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ABSTRACT

Standard methods, such as sequential procedures based on Johansen’s
(pseudo-)likelihood ratio (PLR) test, for determining the co-integration rank
of a vector autoregressive (VAR) system of variables integrated of order
one can be significantly affected, even asymptotically, by unconditional
heteroskedasticity (non-stationary volatility) in the data. Known solutions to
this problem include wild bootstrap implementations of the PLR test or the use

ARTICLE HISTORY
Received 10 January 2022
Accepted 07 October 2022

KEYWORDS

adaptive estimation;
autoregressive lag length;
co-integration rank;

information criteria;
non-stationary volatility

of an information criterion, such as the BIC, to select the co-integration rank.
Although asymptotically valid in the presence of heteroskedasticity, these
methods can display very low finite sample power under some patterns of non-
stationary volatility. In particular, they do not exploit potential efficiency gains
that could be realized in the presence of non-stationary volatility by using
adaptive inference methods. Under the assumption of a known autoregressive
lag length, Boswijk and Zu develop adaptive PLR test based methods using a
non-parametric estimate of the covariance matrix process. It is well-known,
however, that selecting an incorrect lag length can significantly impact on the
efficacy of both information criteria and bootstrap PLR tests to determine co-
integration rank in finite samples. We show that adaptive information criteria-
based approaches can be used to estimate the autoregressive lag order to
use in connection with bootstrap adaptive PLR tests, or to jointly determine
the co-integration rank and the VAR lag length and that in both cases they
are weakly consistent for these parameters in the presence of non-stationary
volatility provided standard conditions hold on the penalty term. Monte Carlo
simulations are used to demonstrate the potential gains from using adaptive
methods and an empirical application to the U.S. term structure is provided.

JEL CLASSIFICATION
@32,C14

1. Introduction

It is well-known that standard methods for determining the co-integration rank of vector autoregressive
(VAR) systems of variables integrated of order one are affected by the presence of heteroskedasticity.
In particular, sequential procedures based on (pseudo-) likelihood ratio [PLR] test as developed by
Johansen (1996) can be significantly over-sized, even in large samples, when the volatility process dis-
plays non-stationary variation (so called non-stationary unconditional volatility) and, moreover, the finite
sample power of these tests can vary enormously depending on the pattern of heteroskedasticity present;
see, in particular, Cavaliere et al. (2010). This is an important issue in practice because time-varying
behavior in unconditionalvolatility appears to be a common feature in many key macroeconomic and
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financial time series; see, among many others, McConnell and Perez Quiros (2000), Wang and Bessler
(2005), and Cavaliere and Taylor (2008); see also McAleer (2005), McAleer et al. (2009), Asai et al. (2006),
and McAleer and Medeiros (2008).

In a series of recent papers, Cavaliere et al. (2010, 2014) show that a solution to the size problems
induced by non-stationary volatility is obtained by using wild bootstrap-based implementations of the
standard PLR tests. In particular, Cavaliere et al. (2010) show that the sequential procedure based on
wild bootstrap PLR tests leads to consistent co-integration rank determination in the presence of non-
stationary unconditional volatility. As alternative solution to the use of wild bootstrap PLR tests is
considered by Cavaliere et al. (2015, 2018) who show that methods based on information criteria can also
be used to consistently determine the co-integration rank in the presence of non-stationary volatility.
In particular, they show that popular information criteria such as the Bayesian information criterion
[BIC] (Schwarz, 1978) and the Hannan-Quinn information criterion [HQC] (Hannan and Quinn, 1979)
provide a useful complement to the wild bootstrap sequential procedures.

The wild bootstrap PLR tests are correctly sized in the presence of non-stationary volatility and attain
the same asymptotic local power functions as infeasible size-corrected versions of the standard PLR
tests. As such they can therefore display very low power properties for some patterns of non-stationary
volatility. Indeed, other things equal, their asymptotic local power functions are reduced, relative to the
unconditionally homoskedastic case, under non-stationary volatility. Similarly, the ability of the standard
information criteria-based methods discussed above to select the correct co-integration rank can also
be greatly reduced under non-stationary volatility. In particular, none of these methods exploit the
potential efficiency gains that could be provided by using inference methods which adapt to the volatility
process. Adaptive methods, where the covariance matrix process is estimated non-parametrically, have
the potential to be particularly useful in this context.

Under the assumption of a known autoregressive lag length, Boswijk and Zu (2022) develop an pro-
cedure based on adaptive PLR tests for determining the co-integration rank in possibly heteroskedastic
VAR models. Specifically, they propose a procedure where the volatility process is estimated using a non-
parametric kernel estimator, with this estimate then used in the adaptive PLR test procedure. Under
suitable conditions, they establish that the non-parametric volatility estimator is consistent and that
the resulting adaptive PLR co-integration rank tests have the same asymptotic local power functions as
for infeasible tests based on the assumption that the volatility process is known. The asymptotic null
distribution of their proposed statistics are, however, non-standard and depend on the realization of
the volatility process. As such, asymptotic p-values for the adaptive PLR tests need to be obtained using
bootstrap methods.

The assumption of a known of autoregressive lag order is problematic in practice. It is well-known
that an incorrect lag length choice can significantly impact on the efficacy of both information criteria
and PLR tests, in particular where a lag order smaller than the true order is used; see, among others,
Boswijk and Franses (1992), Cheung and Lai (1993), Haug (1996), Liitkepohl and Saikkonen (1999),
and Cavaliere et al. (2018). In practice the autoregressive lag length will need to be estimated along
with the co-integration rank. To that end, the practitioner can use either a sequential procedure, where
the lag length is consistently estimated in a first step and then subsequently employed in the second
step in a procedure such as either the adaptive PLR test approach of Boswijk and Zu (2022) or an
information criterion for determining the co-integration rank, or a joint information criteria-based
approach can be used whereby the lag length and co-integration rank are determined simultaneously.
Cavaliere et al. (2018) show that both joint and sequential procedures based on standard information
criteria consistently determine both the lag length and the co-integration rank in the presence of non-
stationary unconditional volatility, provided standard conditions hold on the penalty term. They also
show the asymptotic validity of a sequential procedure based on wild bootstrap PLR tests with the
autoregressive lag length chosen by an information criterion.

The contribution of this article is to develop adaptive information criteria methods, based around
a (non-parametric) estimation of the volatility process, for jointly selecting the co-integration rank
and autoregressive lag order. We show that these adaptive information criteria-based methods are
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weakly consistent for the co-integration rank and autoregressive lag order under the precisely the same
conditions on the penalty function are as required for the consistency of standard (non-adaptive)
information criteria under non-stationary volatility of the form considered in this article. We also
establish the asymptotic validity of a sequential procedure selecting the autoregressive lag length by
an adaptive information criterion [ALS-IC] in the first step and then determining the co-integration
rank using again an ALS-IC in the second step based on the first step estimate of the lag length. Because
the co-integration rank is determined by minimizing an adaptive information criterion over all possible
values of the co-integration rank from zero up to the dimension of the system, the practitioner does not
therefore need to obtain p-values by bootstrap methods, making the procedure considerably less time
consuming than the Boswijk and Zu (2022) procedure based on adaptive PLR tests. We also establish
the asymptotic validity of a sequential procedure selecting the autoregressive lag length by an ALS-IC
in the first step and then using the adaptive PLR test-based approach of Boswijk and Zu (2022) in the
second step based on the first step estimate of the lag length.

The remainder of the article is organized as follows. Section 2 details our reference heteroskedastic
co-integrated VAR model. Section 3 outlines adaptive information criteria-based methods for deter-
mining the co-integration rank and the autoregressive lag length. The large sample properties of these
procedures are detailed in Section 4. Monte Carlo simulation experiments reported in Section 5 are used
to explore the finite sample performance of the ALS-IC methods relative to standard methods such as
those based on standard information criteria-based procedures. These results highlight the potential
gains that can be achieved by using adaptive methods. Section 6 provides an empirical application of the
methods discussed in this article to the term structure of interest rates in the US. Section 7 concludes.
Proofs of our main results are contained in Appendix A.

2. The heteroskedastic co-integrated VAR model
Consider the p-dimensional process {X;} which satisfies the k-th order reduced rank VAR model:

k—1
AX;=af'X; 1+ Y TibXi i+ ap'Di+di+ep, t=1,...,T, (2.1)

i=1

where X; := (X4, . .. ,Xpt)’ and the initial values, X;_g, ..., X, are taken to be fixed in the statistical
analysis. Let ko denote the true value of the autoregressive lag length k in (2.1). In the context of (2.1) we
assume that the standard ‘I(1, r) conditions’ hold, where ry € {0, . .., p} denotes the true co-integration
rank of the system (see also Cavaliere et al., 2012); that is, the characteristic polynomial associated with
(2.1) has p — g roots equal to 1 with all other roots lying outside the unit circle, and where « and § have
full column rank ry.

The deterministic variables in (2.1) are taken to satisfy one of the following cases (see, e.g., Johansen,
1996): (i) D; = 0, d; = 0 (no deterministic); (ii) Dy = 1, d; = 0 (restricted constant); or (iii) Dy = t,d; = 1
(restricted linear trend).

The innovation process ¢ := (14, . . ., &)’ in (2.1) is taken to satisfy the following set of conditions
collectively labeled Assumption 1.

Assumption 1. The innovations {&;} are defined as &; := oz, where o} is non-stochastic and satisfies
or:=0 (t/T)forallt=1,...,T, where o (-) €Dgpxp[0, 1], with Dgmx»[0, 1] used to denote the space
of m x n matrices of cadlag functions on [0, 1] equipped with the Skorokhod metric, and where o (1)
is non singular for all 4 € [0, 1] and continuous in u € [0, 1]; 2; is an i.i.d. sequence with E(z;) = 0 and
E(ziz;) = Ip.

Remark 1. Assumption 1 implies that E(¢;) = 0 and that &, has the time-varying unconditional variance
matrix X, := E(g;£}) = 00, > 0. In what follows, oy will be referred to as the volatility matrix of &;.
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Elements of Assumption 1 have previously been employed by, inter alia, Cavaliere et al. (2010), Boswijk
et al. (2016), Cavaliere et al. (2018) and Boswijk and Zu (2022). In particular, Assumption 1 allows for
a countable number of discontinuities in ¢ (-) therefore allowing for a wide class of potential models
for the time-varying behavior of the unconditional variance matrix of &;. As discussed in Boswijk and
Zu (2022), the continuity assumption on o (-) is made so that o () can be consistently estimated. This
assumption is not restrictive in practice however because one can always approximate discontinuities in
o (-) arbitrarily well using smooth transition functions. Moreover, one could relax this assumption by
assuming that o (-) is a piecewise Lipschitz-continuous function; see Xu and Phillips (2008).

Remark 2. In order to simplify our presentation, Assumption 1 rules out the possibility of conditional
heteroskedasticity in z;. We do so because adaptive estimation can only lead to efficiency gains over
standard estimation in cases where o (1) varies across u# which can only happen where non-stationary
volatility is present. Conditional heteroskedasticity of the form considered in Assumption 2(b) of
Boswijk et al. (2016), cannot induce time-variation in o (#) and so it is irrelevant so far as adaptive
estimation is concerned. It is straightforward, however, to show that the large sample results given in
this article remain valid if we allow for conditional heteroskedasticity in z; of the form considered in
Assumption 2(b) of Boswijk et al. (2016).

3. Adaptive information criteria

In this section, we discuss adaptive information-based methods for determining the co-integration rank
and the autoregressive lag length in the context of (2.1). In particular, we first derive the log-likelihood
function in Section 3.1 and the non-parametric estimator of the volatility matrix in Section 3.2. We then
outline the adaptive information criterion for the joint determination of the co-integration rank and the
lag length in Section 3.3 and we discuss how to sequentially estimate the lag length and the co-integration
rank using adaptive methods in Section 3.4.

3.1. The likelihood function

Define W := [Ty :...: Ty_ ] and 2 == (AX|_,,..., AX]_,.,)’> such that the model in (2.1) with no
deterministic components (case (i)) can be rewritten more compactly as

AX; = apXi_1 +VZ® + g, (3.1)

Suppose for the present that {o;} is known, and that z; is Gaussian; ie., z ~iid. N(0,1,).
Then under Assumption 1 we have that &|F;—; ~N(0,%;), where Frg:={X;—1,...,X1, X0,
...»X1_k}, and the log-likelihood function is given by (see Boswijk and Zu, 2022):

T
T 1
Or(a, B, W) = —7p10g2n -3 Zlog|2t|
t=1
T
1
-3 Y (AKX —ap' Xy = WZPY BTN AKX - af X —wZY). (32)
t=1

Maximum likelihood estimation of the parameters (o, 8, V) can be achieved by using the so-
called generalized reduced rank regression procedure (Boswijk, 1995; Hansen, 2002, 2003), which uses
a switching algorithm in order to circumvent the issue of the lack of a closed-form expression for the
maximum likelihood estimator (MLE). In particular, because the MLE of («, W) for fixed 8 and the MLE
of B for fixed (o, ¥) have closed-form expressions, the maximization of (3.2) can be achieved, starting
from an initial guess, by switching between maximization over («, ¥) and S; see Boswijk and Zu (2022)
for further details.
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3.2. Volatility estimation

In this article, we focus on the two-sided smoothing non-parametric estimator of the volatility matrix
adopted by Boswijk and Zu (2022). This estimator is a multivariate extension of Hansen (1995)’s non-
parametric volatility filter based on leads and lags of the outer product of the residual vector. A similar
approach to adaptive estimation has also been considered by Xu and Phillips (2008) and Patilea and
Raissi (2012), among others.

Let K(-) denote some kernel function and define Ky (x) := K(x/h)/h with h > 0 a window width. The
kernel estimator for X; that we will consider is then defined as,

T t=s\ 5 o/
A _1 Kp (=) ese
Et — Zs—l h( T ) S s’ (3'3)

ZsT=1 Ky (t%s)
where ¢; is the residual vector obtained by estimating an unrestricted VAR model of order K in the
levels of X}, i.e., ey = X; — 21K=1 AiX;_;, where Aji=1,...,K, are p x p coefficient matrices. The value
K denotes the maximum autoregressive lag order we will allow for which, unless otherwise stated, is
assumed in the following to be at least as large as the true lag order, k¢ in (2.1).

The kernel function in (3.3) is implemented with two-sided smoothing, so that 3, is based on leads
and lags of &}, as outlined in Assumption 3 in Boswijk and Zu (2022). In their Lemma 2, Boswijk
and Zu (2022) show that the volatility matrix process implied by the T non-parametrically estimated
covariance matrices is uniformly consistent over the compact interval [0, 1], which, in turn, implies
uniform consistency of the non-parametric estimator f)t in (3.3) over t =1,..., T. Therefore, these
consistent estimators can be used to replace X, in the log-likelihood function in (3.2), thereby allowing
for a feasible version of the generalized reduced rank regression procedure and the computation of the
adaptive information criteria and the adaptive bootstrap PLR tests.

In implementing the non-parametric estimator of X in (3.3), we will select the window width h by
minimizing the quantity

T
Cr(h) =Y 1157 (h) — &1,
t=1
where || - || denotes the Euclidean matrix norm, and where EA],_ th) is given by (3.3), but with K(0)
replaced by 0, so that &2, does not enter the expression for 3, (h). This leave-one-out cross-validation
technique is implemented in Boswijk and Zu (2016) and Patilea and Raissi (2012), and satisfies the

requirement that h decreases with the sample size at a certain rate; see Lemma 2 of Boswijk and Zu
(2022) and Section 4 below.

3.3. Joint determination of the lag length and co-integration rank

The maximized pseudo log-likelihood function (3.2) associated with (3.1) under lag order k and co-

integration rank r, say £ (Tk’r) (o, B, W), in conjunction with the volatility estimator in (3.3) substituted
for 3; in (3.2) can then be used to construct a feasible adaptive information criterion of the following
generic form

ALS-IC(k, r) 1= —28%" (o, B, W) + 7 (k, 1), (3.4)

where the term ¢7 may depend on the sample size T (see below) and where 7 (k, r) denotes the number
of parameters in the estimated model.! The autoregressive lag order and the co-integration rank can

'The number of parameters which defines the penalty term in (3.4) depends on the deterministic components included in
the model (2.1) as follows: (i) in the case of no deterministic component (D = 0, dy = 0in 2.1), w(k,r) = r(2p — r) + p%(k —
1); (ii) for the restricted constant case (D =1,d; =01in 2.1), w(k,r) =r2p —r+ 1) + pz(k — 1), and (iii) for the case of a
restricted trend (Dt = 1,dt =1in2.1), 7 (k,r)=rQp—r+1)+p+ pz(k - 1.
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then be jointly estimated by minimizing the information criterion in (3.4) jointly over both all possible
lag lengths, k =1, ..., K, and over all possible co-integration ranks, r =0, .. ., p; that is,

(kars-1c> TALS-IC) = argmin  ALS-IC(k, r).
r=0,...,p;k=1,...K

Different values of the coefficient cr yield different adaptive information criteria. In the standard
(non-adaptive) case, which can be obtained as a special case of the adaptive information criterion in
(3.4) by restricting 3; = I, in the likelihood function (3.2), the most widely used information criteria are
the Akaike information criterion [AIC] (Akaike, 1974), the Bayes information criterion [BIC] (Schwarz,
1978), and the Hannan-Quinn information criterion [HQC] (Hannan and Quinn, 1979), which obtain
setting ¢ =2, log T, and 2loglog T, respectively. We will denote the generic standard information
criterion in this case as IC(k, r) and the resulting estimate in (3.3) as (l~qc, 71c). In the context of (3.4), we
will refer to the adaptive information criteria based on the AIC, BIC and HQ choices of ¢t as ALS-AIC,
ALS-BIC, and ALS-HQGC, respectively.

3.4. Sequential determination of the lag length and co-integration rank

Because the lag length k in (2.1) is in general unknown and needs to be estimated prior to estimating
the co-integration rank, practitioners often use a two-step procedure, whereby the autoregressive lag
length is estimated in the first step and then subsequently employed as if it were the known lag length
in a second step for determining the co-integration rank, such as a sequential procedure based on PLR
tests or an information criterion. In particular, Liitkepohl and Saikkonen (1999) and Nielsen (2006),
inter alia, show that the lag length in non-stationary VAR models can be consistently estimated from the
levels of the data using an information criterion. Therefore, the lag length could be selected in the first
step of the sequential procedure according to a (standard) information criterion where we do not impose
areduced rank structure on IT := 8’ in (2.1), that is by imposing = p; see, among others, Cavaliere et
al. (2018).

As for the joint determination of the lag length and the co-integration rank considered in Section 3.3,
an adaptive version of the information criterion for determining the lag length can also be considered.
In particular, the lag length may be selected using an adaptive information criterion of the generic form

ALS-IC(k, p) := —20%P (T1, I, W) + crm (k, p), (3.5)

where é(fp )(1'[, I, W) is the maximized pseudo likelihood (3.2) associated with (3.1) where we do not
impose a reduced rank structure on I1 = ¢’ under lag length k and X; in (3.2) is substituted with the
volatility estimator in (3.3). Again, the choice of the ¢7 term identifies different information criteria
as outlined above and, in this case, 7 (k, p) = p(pk + i) with i = 0 when no deterministic component is
involved, i = 1in the case of restricted constant, and i = 2 for the restricted trend. The resulting adaptive
information criterion-based lag length estimator is then given by

I,;ALS—IC := arg min ALS-IC(k, p).
k=1,...,.K
We note again that the generic standard information criterion, which we will denote by IC(k, p), can
be obtained as a special case of the adaptive information criterion in (3.5), by restricting X; = I, in

the likelihood function (3.2), with the resulting lag length estimator denoted by kic. In the simulation
experiments discussed in Section 5, we will consider both the standard and the adaptive versions of the
information criterion for determmmg the lag length in the first step of the two step sequential procedure.
The selected lag length, either kic or kars.ic generically denoted by k for the remainder of this section,
is then used as if it were the true lag length in the second step for determining the co-integration rank.
The second step could be based on either the sequential procedure of Boswijk and Zu (2022) based on
adaptive bootstrap PLR tests or an adaptive information criterion for selecting the co-integration rank.
We now outline these two possibilities.
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The adaptive PLR test-based procedure of Boswijk and Zu (2022).Boswijk and Zu (2022) introduce the
adaptive PLR statistic for testing the null hypothesis that the true co-integration rank is (no more than)
n0=r=p-1

~

7(k, 7k, Al ™—1a Al ™—1a
Quir = =2 [0 @ 0) = (PP (ML W) | = 37 (81,857 8 = 8,57 '%0) . G0)

where &,; and &,; denote the residuals from the restricted and unrestricted VAR model in (2.1),
respectively. For the case where the autoregressive lag length is known (k = ko), they demonstrate that
the limiting distribution of (3.6) depends on the unknown volatility process. Consequently, bootstrap
methods are required to approximate the critical values from this distribution. In order to do so, a
bootstrap sample {X t}t | is generated recursively from

k—
AXE, =a"BrxE, +Zr")ijt ek, t=1,...,T, (3.7)

initialized at X;k)j =Xj, for j=1—k,...,0, where &, A", and f’l.(r) are the estimated parameter
matrices from the model (2.1) obtained using conventional reduced rank regression under the rank
r imposed by the null hypothesis. The adaptive PLR test statistic based on the bootstrap sample is then
computed as

T
Qr = (E5 S8, — a5 6, ) (38)

t=1
where &7, and &}, denote the (bootstrap) residuals from the restricted and unrestricted models, respec-
tively. Following Boswijk and Zu (2022), we consider the following two bootstrap implementations: (i)
the variance bootstrap, &, := fltl/zz;", where 2:/2 is any square root of ¥; and z ~ i.i.d.N(0, Ip); (ii)
the wild bootstrap, &, := &, ,wf, where w} is a scalar i.i.d. N(0,1) sequence; see Section 4.2 of Boswijk
and Zu (2022) for more details. As is typically done in practice, the unknown lag length k in (3.7) and
(3.8) is replaced by the lag length estimated in the first step of the sequential procedure, say k, in order to
compute the bootstrap statistic Q* 5 using the bootstrap sample in (3.7) based on k. The corresponding
p-value is then computed as p ir= =1-G*. i’ T(Q ), where G* ( ) denotes the conditional (on the

original data) cdf of Q* Startmg from r =0, the bootstrap algorlthm is repeated as long as p*. AT

exceeds the signiﬁcance level n, thus yielding 7 *(k) = r. If the null is not rejected for r = p — 1, then
(k) =

The asymptotic validity of the two bootstrap procedures outlined above is established in Theorem 3
of Boswijk and Zu (2022) with the implication that, for the case where the autoregressive lag length
is known (k = ko), the variance and wild bootstrap adaptive PLR test-based procedures, #*(ko), are
asymptotically accurately capped estimator of the co-integration rank ry.> In Section 4 we will generalize
these results to the case where the lag length is unknown and estimated in the first step of the sequential
procedure.

The adaptive IC-based procedure. Alternatively, to determine the co-integration rank in the second
step of a sequential procedure based on ALS-IC, k in the generic form (3.4) can be replaced by the lag
length estimated in the first step, thus yielding

ALS-IC(k, r) := —2@5@’) (o, B, W) + crm(k, p). (3.9)

2The sequential rank determination procedure of Johansen (1996) is asymptotically accurately capped in that if each PLR (or
bootstrap PLR) test in the sequence is run with nominal (asymptotic) significance level n, then the limiting probability of
selecting a rank smaller than, equal to, and greater than the true rank will be 0, 1 — 1 and ), respectively, when ry < p and
0, 1 and 0O, respectively, when rg = p.
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The resulting adaptive information criterion-based co-integration rank estimator is then given by

FALS-IC (];) = arg min ALS—IC(]A(,p).
r=0,....p

4. Asymptotic analysis

In this section, we establish the large sample properties of the adaptive methods for determining the
co-integration rank and autoregressive lag length outlined in Sections 3.3 and 3.4.

Lemma 2 of Boswijk and Zu (2022) establishes that the non-parameteric estimate of the volatility
matrix process defined as iT(u) = Zthl itll(tq) /T./71(4) is uniformly consistent over the compact
interval [0, 1]. This result is a basic building block needed to demonstrate weak consistency® for the
adaptive information criteria in (3.4) and (3.5) and so for completeness we first reproduce that result
below as Result 1.

Result 1. Let {X;} be generated as in (2.1) with the parameters satisfying the I(1, ry) conditions and
let Assumption 1 hold, and let K be a bounded non negative function defined on R which satisfies
ffooo Kx)dx=1,0< ffoo K(x)dx <1and 0 < fooo K(x)dx < 1. Then, if T — 00, h — 0 and Th?> —
00, it holds that

& 4
sup |[X7(w) — X (W) — 0,
uel0,1]

where ¥ (1) := o (u)o (1)’ is the true variance matrix process.

Using Result 1, we first show in Lemma 1 that the adaptive information criterion in (3.4) is weakly
consistent for the co-integration rank, regardless of the autoregressive lag length used, provided standard
conditions hold on the penalty term, cr. Then second in Lemma 2 we show that for the true co-
integration rank, ro, the adaptive information criterion in (3.4) is weakly consistent for the autoregressive
lag length.

Lemma 1. Let the conditions of Result 1 hold. Then, for any 0 < k < K, it holds that, as T — 00:

(i) forr > ro, Pr (ALS-IC(k, 1) > ALS-IC(k,19)) — 1, provided ct — 00;
(ii) forr < ro, Pr (ALS-IC(k, 1) > ALS-IC(k,19)) — 1, provided cT/T — O.

Lemma 2. Let the conditions of Result 1 hold. Then it holds that, as T — oo:

(i) for any k such that ko < k < K, Pr (ALS-IC(k, ro) > ALS-IC(ko,70)) — 1, provided ct — 00;
(ii) for any k such that 0 < k < ko, Pr (ALS-IC(k, rp) > ALS-IC(ko, r0)) — 1, provided cr/T — 0.

Remark 3. The results in Lemma 1 imply that, provided the standard condition that % + é — 0, as
T — 00, holds on the penalty term, cT, then for any lag length k=1, ..., K, the adaptive information
criterion-based estimator of the co-integration rank is weakly consistent for the true co-integration rank,
ro. The results in Lemma 2 imply that, under the same conditions on cr, the adaptive information
criterion-based estimator of the lag length, computed by imposing the true co-integration rank, i.e.,
r=rp in (2.1), is a weakly consistent estimator for the true lag order ko. Consequently, in each case,
the use of either the ALS-BIC or ALS-HQC, but not the ALS-AIC penalty, will yield weakly consistent
estimates. Cavaliere et al. (2018) demonstrate that analogous results hold, with the same condition on
cr, for the corresponding non-adaptive information criterion-based estimators.

3An estimator T, is defined to be weakly consistent if it converges in probability to the true value of the unknown parameter
) P
9; thatis, T, — 6.
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Using the results in Lemmas 1 and 2, we are now in a position to establish the weak consistency of
the joint procedure. This is now given in Theorem 1.

Theorem 1. Let the conditions of Result 1 hold. Then it holds that (kALS-IC> FALS- 1C) Y (ko, 1o), provided
cr in (3.4) satisfies the condition that CTT + %—>0 as T — oo.

Remark 4. An immediate consequence of the result in Theorem 1 is that the resulting ALS-BIC-
based and ALS-HQC-based estimators are weakly consistent for both the co-integration rank and
autoregressive lag length, but that the corresponding ALS-AIC-based estimator is not.

To conclude this section, we now detail the large sample behavior of the two-step sequential
procedures outlined in Section 3.4 where in the first step we select the autoregressive lag and then in
the second step an adaptive procedure based on this estimated lag length is used to determine the co-
integration rank.

First, in Lemma 3, we generalize the results in Lemma 3 of Cavaliere et al. (2018), which show the
sufficient conditions on the term ct that ensure weak consistency for an information criterion of the form
given in (3.5), to the case of its adaptive analogue, ALS-IC(k, p). In particular, we derive the conditions
under which minimizing an adaptive information criterion consistently selects the true lag order, ko, in
the first step when we do not impose a reduced rank structure, so that we set r = p.

Lemma 3. Let the conditions of Result 1 hold. Then, for any 0 < k < K, it holds that, as T — oo:

(i) for k > ko, Pr (ALS-IC(k, p) > ALS—IC(kO,p)) — 1, provided cT — 00;
(ii) for k < ko, Pr (ALS-IC(k, p) > ALS-IC(ko,p)) — 1, provided ct/T — 0.

The results in Lemma 3 imply that lAcALS_IC 2 ko, again provided CTT + Ci—>0, as T — oo. Using
the results in Lemmas 1 and 3, we are now in a position in Theorem 2 to establish the large sample
properties of the bootstrap adaptive PLR test-based estimator of the co-integration rank using the lag

length estimated by an information criterion as in (3.5) at the first step, #* (lAcALs_IC).

Theorem 2. Let the conditions in Result 1 hold. Then, provided ct in (3.5) is such that CTT + é—)O as
T — oo, the variance and the wild bootstrap PLR-tests satisfy:

(i) limr_s o Pr(?*(kALS-IC) =r)=0forallr=0,1,...,70 — L;

(i) im7_s o Pr(?* (karsic) =r0) =1 — 15 -I(ro < p), and lim  sup  Pr(®*(karsic) =1 <.
> re{ro+1,....p}

Remark 5. The results in Theorem 2 show that, provided the information criterion used in the first
step of the sequential procedure is a consistent lag length estimator, that is 5 + %—)0, as T — oo, the
bootstrap adaptive PLR test-based procedure is an asymptotically accurately capped estimator of the
true co-integration rank, ro.

Remark 6. The results in Theorem 2 can also be shown to hold (under the same conditions) for any
consistent lag length estimator obtained in the first step. Therefore, the consistency result in Theorem 2
will also hold for variance and wild bootstrap adaptive PLR tests when a standard information criterion,
such either BIC(k, p) or HQC(k, p), is used to select the lag length at the first step.

Finally, in Theorem 3 we generalize the results in Theorem 2 of Cavaliere et al. (2018) by establishing
the large sample properties of the adaptive IC-based estimator of the co-integration rank as in (3.9) using
the lag length estimated by an information criterion as in (3.5) at the first step, 7ars-1c(kars-1c)-
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Theorem 3. Let the conditions in Result 1 hold. Then it holds that Tars.1C (lAcALS_IC) 2 1o, provided cr in
(3.5) and (3.9) satisfies the condition that CTT + %—>0 as T — oo.

Remark 7. Itis easy to show that the condition placed on ¢7 in Theorem 3 is not required if our purpose
is to consistently estimate the co-integration rank. Indeed, as was shown in Lemma 1, any fixed lag length
k will also suffice in that case. However, as shown in Cavaliere et al. (2018), inter alia, the finite sample
performance of the information criteria for determining the co-integration rank can deteriorate badly
if a fixed lag length is used which is not equal to the true lag length, ko, and particularly so where it is
smaller than k.

5. Numerical results

In this section, we use Monte Carlo simulation methods to investigate the finite sample performance of
the joint and sequential adaptive methods for determining the co-integration rank and autoregressive
lag length outlined in Sections 3.3 and 3.4 and compare these with their standard (non-adaptive)
counterparts. The results from these Monte Carlo experiments are reported in Tables 1-6.

We will consider the following second-order VAR model of dimension p = 2 as our simulation DGP:

AXi=af'Xi—1 + T1AX—1 + &, o= a0 » Bi= L0 , (5.1
0 b 0 1
witht=1—-K,...,T, X_g = AX_g =0, where K denotes the maximum lag order. In order to allow

for true co-integration ranks, rp, of 0, 1 or 2, we set the parameters a and b in the long-run parameter
vector « in (5.1) as follows: a=b=0forrg=0,a=—04andb=0forry=1,and a=b = —0.4 for
ro = 2 (full rank). Moreover, we set I'y := y I, with y € {0,0.1,0.5,0.9}.%

We will consider three cases for the the innovation vector, & in (5.1). The first case is that g ~
iid. N (0,Iy) so that & is homoskedastic. This case will provide a useful benchmark to investigate the
effects of using adaptive methods when they are not needed. The second case considers conditionally
heteroskedastic innovation processes, where the individual components of ¢; follow the first-order
AR stochastic volatility [SV] model sets as e = vis exp (i), hir = Ahj—1 + 0.5&;, with (&, vir)' ~
iid. N(O, diag(ag, 1)), independent across i = 1, 2. Results are reported for A = 0.951, o¢ = 0.314. This
case constitutes a well-known conditionally heteroskedastic model for the innovations which has been
used with the same parameter configuration in many other Monte Carlo experiments such as Gongalves
and Kilian (2004) and Cavaliere et al. (2010, 2015, 2018). The third case we consider sets &; to be a non-
stationary, unconditionally heteroskedastic independent sequence of Gaussian variates, characterized
by a late positive variance shift. Specifically,

1 fort<|[2T/3]

~ 2 1 P
&t N(O,crtlz), with oy .—{ 3 fort = (2T/3]

In order to evaluate the behavior of the adaptive and corresponding standard procedures in practically
relevant sample sizes, we report results for T = 50 and 100. All experiments are run over 1,000 Monte
Carlo replications and were programmed using MATLAB. Our experiments are based on the no
deterministic component case. In all of our simulation experiments, we set K =4 as the maximum
lag length considered. Results for the joint information-based estimates of the co-integration rank
and lag length from Section 3.3 are reported first in Table 1, while results relating to the sequential
procedures from Section 3.4 are reported in Tables 2 and 3 for the IC-based approaches in the case of SV
innovations and single volatility break, respectively, and in Tables 4 and 5 for the sequential bootstrap-
based procedures, again for the SV and single volatility break cases, respectively. Finally, for comparison
purposes, Table 6 reports the results for the joint information-based approaches in the homoskedastic

“4For the simulation DGP in (5.1), it suffices that (a, b, ¥) € (-2, 0]2 x [0, 1) in order to satisfy the (1, r) conditions.
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case. Additional Monte Carlo simulations, not reported here in the interests of space but available on
request, consider the case of the presence of a “seasonal effect” in the volatility. In particular, in the
spirit of Hounyo (2021, cf. Section 4), we consider the case of a periodic variation in volatility where the
innovation vector in (5.1) is defined as &; ~ N (0, otzlz), with oy := s;0 where {s;} is the repetition of the
sequence {1, 1,2,4} and o = 1. Although this model does not satisfy our Assumption 1, the results we
obtained nonetheless suggest that the adaptive versions of the information criteria and bootstrap-based
likelihood ratio tests perform at least as well as their standard counterparts.

Consider first Table 1 which reports results for determining the co-integration rank r (left two
panels of Table 1) and the lag order k (right two panels of Table 1) using the joint ALS-IC-based
procedures detailed in Section 3.3 together with their corresponding standard information criteria-
based counterparts. In particular, Table 1 reports the empirical frequencies with which 7 and k from
the joint information-based estimator defined in (3.3) select the values r=0,1,2 and k=1,2,3,4,
respectively, for each of the adaptive criteria ALS-HQC and ALS-BIC, and the corresponding standard
criteria, HQC and BIC. We do not consider the ALS-AIC estimator nor its standard counterpart in the
Monte Carlo experiments because the poor performance of AIC-based approaches in finite samples is
documented in many contributions in the literature (see e.g., Cavaliere et al., 2015, 2016; Kapetanios,
2004; Wang and Bessler 2005). Additional simulations show that, also in the case of adaptive estimation,
this criterion tends to overestimate both the true co-integration rank and the lag length. Nevertheless,
the adaptation with respect to the variance matrix profile considerably improves the finite sample
performance of the AIC-based approach. These results are available on request.

A number of observations can be made from the results reported in Table 1. Consider first the
estimators of the co-integration rank.

(i) In the case of autoregressive SV innovations reported in the upper portion of Table 1, the
performance of the adaptive version of the information criteria, i.e., ALS-HQC(k, p) and ALS-
BIC(k, p), is overall superior than (or at least as good as) their standard counterparts, HQC(k, p) and
BIC(k, p). The only exception seen is for the case of no co-integration, o = 0, where the standard
BIC outperforms its adaptive counterpart. However, this is likely to be an artefact of the tendency
of the standard BIC to under-fit the ‘true’ value of the co-integration rank, which can be seen from
the results in Table 1 for BIC and ALS-BIC when ry > 0.

(ii) Inthe case ofa single volatility break (lower portion of Table 1), for a given penalty choice, i.e., HQC
or BIC, the adaptive estimator is more efficacious, and often considerably so, than the standard
estimator in all but two of the cases reported in Table 1. As an example, while ALS-HQC selects the
correct value of r 81.4% of the time when ry = 0, y = 0.5 and T = 100, the standard HQC picks the
correct rank only 64.5% of the time.

(iii) In the no co-integration case, ro = 0, the ALS-BIC penalty delivers superior performance to the
ALS-HQC, with the same ordering holding for the approaches based on the standard BIC and HQC
criteria. In particular we see that for both the adaptive and standard cases the HQC penalty over-fits
the co-integration rank considerably more often than the BIC penalty. The degree of over-fitting is,
however, smaller for the ALS-HQC vis-a-vis the standard HQC criterion.

(iv) For the case where ry = 1 there is overall little to choose between the estimators based on the BIC
and HQC penalties; in particular, those based on the HQC penalty again tend to over-fit the rank
to a greater degree than those based on the BIC penalty, with this effect again lessened for the
adaptive version of the estimator. In contrast, the BIC-based estimators can tend to under-fit for
T =50, excepting y = 0.9.

(v) For the full rank case, ry = 2, the HQC-based estimators generally select ry = 2 more often than
the corresponding BIC-based estimators, although this is likely to some degree to be an artefact of
the tendency of the former to over-fit, discussed above.

(vi) For all of the estimators considered, the lag length and the magnitude of the lag parameter, y, can
have a considerable impact on the finite sample behavior of the co-integration rank estimators. This



ECONOMETRIC REVIEWS (&) 23

impact appears to be less pronounced, other things equal, for the adaptive variants of the estimates
and for the BIC-based procedures relative to the corresponding HQC-based procedures.

The following observations can also be made concerning the behavior of the estimators of the
autoregressive lag length seen in Table 1.

(i) Asobserved above for co-integration rank estimation, the adaptive information criteria outperform
their standard counterparts in selecting the true autoregressive lag length, ko, in almost all of the
cases reported in Table 1. These differences can again be large and generally tend to be larger, other
things equal, for the HQC penalty than for the BIC penalty. As an example, while the ALS-HQC
estimate of k selects the correct lag length 91.5% of the time when vy = 1, y = 0.0 and T = 100, the
standard HQC estimate selects the correct lag length 71.7% of the time.

(ii) The behavior of each of the lag length estimators considered is very similar, other things equal,
across the three values of the co-integration rank considered. Consequently, the value of the true
co-integration rank would appear to have relatively little impact on the finite sample properties of
the lag length estimators.

(iii) The HQC-based procedures are superior to the BIC-based procedures for y = 0.1, presumably
because of the greater tendency of the HQC-based procedures to over-fit, a tendency which is
clearly seen for the larger values of y considered, most notably with the non-adaptive versions
of the estimators.

Let us now turn our attention to a discussion of the results in Tables 2-5 which relate to the sequential
estimates from Section 3.4.

We first focus attention on the results reported for the two-step IC-based procedures in Tables 2 and
3 for the cases of SV innovations and a single volatility break, respectively. In particular, we report the
empirical frequencies with which both standard and adaptive IC-based procedures select the lag length,
k, at the first step (‘Step I’ in the tables) and those with which they select a co-integration rank, r, of zero,
one or two at the second step (‘Step II’ in the tables), using the lag length estimated at the first step by
each standard and adaptive information criterion, IC(k, p) and ALS-IC(k, p).

The results for where the co-integration rank is determined using the same information criterion
at both steps of the sequential procedure are overall similar to the results for the corresponding joint
IC-based approaches discussed above. As an example, the joint ALS-BIC estimate of 7 in Table 1 selects
the correct co-integration rank 77.6% (91.3%) of the time when vy = 1, y = 0.5 and T = 50 (T = 100)
in the SV case, while the corresponding sequential procedure based on ALS-BIC estimate at both
steps, i.e., ALS—BIC(IACALS,BIC, r), selects the true rank 77.1% (90.9%) of the time. Moreover, all of the
approaches considered appear to be fairly robust to the choice of whether to use an adaptive or standard
information criterion in the first step of the sequential procedure as the results for the co-integration
rank determination appear very similar using either ALS-IC(k, p) or IC(k, p).

We now turn to a discussion of the results for the wild bootstrap PLR procedure [denoted PLR-WB],
together with the adaptive PLR procedures of Boswijk and Zu (2022) implemented with either a variance
bootstrap [denoted ALR-VB] or a wild bootstrap [denoted ALR-WB] in Tables 4 and 5 for the cases of
SV innovations and a single break in volatility, respectively. For each of these we report the empirical
frequencies with which they select a co-integration rank, r, of zero, one or two. We report results for three
case for the lag length used in these procedures. The first is an infeasible version based on knowledge of
the true lag length, i.e., we set k = ko. The other two select the lag length in the first step of the two-step
sequential procedure using either standard BIC, k = lAcBIC, or its adaptive counterpart, k = k ALS-BIC->

A number of observations can be made from the results reported in Tables 4 and 5.

5In Tables 4 and 5 we focus on BIC-based approaches for the selection of k because these provide the best overall
performance, see e.g. Cavaliere et al. (2018). Moreover, we only report the results for the lag length determination for the
case of rp = 1. The results for ry = 0 and 2 are very similar and thus, in the interest of space, are not reported.
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(i) Inthe no co-integration case, ro = 0, the PLR-WB procedure is seen to have better “size” properties
than either of the ALR-VB and ALR-WB procedures which both tend to over-estimate the co-
integration rank to a greater degree than does the PLR-WB procedure. The behavior of the ALR-VB
or ALR-WB procedures for ry = 0 are fairly similar.

(ii) In the co-integrated case, rp = 1, the ALR-VB and ALR-WB procedures both show a significantly
higher empirical probability of selecting the correct rank, ry = 1, than does the PLR-WB procedure
which displays a tendency to under-fit the co-integration rank, most notably for T'= 50. In the ry =
1 case the ALR-VB procedure appears to be slightly more efficacious than the ALR-WB procedure.

(iii) In the full rank case, rp = 2, and with SV innovations (Table 4), the adaptive procedures overall
provide slightly better performance than the PLR-WB procedure. Conversely, in the single volatility
break case (Table 5), the PLR-WB procedure is, as in the zero rank case, more efficacious than either
the ALR-VB or ALR-WB procedures, both of which display a consistent tendency to under-fit the
rank. As with the the rp =1 case, the ALR-VB procedure appears to be slightly superior to the
ALR-WB procedure for both the heteroskedastic cases considered.

(iv) All of the PLR-WB, ALR-VB and ALR-WB procedures appear to be fairly robust to the choice of
the lag length made at the first step of the sequential procedure. In particular, a comparison of
the results for k = lAcBIC and k= IAcALS_BIC with those for the corresponding infeasible procedures
based on a known lag length, k = ko, reveals that the loss in efficacy shown by the procedures
for determining the true co-integration rank at the second step due to the estimation of the
unknown lag length at the first step appears very small and in some cases even negligible. This is a
comforting result as it suggests there are only small losses in finite sample efficacy from estimating
the autoregressive lag length, relative to an infeasible benchmark based on knowledge of the true lag
length.

(v) Focusing on the results for the lag length determination reported in the right panel of Table 2, we
can observe that, overall, ALS-BIC appears to be more reliable than the corresponding standard
BIC. For example, in the case of a single volatility break and y = 0.5 the selection frequency of

the true lag order, k= ko = 2, for ALS-BIC is 82.0% (98.4%) against 74.8% (93.3%) for BIC when
T =50 (T = 100).

Finally, we investigate the potential losses of efficacy seen when using the adaptive methods in the
benchmark case of homoskedastic innovations by comparing the results reported in Table 6 for the
adaptive IC-based methods with those of their standard counterparts. These results suggest that the
performance of the joint adaptive IC-based procedures do not deteriorate to any significant degree when
the shocks are homoskedastic, such that the use of adaptive methods is unnecessary. Indeed, when either
ro = 1 or 2, the performance of the ALS-IC-based approaches is similar and sometimes even better than
the results for their corresponding standard counterparts. Conversely, in the case of no co-integration,
ro = 0, standard BIC and HQC-based approaches outperform their adaptive counterparts. However, as
pointed out above, this is mainly an artefact of the overall tendency of the standard criteria, especially
BIC, to under-fit the true co-integration rank.

To conclude this section, we compare the finite sample behavior of the adaptive information criteria-
based methods with that of the adaptive PLR test-based approaches. By comparing the results reported
in Tables 1-3 with those in Tables 4 and 5, we observe that, for the co-integrated case (rp = 1), the
finite sample performance of either joint or sequential ALS-IC is similar to that of adaptive PLR test-
based procedures. Conversely, when ry = 0 the PLR test-based procedures outperform the adaptive
information criteria-based approaches, while this behavior is reversed when rp =2 and T =50. In
the case of full rank and T = 100, the performance of the methods considered are similar. Finally, by
comparing the results in Tables 1, 2 and 3 for the joint and the sequential information criteria-based
approaches for selecting the lag length, we note that the ability of these methods to determine k are very
similar.
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6. An empirical application: US term structure of interest rates

In this section we provide an empirical application of the adaptive information criteria-based approaches
to the term structure of interest rates in the US. In particular, we analyze the time series X; =
(X1t - - -, X5¢)" of monthly zero yields from January 1970 to December 2012, for maturities equal to
3 months (X1;), 1 year (X), 3 years (X3;), 5 years (X4¢), and 10 years (Xs;).

The co-integration analysis of X; has already been considered by Boswijk et al. (2016) and Boswijk
and Zu (2022). In particular, in order to account for the unconditional heteroskedasticity present in
the data, sequential procedures where the lag length is selected at the first step according to (standard)
HQC(k, p), and then the co-integration rank of the system is determined using either PLR-WB (Boswijk
et al., 2016) or adaptive PLR tests (Boswijk and Zu, 2022) were adopted. Here we apply the adaptive
information-based methods to estimate the co-integration rank and autoregressive lag order of the
system and compare these results with those obtained in the two previous analyses cited above. In what
follows, the VAR models are fitted with a restricted trend and, for all methods, the maximum number of
lags considered is K = 4. The number of bootstrap samples used in the bootstrap algorithms is B = 999.

We first focus on the joint determination of the co-integration rank and lag length using adaptive
joint information criterion-based procedures as outlined in Section (3.3) and the standard counterparts.
These results are reported in Table 7. The results in Table 7 show that all of the joint information criteria,
both adaptive and non-adaptive, agree on selecting a lag length of k = 2. Moreover, both standard and
adaptive versions of the joint BIC-based approach delivers the same estimate of the co-integration rank,
namely 7gic = 7ars-Bic = 2. Conversely, the joint HQC-based approaches select a higher co-integration
rank. Specifically, the co-integration rank selected using the (standard) joint HQC-based approach is 3,
i.e., THQc = 3, whereas 7ars-HQC = 4 is obtained using the adaptive version.

We now consider in Table 8 the results obtained using the sequential procedures for determining the
lag length and then the co-integration rank. In particular, the upper panel of Table 8 shows the results for
the selection of k in the first step of the sequential procedure, whereas the results for the determination
of r at the second step using information criteria and PLR tests are reported in the middle and lower
panels of Table 8, respectively. Note that the results reported in the lower panel of Table 8 for the case
of k=2 reproduce those in Boswijk et al. (2016) and Boswijk and Zu (2022) who use standard HQC to
select the lag length and therefore they set k = 2. The results for the first step of the sequential procedure
show that all but the standard BIC information criteria agree on a choice of k = 2; standard BIC chooses
IQBIC = 1. Therefore, on balance, we would recommend a VAR model of order 2.

Let us next focus on the second step of the sequential procedure and, in particular, on the determi-
nation of the co-integration rank obtained by the PLR tests (see the lower panel of Table 8). For k=2,
the results for the adaptive and non-adaptive bootstrap-based PLR test procedures vary according to the
nominal significance level considered. In particular, at a standard 5% level we select 7 = 2 using the (non-
adaptive) PLR-WB procedure, whereas the two adaptive PLR methods yield 7 = 4, again replicating the
results in Boswijk et al. (2016) and Boswijk and Zu (2022), respectively. Using a 1% significance level,
we still select a co-integration rank of 2 using the (standard) PLR-WB but we would now select 7 = 3
using the two adaptive PLR test-based procedures. The results for the information criteria used in the
second step of the sequential procedure show that, using k =2, HQC-based approaches in both adaptive
and non-adaptive form agree with the selection of 7 = 4 also made at the 5% level made by the adaptive
PLR test-based procedures. The co-integration rank of # = 2 selected using both the adaptive and non-
adaptive BIC-based approaches matches that chosen by the (non-adaptive) PLR-WB test procedure. It
is worth noting that, when setting k=1as suggested by the (standard) BIC(k, p), the results for both
information criteria and PLR tests in step 2 of the sequential procedure are much more variable across
the methods with the rank selected anywhere between 2 and 5. Therefore, we would not recommend
the conclusions based on k = 1. In particular, because BIC uses a stricter penalty term than HQC, we
would expect, other things equal, that BIC-based approaches will often select a lower lag length and/or
co-integration rank than HQC-based approaches. Moreover, this tendency of standard BIC might be
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Table7. Co-integration rank and lag length determination for the term structure of interest rates in the US using standard and adaptive
joint information-based procedures, IC(k, r) and ALS-IC(k, ).

HQC BIC ALS-HQC ALS-BIC
k 2 2 2 2
7 3 2 4 2

Note: VAR models are fitted with a restricted constant. The maximum number of lags is K = 4.

Table 8. Co-integration rank and lag length determination for the term structure of interest rates in the US using standard and adaptive
sequential procedures.

HQC BIC ALS-HQC ALS-BIC
Step | k 2 1 2 2
Step Il (IC)
k=1 4 2 5 3
fetk=2) 4 2 4 2
Step Il (PLR) PLR-WB ALR-VBS ALR-WBS

k=1 k=2 k=1 k=2 k=1 k=2

r=0 0.000 0.000 0.000 0.000 0.000 0.000
r=1 0.000 0.000 0.000 0.000 0.000 0.000
r=2 0.015 0.091 0.000 0.000 0.000 0.001
r=3 0.270 0.309 0.010 0.038 0.000 0.011
r=4 0914 0.806 0.082 0.172 0.035 0.124
fin:o.m 3 3 5 4 5 4
Fi=005) 3 2 4 4 5 4
P o0 2 2 3 3 4 3

Notes: VAR models are fitted with a restricted constant. The maximum number of lags is K = 4. ‘PLR-WB’ denotes the (non adaptive)
wild bootstrap PLR test-based approach; ‘ALR-VB' denotes the adaptive PLR test based on the volatility bootstrap; ‘ALR-WB’ denotes the
adaptive PLR test based on the wild bootstrap. The number B of bootstrap samples used in the wild bootstrap algorithm is 999.

exacerbated by the presence of heteroskedasticity in the data, thus allowing the adaptation with the
respect to the volatility process to deliver more reliable results in small samples.

In summary, overall our results seem strongly in favor of a selection of an autoregressive lag length
of 2. However, the selected co-integration rank varies according to the method used. In particular, the
joint and sequential (for k = 2) HQC-based approaches select a co-integration rank of 4, while the joint
and sequential (for k = 2) BIC-based approaches select rank 2. The sequential procedures based on PLR
tests and k = 2 select 7 = 2 in non-adaptive form, 7 = 3 when using a 1% significance level and # = 4
when using a 5% significance level. This is in some ways consistent with the findings for BIC and HQC-
based methods since decreasing the significance level is qualitatively the same as using a stricter penalty
in the information criterion. Finally, it is worth noting that the choice of a rank equal to 4 implies the
presence of a single stochastic trend driving the five yields and is in line with the (weak-form) expectation
hypothesis of interest rates (see, e.g., Campbell and Shiller, 1987), which implies that the (long-term)
level factor-but not the slope nor the curvature of the interest rate yield curve is a random walk process,
so that 8'X; consists of spreads X;; — Xj; for i =2,3,4,5.

7. Conclusions

In this article, we have proposed new methods for determining the co-integration rank and the lag order
in heteroskedastic VAR models which exploit the time variation in the unconditional error variance
matrix. In particular, we have proposed adaptive information criteria-based approaches to jointly deter-
mine the co-integration rank and the autoregressive lag length. Provided standard conditions hold on
the penalty term hold, these methods are proved to be weakly consistent for co-integration rank and lag
order determination. We have also demonstrated that the adaptive PLR rank determination procedure
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of Boswijk and Zu (2022), originally developed under the assumption of a known autoregressive lag
length, remains asymptotically valid when a consistent lag length estimate, such as that provided by an
adaptive information criterion, is used. Monte Carlo experiments reported indicate that the adaptive
information criteria-based approaches generally outperform standard methods in finite samples when
non-stationary volatility is present in the data.

A. Appendix

Notation and preliminary results. Write the unrestricted model (with r = p and k = K) without determin-
istic terms as

AX; =TIX;_1 + VZi+ & =[TT:WIW; + &= (W, ® 1) 0 + &,

where Wy = (X/_,, 2))/ with Z, = Z{") = (AX[_,,..., AX|_y, )’ and where 6 = vec[IT : W],
The lag order restriction k < K 1mp11es particular zeros on vecV, say,

(k)
vecV = ( 1 >
0

The cointegration restriction rankIT < r implies IT = «8’, and hence
vecIl = vec(aB’) = (I, ® a)vec (B)

where o and § are p x r matrices. Depending on r, we normalize 8 as ¢’ = I, for some known p x r matrix
¢ of full column rank. Defining c; as the orthogonal complement of ¢, and ¢ = ¢(c’c) ™!, this leads to 8 =
¢+ ¢ @ for some r x (p — r) matrix ® of unknown parameters; hence

vecIl = (I, ® @) (vec(c) + (cL ® I)p) =: g7 (¢, ), (A1)

where ¢ = vec® and the function g is implicitly defined.
With known X, minus two times the log-likelihood of the unrestricted model, up to an additive constant,
is given by

(AX: — (W[ ®1,)0) =" (AX, — (W} ® 1) 0)

M=

—2L7(0) =

H
Il
_

—(W,®1,) (6 - é))/ »;! (é, - (W, ®1L) 6 - é))

I
-
/~
>

,,
Il
—

[
M*

hom st+(0—9)2 WW, @ 21 (6 - 6),
1 t=1

-
Il

where 8 is the unrestricted MLE

and & = AX; — (W; ® Ip) 0. Estimating different submodels (r, k) involves minimizing —2¢1(f) over 6
under the restriction

g7 (¢, @)
gkn — e

0

which yields the restricted estimator § %",
Using the true value By and hence ry, define

T e, T7128, 0
Dr = |: 0 0 Tﬁl/z[p(K—l) ® Ip,
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such that
T_I/ZC/J_Xt_l

Dy (W ®L)=T""2 Bt Xi—1 ® L.
Zt

This is used to normalize the factors of the log-likelihood ratio function:

A7) = =2[er(6) — £r6)]
T
=©0-0Y (Ww;®%;")©—0)
t=1
T
=0 -0)D;! [Z Dy (Ww, ® £;71) DTj| D7 (6 —6).
t=1
Note that Dt has been defined such that D;l(e - é) and the normalized observed information matrix in
square brackets are bounded in probability (and the latter has a non singilar limit). Indeed, as shown by

Boswijk and Zu (2022),
-1
1,5 wil J1 0 S1
otd-w=[ 5] (%)

and

T
> Dy (Wiw;® 3;') Dr > []01 ]OZ ]
t=1

where S; and J; are the limits of the normalized score vector and information matrix of the cointegration
parameters ¢, and S, and ], are the corresponding limits for the remaining parameters (o and W). Further-
more, Boswijk and Zu (2022) show that the same limit results apply if the true sequence {Et}thl is replaced
by the non-parametric estimate {f],}thl in the expression for £1 and hence A7.

Extending the above results to the case with a (possibly restricted) constant or linear trend term requires
X;—1 and possibly Z; to be extended by such deterministic terms, and a corresponding extension of the matrix
Dr. This will not be considered explicitly here.

Finally, it will be convenient to define LR(Hg, », [Hk,.r,) := Ar@%Lry — Ap(@%2r2), the likelihood ratio
statistic for Hy, ,, against Hy,,,, where (k;,71) and (k», r2) are particular values of (k, r) with k; <k, and
r <r.O

Proof of Lemma 1. To obtain the results of Lemma 1, we proceed to analyze
ALS-IC(k, ) — ALS-IC(k, ro) = Ar(8®") — Ar(@*™) + 1 [ (k, 1) — 7wk, 10)]

where 7w (k, ) = r(2p — r) + p?(k — 1). We first consider the case where k > ko, such that the chosen lag length
is well- (or over-) specified. After that, we consider the case of under-specified dynamics (k < ko).

When k > ko, then Hy,, is a well-specified model, and hence Ar(@%) is the LR statistic for the null
hypothesis that the lag length is (less than or) equal to k and the cointegrating rank is ry in the unrestricted
model. As this null hypothesis is true, A7(6*)) will have a limiting null distribution, being the distribution
of the sum of the LR statistic in Boswijk and Zu (2022) and a x? random variable. Most importantly,
AT(@F)) = 0,(1).

For r > rg, we have Ap(6®") — Ap(@®0)) = —LR(Hkr, | Hi,r), which is minus the LR statistic for a true
null hypothesis in an overspecified model, and hence it is Op(1). Because 7 (k, r) — 7 (k, 70) > 0, it follows that

Pr (ALS-IC(k,r) — ALS-IC(k,1p) > 0) — 1,

provided ¢y — oo.
For r < rg, we have Ap(@%"0) — Ap(@®r0)) = LR(H,r|H,r,)- In this case, the null hypothesis is violated,
which will cause the statistic to diverge (to +00) at the rate Oy(T). To obtain this rate, consider first the
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simplest case where r = 0 and kg = k = K = 1, so that the estimator of W is zero under both constraints, and
6*" = vecl1®:) = 0. Therefore,

LR(Hir|Hir) = AT(é(k’r)) — AT(é(k,ro))
T
= é\/D{FI |:ZD/T (WtWt/ ® E;I)DT:| D;lé _ AT(§(k”0))_
t=1

Since D78 = D6y + 0,(1), with
-1 T(By, c1)™" By 0
Prito= <|: Tl/ozl(c'ﬁo)flg’L ® 1 ) [fo @ Ip] vecan = T ?vecay )’

and Ap(@%)) is 0, (1) as before, this leads to Ap@%®Ny — Ap@kr0)y = O,(T). More generally, we will find
that the divergence rate of

T
Ar@*7) = @*" — 6y D! [Z Dy (Wew, @ =71 DTi| D7 (%" —0)
t=1

will be determined by
D7 (0% — ) = DF1E®" — 65) + 0,(D),

and since 6 does not lie in the constrained parameter space such that the difference g% — gy will be Op(1)

but not 0, (1), it follows that D;l(é(k”) - é) = Op(Tl/z) as before, and hence A (6%") = Op(T). The term
cr [ (k,r) — m(k, r9)] is negative and diverges at the rate cr; therefore

Pr (ALS-IC(k, ) — ALS-IC(k, ro) > 0) — 1

provided ¢7/T — 0.

Next, consider the case k < ko, so that we are comparing two (dynamically) misspecified models. When
r > rg, such that the larger model encompasses the correct cointegration rank, we may use the following
decomposition:

LR(H o Hir) = LR(HK o [ 7k ,r) + LR(Hiry |k ) — LR(Hier [ Hicr), (A2)

which follows from Hy ,, C Hi,r, C Hi,r and Hyr, C Hir C Hr,r» and equating the sum of the LR statistics
for both nested sequences of hypotheses. The first right-hand side expression in (A.2) is the LR statistic for the
correct cointegration rank in a well-specified model, and hence O,(1). The second and third terms in (A.2)
are LR statistics for an incorrect lag length against an unrestricted lag length. Both test statistics will diverge,
but their difference is O, (1), as we will now show.

Recall the definition of g(r) (¢, ) in (A.1), and define the corresponding Jacobian matrix

98" (p,0) 08" (p, )
¢’ " dvec(a)’

G (¢, ) =[ }z [(cL®0): (B®1)],

where 8 is determined from ¢ as vecf’ = vec((c'c)~!¢) + (cL ® I;)¢. Next, define the Jacobian matrices
evaluated at the true values

Go=G"(go,ct0),  G=G"@,a").

Here (¢, o) is the true parameter value in the model H,,, and similarly (qb(gr), a(()r)) is the true value in
the overspecified model H , with r > rg. Note that ¢ and « are not identified in the over-specified model,

but one can choose a true value such that vecITy = g(’) (¢ér), a((]r)). Using a linearization of the rank-restricted
model, and hence a quadratic approximation of the log-likelihood, we have

-1
= (K,ro) _ T T
~ T T Gyp O _
60 — 0o = < g &) _ W(:) ) = [ 0 1 ] (Z W?W?/) D Wiz +op(T712),
t=1 t=1
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where z; = at_lst (with o; the symmetric square root of ;) and

WS, Gy(Xi1 ®0, 1)
Woi=| Wy | = Zy; Qo !
Wt Zot ® Gt_l

/

Here the vector of lagged differences Z; has been partitioned into the retained lags Z;; = (AX;_, .. AX’ —k +1)

and the excluded lags Z; = (AX;_k, L AX] K4 D)’ in the model Hy,; with coefficients wl and v,
respectively. By the same quadratic approx1mat10n of the log-likelihood,

LR (Hiry [ Hicr) = 03" Z W10, W 10,03 " + 0p(D), (A3)
with
1//(Kr°) Vo0 + <ZW2 10,¢ 210t) sz 1042t T 0p(T™ 12,
t=1 t=1
and where
T -1
WO WO/ WO W/ WO
W= S (V[ TRTE WO ]) () e
t=1 t=1

the least-squares residual of a regression of W, on W9, and Wy;. By the same derivations, an approximation
analogous to (A.3) applies to LR(H,|Hk,) for r > ry, but with &2(K,ro) replaced by 1}2”(’7), and Wg-lo,t

replaced by W5.10;, which in turn is defined by (A.4) with Wgt replaced by Wy, = G' (X1 ® (rt_l). This
leads to the following result:

K, 7 (K,
LR (M| i r0) — LR(Hir | i) = 13 ’WZWZ 10, Wy, 05" (A5)
7 (K, 7 (K,
: ”’Zwuoxwgmwé "+ 0p(1)
t=1

— / 0 (7 /
=vY20 Z (W2104 W20, — W0, Wh10) ¥2,0

t=1

T
+ 293 Z (W10 — Wat04) 2
t=1

+ Zzth 10,¢ (Z W.10:W31 t) ng-lo,tzt
=1

- Z Z W) 10 (Z Wz.lo,tw/z.m,t> Z Wa.10,2¢
t=1 t=1

The third and fourth terms in the final right-hand side expression are O,(1), since they represent essentially
the two likelihood ratio statistics under the null hypothesis ¢, = 0. We will now analyze the first two terms.

Because Hg,y, is nested in Hg,,, it follows that the column space of Gy is a subset of the column space
of G. Without loss of generality (after suitable rotation), we may write G =[Gy : G*] for some matrix G*,
orthogonal to Gy. Using standard derivations involving projection matrices, this leads to

-1

T T
_ */ * */ *
W2 10t — Wator = Z W Woy <Z WOtWOt) ot>
t=1

t=1
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with W, the least-squares residual of a regression of G* (X;—1 ® at_l) on Wgt and W;;; and
T T T -1
Z (W(Z)JOJW(Z){lO,t - W2-10,tw2-10,t) = Z WZth; (Z Wé‘twé‘i) 3t ,Zt‘
=1 =1 =1
It can be shown that G¥(X;_; ® 0[1) selects I(1) linear combinations from X;_;, which implies
T T T
Z Wét\Wéé = OP(TZ)’ Z W&W’Zt = 0p(D), Z Wz = Op(T),
t=1 =1 =1
and substituting this in (A.5) leads to LR(Hg, s, |HK,r) — LR(Hk|Hi,r) = Op(1). Hence, because 7 (k, r) —
7 (k,r9) > 0, it follows that
Pr (ALS-IC(k,r) — ALS-IC(k, 1) > 0) —> 1

if cr — oo.
For k < ko, r < r9, the proof follows from a combination of ingredients from the previous two cases: now

LR(Hr[Hiry) = LR(Hir Mk ro) + LR(Hir|Hir) — LR(Hiry [ HK ro)-

The first right-hand side term will diverge at the rate O,(T), analogous to the result for k > ko, r < ro; and
the final two terms together will be O, (1) as in the case k < ko, r > ro. This again leads to the required result.

O

Proof of Lemma 2. As in the proof of Lemma 1, we start with expressing the ALS-IC difference in terms of
likelihood ratio statistics and 7 (k, 7). For kg < k <K,

ALS-IC(k, r9) — ALS-IC(ko, 1) = —LR(Hxyry | Hiry) + 1 [ (k, 10) — 7 (Ko, 70)] -

The first right-hand side term is an LR test statistic for a true null hypothesis in a well-specified model, and
hence O, (1). Because 7 (k, 7o) — 7 (ko, 7o) > 0, the ALS-IC diverges provided c7 — oo, which proves part (i).
For 0 < k < ko,

ALS-IC(k, rg) — ALS-IC(ko, r0) = LR(Hi v | Hio,ro) + c1 [77 (ks 10) — 7 (ko, 70)] -

The first right-hand side term is an LR statistic for a false null hypothesis in a well-specified model, and hence
will diverge at the rate O, (T); see the proof of Lemma 1, case k < ko, r > rg. Since 7 (k, ro) — 7 (ko, 79) < 0in
this case, the ALS-IC diverges provided ct = o(T), which proves part (ii). O

Proof of Theorem 1. The theorem is a direct extension of Theorem 1 of Cavaliere et al. (2018) to the case of
ALS-based information criteria. Making use of Lemmas 1 and 2, the line of the proof is exactly the same as in
their proof. O

Proof of Lemma 3. The proofis analogous to the proof of Lemma 2; the difference is that the true cointegrating
rank rp in Lemma 2 has been replaced here by p > ry. Therefore, the LR test statistics are now for a true or
false null hypothesis in an over-specified model; but this does not affect the divergence rates, hence the same
results obtain. O

Proof of Theorem 2. 1t follows from Boswijk and Zu (2022), Theorem 3, that when using the true lag length
ko, the bootstrap PLR-tests have correct size and are consistent, i.e., for the chosen significance level 7, and as
T — oo,
Pr (?‘*(ko) < r) — 0,
Pr (?’*(ko) = ro) —-1-—n.
Together with Lemma 3, this implies the result of Theorem 2, analogously to the proof of Theorem 3 of
Cavaliere et al. (2018). O

Proof of Theorem 3. The theorem is a direct extension of Theorem 2 of Cavaliere et al. (2018) to the case of
ALS-based information criteria. Making use of Lemmas 1-3, the line of the proof is exactly the same as in
their proof. O
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