects to be [−0.62, 0.62]. He next examines the effect of increasing district magnitude from

one to seven in countries with a single ethnic group (a proxy for social homogeneity). Since the

estimate’s CI crosses into the insignificant effects region (the right panel in Figure 1, p. 1089), the

effect of electoral permissiveness may be not substantively meaningful.

As the number of ethnic groups is set to one, this effect represents only a snapshot of the

impact of District Magnitude on the effective number of parties. Given that the Number of Ethnic

Groups and District Magnitude variables are interacted in the model, there are theoretical reasons

to believe that the effect of District Magnitude changes with the values of the modifying variable.

If there were empirical support for this expectation, the effect of increasing District Magnitude

should be substantively higher in heterogenous societies with many ethnic groups.

Figure D1a graphs the expected number of parties across the range of Number of Ethnic

Groups (specifically between its 10th and 90th percentiles), when District Magnitude is at one (in

red with dashed CIs) and at seven (in blue with dotted CIs). While the 95% CIs do not overlap at

all, this conveys no relevant information when assessing substantive significance. To examine sig-

nificance of meaningful differences, we need to graph the expected values with SDIs, Figure D1b.

As the SDIs overlap throughout it means that, in spite of the 95% CIs not overlapping, the quanti-

ties of interest may be not meaningfully different. This conclusion is confirmed by the difference

in estimates plot, Figure D1c. Here the lower bound of the 95% CI of the first difference is always

below the 0.62 line, which delineates the region of insignificant effects.

Lastly, it is worth noting that, in spite of its widespread use, the standard interaction plot is

not well equipped to examine interaction effects (i.e., whether or not the effect of x varies with

the values of the interacting variable). Take, for example, Figure D1c. The information it con-

veys simply reflects that increasing district magnitude from one to seven may be associated with

substantively insignificant effects at all values of ethnic homogeneity. More formally, it says that
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Figure D1: Indicating substantive significance with SDIs

The Effect of increasing District magnitude from 1 to 7 across Number of ethnic groups
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(d) Difference in estimates with SDIs
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Note: For Figure D1a and D1b, in red with dashed CI or SDI, respectively, is the expected number of parties when
District Magnitude is at one across the range of Number of Ethnic Groups. In blue with dotted CI or SDI is the
expected number of parties when District Magnitude is at seven. The SDIs are customized for each E

(
y|x = 7; v =

[min, . . . ,max])−E(y|x = 1; v = [min, . . . ,max]
)

pairwise comparison. Here y is the expected number of effective
parties, x is District Magnitude, and v is Number of Ethnic Groups. Figure D1c graphs the difference between the
expected values with the 95% CI. Figure D1d graphs the same difference in estimates with SDIs to visually compare[
E(y|x = 7; v = min)−E(y|x = 1; v = min)

]
vs.

[
E(y|x = 7; v = max)−E(y|x = 1; v = max)

]
. For

the difference in estimates with SDIs plot, Figure D1d, solid lines indicate that the effect is statistically significant,
whereas dashed lines indicate that the effect is not statistically different from 0 at the 0.05 level.

[
E(y|x = 7; v)−E(y|x = 1; v)

]
< 0.62 for each v ∈ [minv,maxv].6 None of these comparisons,

6 y is the expected number of effective parties, x is the variable of interest (District Magnitude),
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however, addresses the question whether electoral permissiveness has a substantively different ef-

fect in homogenous versus heterogenous societies. To answer this question, we need to evaluate the

following second difference:
{ [

E(y|x = 7; v = max)−E(y|x = 1; v = max)
]
−
[
E(y|x = 7; v =

min)−E(y|x = 1; v = min)
] } ?

> 0.62. To indicate a 0.62 meaningful difference between the

effect of District Magnitude at the minimum and maximum values of Number of Ethnic Groups,

we need 99.2% SDIs. The SDI overlap in Figure D1d indicates that the effect of electoral permis-

siveness is not meaningfully different between societies with high and low ethnic homogeneity.

This information is unique to the difference in estimates with SDIs graph, Figure D1d, and cannot

be gleaned from the difference with 95% CI plot, Figure D1c.

and v is the modifying variable (Number of Ethnic Groups).
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Online Appendix E: The list of surveyed articles

Table E1: The 2016 AJPS (Volume 60) & JOP (Volume 78) Articles

ID # Title Author(s)
Journal
(Issue)

1 The Influence of News Media on Political Elites: In-
vestigating Strategic Responsiveness in Congress

Kevin Arceneaux, Martin Johnson, René
Lindstädt, and Ryan J. Vander Wielen

AJPS (1)

2 Courting the President: How Circuit Court Judges Al-
ter Their Behavior for Promotion to the Supreme Court

Ryan C. Black and Ryan J. Owens AJPS (1)

3 Descriptive Representation and Judicial Outcomes in
Multiethnic Societies

Guy Grossman, Oren Gazal-Ayal, Samuel
D. Pimentel, and Jeremy M. Weinstein

AJPS (1)

4 Leader Incentives and Civil War Outcomes Alyssa K. Prorok AJPS (1)
5 Candidates or Districts? Reevaluating the Role of Race

in Voter Turnout
Bernard L. Fraga AJPS (1)

6 What the Demolition of Public Housing Teaches Us
about the Impact of Racial Threat on Political Behavior

Ryan D. Enos AJPS (1)

7 Greater Expectations: A Field Experiment to Improve
Accountability in Mali

Jessica Gottlieb AJPS (1)

8 Voting Against Your Constituents? How Lobbying Af-
fects Representation

Nathalie Giger and Heike Küver AJPS (1)

9 A Closer Look at Reporting Bias in Conflict Event Data Nils B. Weidmann AJPS (1)
10 The Timeline of Elections: A Comparative Perspective Will Jennings and Christopher Wlezien AJPS (1)
11 Decomposing Audience Costs: Bringing the Audience

Back into Audience Cost Theory
Joshua D. Kertzer and Ryan Brutger AJPS (1)

12 The Primacy of Race in the Geography of Income-
Based Voting: New Evidence from Public Voting
Records

Eitan D. Hersh and Clayton Nall AJPS (2)

13 IMF Conditionality, Government Partisanship, and the
Progress of Economic Reforms

Quintin H. Beazer and Byungwon Woo AJPS (2)

14 Terrorism, Dynamic Commitment Problems, and Mili-
tary Conflict

Navin A. Bapat and Sean Zeigler AJPS (2)

15 Making Young Voters: The Impact of Preregistration
on Youth Turnout

John B. Holbein and D. Sunshine Hillygus AJPS (2)

16 Sources of Authoritarian Responsiveness: A Field Ex-
periment in China

Jidong Chen, Jennifer Pan, and Yiqing Xu AJPS (2)

17 Performance Federalism and Local Democracy: The-
ory and Evidence from School Tax Referenda

Vladimir Kogan, Stéphane Lavertu, and
Zachary Peskowitz

AJPS (2)

18 Voter Buying: Shaping the Electorate through Clien-
telism

F. Daniel Hidalgo and Simeon Nichter AJPS (2)

Continued on next page
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Table E1 – continued from previous page

ID # Title Author(s)
Journal
(Issue)

19 The Externalities of Inequality: Fear of Crime and
Preferences for Redistribution in Western Europe

David Rueda and Daniel Stegmueller AJPS (2)

20 Signaling and Counter-Signaling in the Judicial Hier-
archy: An Empirical Analysis of En Banc Review

Deborah Beim, Alexander V. Hirsch, and
Jonathan P. Kastellec

AJPS (2)

21 When Governments Regulate Governments David M. Konisky and Manuel P. Teodoro AJPS (3)
22 Do Constitutional Rights Make a Difference? Adam S. Chilton and Mila Versteeg AJPS (3)
23 Voting Rights for Whom? Examining the Effects of the

Voting Rights Act on Latino Political Incorporation
Melissa J. Marschall and Amanda Ruther-
ford

AJPS (3)

24 Opinion Backlash and Public Attitudes: Are Political
Advances in Gay Rights Counterproductive?

Benjamin G. Bishin, Thomas J. Hayes,
Matthew B. Incantalupo, and Charles An-
thony Smith

AJPS (3)

25 Legislative Capacity and Executive Unilateralism Alexander Bolton and Sharece Thrower AJPS (3)
26 Are Voters Equal under Proportional Representation? Orit Kedar, Liran Harsgor, and Raz A.

Sheinerman
AJPS (3)

27 Segregation and Inequality in Public Goods Jessica Trounstine AJPS (3)
28 Loose Cannons or Loyal Foot Soldiers? Toward a More

Complex Theory of Interest Group Advertising Strate-
gies

Michael M. Franz, Erika Franklin Fowler,
and Travis N. Ridout

AJPS (3)

29 Does Compulsory Voting Increase Support for Leftist
Policy?

Michael M. Bechtel, Dominik Hangart-
ner, and Lukas Schmid

AJPS (3)

30 Endogenous Credible Commitment and Party Compe-
tition over Redistribution under Alternative Electoral
Institutions

Michael Becher AJPS (3)

31 The Company You Keep: How Voters Infer Party Po-
sitions on European Integration from Governing Coali-
tion Arrangements

James Adams, Lawrence Ezrow, and
Christopher Wlezien

AJPS (4)

32 Conspiracy Endorsement as Motivated Reasoning: The
Moderating Roles of Political Knowledge and Trust

Joanne M. Miller, Kyle L. Saunders, and
Christina E. Farhart

AJPS (4)

33 Veto Rhetoric and Legislative Riders Hans J. G. Hassell and Samuel Kernell AJPS (4)
34 Who Inherits the State? Colonial Rule and Postcolonial

Conflict
Julian Wucherpfennig, Philipp Hunziker,
and Lars-Erik Cederman

AJPS (4)

35 The Dynamics of State Policy Liberalism Devin Caughey and Christopher Warshaw AJPS (4)
36 Experiential Learning and Presidential Management of

the U.S. Federal Bureaucracy: Logic and Evidence
from Agency Leadership Appointments

George A. Krause and Anne Joseph
O’Connell

AJPS (4)

37 Death and Turnout: The Human Costs of War and Voter
Participation in Democracies

Michael T. Koch and Stephen P. Nichol-
son

AJPS (4)

38 Electoral Backlash against Climate Policy: A Natural
Experiment on Retrospective Voting and Local Resis-
tance to Public Policy

Leah C. Stokes AJPS (4)

Continued on next page
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Table E1 – continued from previous page

ID # Title Author(s)
Journal
(Issue)

39 How Politicians Discount the Opinions of Constituents
with Whom They Disagree

Daniel M. Butler and Adam M. Dynes AJPS (4)

40 The Politics of Judicial Procedures: The Role of Public
Oral Hearings in the German Constitutional Court

Jay N. Krehbiel AJPS (4)

41 Breaking the Glass Ceiling: Local Gender-Based Earn-
ings Inequality and Women’s Belief in the American
Dream

Benjamin J. Newman AJPS (4)

42 The Logic of Collective Inaction: Senatorial Delay in
Executive Nominations

Ian Ostrander AJPS (4)

43 Preaching to the Choir: Americans Prefer Communi-
cating to Copartisan Elected Officials

David E. Broockman and Timothy J. Ryan AJPS (4)

44 Redistricting and the Causal Impact of Race on Voter
Turnout

Bernard L. Fraga JOP (1)

45 Party Control of Party Primaries: Party Influence in
Nominations for the US Senate

Hans J. G. Hassell JOP (1)

46 The Distributional Impact of Greater Responsiveness:
Evidence from New York Towns

Michael W. Sances JOP (1)

47 Democratization and Linguistic Complexity: The Ef-
fect of Franchise Extension on Parliamentary Dis-
course, 1832–1915

Arthur Spirling JOP (1)

48 Unilateral Powers, Public Opinion, and the Presidency Andrew Reeves and Jon C. Rogowski JOP (1)
49 How Activists Perceive the Utility of International Law Emilie M. Hafner-Burton, Brad L. LeV-

eck, and David G. Victor
JOP (1)

50 Capitol Gains: The Returns to Elected Office from Cor-
porate Board Directorships

Maxwell Palmer and Benjamin Schneer JOP (1)

51 The Dynamics of Partisan Identification When Party
Brands Change: The Case of the Workers Party in
Brazil

Andy Baker, Barry Ames, Anand E.
Sokhey, and Lucio R. Renno

JOP (1)

52 Office Insecurity and Electoral Manipulation Arturas Rozenas JOP (1)
53 Economic Sanctions, Transnational Terrorism, and the

Incentive to Misrepresent
Navin A. Bapat, Luis De la Calle, Kaisa
H. Hinkkainen, and Elena V. McLean

JOP (1)

54 Did Georgian Voters Desire Military Escalation in
2008? Experiments and Observations

Jesse Driscoll and Daniel Maliniak JOP (1)

55 Ideological Donors, Contribution Limits, and Polariza-
tion of American Legislatures

Michael J. Barber JOP (1)

56 Anti-Americanism in the Middle East: Evidence from
a Field Experiment in Lebanon

Daniel Corstange JOP (1)

57 Marriages of Convenience: Explaining Party Mergers
in Europe

Raimondas Ibenskas JOP (2)

Continued on next page

20



Table E1 – continued from previous page

ID # Title Author(s)
Journal
(Issue)

58 Education and Voting Conservative: Evidence from a
Major Schooling Reform in Great Britain

John Marshall JOP (2)

59 The Intrastate Contagion of Ethnic Civil War Matthew Lane JOP (2)
60 Diffusion of International Border Agreements K. Chad Clay and Andrew P. Owsiak JOP (2)
61 Economists and Public Opinion: Expert Consensus and

Economic Policy Judgments
Christopher D. Johnston and Andrew O.
Ballard

JOP (2)

62 Disgust Sensitivity and Public Demand for Protection Cindy D. Kam and Beth A. Estes JOP (2)
63 Birth Legacies, State Making, and War Douglas Lemke and Jeff Carter JOP (2)
64 Power Sharing, Protection, and Peace Scott Gates, Benjamin A. T. Graham,

Yonatan Lupu, Håvard Strand, and Kaare
W. Strøm

JOP (2)

65 Does Immigration Induce Terrorism? Vincenzo Bove and Tobias Böhmelt JOP (2)
66 Presidential Success and the World Economy Daniela Campello and Cesar Zucco Jr. JOP (2)
67 It Is All about Political Incentives: Democracy and the

Renewable Feed-in Tariff
Patrick Bayer and Johannes Urpelainen JOP (2)

68 The Political Legacy of American Slavery Avidit Acharya, Matthew Blackwell, and
Maya Sen

JOP (3)

69 Mediating the Electoral Connection: The Information
Effects of Voter Signals on Legislative Behavior

John Henderson and John Brooks JOP (3)

70 Making Space for Women: Explaining Citizen Support
for Legislative Gender Quotas in Latin America

Tiffany D. Barnes and Abby Córdova JOP (3)

71 Priming Racial Resentment without Stereotypic Cues LaFleur Stephens-Dougan JOP (3)
72 Reconsidering the Neighborhood Effect: Does Expo-

sure to Residential Unemployment Influence Voters?
Perceptions of the National Economy?

Martin Bisgaard, Peter Thisted Dinesen,
and Kim Mannemar Sønderskov

JOP (3)

73 Holding Individual Representatives Accountable: The
Role of Electoral Systems

Lukas Rudolph and Thomas Däubler JOP (3)

74 News from the Other Side: How Topic Relevance Lim-
its the Prevalence of Partisan Selective Exposure

Jonathan Mummolo JOP (3)

75 A Better Life for All? Democratization and Electrifi-
cation in Post-Apartheid South Africa

Verena Kroth, Valentino Larcinese, and
Joachim Wehner

JOP (3)

76 Personality, Interpersonal Disagreement, and Electoral
Information

Jeffrey Lyons, Anand E. Sokhey, Scott D.
McClurg, and Drew Seib

JOP (3)

77 Democracy and the Concept of Personal Integrity
Rights

Daniel W. Hill Jr. JOP (3)

78 Intergroup Strategies as Contextually Determined: Ex-
perimental Evidence from Israel

Ryan D. Enos and Noam Gidron JOP (3)

79 Moderate as Necessary: The Role of Electoral Compet-
itiveness and Party Size in Explaining Parties? Policy
Shifts

Tarik Abou-Chadi and Matthias Orlowski JOP (3)

Continued on next page

21



Table E1 – continued from previous page

ID # Title Author(s)
Journal
(Issue)

80 Economic Hardship Triggers Identification with Disad-
vantaged Minorities

Gábor Simonovits and Gábor Kézdi JOP (3)

81 Group Empathy Theory: The Effect of Group Empathy
on US Intergroup Attitudes and Behavior in the Con-
text of Immigration Threats

Cigdem V. Sirin, Nicholas A. Valentino,
and José D. Villalobos

JOP (3)

82 Are Costly Signals More Credible? Evidence of
Sender-Receiver Gaps

Kai Quek JOP (3)

83 Political Context, Government Redistribution, and the
Public’s Response to Growing Economic Inequality

William W. Franko JOP (4)

84 Money in Exile: Campaign Contributions and Commit-
tee Access

Eleanor Neff Powell and Justin Grimmer JOP (4)

85 Do All Good Things Go Together? Development As-
sistance and Insurgent Violence in Civil War

Michael Weintraub JOP (4)

86 Bureaucratic Investments in Expertise: Evidence from
a Randomized Controlled Field Trial

Simon Calmar Andersen and Donald P.
Moynihan

JOP (4)

87 Sharing the Risk? Households, Labor Market Vulnera-
bility, and Social Policy Preferences in Western Europe

Silja Häusermann, Thomas Kurer, and
Hanna Schwander

JOP (4)

88 Strategic Retirements of Elected and Appointed Jus-
tices: A Hazard Model Approach

Todd A. Curry and Mark S. Hurwitz JOP (4)

89 Inequality and Electoral Accountability: Class-Biased
Economic Voting in Comparative Perspective

Timothy Hicks, Alan M. Jacobs, and J.
Scott Matthews

JOP (4)

90 Are We in the Same Boat or Not? The Opposite Effects
of Absolute and Relative Income Shifts on Redistribu-
tive Preferences

Vittorio Mérola and Agnar Freyr Helga-
son

JOP (4)

91 Mayoral Partisanship and Municipal Fiscal Policy Justin de Benedictis-Kessner and Christo-
pher Warshaw

JOP (4)

92 Estimating Vote-Specific Preferences from Roll-Call
Data Using Conditional Autoregressive Priors

Benjamin E. Lauderdale and Tom S. Clark JOP (4)

93 Partisanship by Invitation: Immigrants Respond to Po-
litical Campaigns

James A. McCann and Katsuo A.
Nishikawa Chávez

JOP (4)

94 Interpreting Regression Discontinuity Designs with
Multiple Cutoffs

Matias D. Cattaneo, Rocío Titiunik, and
Gonzalo Vazquez-Bare, and Luke Keele

JOP (4)

95 The Contraction Effect: How Proportional Representa-
tion Affects Mobilization and Turnout

Gary W. Cox, Jon H. Fiva, and Daniel M.
Smith

JOP (4)

96 Let’s Just Agree to Disagree: Dispute Resolution
Mechanisms in Coalition Agreements

Shaun Bowler, Thomas Bräuninger, Marc
Debus, and Indridi H. Indridason

JOP (4)

97 Time Is Power: The Noninstitutional Sources of Stabil-
ity in Autocracies

Scott Abramson and Carlos Velasco
Rivera

JOP (4)

22


	Introduction
	Assessing significance of differences
	The significance of differences interval
	Conveying statistical significance via SDIs
	The SDI vs. the DE approach

	Empirical SDIs
	Percentile-based SDIs
	The case of t distributions for unpaired and unequal samples

	The SDI for substantive significance
	A survey of the literature
	Conclusion
	Online Appendix Standard error-based SDIs
	The zd-score as a function of the standard error ratio

	Online Appendix Simulations on the performance of the SDI method
	Online Appendix Percentile-based SDIs
	Online Appendix SDIs for substantive significance
	An application to interaction effects between continuous variables

	Online Appendix The list of surveyed articles

