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BOIJ-SÖDERBERG DECOMPOSITIONS OF LEX-SEGMENT IDEALS

SEMA GÜNTÜRKÜN

ABSTRACT. Boij-Söderberg theory describes the scalar multiples ofBetti diagrams of graded modules
over a polynomial ring as a linear combination of pure diagrams with positive coefficients. There are a few
results that describe Boij-Söderberg decompositions explicitly. In this paper, we focus on the Betti diagrams
of lex-segment ideals. Mainly, we characterize the Boij-S¨oderberg decomposition of a lex-segment ideal
and describe it by using Boij-Söderberg decompositions ofsome other related lex-segment ideals.

1. INTRODUCTION

Boij-Söderberg is very recent theory which addresses the characterization of Betti diagrams of graded
modules in polynomial rings. It is originated in a pair of conjectures by Boij and Söderberg in [3] and
in [4] whose proof is given by Eisenbud and Schreyer in [6]. Their result gives a characterization of
Betti diagrams of graded modules up to scalar multiples. Formore information about Boij-Söderberg
theory, we refer to a very informative survey written by Fløystad in [8]. This theory brings up an idea of
decomposition of the Betti diagrams of graded modules whoseresolutions are not pure resolution. If the
resolution is pure, then the decomposition consists of onlyone pure diagram with a positive coefficient
as expected. There is not much known about the behavior of theBoij-Söderberg decomposition of an
ideal in a polynomial ring. Any characterization of Boij-S¨oderberg decompositions, either about Boij-
Söderberg coefficients or about the chain of the degree sequences associated with the pure diagrams,
would also assist us in understanding and interpreting the structural consequences of Boij-Söderberg
decomposition of the Betti diagrams. Although the theory isquite recent and has a lot of open problems,
improvements and contributions to this theory are quite impressive. Cook in [5] and Berkesch, Erman,
Kumini, and Sam in [1] discuss Boij-Söderberg theory in the perspective of poset structures. In [14],
Nagel and Sturgeon examine the Boij-Söderberg decomposition of some ideals that are raised from
some combinatorial objects. They show the combinatorial importance of the coefficients of the pure
diagrams in the Boij-Söderberg decompositions of their interest of ideals. In [10], results of Gibbons,
Jeffries, Mayes, Rauciu, Stone and White provide a relationbetween decomposition of the Betti diagrams
of complete intersections and degrees of their minimal generators. Another recent work is done by
Francisco, Mermin, and Schweig in [9]. In their paper, they study the behavior of the Boij-Söderberg
coefficients of Borel ideals.

For the sake of simplicity, the abbreviation BS is used for the Boij-Söderberg . In this paper, we study
the behavior of BS decompositions of lex-segment ideals andobtain a neat relation between the BS
decompositions of a given lex ideal and some other related lex ideals. Throughout the paper, our main
focus will be the BS chain of the degree sequences in the decomposition and we also provide a strong
correlation of the coefficients of the pure diagrams as well.The reason of why we are interested in the
BS decomposition of lex-segment ideals is based on the fact that lex ideals have very particular Betti
diagrams. The Bigatti-Hulett-Pardue, in [2, 13, 15], prove that the lex-segment ideals have the largest
Betti numbers among the ideals with the same Hilbert function. This pivotal property of lex-segment
ideals makes their BS decompositions worthy of study. Moreover, Eliahou-Kervaire formula gives a
nice formulation for the Betti diagram of lex ideals. The main goal is to obtain a pattern for the BS
decomposition of a lex ideal by using decompositions of someother related lex-segment ideals.

In what follows, letR = k[x, y, z] be a polynomial ring of3 variables, with the lexicographic order,
x >lex y >lex z andL be a lex-segment ideal inR. The idealL can be decomposed asL = xa + J
wherea is also a lex-segment ideal inR andJ is a lex-segment ideal ink[y, z]. The first main result
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of this paper describes the “beginning” of the BS decomposition of L in terms of the decomposition
of a. The algorithm of BS decomposition itself provides a chain of degree sequences. The first degree
sequence in the chain is the top degree sequence of the Betti diagram ofL. By the algorithm, the second
degree sequences is the top degree sequence of the remainingdiagram after the subtraction of the first
pure diagram with a suitable coefficient from the Betti diagram. It continues until the Betti diagram is
decomposed completely. Thus, by saying that the “beginning” of the BS decomposition, we mean the
several degree sequences, that is pure diagrams, are obtained in the beginning of the BS decomposition
of L. We now state our first result.

Theorem 1.1. LetR = k[x, y, z] andL be a lex-segment ideal of codimension3 in R. Suppose1 6= a =
L : (x). Write the Boij-S̈oderberg decomposition ofa as

β(a) =

t∑

i=0

αiπdi +Ra,

whered0 < d
1 < ... < d

l < ... < d
t are all top degree sequences of length3, that is,di = (di0, d

i
1, d

i
2)

for i = 0, 1, ..., t, andRa is the linear combination of the pure diagrams greater thatπdt . Then the
Boij-Söderberg decomposition ofL has the form

β(L) =

t∑

i=0

α̃iπd̄i +RL

whered̄i = d
i + 1 = (di0 + 1, di1 +1, di2 +1), andα̃i = αi for i = 0, 1, ..., t andα̃t ≥ αt, andRL is a

linear combination of pure diagrams greater thanπ
d̄t .

The second main result in this article is devoted to the pure diagrams - that is to say, degree sequences
- of the BS decomposition of the Betti diagrams ofL and(J, x) = (L, x) in the polynomial ringR =
k[x, y, z]. Like in Theorem1.1, we notice some similarities of the BS decompositions of lexidealL and
(L, x). We reveal that the entire part of the BS decomposition of(L, x) containing all pure diagrams of
length less than3 shows up precisely at the end of the BS decomposition ofL. That is, all pure diagrams
of length less than3 are exactly the same with the coefficients. In particular, weprove that

Theorem 1.2.LetL ⊂ R = k[x, y, z] be an Artinian lex-segment ideal of codimension3. Suppose thatL
cannot be decomposed asL = x(x, y, zt)+J whereJ is different from(y, z)Gmin(J) and1 < t < k−1.

Leta = L : (x) be a lex-segment ideal ofR. ThenL = xa+ J whereJ ∈ k[y, z] is a stable ideal of
codim 2. The ideal(J, x) = (L, x) is also acodim 3 Artinian, lex-segment ideal inR.

β(L, x) = R(L,x) +
n∑

i=t+1

αiπdi

wheredt+1 < d
t+2 < ... < d

n are all top degree sequences of length less than3, with the coefficients
αi, i = t + 1, ..., n. R(L,x) is the linear combination of the pure diagrams associated with the degree
sequences of length3.

Then the BS decomposition ofL is

β(L) = RL +

n∑

i=t+1

αiπdi

where the chaindt+1 < d
t+2 < ... < d

n of degree sequences of length2 and1 exactly with the same co-
efficientsαi andRL is the linear combination of the pure diagrams associated with the degree sequences
of length3.

As a plan of this paper, we first discuss some useful relationsof the Betti numbers of the idealsL,
a andJ in section2. We also describe the entire Betti diagram of the lex idealL in terms of the Betti
numbers of the colon ideala = L : (x) and the stable idealJ in the same section. In section3, we give
the proof of Theorem1.1which gives the relation between the beginning of the BS decompositions ofL
anda. Proof of Theorem1.2is given in section4.
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Combining the results of Theorems1.1 and1.2, in the case ofR = k[x, y, z], we give the following
diagram to summarize nicely the relation between the degreesequences in the BS decompositions ofL
and the idealsa and(L, x).

The chain of
degree sequences

of L
=







all length3
degree sequences

coming from
a(−1)






<





more length3
degree sequences

(section5)



 <







all length< 3
degree sequences

coming from
(L, x)






.

We will see that, most of the time, the decompositions ofa and(L, x) may not enough to cover all pure
diagrams in the decomposition ofL since there might be some pure diagrams of length3 which may not
obtained by the ideala.

One naturally hopes to obtain a description of the entire BS decomposition of lex-segment idealL
in terms of some other related ideals. Section5 includes further observations for a possible way to
describe the entire BS chain of degree sequences in the BS decomposition ofL. The lexicographic order
x >lex y >lex z makes us think about the colon idealsb = L : (y) andc = L : (z). As in the case
a = L : (x) in section3, one may expect similar results for the lex idealsb andc. Indeed, the examples
show that there is a relation between the BS decompositions of the lex idealL and the colon idealsb and
c. This allows us to give an almost full description of the purediagrams appearing in the decomposition
of L.

2. BACKGROUND AND PRELIMINARIES

Throughout this section we assume thatR is a graded polynomial ring withn < ∞ variables over a
field k with each variable has degree one. In the case ofn = 3, we will see the description of the Betti
diagramL = xa+ J in terms of the Betti numbers ofa andJ .

LetM be a gradedR-module. The minimal graded free resolution ofM is written as

F : 0 → Fn → . . . → Fi → . . . → F1 → F0 → M → 0

where

Fi =
⊕

α≥0

R(−α)βi,α .

The numbersβi,α are the Betti numbers ofM and are considered in the Betti diagramβ(M) of M whose
entry in rowi and columnj is βi,i+j . Let d = (d0, d1, ..., dn−1) ∈ Zn

≥0 be a sequence of non-negative
integers of lengthn+1 with d0 < ... < dn−1. The graded free resolution ofM is called apure resolution
of typed = (d0, ..., di, ..., dn−1) if, for all i = 0, 1, ..., n − 1, thei-th syzygy module ofM is generated
only by elements of degreedi, in other words, all Betti numbers are zero exceptβi,di(M). Then the Betti
diagram of this module is called apure diagram of typed. The formula for the pure diagram associated
by d is based on the Herzog-Kühl equations introduced in [12],

βi,α =







λ
n−1∏

i=0,i 6=k

1

|di − dk|
if α = di

0 otherwise
whereλ ∈ Q>0.

We define a partial order on the degree sequences so thatd
s < d

t if dsi ≤ dti for all i = 0, 1, ..., n − 1.
The order on the degree sequences induces an order of the purediagramsπds < πdt if ds < d

t. The BS
decomposition of a Betti diagram of anR- module is a linear combination of pure diagrams with positive
coefficients.

Algorithm 2.1 (Boij-Söderberg Decomposition Algorithm). The algorithm to decompose for a given
(non-pure) Betti diagram has the following steps

(1) Determine the top degree sequenced = (d0, ..., di, ..., dn−1) of the Betti diagram of theR-
moduleM , sayβ(M).
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(2) Determine the coefficientα of the pure diagramπd by

min

{
βi,di(M)

βi,di(πd)
, for i = 0, 1, .., n − 1

}

.

(3) Subtractαπd from the Betti diagramβ(M) so that the new entries will be all positive.
(4) Repeat the first and second steps for the remaining diagramβ(M)−απd until the Betti diagram

is completely decomposed into pure diagrams.

Thus the BS decomposition of a gradedR-moduleM gives an ordered decomposition of the Betti
diagram,

β(M) =
∑

s

asπds whereπds < πdt if s < t.

Example 2.2. For instance, letI = (x2, xy, xz, y2) be an ideal ink[x, y, z], the BS decomposition of
R/I is given as

β(R/I) = (8)πd0 + (4)πd1

where

πd0 =

0 1 2 3
0 1

24 - - -
1 - 1

4
1
3

1
8

< πd1 =

0 1 2
0 1

6 - -
1 - 1

2
1
3

asd0 = (0, 2, 3, 4) < d
1 = (0, 2, 3).

Consider a monomial idealI in R. We will denote the set of minimal monomial generators ofI by
G(I). ThenG(I)i will denote the subset ofG(I) containing the minimal generators of degreei. The
notationGmin(I) will be used for the initial degree of the monomials inI andGmax(I) will stand for
the maximum degree of the monomials inG(I) throughout the paper. We next state the definitions of
graded lexicographic monomial order and lex-segment ideal.

Definition 2.3. Let m = xs11 ...xsnn andn = xt11 ...x
tn
n be two monomials inR = k[x1, ..., xn]. If either

degm > deg n or degm = deg n andsi − ti > 0 for the first indexi such thatsi − tt 6= 0, then it is said
thatm >glex n in graded lexicographic order.

Definition 2.4. LetR be a polynomial ring andL be a monomial ideal inR generated by the monomials
m1, ...,ml. The idealL is called alex-segment ideal(lexicographic ideal, or lex ideal) inR if for each
monomialm ∈ R the existence of somemi ∈ G(L) with m >glex mi anddeg(m) = deg(mi) implies
m ∈ L.

For simplicity, we will use> for the lex order>glex unless the order is different than lexicographic
order. In this section, we make some observations about the Betti diagrams of lex-segment ideals. We
aim to get some correlations between Betti numbers of the lexidealsL = xa + J , a = L : x andJ in
k[x, y, z]. Next lemma shows that the colon ideala is also a lex-segment ideal ink[x, y, z].

Lemma 2.5. LetL be a lex-segment ideal inR = k[x1, .., xn]. Consider the colon idealsai = L : (xi),
for i = 1, ..., n. Then eachai is also a lex-segment ideal inR.

Proof. Letm′ ∈ ai be a monomial, for anyi = 1, ..., n. Letm be a monomial inR anddegm = degm′

andm >glex m′. Thenxim′ ∈ L asai = L : (xi), andxim >glex xim
′. This impliesxim ∈ L and

hencem ∈ L : (xi) = ai. �

Letu be a monomial inR = k[x1, .., xn], we definem(u) to be the largest indexi such thatxi divides
u. Recall that a monomial idealI is said to bestableif, for every monomialu ∈ G(I) and alli < m(u),
xiu/xm(u) is also inG(I).

Next we quote a proposition from [7].

Proposition 2.6. (Eliahou-Kervaire formula) Let I ⊂ R be a stable ideal. Then

(a) βi,i+j(I) =
∑

u∈G(I)j

(
m(u)−1

i

)
,

(b) proj dimR/I = max{m(u) : u ∈ G(I)},
(c) reg (I) = max{deg (u) : u ∈ G(I)}.
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From now on, we always assumen = 3, that is,R = k[x, y, z] unless otherwise is stated. We follow
with a lemma that indicates the relation between the minimalgenerators of idealsL = xa+J , a = L : x
andJ . Then the next lemma provide a crucial short exact sequence of these ideals.

Lemma 2.7. If L is lex-segment ideal inR, then there are unique monomial idealsa ⊂ R andJ ⊂ k[y, z]
such thatL = xa+J . Moreover, the ideala is also a lex-segment ideal sincea = L : (x) andJ is stable
in R, andG(L) = xG(a) ∪G(J).

Proof. The proof follows immediately from the fact thatL is a lex-segment ideal with graded lex order
x > y > z. �

Lemma 2.8. Let0 → F1 → F0 → J and0 → G2 → G1 → G0 → a be graded free resolutions for the
idealsJ anda. If L = xa+J , then there is a short exact sequence0 → J(−1) → a(−1)⊕J → L → 0.
Moreover,

0 → G2(−1)⊕ F1(−1) → G1(−1)⊕ F1 ⊕ F0(−1) → G0(−1)⊕ F0 → L

is the graded minimal free resolution ofL.

Proof. The form of the lex-segment idealL implies the short exact sequence0 → J(−1) → a(−1) ⊕
J → L → 0. The mapping cone for the short exact sequence provides a free resolution forL. Let
m ∈ G(a) ∩ G(J). Thenm ∈ G(J) implies eitherm = ym′ or m = zm′ for some monomial
m′ ∈ k[y, z]. As L is a lex-segment ideal andm ∈ L, xm′ ∈ G(L). Som′ ∈ G(a). Thereforem is
divisible bym′ andm cannot be a minimal generator ofa. Therefore the idealsJ anda do not have
common minimal generators. This tells us that there is no cancellation in the mapping cone structure. So
the resulting graded free resolution forL is minimal. �

We now analyze the Betti numbers of the idealsL, a = L : (x) andJ . We know that the lex-segment
idealsL anda are stable and in addition to this,J is a lex ideal ink[y, z]. Thus, Eliahou-Kervaire formula
gives rise to the following decomposition,

βi,i+j(L) =
∑

u∈G(L)j

(
m(u)−1

i

)
=

∑

u∈G(L)j
x|u

(
m(u)− 1

i

)

︸ ︷︷ ︸

+
∑

u∈G(L)j
x∤u

(
m(u)− 1

i

)

︸ ︷︷ ︸

= βi,i+j−1(a) sayDi,i+j

We name the initial degree ofJ , Gmin(J) := k and the Betti numbers ofβ(a) andβ(J) as

ai,i+j := βi,i+j(a), andci,i+j := βi,i+j(J).

The following lemmas provide some relations and identitiesabout the Betti numbers ofL, a. They help
us to describe the entire Betti diagram ofL with respect to the Betti numbers ofa andJ .

Lemma 2.9. AsL = xa + J in R = k[x, y, z], if Gmin(L) ≥ 2, thenGmin(L) = Gmin(a) + 1 by
stability of the idealsL anda = L : (x) 6= 1.

Lemma 2.10. The Eliahou-Kervaire formula gives the following identities for the Betti numbers of the
J

• c0,k = c1,k+1 + 1,
• c0,j = c1,j+1 for all j ≥ k + 1,
• if c0,k = k + 1 thenc1,k+1 = k andci,i+j = 0 for all i = 0, 1 andj ≥ k + 1.

We know thatβi,i+j(L) = ai,i+j−1 +Di,i+j. Thus, it follows that

Di,i+j =

{

0, whenj ≤ k − 1,

βi,i+j(J, x), whenj ≥ k.

That is,D0,j = c0,j ,D1,j+1 = c0,j + c1,j+1, and D2,j+2 = c1,j+1.
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Lemma 2.11.Gmin(J) ≥ Gmax(a) + 1 whereJ 6= 0.

Proof. SayGmax(a) = t. Supposek = Gmin(J) < t, thenyk ∈ G(L)k. So, by lex-order, all monomials
u of degree k divisible byx are inL. Thus,u is in the formxiyjzs wherei ≥ 1, i + j + s = k. As
Gmax(a) = t > k, there is a minimal generatorv ∈ L of degreet+1 such thatx|v. Therefore,v can be
written asv = w1 ·w2 wherew1 andw2 are two monomials such thatdegw1 = k andw2 is not divisible
by x anddegw2 = t− k + 1. Since all degreek monomials divisible byx are inL, w1 is in L and sov
cannot be a minimal generator. Thusk ≥ t.

Now, we need to show that the equality is not possible, i.e.k = t is not possible. We prove this by
contradiction. To this end, supposek = t. Soyk is a minimal generator inL and sincet = k we can
find at least one minimal generatoru of a with degreek. Thenxu becomes a minimal generator inL of
degreek+1. As all monomialsv of degreek divisible byx are inL then there is a monomialw such that
v = xw andw|u. This contradicts thatu is a minimal generator ofa. Hencek 6= t. i.e. k ≥ t+ 1 �

Suppose Betti diagrams fora andJ are

β(a) 0 1 2
1 a0,1 a1,2 a2,3
2 a0,2 a1,2 a2,4
...

...
...

...
k − 1 a0,k−1 a1,k a2,k+1

and

β(J) 0 1
k c0,k c0,k − 1

k + 1 c0,k+1 c0,k+1
...

...
...

Gmax(J) c0,Gmax(J) c0,Gmax(J)

,

TABLE 1. The Betti diagrams ofa andJ .

Therefore the short exact sequence in Lemma2.8 together with all other Lemmas2.7, 2.9 and2.11we
discuss in this section yield that the Betti diagram forL has the following form:

β(L) 0 1 2
2 a0,1 a1,2 a2,3
3 a0,2 a1,2 a2,4
...

...
...

...
k − 1 a0,k−2 a1,k−1 a2,k
k a0,k−1 + c0,k a1,k + 2c0,k − 1 a2,k+1 + c0,k − 1

k + 1 c0,k+1 2c0,k+1 c0,k+1
...

...
...

...
Gmax(L) = Gmax(J) c0,Gmax(L) 2c0,Gmax(L) c0,Gmax(L)

TABLE 2. The Betti diagram ofL

If the Betti diagrams of the idealsa andJ “overlap” then they do only at thekth row of theβ(L) as in
the above diagram. In other words, the Betti numbers ofβ(L) in thekth row may be expressed in terms
of both the Betti numbers ofβ(a) andβ(J) in theirk − 1th and first row, respectively.

3. THE BOIJ-SÖDERBERGDECOMPOSITIONS OFL AND L : (x)

In this section we prove Theorem1.1. Let d0 < d
1 < ... < d

i < ... < d
t be the BS chain of

all length 3 top degree sequences fora = L : (x). Suppose the chain of the firstt + 1 top degree
sequences of the BS decomposition of the Betti diagram ofL is d̄

0 < d̄
1 < ... < d̄

i < ... < d̄
t. Then

d̄
i = d

i + 1 = (di0 + 1, di1 + 1, di2 + 1) for all i = 0, 1, ..., t with exactly the same coefficients, except
possibly the coefficient ofπ

d̄t .
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Recall that, for a given top degree sequenced = (d0, d1, d2), the “normalized” pure diagramπd can
be obtained as

βi,i+j(πd) =







0 if i+ j 6= di

λ
2∏

r=0,r 6=i

1
|di−dr |

if i+ j = di, whereλ = lcm

(
2∏

r=0,r 6=i

|di − dr|, i = 0, 1, 2

)

.

Thus, this formula provides pure diagrams with integer entries. From now on, pure diagrams have integer
entries. Letd0 = (d00, d

0
1, d

0
2) be the top degree sequence for the Betti diagram ofa. if d02 < k+1, that is,

d00 < d01 < d02 < k+1, sod00 < k− 1 then we see thatβi,i+j(a) = βi,i+j+1(L) for all j = 0, 1, ..., k− 2
as in the table2. This essentially follows from the fact that the Betti diagrams ofa andJ may only
overlap on thek-th row in the Betti diagram ofL. AsL = xa+ J and degree shift due to multiplication
by x the top degree sequence ofβ(L) will be d

0 + 1. Thusβ(L) − α0πd0+1 becomes the first step of
the BS-decomposition ofβ(L). In fact, we could repeat this process for all degree sequenced

s such that
ds2 < k + 1.

Supposeds2 < k + 1 for s = 0, 1, ..., l − 1 andds2 ≤ k + 1 for s ≥ l for somel > 0. So we assume
that the next degree sequence afterd

l−1 is d
l = (dl0, d

l
1, d

l
2 = k + 1). Therefore, afterl steps in the

decomposing bothβ(a) andβ(L), we would get the remaining diagrams

β(a) −
l−1∑

s=0

αsπds =: β̃(a) and β(L)−
l−1∑

s=0

αsπds+1 =: β̃(L).

Let dl = (dl0, d
l
1, d

l
2) be the next top degree sequence of the Betti diagram fora anddl2 = k + 1 so

above paragraph shows thatd
l + 1 becomes the next top degree sequence of Betti diagram forL. Then

the remaining diagram after the firstl steps of the BS decompositions for botha andL look like as
following,

β(a) −
l−1∑

s=0
αsπds =

β̃(a) 0 1 2
dl0 β̃0,dl

0
(a) - -

...
...

...
...

dl1 − 1 a0,dl
1−1 β̃1,dl

1
(a) -

...
...

...
...

dl2 − 2 = k − 1 a0,dl
2−2 a1,dl

2−1 a2,dl
2

TABLE 3. Remaining diagram afterl steps forβ(a)

and similarly,

β(L)−
l−1∑

s=0
αsπds+1 =

β̃(L) 0 1 2
dl0 + 1 β̃0,dl

0+1(L) - -
...

...
...

...
dl1 a0,dl

1−1 β̃1,dl
1+1(L) -

...
...

...
...

dl2 − 1 = k a0,dl
2−2 + c0,dl

2−1 a1,dl
2−1 + c0,dl

2−1 + c1,dl
2

β̃2,dl
2+1(L)

dl2 c0,dl
2

c0,dl
2
+ c1,dl

2+1 c1,dl
2+1

...
...

...
...

TABLE 4. Remaining diagram afterl step forβ(L).
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By construction ofβ(L), we deduce that

β̃0,dl
0
+1(L) = β̃0,dl

0
(a) as dl0 + 1 < k,

β̃1,dl
1
+1(L) = β̃1,dl

1
(a) as dl1 < k, and

β̃2,dl
2
+1(L) = a2,dl

2
+ c1,dl

2
as dl2 − 1 = k.

The algorithm2.1exposes the coefficient of the pure diagramπdl to be

αl = min

{
β̃0,dl

0
(a)

β0,dl
0
(πdl)

,
β̃1,dl

1
(a)

β1,dl
1
(πdl)

,
a2,dl

2

β2,dl
2
(πdl)

}

.(3.1)

and similarly for the BS-decomposition ofβ(L) there is a rational number̃αl as the coefficient of the
pure diagramπdl+1 such that

α̃l = min

{
β̃0,dl

0
(a)

β0,dl
0
(πdl)

,
β̃1,dl

1
(a)

β1,dl
1
(πdl)

,
a2,dl

2
+ c1,dl

2

β2,dl
2
(πdl)

}

(3.2)

Hence we just need to look at thek-th row of the Betti diagram ofL if β(a) andβ(L) overlap. Thus, we
only need to think about the top degree sequencesds of length3 of β(a) such thatds2 = k + 1.
Case 1: Let a2,k+1 be eliminated in the(l + 1)-th step of the decomposition algorithm ofβ(a). In
other words,dl = (dl0, d

l
1, d

l
2) is of length3, whereasdl+1 = (dl+1

0 , dl+1
1 ) has length2. It shows that

d
0 < d

1 < ... < d
i < ... < d

l are all length3 degree sequences in the decomposition ofβ(a). Hence,
BS decomposition ofβ(a) is

β(a) =

l∑

s=0

αsπds + [all pure diagrams of length less than3].

Recall that we only focus on the degree sequences of length three. Since the length ofdl+1 is two, we
do not need to pay attention to the(l + 2)-th step in the decomposition. Besides that the table4 already
shows thatdl + 1 is top degree sequence of the remaining diagram ofL, β̃(L). Therefore, the first
(l + 1)-th top degree sequences of Boij-Söderberg decompositionof β(L) is

d
0 + 1 < d

1 + 1 < ... < d
l + 1

where the coefficients̃αi = αi for i = 0, 1, ..., l − 1.
Case 2: Suppose thata2,k+1 is not eliminated in the(l + 1)-th step of the decomposition ofβ(a).
Moreover we assume that it will vanish in the(t + 1)-th step for somet > l. That is, the chain of the
degree sequences in the BS decomposition ofβ(a) is

d
0 < d

1 < ... < d
l < ... < d

t < ... < d
n

where

• for s = 0, 1, ..., l − 1, d
s = (ds0, d

s
1, d

s
2) has length3 such thatds2 < k + 1,

• for s = l, ..., t, d
s = (ds0, d

s
1, d

s
2) has length3 such thatds2 = k + 1,

• for s = t+ 1, ..., n, d
s = (ds0, d

s
1) has length2.

As the entries only above the(k−1)-th row are eliminated until the(t+1)-th step of the decomposition,
it is easy to observe the remaining diagram ofL. In table2, we have seen that the entries of bothβ(a)
andβ(L) above thek-th row are the same. Therefore, the remaining diagram ofβ(a) after subtracting
the firstt pure diagrams is
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β(a)−
t−1∑

s=0
αsπds =

β̃(a) 0 1 2
dt0 β̃0,dt

0
(a) - -

...
...

...
...

dt1 − 1 a0,dt
1−1 β̃1,dt

1
(a) -

...
...

...
...

dt2 − 2 = k − 1 a0,dt
2−2 a1,dt

2−1 β̃2,dt
2
(a)

whereβ̃i,dti (a) = βi,dti(a)−
t−1∑

s=0
αsβi,dti(πd

s), for i = 0, 1, 2. Furthermore, as in (3.1) and (3.2), we have

similar relations between the coefficients in both BS decomposition ofβ(a) andβ(L) during their firstt
steps. The coefficients of the pure diagramsπds in the decomposition ofβ(a) for s = l, ..., t− 1 is

αs = min

{

β̃i,dsi (a)

βi,dsi (πds)
, for i = 0, 1, 2

}

.

Similarly, the corresponding coefficient̃αs of the pure diagramπds+1 in the decomposition ofβ(L)
becomes

α̃s = min

{

β̃i,dsi+1(L)

βi,dsi+1(πds+1)
, for i = 0, 1, 2

}

= min

{

β̃0,ds
0
(a)

β0,ds
0
(πds)

,
β̃1,ds

1
(a)

β1,ds
1
(πds)

,
β̃2,ds

2
(a) + c1,ds

2

β2,ds
2
(πds)

}

.

We assume that any of the entries of the corresponding todsi for i = 0, 1 is eliminated wheres =
l, .., t− 1. Thus

αs <
β̃2,ds

2
(a)

β2,k+1(πds)
, where ds2 = k + 1.

So it follows that
β̃2,ds

2
(a)

β2,k+1(πds)
<

β̃2,ds
2
(a) + c1,k+1

β2,k+1(πds)
.

Henceα̃s = αs for s = l, ..., t− 1. However, this equality may not be true for the coefficientsαt andα̃t

sinceβ̃2,dt
2
(a) will be eliminated in the next step. Soαt ≤ α̃t. Hence the remaining diagram ofβ(L) is

β̃(L) := β(L) −
t−1∑

s=0
αsπds+1 =

0 1 2
dt0 + 1 β̃0,dt

0+1(L) - -
...

...
...

...
dt1 a0,dt

1−1 β̃1,dt
1+1(L) -

...
...

...
...

dt2 − 1 = k a0,dt
2−2 + c0,dt

2−1 a1,dt
2−1 + c0,dt

2−1 + c1,dt
2

β̃2,dt
2
(L)

k + 1 c0,k+1 c0,k+1 + c1,k+2 c1,k+2

...
...

...
...

where

β̃0,dt
0
+1(L) = β̃0,dt

0
(a) as dt0 + 1 < k,

β̃1,dt
1
+1(L) = β̃1,dt

1
(a) as dt1 < k, and

β2,dt
2
+1(L) = β̃2,dt

2
(a) + c1,dt

2
as dt2 − 1 = k.

This will bring us back toCase 1; dt = (dt0, d
t
1, d

t
2) is the last top degree sequence of length3 in the

BS decomposition ofβ(a). The remaining diagram above clearly shows us thatd
t + 1 = (dt0 + 1, dt1 +

1, dt2 + 1) shows up as a degree sequence in the BS decomposition ofβ(L) in the next step.
As a summary, ifd0 < d

1 < ... < d
t is the chain of the all top degree sequences of length3 in

the BS-decomposition ofβ(a) with coefficientsαs for s = 0, 1, .., t. Thend0 + 1 < d
1 + 1 < ... <
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d
t + 1 becomes the firstt top degree sequences of length3 in the BS-decomposition ofβ(L) with

α̃s = αs if s < t andα̃t ≥ αt.
Hence we have shown that the ”beginnings“ of the chain of the degree sequences in the BS decom-

positions ofβ(L) = xa + J andβ(a) are identical. We believe that there is a analogous result for a
lex-ideal ink[x1, ..., xn].

Remark3.3. Let L = (x1)a + J in R = k[x1, x2, ..., xn] be a lex-segment ideal, thena is also lex-
segment ideal inR andJ turns out to be a stable ideal ofcodimn− 1 in k[x2, ..., xn].

Suppose

Fn−1 −→· · · −→Fi −→· · · −→F1 −→J −→0

Gn −→· · · −→Gi −→· · · −→G1 −→a −→ 0

are the minimal free resolutions ofJ anda, respectively. We get the same short exact sequence in
Lemma2.8, then by mapping cone we have the following minimal free resolution forL

0 → Gn(−1)⊕ Fn−1(−1) → ... → G2(−1) ⊕ F2 ⊕ F1(−1) → G1(−1)⊕ F1 → L.

So it yields

βi,i+j(L) =







βi,i+j−1(a) where i = 0, 1, ..., n − 1 and i+ j < Gmin(J),

βi,i+j−1(a) +
i∑

t=i−1
βt,j+t(J) wherei = 0, 1, ..., n − 1 and i+ j ≥ Gmin(J).

By using lex-order properties ofL anda, as we did in casen = 3, we conclude that the Betti diagrams
of a andJ either overlap only on theGmin(J)-th row of the Betti diagram ofL or do not overlap at all.
Identify k := Gmin(J). Therefore, the Betti diagram ofL in k[x1, ..., xn] is

β(L) 0 1 2 ... n-1
2 a0,1 a1,2 a2,3 ... an−1,n

3 a0,2 a1,3 a2,4 ... an−1,n+1
...

...
...

... ...
...

k − 1 a0,k−2 a1,k−1 a2,k ... an−1,k+n−3

k a0,k−1 + c0,k a1,k + c0,k + c1,k+1 a2,k+1 + c1,k+1 + c2,k+2 ... an−1,k+n−2 + cn−1,k+n−1

k + 1 c0,k+1 c0,k+1 + c1,k+2 c1,k+2 + c2,k+3 ... cn−1,k+n−1
...

...
...

... ...
...

Gmax(L) = Gmax(J) c0,Gmax(L) c0,Gmax(L) + c1,Gmax(L)+1 c1,Gmax(L)+1 + c2,Gmax(L)+2 ... cn−1,Gmax(L)+n−1

TABLE 5. Betti diagram ofL in k[x1, ..., xn]

Henceforth, proof of Theorem1.1can be easily modified for the polynomial ring ofn variables.

Corollary 3.4. Let L = (x1)a + J in R = k[x1, x2, ..., xn] be a lex-segment ideal. Ifπd0 < πd1 <
... < πdt are all pure diagrams of lengthn in the BS decomposition ofa, wheredi = (di0, d

i
1, ..., d

i
n−1)

for i = 0, 1, ..., t. Then the chain of pure diagrams

π
d̄0 < π

d̄1 < ... < π
d̄t

appears in the beginning of the BS decomposition ofL such that

d̄
i = d

i + 1 = (di0 + 1, di1 + 1, .., din−1 + 1).
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4. THE BOIJ-SÖDERBERGDECOMPOSITION FORL AND (L, x)

In Theorem1.1, we have showed that ifπdi , a type-di = (di0, d
i
1, d

i
2) pure diagram, appears as a

summand in the BS decomposition ofβ(a) then,π(d+1)i for (d+ 1)i = (di0+1, di1+1, di2+1) show up
as thei-th summand of the BS decomposition ofβ(L), with the same BS coefficient possible except for
the last one. In this section, we now consider the end of the BSdecomposition ofL in R = k[x, y, z] and
show that all degree sequences of length less than3 in the decomposition ofβ(L, x) = β(J, x) occurs
precisely as all degree sequences of length less that3 in the decomposition forL. We prove our claim
for all Artinian lex-segment idealsL = a(x) + J except the ones of the formL = x(x, y, zt) + J where
J is different that(y, z)Gmin(J) and1 < t < k− 1. The main idea of proof is induction whose base step
also requires some tedious case analyzing of the decompositions of bothβ(L) andβ(L, x). Then finally
schemes of case analyzing help us to demonstrate how all degree sequences of length less than3 for both
L and(L, x) coincide entirely with their coefficients.

Furthermore, we conjecture that the statement of the Theorem 1.2is also true forL = x(x, y, zt)+J ,
whereas proof of that situation requires a case analyzing which becomes infeasible.

4.1. Decomposing the Betti diagram of(L, x). First we observe that the same pure diagramsπd, for
all d of length less than3, as in the decomposition of the Betti diagram ofL. To show this, it suffices to
check on the remaining diagrams after several steps of the decomposition algorithm for(L, x). We also
notice that, for alli > k, i-th row of the Betti diagram of(L, x) has the form|c0,i , 2c0,i+1 c0,i| where
c0,i < k.

SayGmax(L, x) = Gmax(L) = Gmax(J) =: n. Assumek = Gmin(J) > 2 andn ≥ k + 1. Then
the Betti diagram of the lex ideal(L, x) is

β(L, x) =

0 1 2

1 1 − −
2 − − −
...

...
...

...
k − 1 − − −

k c0,k 2c0,k − 1 c0,k − 1

k + 1 c0,k+1 2c0,k+1 c0,k+1

...
...

...
...

n c0,n 2c0,n c0,n

First degree sequence isd̄0 = (1, k + 1, k + 2), then we haveβ(L, x) − γ0πd̄0 where

π
d̄0 =

0 1 2
1 1 − −

.

.

.
.
.
.

.

.

.
.
.
.

k − k + 1 k

and γ0 = min

{

1,
2c0,k − 1

k + 1
,
c0,k − 1

k

}

=
c0,k − 1

k
.

Notice that Artinian lex ideal property ofL yieldsc0,k ≤ k + 1. Thus c0,k−1
k

≤ 1.
If c0,k = k + 1, i.e.Gmax(L) = k, then the BS decomposition of(L, x) becomes

β(L, x) = (1)π(1,k+1,k+2) + (k)π(k,k+1) + (1)π(k).

If c0,k < k + 1, then c0,k−1
k

< 1. Therefore, the remaining diagram after the first step becomes
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β(L, x) − γ0πd̄0 =

0 1 2

1 1−
c0,k − 1

k
- -

...
...

...
...

k c0,k
(k − 1)c0,k + 1

k
-

k + 1 c0,k+1 2c0,k+1 c0,k+1

...
...

...
...

n c0,n 2c0,n c0,n

Then the next pure diagram is

π
d̄1 =

0 1 2
1 2 − −

.

.

.
.
.
.

.

.

.
.
.
.

k − k+ 2 −

k + 1 − − k

for d̄
1 = (1, k + 1, k + 3).

The coefficient forπ
d̄1 is

γ1 = min

{
1

2
−

c0,k − 1

2k
,
c0,k(k − 1) + 1

k(k + 2)
,
c0,k+1

k

}

.

Case I: Let

γ1 =
1

2
−

c0,k − 1

2k
.

This is implied by the following inequalities;

k

3
+ 1 ≤ c0,k and2c0,k+1 + c0,k > k + 1.

Thus the algorithm eliminates the entryβ0,1(L, x)and the remaining diagram is

β(L, x)−

(
c0,k − 1

k

)

π(1,k+1,k+2) −

(
1

2
−

c0,k − 1

2k

)

π(1,k+1,k+3)

=

0 1 2

k c0,k
3c0,k − k − 3

2
−

k + 1 c0,k+1 2c0,k+1 c0,k+1 − k(
1

2
−

c0,k − 1

2k
)

...
...

...
...

n c0,n 2c0,n c0,n

Next if d̄2 = (k, k + 1, k + 3) and then the coefficient of the pure diagramπ(k,k+1,k+3) becomes

γ2 = min

{
c0,k
2

,
3c0,k − k − 3

6
, c0,k+1 −

k + 1− c0,k
2

}

.

This creates two possible sub-cases and we observe the remaining diagrams for each case;

Case I.1:If γ2 =
3(c0,k−1)− k

6
which is a result ofk3 < c0,k+1, then we obtain

β(L, x)− γ0πd̄0 − γ1πd̄1 − γ2πd̄2 =

0 1 2
k k

3 + 1 - -
k + 1 c0,k+1 2c0,k+1 c0,k+1 −

k
3

...
...

...
...

n c0,n 2c0,n c0,n
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Case I.2:If γ2 = c0,k+1 −
k+1−c0,k

2 asc0,k+1 <
k
3 , then

β(L, x) − γ0πd̄0 − γ1πd̄1 − γ2πd̄2 =

0 1 2
k k + 1− 2c0,k k − 3c0,k+1 -

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 c0,k+2

...
...

...
...

n c0,n 2c0,n c0,n

Case II: Let

γ1 =
c0,k(k − 1) + 1

k(k + 2)
,

because
k

3
+ 1 > c0,k and(k − 1)c0,k + 1 < (k + 2)c0,k+1.

Then the algorithm gives

β(L, x) −

(
c0,k − 1

k

)

π(1,k+1,k+2) −

(
c0,k(k − 1) + 1

k(k + 2)

)

π(1,k+1,k+3)

=

0 1 2

1 1−
k − 3(c0,k − 1)

k + 2
- -

...
...

...
...

k c0,k - -

k + 1 c0,k+1 2c0,k+1 c0,k+1 −
(k − 1)c0,k + 1

k + 2
...

...
...

...
n c0,n 2c0,n c0,n

The next top degree sequence isd̄
2 = (1, k + 2, k + 3) and its coefficient is

γ2 = min
{k − 3(c0,k − 1)

k + 2
,
2c0,k+1

k + 2
,
c0,k+1

k + 1
−

(k − 1)c0,k + 1

(k + 1)(k + 2)

}

.

Therefore, it splits into two sub-cases :

Case II.1: γ2 =
k − 3(c0,k − 1

k + 2
ask + 2 < c0,k+1 + 2c0,k. Then

β(L, x) −
2∑

i=0
γiπd̄i =

0 1 2
k c0,k - -

k + 1 c0,k+1 2c0,k+1 − k + 3(c0,k − 1) c0,k+1 + 2c0,k − (k + 2)
...

...
...

...
n c0,n 2c0,n c0,n

The next degree sequence isd̄3 = (k, k + 2, k + 3) and its coefficient is

γ3 = min
{

c0,k,
2

3
c0,k+1 −

k

3
+ c0,k − 1,

1

2
co,k+1 + c0,k −

k + 2

2

}

.

If c0,k < 1
2co,k+1+ c0,k −

k+2
2 , then it impliesk+2 < c0,k+1 which is not possible. Thus the coefficient

must be

γ3 =
c0,k+1

k + 1
−

(k − 1)c0,k
+

1(k + 1)(k + 2).

Then the remaining diagram looks like
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β(L, x)−
3∑

i=0
γiπd̄i =

0 1 2

k
k+2−c0,k+1

2 - -
k + 1 c0,k+1

c0,k+1+k

2 -
...

...
...

...
n c0,n 2c0,n c0,n

Case II.2: Note that ifGmax(L, x) = k + 1 andγ2 =
c0,k+1

k + 1
−

(k − 1)c0,k + 1

(k + 1)(k + 2)
, then the algorithm

contradicts the assumptionc0,k ≥ 1. So this case does not exist if the maximum degree isk+1. Suppose
Gmax(L, x) > k + 1, so

γ2 =
c0,k+1

k + 1
−

(k − 1)c0,k + 1

(k + 1)(k + 2)
if 2c0,k + c0,k+1 < k + 2.

Then the remaining diagram is

β(L, x)−
2∑

i=0
γiπd̄i =

0 1 2

1 1−
(2c0,k+c0,k+1)−1

k+1 - -
...

...
...

...
k c0,k - -

k + 1 c0,k+1
kc0,k+1+(k−1)c0,k+1

k+1 -
k + 2 c0,k+2 2c0,k+2 c0,k+2

...
...

...
...

n c0,n 2c0,n c0,n

The top degree sequence of the remaining diagrams is(1, k + 2, k + 4) and its coefficient is

γ3 = min
{1

2
−

2c0,k + c0,k+1 − 1

2(k + 1)
,
kc0,k+1 + (k − 1)c0,k + 1

(k + 1)(k + 3)
,
c0,k+2

k + 1

}

.

Next we observe each possible sub-cases forγ3.

Case II.2.a: If γ3 =
1

2
−

2c0,k + c0,k+1 − 1

2(k + 1)
as a result of

k + 4 < 3c0,k+1 + 4c0,k andk + 2 < 2c0,k + c0,k+1 + 2c0,k+2.

Then we get the remaining diagram

β(L, x)−
3∑

i=0
γiπd̄i =

0 1 2
k c0,k - -

k + 1 c0,k+1
3c0,k+1+4c0,k−(k+4)

2 -

k + 2 c0,k+2 2c0,k+2 c0,k+2 −
c0,k+1+2c0,k

−1

2 − k+1
2

...
...

...
...

n c0,n 2c0,n c0,n

In this case, we would like to continue to decompose one more step. The coefficient of the pure
diagramπ(k,k+2,k+4) comes from

γ4 = min
{

c0,k,
3c0,k+1 + 4c0,k − (k + 4)

4
, c0,k+2 +

c0,k+1 + 2c0,k − 2− k

2

}

.

(a1): If γ4 = co,k, that is,

k + 4

3
< c0,k+1 andk + 2 < c0,k+1 + 2c0,k+2

So the remaining diagram becomes
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β(L, x) −
4∑

i=0
γiπd̄i =

0 1 2

k + 1 c0,k+1
3c0,k+1−(k+4)

2 -
k + 2 c0,k+2 2c0,k+2 c0,k+2 −

k+2−c0,k+1

2
...

...
...

...
n c0,n 2c0,n c0,n

(a2): If γ4 =
3c0,k+1 + 4c0,k − (k + 4)

4
, which is forced by

k + 4

3
> c0,k+1 andc0,k+1 + k < 4c0,k+2.

Then

β(L, x)−
4∑

i=0
γiπd̄i =

0 1 2

k
k+4−3c0,k+1

4 - -
k + 1 c0,k+1 - -
k + 2 c0,k+2 2c0,k+2 c0,k+2 −

k+c0,k+1

4
...

...
...

...
n c0,n 2c0,n c0,n

(a3): If γ4 = c0,k+2 +
c0,k+1 + 2c0,k − 2− k

2
, which is caused by

2c0,k+2 + c0,k+1 < k + 2 and 4c0,k+2 < k + c0,k+1.

Then the remaining diagram becomes

β(L, x)−
4∑

i=0
γiπd̄i =

0 1 2

k
k+2−2c0,k+2−c0,k+1

2 - -
k + 1 c0,k+1

c0,k+1−4c0,k+2+k

2 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3

...
...

...
...

n c0,n 2c0,n c0,n

Case II.2.b: If γ3 =
kc0,k+1 + (k − 1)c0,k + 1

(k + 1)(k + 3)
because of the following inequalities

3c0,k+1 + 4c0,k < k + 4 andkc0,k+1 + (k − 1)c0,k + 1 < (k + 3)c0,k+2.

Thus, the remaining diagram is

β(L, x) −

3∑

i=0

γiπd̄i

=

0 1 2

1
(k+1)(k+2)−2c0,k(2k+1)+3c0,k+1(k−1)

(k+1)(k+2) - -
...

...
...

...
k c0,k - -

k + 1 c0,k+1 - -

k + 2 c0,k+2 2c0,k+2
(k+3)c0,k+2−kc0,k+1−(k−1)c0,k−1

k+3
...

...
...

...
n c0,n 2c0,n c0,n

Case II.2.c: If γ3 =
1

2
−

2c0,k + c0,k+1 − 1

2(k + 1)
as

2c0,k+2 + c0,k+1 + 2c0,k < k + 2 and(k + 3)c0,k+2 < kc0,k+1 + (k − 1)c0,k + 1.



16 SEMA GÜNTÜRKÜN

Then

β(L, x) −
2∑

i=0

γiπd̄i

=

0 1 2

1 1 −

2c0,k + c0,k+1 − 1

k + 1
−

2c0,k+2
k+1 - -

.

.

.
.
.
.

.

.

.
.
.
.

k c0,k - -

k + 1 c0,k+1
kc0,k+1 + (k − 1)c0,k + 1

k + 1
−

(k+3)c0,k+2
k+1 -

k + 2 c0,k+2 2c0,k+2 c0,k+2 −

(k+1)c0,k+2
k+1 = 0

k + 3 c0,k+3 2c0,k+3 c0,k+3

.

.

.
.
.
.

.

.

.
.
.
.

n c0,n 2c0,n c0,n

We notice that the pattern of the above remaining diagram is similar to the one in the beginning of the
Case II.2. All possible top degree sequences(∗, ∗, k + 4) in Case II.2.a and Case II.2.b will be replaced
by (∗, ∗, k + 5) in the next steps of Case II.2.c.
Case III: If Gmax(L, x) = k + 1 then by Eliahou-Kervaire formula we getc0,k + c0,k+1 = k + 1 as
L is an Artinian lex segment ideal. Letγ1 =

c0,k+1

k
, then it requires that2c0,k+1 + c0,k < k + 1 and

so c0,k+1 < 1 which is a contradiction. Thus this case does not exits if themaximum degree isk + 1.
Suppose thatGmax(L, x) > k + 1. Thus

γ1 =
c0,k+1

k
since

2c0,k+1 + c0,k < k + 1 and(k + 2)c0,k+1 < (k − 1)c0,k + 1.

Then the remaining diagram after subtracting two pure diagrams with corresponding coefficients is

β(L, x)−

(
c0,k − 1

k

)

π(1,k+1,k+2) −
(c0,k+1

k

)

π(1,k+1,k+3) =

0 1 2

1
k + 1− (c0,k + 2co,k+1)

k
- -

...
...

...
...

k c0,k
(k − 1)c0,k + 1− (k + 2)c0,k+1

k
-

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 c0,k+2

...
...

...
...

n c0,n 2c0,n c0,n

Then the next top degree sequence isd̄
2 = (1, k + 1, k + 4) and the coefficient

γ2 = min

{
k + 1− (c0,k + 2co,k+1)

3k
,
(k − 1)c0,k + 1− (k + 2)c0,k+1

k(k + 3)
,
c0,k+2

k

}

.

Case III.1:Let γ2 =
k + 1− (c0,k + 2co,k+1)

3k
. Then

β(L, x) −
2∑

i=0
γiπd̄i =

0 1 2

k c0,k
(4(c0,k−1)−(c0,k+1+k)

3 -
k + 1 c0,k+1 2c0,k+1 -

k + 2 c0,k+2 2c0,k+2 c0,k+2 −
(k+1)−(2c0,k+1+c0,k)

3
...

...
...

...
n c0,n 2c0,n c0,n
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Thusd̄3 = (k, k + 1, k + 4) and

γ3 = min

{
c0,k
3

,
(4(c0,k − 1)− (c0,k+1 + k)

12
, c0,k+2 −

(k + 1)− (2c0,k+1 + c0,k)

3

}

.

We next observe one step more in the decomposition. So we get the following sub-cases sinceγ3 has two
possible cases:

Case III.1.a:Whenγ3 =
c0,k
3

, the remaining diagram turns into

β(L, x)−
3∑

i=0
γiπd̄i =

0 1 2

k 1 +
c0,k+k

4 - -
k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 c0,k+2 +

3c0,k+1−k

4
...

...
...

...
n c0,n 2c0,n c0,n

Case III.1.b:Whenγ3 = c0,k+2 −
(k + 1)− (2c0,k+1 + c0,k)

3
, the remaining diagram has the form

β(L, x)−
3∑

i=0
γiπd̄i =

0 1 2
k k + 1− (3c0,k+2 + 2c0,k+1) k − (4c0,k+2 + 3c0,k+1) -

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3

...
...

...
...

n c0,n 2c0,n c0,n

Case III.2:Let γ2 =
(k − 1)c0,k + 1− (k + 2)c0,k+1

k(k + 3)
and then

β(L, x)−
2∑

i=0
γiπd̄i =

0 1 2

1
k+4−(c0,k+co,k+1)

k+3 - -
...

...
...

...
k c0,k - -

k + 1 c0,k+1 2c0,k+1 -

k + 2 c0,k+2 2c0,k+2 c0,k+2 −
(k−1)c0,k+1−(k+2)c0,k+1

k+3
...

...
...

...
n c0,n 2c0,n c0,n

Case III.3:Let γ2 =
c0,k+2

k
and then

β(L, x) −
2∑

i=0
γiπd̄i =

0 1 2

1
k+1−(c0,k+2co,k+1+3c0,k+2)

k
- -

...
...

...
...

k c0,k
(k−1)c0,k+1−(k+2)c0,k+1−(k+3)c0,k+2

k
-

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3

...
...

...
...

n c0,n 2c0,n c0,n

Hence we could pause the decomposing process since we have observed enough part of BS decomposi-
tion of the Betti diagram(L, x) so that we can compare each possible remaining diagram with the ones
will be obtained from BS decompositon of the Betti diagram ofL.

We examine the BS decomposition of the lex idealL. First of all, as a trivial case, we notice that if
Gmin(L) = 1, then the statement is vacuously true sinceL = (L, x).
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We next induct on the difference of the initial degreesGmin(J)−Gmin(a) ≥ 1.
Base Step: In this step, we show that the statement is true for the lex idealsL = xa+J whenGmin(J)−
Gmin(a) = 1. That is, ifGmin(J) = k ≥ 2 thenGmin(a) = k − 1. Soa = (x, y, z)k−1 sinceL is a lex
ideal. To this end, we modify the Betti diagram ofL in the table2 to this particular lex idealL;

β(L) =

0 1 2

k k(k+1)
2 + c0,k (k − 1)(k + 1) + 2c0,k − 1 k(k−1)

2 + c0,k − 1
k + 1 c0,k+1 2c0,k+1 c0,k+1

...
...

...
...

n c0,n 2c0,n c0,n

Obviously the first top degree sequence and its coefficient ared0 = (k, k+1, k+2) andα0 =
k(k − 1)

2
+

c0,k−1, respectively. Thend1 = (k, k+1, k+3) becomes the next degree sequence with the coefficient

α1 = min
{k

3
, c0,k+1

}

.

Now, analyze each possible cases for the next step in the decomposition.

(i) If α1 =
k

3
< c0,k+1 then the remaining diagram of ofβ(L) after three steps becomes

β(L)−
1∑

i=0
αiπdi =

0 1 2
k k

3 + 1 - -
k + 1 c0,k+1 2c0,k+1 c0,k+1 −

k
3

...
...

...
...

n c0,n 2c0,n c0,n

If c0,k >
k

3
+ 1 and2c0,k+1 + c0,k > k + 1 as in the Case I of(L, x) and sinceα1 =

k

3
< c0,k+1 this

remaining diagrams matches with the one in the Case I.1,

β(L)−

1∑

i=0

αiπdi = β(L, x) −

2∑

i=0

γiπd̄i .

Hence we are done as the BS decompositions forL and(L, x) have the same remaining diagram.
Otherwise the BS decomposition of(L, x) results in either as inCase II or Case III, we keep decom-

posing the Betti diagram ofL.
The next degree sequence isd

2 = (k, k + 2, k + 3) and the coefficient ofπ(k,k+2,k+3) is

α2 = min

{
k

3
+ 1,

2c0,k+1

3
,
c0,k+1

2
−

k

6

}

.

As k
3 + 1 <

c0,k+1

2 − k
6 impliesk + 2 < c0,k+1 which is not possible. So

α2 =
c0,k+1

2
−

k

6
.

Therefore the remaining diagram is

β(L)−
2∑

i=0
αiπdi =

0 1 2

k
k+2−c0,k+1

2 - -

k + 1 c0,k+1
c0,k+1+k

2 -
k + 2 c0,k+2 2c0,k+2 c0,k+2

...
...

...
...

n c0,n 2c0,n c0,n

If we have Case II for(L, x), which means

k

3
+ 1 > c0,k and(k − 1)c0,k + 1 < (k + 2)c0,k+1
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and alsok + 2 < c0,k+1 + 2c0,k, so

β(L)−
2∑

i=0

αiπdi = β(L, x)−
3∑

i=0

γiπei , as in Case II.1.

If k + 2 > c0,k+1 + 2c0,k, which corresponds to Case II.2 for(L, x), again we move on to the next
step. Sod3 = (k, k + 2, k + 4) and then

α3 = min
{k + 2− c0,k+1

2
,
c0,k+1 + k

4
, c0,k+2

}

.

This splits into three cases;

• β(L)−
2∑

i=0
αiπdi −

k+2−c0,k+1

2 πd3 = β(L, x) −
4∑

i=0
γiπei , as in Case II.2.a1..

• β(L)−
2∑

i=0
αiπdi −

c0,k+1+k

4 πd3 = β(L, x)−
4∑

i=0
γiπei , as in Case II.2.a2..

• β(L)−
2∑

i=0
αiπdi − c0,k+2πd3 = β(L, x)−

4∑

i=0
γiπei , as in Case II.2.a3..

We might need to recall that Case II.2.a for(L, x) requiresk + 4 < 3c0,k+1 + 4c0,k andk + 2 <
2c0,k + c0,k+1 + 2c0,k+2. If k + 4 > 3c0,k+1 + 4c0,k as in Case II.2.b, it contradicts the first assumption
k
3 < c0,k+1. As Case II.2.c is a case similar to Case II.2, continuing thealgorithm will leads us again the
same remaining diagram as we have Case II.2.a.

Thus, if eitherCase Ior Case II holds for the decomposition of(L, x), we always end up with the
same remaining diagrams, even with the ones having size3.

If the decomposition for(L, x) turns into theCase III, we get

2c0,k+1 + c0,k < k + 1 and (k + 2)c0,k+1 < (k − 1)c0,k + 1.

On the other hand, by the assumptionk
3 < c0,k+1, the former and the latter inequalities implyc0,k < k

3+1

and k
3 + 1 < c0,k, respectively and we have a contradiction. Thus, this situation cannot come true at all.

(ii) If α1 = c0,k+1 <
k
3 , and if the BS decomposition of(L, x) follows Case Ithen we have

β(L)−
1∑

i=0
αiπdi =

0 1 2
k k + 1− 2c0,k+1 k − 3c0,k+1 -

k + 1 c0,k+1 2c0,k+1 -
...

...
...

...
n c0,n 2c0,n c0,n

= β(L, x)−
2∑

i=0
γiπd̄i .

If the decomposition of(L, x) follows different path, the next degree sequence in the decomposition
for L becomesd = (k, k + 1, k + 4) and the coefficient is

α2 = min

{
k + 1− 2c0,k+1

3
,
k − 3c0,k+1

4
, c0,k+2

}

.

We move on the next sub-cases for each possibility for the coefficient α2.

(ii.a) If α2 =
k − 3c0,k+1

4
thanks to the inequality

k < 3c0,k+1 + 4c0,k+2,

we have

β(L)−
2∑

i=0
αiπdi =

0 1 2

k
k+4+c0,k+1

4 - -
k + 1 c0,k+1 2c0,k+1 -

k + 2 c0,k+2 2c0,k+2
4c0,k+2+3c0,k+1−k

4
...

...
...

...
n c0,n 2c0,n c0,n
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If the algorithm follows through as in the Case III for the decomposition of(L, x), the relation
k < 3c0,k+1 + 4c0,k+2 yields the same the remaining diagram. Hence

β(L)−

2∑

i=0

αiπdi = β(L, x) −

3∑

i=0

γiπd̄i .

If the Betti diagram of(L, x) is decomposed as in theCase II, we keep decomposing the
Betti diagram ofL and get three sub-cases for the next coefficient

α3 = min
{k + 4 + c0,k+1

4
, c0,k+1,

4c0,k+2 + 3c0,k+1 − k

4
}.

If α3 =
k + 4 + c0,k+1

4
, that is,

k + 4 < 3c0,k+1 and k + 2 < 2c0,k+2 + c0,k+1

then

β(L)−
3∑

i=0
αiπdi =

0 1 2

k + 1 c0,k+1
3c0,k+1−k−4

2 -

k + 2 c0,k+2 2c0,k+2 c0,k+2−
k+2c0,k+1

2
...

...
...

...
n c0,n 2c0,n c0,n

which is equal toβ(L, x) −
4∑

i=0
γiπd̄i since the same relations are also required for the Case

II.2.a.1 for the decomposition of(L, x).
If α3 = c0,k+1, that is, the relations are

3c0,k+1 < k + 4 and k < 4c0,k+2 − c0,k+1,

then

β(L)−
3∑

i=0
αiπdi =

0 1 2

k
k+4−3c0,k+1

4 - -
k + 1 c0,k+1 - -

k + 2 c0,k+2 2c0,k+2
4c0,k+2−c0,k+1−k

4
...

...
...

...
n c0,n 2c0,n c0,n

and it is the same remaining diagram as in Case II.2.a.2 for(L, x) because of the same required
relations.

If α3 =
4c0,k+2 + 3c0,k+1 − k

4
, which is a consequence of the following inequalities

k + 2 < 2c0,k+2 + c0,k+1 and 4c0,k+2 − c0,k+1 < k.

Then

β(L)−
3∑

i=0
αiπdi =

0 1 2

k
k+2−(2c0,k+2+c0,k+1)

2 - -

k + 1 c0,k+1
c0,k+1−4c0,k+2+k

2 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3

...
...

...
...

n c0,n 2c0,n c0,n

= β(L, x)−

4∑

i=0

γiπd̄i as in Case II.2.a.3 for(L, x).
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(ii.b) If α2 = c0,k+2 then the remaining diagram becomes

β(L)−
2∑

i=0
αiπdi =

0 1 2
k k + 1− 2c0,k+1 − 3c0,k+2 k − 3c0,k+1 − 4c0,k+2 -

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3

...
...

...
...

n c0,n 2c0,n c0,n
The above diagram matches with remaining diagrams as in the Case III.1.b for the decompo-
sition of (L, x) if (L, x) decomposes as inCase III. Now suppose that BS decomposition of
β(L, x) after several steps ends up as in theCase II. We want to show that same remaining
diagram occurs forL as well. IfGmax is notk + 3, we may have another case which gives us
similar pattern like above diagram such as

β(L)−
2∑

i=0
αiπdi − c0,k+3π(k,k+1,k+5) =

0 1 2
k k + 1− 2c0,k+1 − 3c0,k+2 − 4c0,k+3 k − 3c0,k+1 − 4c0,k+2 − 5c0,k+3 -

k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 -
k + 3 c0,k+4 2c0,k+4 c0,k+4

...
...

...
...

n c0,n 2c0,n c0,n

Thus, assume the maximum degree isk+3. Therefore the next coefficient isα3 =
k − (3c0,k+1 + 4c0,k+2)

5
with the pure diagramπk,k+1,k+5. Then the remaining diagram turns into

β(L)−
3∑

i=0
αiπdi =

0 1 2

k
k+5+2c0,k+2+c0,k+1

2 - -
k + 1 c0,k+1 2c0,k+1 -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3

5c0,k+3+4c0,k+2+3c0,k+1−k

5

Also, we have assumed that the Betti diagram of(L, x) decomposes as inCase II. We notice
that the entries of the remaining diagram is closely relatedto the one in Case II.2.a3.

β(L)−
3∑

i=0
αiπdi =

0 1 2

k
k+2−2c0,k+2−c0,k+1

2 + 3D - -
k + 1 c0,k+1

c0,k+1−4c0,k+2+k

2 + 5D -
k + 2 c0,k+2 2c0,k+2 -
k + 3 c0,k+3 2c0,k+3 c0,k+3 + 2D

whereD =
4c0,k+2+3c0,k+1−k

10 . Thus the next coefficient is

α4 = min

{
k + 2− 2c0,k+2 − c0,k+1

6
+D,

c0,k+1 − 4c0,k+2 + k

10
+D,

c0,k+3

2
+D

}

which follows the same paths for the decomposition of(L, x) in Case II.2.a3.

BS decompositions ofβ(L) andβ(L, x) always come up with the same remaining diagrams after
several steps of the decomposition. Moreover, we observe that they share not only the length two pure
diagrams and their coefficients but also some length three pure diagrams.

Hence, in every possible case we end up with the same remaining diagrams for bothβ(L) andβ(L, x).
In other words, the BS decompositions ofL and (L, x) coincide precisely after several steps of the
algorithm. Thus the statement holds for the case ofGmin(J)−Gmin(a) = 1.
Induction Hypothesis: Let the statement be true for all lex idealsL = xa+J with Gmin(J)−Gmin(a) =
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N ≥ 1. We need to show that it is also true for the lex ideals satisfying Gmin(J) −Gmin(a) = N + 1.
To this end, we identify the initial degrees ofJ anda by Gmin(J) = k andGmin(a) = m.

Suppose thatL = xa+ J is a lex ideal such thatk−m = N +1. Sok−m = N +1 ≥ 2. We prove
this into two cases.

Case A:If ym /∈ a. Sincea is a lex ideal, we writea = xb + I. Then we notice thatGmin(I) 6= k.
Otherwise it contradicts toyk ∈ G(J). Thusk  Gmin(I)  m asym /∈ a. Defineã ⊂ a as the ideal
containing all monomials ofa of degree greater or equal tom+ 1 and note that̃a is also a lex ideal with
Gmin(ã) = m+1. DefineL̃ = xã+ J and it is a lex ideal withGmin(J)−Gmin(ã) = k− (m+ 1) =

k−m− 1 = N + 1− 1 = N . Therefore, by the induction hypothesis,β(L̃) andβ(L, x) have the same
ends in their BS decompositions, i.e. same pure diagrams of length less than3 with same coefficients,

β(L̃)−
∑

d̃i, all length3 degree sequences

α̃iπd̃i = β(L, x) −
∑

di, all length3 degree sequences

γiπdi .

On the other hand,̃a can be decomposed asã = xb̃ + Ĩ. It is easy to see that̃I = I asym /∈ a and
Gmin(b̃) = m. Clearly,Gmin(I) −Gmin(b̃) ≤ (k − 1) −m = N . Again by the induction hypothesis
BS decompositions ofβ(ã) andβ(I, x) have the same ends.

Recall thata = xb+ I, so we getGmin(I)−Gmin(b) ≤ (k − 1)− (m− 1) = k −m = N + 1.
Suppose thatGmin(I)−Gmin(b) < N + 1, then thanks to the induction hypothesis, BS decomposi-

tions ofa and(I, x) have the same ends, so doa andã. That is,

D := β(a) −
∑

All length 3 pure diagrams= β(ã)−
∑

All length 3 pure diagrams.

Also using the Theorem1.1BS decompositions for the idealsL andL̃ can be observed as;

β(L) =
∑

di with l(di)=3

αiπdi +

0 1 2
2 Remaining
... diagram,D
k
... βi,i+j(L, x), i ≥ k

and

β(L̃) =
∑

d̃i with l(d̃i)=3

α̃iπd̃i +

0 1 2
2 Remaining
... diagram,D
k
... βi,i+j(L, x), i ≥ k

This shows thatβ(L) andβ(L̃) have same ends and we also know thatβ(L̃) andβ(L, x) have the same
ends. Hence the statement is true.

It remains to study whenGmin(I) − Gmin(b) = (k − 1) − (m − 1) = k − m = N + 1, which
meansGmin(I) = k − 1. It follows from Gmin(J) = k that I = (y, z)k−1. Thena = xb + I and
b = xb + I whereGmin(I) −Gmin(b) ≥ (k − 2) − (m − 2) ≥ N + 1. If it is a strict inequality then
applying the same process as we have done forL can be applied toa to prove the statement. If there is
an equality, we end up with the same situation.L = xa + J whereGmin(J) = k, Gmin(a) = m and
k − m = N + 1, anda = xb + I whereI = (y, z)k−1, Gmin(b) = m − 1, andb = xb + I where
I = (y, z)k−2, Gmin(b) = m− 2. We repeat this until we get

c = x(x, y, zt−1) +K whereK = (y, z)s, s = k −m+ 1, 1 ≤ t ≤ k −m.

For this form of the lex ideal, one can check the BS decomposition of the idealc.
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β(c) =

0 1 2
2 2 1 -
...

...
...

...
t 1 2 1
...

...
...

...
s s+ 1 2s+ 1 s

= 1
t

[
2 : t− 1 t −
t : − − 1

]

+ 1
t

[
2 : 1 − −
t : − t− 1 t

]

+ 1
s





2 : s− t+ 1 − −
t : − s −
s : − − t− 1



 + t−1
s

[
2 : 1 − −
s : − s s− 1

]

+ 1

[
t : 1 − −
s : − s− t+ 2 s− t+ 1

]

+ s
[
s : 1 1

]
+ 1

[
s : 1

]

︸ ︷︷ ︸

same end as in the decomposition of(L,x)

Therefore the statement is true for the idealc. So we may assume that, without loss of generality,a is in
the form ofc, i.e.,Gmin(I)−Gmin(a) < N + 1. This observation completes the proof for Case I.

Case B:Let ym ∈ a.

(i) If m /∈ 1; we writea = xb + I andGmin(I) = m > 1. This implies thatb = (x, y, z)m−1.
Consider̃a = (a, x) = x(1)+I. Clearlyã = (ã, x), so the statement is trivially true for the ideal
ã. Moreover,Gmin(I)−Gmin(a) = m− (m− 1) = 1. By the base case, the decompositions
of β(a) andβ(I, x) have the same ends. Hence,

β(a) −
∑

all length3 pure diagrams= β(I, x) −
∑

all length3 pure diagrams

= β(ã)−
∑

all length3 pure diagrams.

Similar to theCase 1, consider the lex ideal̃L = xã + J andyGmin(ã) = y /∈ ã. Thus by the
result of theCase 1, the statement is true for̃L. We do exactly the same trick as inCase 1to
show thatβ(L) andβ(L̃) have the same ends and it follows that the statement holds forL.

(ii) If m = 1; that is, a = (x, y, zt) where1 ≤ t ≤ k − 1. In the Case 1we have already
shown that the BS decomposition of theβ(L) satisfy the statement ifL = x(x, y, zt)+J where
J = (y, z)k. Nevertheless, for more general stable idealJ ⊂ k[y, z] we have already assumed
thatL cannot be in that form in the statement.

Conjecture 4.1. The statement of Theorem1.2holds for all Artinian lex-ideals ink[x, y, z].

Theorem1.2 shows that the ends of the Boij-Söderbeg decompositions ofL and(L, x) = (J, x) are
exactly the same for all Artinian lex idealsL in R except the ones in the form ofL = x(x, y, zt) + J

whereJ is different from(y, z)Gmin(J) and1 < t < k−1. On the other hand, based on the computations
we have done using theBoijSoederberg packages of the computer algebra softwareMacaulay2, see
[11], we strongly believe that this result is also true for the lex ideals in that particular form.

5. FURTHER OBSERVATIONS AND EXAMPLES

For an Artinian lex idealL ⊂ k[x, y, z] of codimension3, we have shown that the summands of length
3 pure diagrams of the Boij-Söderberg decomposition ofa wherea = L : (x), and the summands of pure
diagrams of length less than3 in the Boij-Söderberg decomposition of(L, x) appear in the decomposition
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of the idealL = a(x) + J in the beginning and in the end, respectively.

β(L) =





length3 degree
sequences coming

from a(−1)



+

[
extra length3

degree sequences

]

+





all length< 3 degree
sequences coming

from (L, x)



 .

There might be also some other pure diagrams of length3 other than the ones coming from the BS
decomposition ofa. However, how this middle part containing pure diagrams of length3 comes out is
not quite clear. One might ask whether or not the idealsb = L : (y) andc = L : (z) help to describe
the middle part. In fact, examples show that there is a quite strong relation between them as well.
Nevertheless, both the results obtained in sections 3 and 4 aboutβ(a) andβ(L, x) and the observations
we discuss in this section aboutβ(b) andβ(c) provide a very close approximation for the BS chain
of degree sequences forβ(L). Either our observation in this section is not enough to cover the entire
middle part of the decomposition ofβ(L) or the BS decompositions ofb and c may give redundant
degree sequences.

Now in this section we illustrate the elation between the BS decompositions of the idealsb, c andL
via examples.

Example 5.1. Let

L = (x2, xy2, xyz, xz2, y8, y7z, y6z2, y5z3, y4z4, y3z5, y2z6, yz7, z8)

be a lex segment ideal inR. Thena = L : x = (x, y2, yz, z2) is lex segment ideal such thatL = xa+ J
whereJ = (y, z)8 is stable inR and lex segment ink[y, z]. Similarly the ideals

b = L : y = (x2, xy, xz, y7, y6z, y5z2, y4z3, y3z4, y2z5, yz6, z7) = L : z = c

are lex segment ideals such thatL = yb+ I = zc+K whereI = (x2, xz2, z8) andK = (x2, xy2, y8).
We construct similar short exact sequences like in Lemma2.8 for the idealsb andc. Unlike the case for
a, we might have cancellations in the mapping cone of the shortexact sequences for ideals. It means we
can have cancellations in the Betti diagram since the mapping cone structure may not yield the minimal
free resolution. This situation causes different degree sequences that do not appear in BS decomposition
of L.

We first notice thatb = c and find the BS decomposition ofβ(a)

β(a) = (1)π(1,3,4) + [pure diags. of length< 3],

Then we consider the short exact sequence for the idealsb andL = yb+ I

0 −→ I(−1) −→ b(−1)⊕ I −→ L −→ 0
x



x



x



R(−3)⊕R(−4)⊕R(−9) R(−2)⊕R4(−3)⊕R9(−8) R(−2)⊕

R3(−3)
︷ ︸︸ ︷

✘✘✘✘
R4(−3)⊕R9(−8)

x



x



x



R(−5)⊕R(−10) R4(−4)⊕R16(−9) ✘✘✘✘R(−3)⊕R5(−4)⊕R17(−9)
x



x



x



0 R(−5)⊕R7(−10) R2(−5)⊕R8(−10)
x



x



0 0

The mapping cone of the short exact sequence for idealsb andL (so the same forc andL = zc+K)
ends up with “one” cancellation in the first degree. So we interpret this as ignoring one pure diagram
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at the beginning, which is the one corresponding to the degree sequence(2, 3, 4) at the beginning of the
decomposition ofβ(b). Therefore,

β(b) = β(c) =
✘✘✘✘✘(1)π(2,3,4) + (

1

7
)π(2,3,9) + (

8

7
)π(2,8,9) + [pure diags. length< 3].

The pure diagrams of length less than3 are coming from the ideal

β(L, x) = [length3 pure diags.] + (8)π(8,9) + (1)π(8).

Hence we claim that the summands (with coefficients) in the BSdecomposition ofβ(L) are

β(L) ≈ (1)π(2,4,5)
︸ ︷︷ ︸

from a(−1)

+(α2) π(3,4,10)
︸ ︷︷ ︸

from b(−1)

+(α3) π(3,9,10)
︸ ︷︷ ︸

from b(−1)

+(8)π(8,9) + (1)π(8)
︸ ︷︷ ︸

from (L,x)

,

for some coefficientsα2, α3 in Q. Indeed, the BS decomposition ofL is,

β(L) = (1)π(2,4,5) + (
2

7
)π(3,4,10) + (

9

7
)π(3,9,10) + (8)π(8,9) + (1)π(8).

The impressive point of this example is that we are able to describe the entire BS chain of degree
sequences ofL from its the colon idealsa, b and the ideal(L, x).

Example 5.2. This example shows that some different situations might occur other than the previous
example.

Let L = (x2, xy2, xyz, xz2, y4, y3z, y2z2, yz6, z9) be lex-segment ideal inR. Thena = L : x =
(x, y2, yz, z2), b = L : y = (x2, xy, xz, y3, y2z, yz2, z6) andc = L : (z) = (x2, xy, xz, y3, y2z, yz5, z8).
We observe that one cancellation occurs in the mapping cone process of each idealb andc. BS decom-
positions ofa, b, c and(L, x) are

β(a) = 1π(1,3,4) + [pure diags. of length< 3],

β(b) =
✘✘✘✘1π(2,3,4) +

1

3
π(2,3,5) +

5

6
π(2,4,5) +

1

4
π(2,4,8) +

7

20
π(3,4,8)

+
1

10
π(3,7,8) + [pure diags. of length< 3],

β(c) =
✘✘✘✘1π(2,3,4) +

1

3
π(2,3,5) +

1

3
π(2,4,5) +

1

2
π(2,4,8) +

1

10
π(3,4,8) +

1

10
π(3,7,8)

+
3

14
π(3,7,10) +

1

42
π(3,9,10) + [pure diags. of length< 3]

and
β(L, x) = [pure diags. of length3] + 1π(4,10) + 1π(7,10) + 1π(9).

So, the BS decomposition for the idealL is likely to be

β(L) ≈ 1π(2,4,5) + α2π(3,4,6) + α3π(3,5,6) + α4π(3,5,9) + α5π(4,5,9)

+ α6π(4,8,9) + α7π(4,8,11) + α8π(4,10,11) + 1π(4,10) + 1π(7,10) + 1π(9)

whereαi ∈ Q, i = 2, ...8. Thus it seems that we almost obtain the actual BS decomposition for L
which is

β(L) = 1π(2,4,5)
︸ ︷︷ ︸

from a(−1)

+
2

3
π(3,4,6)
︸ ︷︷ ︸

from b(−1) andc(−1)

+
2

3
π(3,5,6)
︸ ︷︷ ︸

from b(−1) andc(−1)

+
1

2
π(3,5,9)
︸ ︷︷ ︸

from b(−1) andc(−1)

+
3

10
π(4,5,9)
︸ ︷︷ ︸

from b(−1) andc(−1)

+
1

20
π(4,8,9)
︸ ︷︷ ︸

from b(−1) andc(−1)

+
1

4
π(4,8,11)
︸ ︷︷ ︸

from c(−1)

+1π(4,10) + 1π(7,10) + 1π(9)
︸ ︷︷ ︸

from (L,x)

.
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Apparently, the BS decomposition ofc provides an additional pure diagram,π(4,10,11), which does not
appear in the BS decomposition ofL. Nevertheless it still supports the idea of the covering up the middle
part of the decomposition ofβ(L) by using decompositions ofβ(b) andβ(c).

Example 5.3. In the previous example we saw that our approximation forL gives a longer BS chain of
the degree sequences than the actual BS chain of the degree sequences via the BS decomposition of the
idealsa, b, c and(L, x).

Consider the lex-segment idealL = (x2, xy, xz2, y6, y5z, y4z3, y3z4, y2z5, yz6, z9) in R. Then the
colon ideals area = L : x = (x, y, z2), b = L : y = (x, y5, y4z, y3z3, y2z4, yz5, z6), andc = L : z =
(x2, xy, xz, y5, y4z2, y3z3, y2z4, yz5, z8). The mapping cone for the idealc requires two cancellations,
so we ignore the first two degree sequences. Then,

β(a) =
1

3
π(1,2,4) +

1

3
π(1,3,4) + [pure diags. of length< 3],

β(b) =
1

5
π(1,6,7) +

9

35
π(1,6,8) +

2

7
π(1,7,8) +

1

2
π(5,7,8) + [pure diags. of length< 3],

β(c) =
✘✘✘✘1π(2,3,4) +

✟
✟

✟
✟✟1

6
π(2,3,8) +

1

3
π(2,6,8) +

19

30
π(2,7,8) +

1

15
π(2,7,10) +

1

3
π(5,7,10)

+ [pure diags. of length< 3], and

β(L, x) = [pure diags. length3] +
1

2
π(6,8) + 2π(7,8) + 2π(7,10) + 1π(9).

Then, we get the following chain of degree sequences in orderto set up the approximate BS decom-
position forL

β(L) ≈ (2, 3, 5) < (2, 4, 5)
︸ ︷︷ ︸

from a(−1)

< (2, 7, 8) < (2, 7, 9) < (2,8,9) < (6,8,9)
︸ ︷︷ ︸

from b(−1)

< (3, 7, 9) < (3, 8, 9) < (3,8,11) < (6, 8, 11)
︸ ︷︷ ︸

from c(−1)

< (7, 9) < (8, 9) < (8, 11) < (10)
︸ ︷︷ ︸

from (L,x)

.

However, we know that the degree sequences in the decomposition must be a partial ordered chain, so
the ones that violate the partial order are needed to be eliminated. From the decomposition ofβ(c), we
get(3, 7, 9) as the first degree sequence, but(2, 8, 9) and(6, 8, 9) cannot be before(3, 7, 9). So we have
to ignore the sequences(2, 8, 9) and(6, 8, 9). Then we get an approximate decomposition such as

β(L) ≈
1

3
π(2,3,5) +

1

3
π(2,4,5) + α3π(2,7,8) + α4π(2,7,9) + α7π(3,7,9)

+ α8π(3,8,9) + α9π(3,8,11) + α10π(6,8,11) +
1

2
π(6,8) +

1

2
π(7,9)

+ 2π(8,9) + 2π(8,11) + 1π(10).

The BS decomposition ofβ(L) is

β(L) =
1

3
π(2,3,5) +

1

3
π(2,4,5) +

1

3
π(2,4,8) +

2

15
π(2,7,8) +

1

10
π(2,7,9)

+
1

2
π(3,7,9) +

1

2
π(3,8,9) +

1

2
π(6,8,11) +

1

2
π(6,8) +

1

2
π(7,9)

+ 2π(8,9) + 2π(8,11) + 1π(10).

The degree sequence(3, 8, 11) associated with(2, 7, 10), which is coming from the decomposition of
β(c), does not show up in the decomposition ofβ(L), similar to the situation in Example5.2. Moreover,
for this lex idealL, we realize another different situation. The degree sequence (2, 4, 8) shows up in the
BS chain of degree sequences ofβ(L), but(2− 1, 4− 1, 8− 1) = (1, 3, 7) does not appear in any of the
decompositions ofβ(a), β(b) andβ(c).

An explanation for that extra degree sequence(2, 4, 8) might be possible for this example. We see that
(2, 4, 5) is the last degree sequence coming froma(−1) and the next degree sequence(2, 7, 8) is from
b(−1). If we assume that there is no other degree sequence between(2, 4, 5) and(2, 7, 8), it implies
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that simultaneous elimination of the entries in the positions ofβ1,4 andβ2,5 in the Betti diagram ofL by
the algorithm of BS decomposition. However, this is not possible because otherwise there would not be
a pure diagram of length2 in the BS decomposition ofa. Hence again by the partial order, it must be
(2, 4, 5) < (2,4,8) < (2, 7, 8).

Examples5.2 and5.3 show that the BS decompositions ofa, b, c and(L, x) may not be enough to
provide the entire chain of degree sequences in the BS decomposition ofL. Therefore, it is possible
that there are some gaps and redundant degree sequences in the approximation of BS chain of degree
sequences ofL. In view of the explanations, such as the cancellations in mapping cone, the necessity of
the order of the chain of the degree sequences, we are able to provide the entire chain of degree sequences
in the BS decomposition ofL.

Problem 5.4. Is it true that the the Boij-Söderberg decomposition of a lex idealL can be described by the
decompositions of its colon idealsa, b, c and(L, x) precisely. That is, in terms of all the pure diagrams
and their coefficients?

The relation between BS decompositions of a (Artinian) lex-segment idealL and the lex idealsa =
L : x and(L, x) is pointed out in Theorems1.1 and1.2. Furthermore, the examples we have observed
in this section show that if we know the BS decompositions of the colon idealsb = L : y andc = L : z,
then almost the entire BS chain of the degree sequences for the lex-segment idealL may be revealed. In
other words, we try formalize the full chain of degree sequences of the BS decomposition of the idealL
by using the BS chains of degree sequences of the colon idealsa,b, c and the lex ideal(L, x). Studying
what the observations indicate is a further direction for our research on BS decomposition of lex-segment
ideals.

A natural follow-up work which aims to describe all BS coefficients of a lex idealL in terms of the
coefficients of its colon idealsa, b, c and the larger lex ideal(L, x) may arise at this point, i.e., we narrow
our attention on the degree sequences, that is, pure diagrams. Although the results abouta and(L, x)
involve the coefficients as well, we do not have a foresight regarding a relation between the coefficients
in the decompositions ofb, c andL based on the observations mentioned in this section.
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