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This paper suggests a multiplicative volatility model where volatility is
decomposed into a stationary and a nonstationary persistent part. We pro-
vide a testing procedure to determine which type of volatility is prevalent
in the data. The persistent part of volatility is associated with a nonstation-
ary persistent process satisfying some smoothness and moment conditions.
The stationary part is related to stationary conditional heteroskedasticity. We
outline theory and conditions that allow the extraction of the persistent part
from the data and enable standard conditional heteroskedasticity tests to de-
tect stationary volatility after persistent volatility is taken into account. Monte
Carlo results support the testing strategy in small samples. The empirical ap-
plication of the theory supports the persistent volatility paradigm, suggesting
that stationary conditional heteroskedasticity is considerably less pronounced
than previously thought.

1. Introduction. Two important issues widely discussed in the statistical and finance
literature, over the last 25 years, are structural change and volatility modelling. Starting with
the seminal work of [16], volatility modelling has developed into a large topic of study. Most
work has produced volatility models that are stationary and allow for time variation in the
conditional variance. There are two important groups of parametric models used to model
volatility. The first group represents the conditional variance as a function of observables
and includes autoregressive conditional heteroskedasticity (ARCH) and generalised ARCH
(GARCH) models. The second group, where the conditional variance is treated as a latent
variable and may depend on more than one innovation process, includes stochastic volatility
models.

Empirical work, though, has repeatedly concluded that volatility can exhibit extreme per-
sistence. Such persistence is not easily accommodated by stationary volatility models. The
challenge is revealed through the integrated GARCH effect; see, for example, [30], when pa-
rameter estimates are observed to lie near the boundary of stationarity. This effect can be
caused by smooth or abrupt structural change in the unconditional variance over time. So, it
is possible that once allowed for, volatility can be best characterised by persistent, and possi-
bly nonstationary processes. There is a growing literature that tries to characterise volatility
using parameter processes that allow for gradual change in the unconditional variance. First,
we succinctly summarise the main ways this problem is addressed in the literature, and then
present our main contributions.

The first line of recent research on structural change has focused on paradigms coming
from the statistical literature, such as the work of [32] and [9], where parameter processes
are smooth deterministic functions of time. Dahlhaus and Rao [11] proposed the locally sta-
tionary time-varying ARCH model, that is globally nonstationary. Along the same lines, [36]
proposed another model with deterministic smoothly varying parameters, where volatility is
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multiplicatively decomposed into a stationary and nonstationary part. The assumption that
a nonstationary part could drive volatility has recently permeated in standard ARCH (sta-
tionary) models as well. Specifically, [17] and [6] propose using splines, [28] use the Fourier
Flexible form of [19] in their periodic volatility model, [26] consider the generalised GARCH
model and, in a series of papers [1] and [2], suggest to model volatility as a linear combination
of logistic functions.

While the above characterisations provide an avenue to describe and estimate stationary
and nonstationary volatility processes, there is no clear way to separate the two kinds of
volatility. Further, the above characterisations are either tied to parametric forms or assumed
to be smooth deterministic functions of time.

This paper makes a number of contributions. We suggest a multiplicative specification of a
volatility process that allows a stationary and a nonstationary part. The latter can potentially
account for the extreme persistence of volatility observed in data. We use ideas from the
recent literature on structural change to show how persistence, perhaps surprisingly, allows
kernel estimation of the unobserved stochastic persistent part of volatility without strong
parametric assumptions and the requirement to be a smooth, deterministic function of time;
see, for example, [9, 27, 32] and [36], among others. While smooth deterministic functions
for the persistent part of volatility are still allowed, including stochastic elements in persistent
volatility modelling can provide a richer representation of volatility.

Recent work by [21] shows that as long as a parameter process satisfies some smooth-
ness and moment or boundedness conditions, it can be stochastic but still estimable using a
kernel estimator. Such processes may adequately fit the observed behaviour of volatility, as
they are clearly more persistent than stationary processes. In fact, persistence is their most
distinctive characteristic. Giraitis et al. [22] essentially ask the following question: Assuming
a decomposition of the form yt = htut , for some observed process yt and unobserved sta-
tionary process ut , what properties should ht have, so that h2

t can be consistently estimated
by, essentially, a rolling window form, mean estimate of y2

t ? They show that ht has to change
slowly, in the sense that |ht − hs | has to be small when t and s are close, and thus, stationary
processes do not qualify. A normalised random walk provides a canonical example for the
sort of processes we have in mind.

We demonstrate in this paper how the uniform consistent estimation of ht leads to a
strategy of separation between the stationary and persistent parts of volatility. Basically,
if the persistent part can be uniformly estimated, then the rescaled series of residuals
̂|ut |γ = (ĥ

γ
t )−1|yt |γ , γ > 0, can be used to test for ARCH effects (conditional heteroskedas-

ticity) or the presence of a stationary volatility in ut . If only persistent volatility is present,
standard ARCH tests will not detect ARCH effects in residuals. If the persistent part ht is ab-
sent, the normalisation by ĥ

γ
t will not distort the residuals and stationary volatility in ut will

be detected. Our specification allows for both the persistent and stationary parts of volatility
to coexist. Moreover, they can be extracted from the data. After testing for ARCH effects
in ut , is performed, in a second step, a stationary volatility model can be fitted to ut . This
extension is beyond the scope of the current paper.

In this paper, we discuss, in detail, conditions needed for consistent estimation of the per-
sistent part, ht , of volatility and further conditions that enable the use of standard ARCH tests
to separate persistent volatility from stationary volatility. We provide illustrative Monte Carlo
results that support our approach on testing in small samples. We proceed and present exten-
sive empirical evidence clearly supporting the persistent volatility paradigm, suggesting that
stationary time varying conditional volatility is less pronounced than previously thought and,
further, conditional second moments of asset returns are very persistent and change slowly.

The remainder of this paper is organised as follows. Section 2 presents our statistical pro-
cedure and theoretical results. Section 3 contains the simulation study. Section 4 reports the
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empirical results from implementing our testing strategy in financial data. Section 5 con-
cludes. Proofs are relegated to the Supplementary Material [7]. Below →D , →P stand for
convergence in distribution and probability.

2. Theoretical considerations. We consider the following white noise model for a series
of uncorrelated random variables:

(1) yt = htut , t = 1, . . . , T ,

where {ut } is a stationary sequence of uncorrelated random variables with Eut = 0, Eu2
t = 1

and ht > 0 is the persistent part of volatility (stochastic or deterministic). Formally, yt =
ytn, t = 1, ..., T and ht = htn, t = 1, ..., T are triangular arrays but it is unnecessary to add
the additional index in what follows. We assume that sequences {ut } and {ht } are mutually
independent. Then

cov(yt , ys) = E[hths]E[utus] = 0 for t �= s.

First, we establish notions of persistent and stationary volatility. We will assume that ht is
measurable with respect to the information set Ft−1 at time t − 1 and E(ut |Ft−1) = 0. Then
the conditional variance of yt is defined by

(2) var(yt |Ft−1) = h2
t E

(
u2

t |Ft−1
) = h2

t σ
2
t .

To specify the properties of persistence for ht , we introduce below Assumption H. Overall,
the notion of persistence of ht simplifies to

(3) lim
T →∞

(
h2

t,T − h2
t−1,T

) =P 0,

for any 1 ≤ t = tT ≤ T . For example, if ht is a deterministic function, the property (3) will
imply that the unconditional variance var(yt ) = h2

t Eu2
t changes smoothly when T increases.

Other processes, such as locally stationary and stochastic unit root processes, ht , satisfy this
property as well, as we discuss below. We refer to h2

t as the persistent part of volatility.
There is a vast body of literature on modelling stationary volatility. We define the stationary

part of volatility as a conditional variance

σ 2
t = var(ut |Ft−1),

with respect to the information set Ft−1 at time t − 1. Here, both {σ 2
t } and {σ 2

t − σ 2
t−1} are

stationary processes, and thus, the persistence property σ 2
t − σ 2

t−1 = oP (1) does not hold.
The main two classes of stationary volatility models for σ 2

t are the autoregressive conditional
heteroskedastic ARCH and GARCH models and stochastic volatility models.

Our objective is to test whether the conditional variance var(yt |Ft−1) contains a stationary
component σ 2

t . A simple general specification of such a hypothesis is given by

(4) H0 : var(yt |Ft−1) = h2
t vs H1 : var(yt |Ft−1) = h2

t σ
2
t ,

where {σ 2
t } is a stationary sequence of dependent random variables. To construct a feasi-

ble testing procedure, we further assume that, under H0, {ut } is a sequence of independent
identically distributed (i.i.d.) random variables and yt is generated according to the following
processes:

yt = htεt under H0,

yt = htut , ut = σtεt under H1,
(5)

where {εt } is an i.i.d. sequence with Eεt = 0, var(εt ) = 1 and such that E(εt |Ft−1) = 0,
E(ε2

t |Ft−1) = 1. This model specification implies (4).
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According to the specification (5), {ut } is a white noise process. Essentially, a standard
test for ARCH effect is a white noise test for the squared time series {u2

t } and requires the
existence of six finite moments for ut . To relax this assumption, in this paper we consider
tests for ARCH effects, based on {|ut |γ }, γ > 0, which is basically a white noise test for the
time series {|ut |γ }. The analysis covers the case γ = 2.

Since {ut } is not observed, we base our test for ARCH effects on the power transform of
residuals

(6) ̂|ut |γ where ̂|ut |γ = (
ĥ

γ
t

)−1|yt |γ

and ĥ
γ
t > 0 is an estimate of h

γ
t . Such testing requires uniformly consistent estimation of

h
γ
t by ĥ

γ
t , and thus, stronger conditions on {ht , ut } are needed, than for consistent point

estimation of ht at time t . This is reflected in the Assumptions M and H that we make for ut

and ht . In particular, we impose the assumption of mutual independence between {h2
t } and

{u2
t }, which clearly holds for a deterministic volatility factor ht .

ASSUMPTION M (α-mixing).

1. {ut } is a stationary white-noise ergodic sequence with Eut = 0, Eu2
t = 1, Eutus = 0

for t �= s.
2. {ut } is α-mixing with mixing coefficients αk ≤ cφk , k ≥ 1, for some 0 < φ < 1 and

c > 0.

ASSUMPTION H (Smoothness).

1. For some ν ∈ (1/2,1],
|ht − hj | ≤ C

(|t − j |/T
)ν

, t, j = 1, . . . , T or

|ht − hj | ≤ (|t − j |/T
)ν

ξtj ,
(7)

where C > 0 does not depend on t , T , and for some 0 < α < ∞, c > 0,

(8) max
t,j=1,...,T

E
[
exp

(
c|ξtj |α)] ≤ C < ∞, max

t=1,...,T
E

[
exp

(
c|ht |α)] ≤ C < ∞.

2. There exists a > 0 such that ht ≥ a > 0 a.s. for all t ≥ 1.
3. {ht } and {ut } are mutually independent.

The model specification (1) abstracts from the general case of a time series with a specified
conditional mean. It is possible to generalise our test for ARCH effects to a time series with
a nonzero conditional mean

yt = μt + htut , μt = E(yt |Ft−1), t = 1, . . . , T .

The smoothness condition (7) in Assumption H implies that the persistent component of
volatility, ht , drifts slowly in time, which essentially rules out abrupt or explosive behaviour
for ht . This assumption is widely used in the statistical and econometric literature. It allows
the use of both deterministic and stochastic time-varying processes ht and implies the persis-
tence property (3).

The deterministic specification ht = g(t/T ), t = 1, . . . , T , where g(·) is a Lipschitz
smooth function with parameter 1/2 < ν ≤ 1, that is, |g(x)−g(y)| ≤ C|x − y|ν is a standard
assumption in the work of Dahlhaus on locally stationary processes (see, e.g., [9] or [10]). It
implies |ht − hs | ≤ C(|t − s|/T )ν .

The stochastic specification ht = T −ν |∑t
j=1 vj |, t = 1, . . . , T of ht , where {vj } is a sta-

tionary sequence with zero mean, was proposed by [20–22] to allow for a persistent process
ht that can be presented as nonstationary random walks; see Example 1 below.
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A combination of the two, satisfying (7) with parameter ν, can be summarised as

(9) ht = ∣∣T −ν(v1 + · · · + vt ) + g(t/T )
∣∣ + a, t = 1, . . . , T (a > 0).

Our testing procedures will still work for the case of yt with a nonzero conditional mean; in
this case, a first step estimator for the mean will be required; see, for example, [8].

EXAMPLE 1. Let {vj } be a stationary Gaussian ARFIMA(p, d, q) sequence with pa-
rameter d ∈ (0,1/2) and zero mean; see, for example, Chapter 7 in [23]. Then ht =
T −ν |∑t

j=1 vj |, t = 1, . . . , T satisfies (7) of Assumption H with ν = 1/2 + d and α = 2.
Indeed, for t > s,

|ht − hs | =
∣∣∣∣∣T −ν

∣∣∣∣∣
t∑

j=1

vj

∣∣∣∣∣ − T −ν

∣∣∣∣∣
s∑

j=1

vj

∣∣∣∣∣
∣∣∣∣∣

≤ T −ν

∣∣∣∣∣
t∑

j=s+1

vj

∣∣∣∣∣ ≤ (|t − s|/T
)ν |ξts |, ξts = (t − s)−ν

t∑
j=s+1

vj .

Here, ξts is a Gaussian variable, and by Proposition 3.3.1 in [23] and stationarity of {vj }, the
variance var(ξts) = var(ξt−s,0) → v2 < ∞ as t − j → ∞. Hence, ξts and ht satisfy (8) with
α = 2.

2.1. Volatility estimation. To extract residuals ̂|ut |γ = (ĥ
γ
t )−1|yt |γ , required for the test-

ing of ARCH effects, we need an estimate for h
γ
t in |yt |γ = h

γ
t |ut |γ . Without loss of gener-

ality, we assume that ht is rescaled so that E|ut |γ = 1. We will show that in model (1), under
Assumptions H and M, h

γ
t can be consistently estimated by a kernel-type estimate

(10) ĥ
γ
t = K−1

t

T∑
j=1

bH,|t−j ||yj |γ , Kt =
T∑

j=1

bH,|t−j |, t = 1, . . . , T ,

where bH,|t−j | = K(|t − j |/H) are kernel weights. K(·) is assumed to be a nonnegative and
bounded function, with a piecewise bounded derivative, and H is a bandwidth parameter that
satisfies H = o(T ), as T → ∞. Commonly used examples of K(x) include:

K(x) = (1/2)I
(|x| ≤ 1

)
, flat kernel,

K(x) = (3/4)
(
1 − x2)

I
(|x| ≤ 1

)
, Epanechnikov kernel,

K(x) = (1/
√

2π)e−x2/2, Gaussian kernel.

The first two kernel functions have finite support, whereas the Gaussian kernel has infinite
support. We further assume that on its support,

(11) K(x) ≤ C
(
1 +xg)−1

,
∣∣(d/dx)K(x)

∣∣ ≤ C
(
1 +xg)−1

, x ≥ 0 with g > 4,C > 0.

Under this setup, in Lemma 7.2 of the Supplementary Material [7] we show the pointwise
consistency of this estimate:

(12)
∣∣ĥγ

t − h
γ
t

∣∣ = Op

(
(H/T )ν + H−1/2)

.

Similar results for vector autoregressive models were derived in [22]. In Lemma 7.2 of the
Supplementary Material [7], using the results of [14], we establish the uniform convergence

(13) max
t=1,...,T

∣∣ĥγ
t − h

γ
t

∣∣ = oP (1).

This uniform convergence result will prove useful in our testing procedure for the distinction
between the persistent and stationary parts of volatility that follows.
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2.2. Testing. In this subsection, we outline how our strategy to discriminate between the
persistent and stationary components of volatility works under (1), where ut is not observed.
Basically, it will be seen that the test of hypothesis (4) reduces to a white noise test for {|ut |γ }.
First, we briefly summarise the basic tests for ARCH effects when a white noise time series
{ut } is observed.

The Lagrange Multiplier (LM) test by [16] is the most commonly used standard ARCH
test to detect autoregressive conditional heteroskedasticity (or stationary volatility) in {ut }.
We simply fit to u2

t an AR(p), p ≥ 1, model

(14) u2
t = β0 + β1u

2
t−1 + · · · + βpu2

t−p + ηt ,

where β0 > 0 and test the following null hypothesis:

(15) H0 : β1 = β2 = · · · = βp = 0 vs H1 : βj �= 0 for some j = 1, . . . , p.

The null hypothesis H0 implies absence of correlation in the first p lags of the series {u2
t }

and vice versa. Basically, this ARCH LM test is equivalent to testing for absence of autocor-
relation in {u2

t }.
The test statistic of the ARCH LM test by [16] is defined as T R2, where T is the sample

size and R2 is the coefficient of determination of the AR regression (14). Under H0, when
{ut } is an i.i.d. sequence with finite fourth moment, the LM statistic follows asymptotically
a χ2

p distribution. Further tests, such as the Wald and likelihood ratio, have been shown to be
asymptotically equivalent to the LM test.

Through testing, the literature mainly addresses two distinct problems: the misspecification
of the conditional mean (see, e.g., the discussion in [3]), and the correct specification of the
volatility process. Our work naturally falls in the second category by addressing the question
of whether allowing for a persistent component ht in (1), provides a better specification for
the volatility process. By ARCH effects in {ut }, we mean the presence of correlation in a
sequence {|ut |γ }, where γ > 0 is selected in advance. We will test for ARCH effects in the
unobserved component ut of yt = htut in (1) by fitting to |ut |γ an AR(p), p ≥ 1 model

(16) |ut |γ = β0 + β1|ut−1|γ + · · · + βp|ut−p|γ + ηt

and then testing the hypothesis (15) on β1, .., βp . We replace the unobserved variables |ut |γ
by residuals

(17) ̂|ut |γ = (
ĥ

γ
t

)−1|yt |γ ,

where ĥ
γ
t is the kernel estimate (10) of the γ -power h

γ
t of the persistent factor ht of volatility.

Our aim is to show that asymptotically it is equivalent to test for ARCH effects using the
residuals ûγ = [̂|u1|γ , ̂|u2|γ , . . . , ̂|uT |γ ]′, instead of uγ = [|u1|γ , |u2|γ , . . . , |uT |γ ]′.

In addition, such an equivalence implies that the residuals, ût = ĥ−1
t yt obtained using ĥt

with γ = 1, should behave as a white noise. In Theorems 2.2 and 2.3, we show that both the
ARCH LM test based on regression on ut and the correlogram of û1, ..., ûT can be used to
test for absence of correlation in {ut }.

The ARCH test using regression (14) for powers, |ut |γ obtained in Theorem 2.1, shows
that if a stationary process σ 2

t (co-)drives the volatility via ut , then the normalisation by ĥ
γ
t

in (17) will not corrupt the properties of testing.
In our setup and for p ≥ 1, we consider T S(uγ ) = T R2, the test statistic where R2 is

the coefficient of determination of the AR regression (16) based on uγ , and T S(ûγ ) = T R̂2

where R̂2 is based on the residuals, ûγ , as described above. The formulas of S(uγ ) and S(ûγ )

are given in (6.6) and (6.7) of the Supplementary Material [7].
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The following theorem, proven in the Supplementary Material [7], gives a sufficient con-
dition for LM test for ARCH effects to be asymptotically valid when applied to ûγ , instead
of uγ .

Denote by γk = cov(|uk|γ , |u0|γ ), k ≥ 0 the covariance function of a stationary sequence
{|ut |γ }, γ > 0, and define the p × p matrix �p and p × 1 vector γ p by setting

�p = (γ|j−k|)j,k=1,...,p, γ p = (γ1, . . . , γp)′.

Denote by βp the p×1 vector of parameters (β1, . . . , βp), which will appear in testing under
the alternative hypothesis H1 and set

βp = (β1, . . . , βp)′ = �−1
p γ p, σ 2

p = var
(|up+1|γ − β1|up|γ − · · · − βp|u1|γ )

.

Notice that the existence of �−1
p follows from Lemma 3.1(i) in [13] because the stationary se-

quence {u2
t } has a bounded spectral density. The latter follows from the absolute summability

of the covariance function γk ; see (7.8) in the Supplementary Material [7].
Recall notation ν of the smoothness parameter of ht appearing in (7).

THEOREM 2.1. Let {yt , t = 1, . . . , T }, follow (1), Assumptions H and M hold and H

satisfies

(18) T 1/2+a ≤ H = o
(
T 1−(1/4ν)) (for some a > 0).

Assume that γ > 0 and E|ut |3γ < ∞. Then the ARCH LM test statistic based on regression
(16) on |ut |γ has the following properties. As T → ∞, for any p ≥ 1,

(19) S
(
ûγ

) = S
(
uγ ) + oP (1) = σ−2

p β ′
p�pβp + oP (1).

In addition, if {ut } is an i.i.d. sequence, then βp = 0, and

(20) T S
(
ûγ

) = T S
(
uγ ) + oP (1) →D χ2

p.

Result (19) implies that testing for ARCH effects based on regression (16) is equivalent
to testing for the white noise for the series {|ut |γ }. Indeed, the matrix �p is positive definite
and, therefore, its smallest and largest eigenvalues obey 0 < λmin ≤ λmax < ∞. Notice that
β ′

p�pβp = γ ′
p�−1

p γ p , and

β ′
p�pβp ≥ ‖βp‖2λmin, γ ′

p�−1
p γ p ≥ ‖γ p‖2λ−1

max,

where ‖βp‖ denotes the Euclidean norm of βp . Hence, ‖βp‖ = 0 implies ‖γ p‖ = 0 and vice
versa, which proves the above claim.

Theorem 2.1 implies that a test for ARCH effects in {ut } based on statistic T S(ûγ ) has the
same asymptotic size and power properties as a test based on T S(uγ ) applied on unobserved
uγ . If the hypothesis H0 is not rejected, then this implies the absence of correlation in {|ut |γ }
up to lag p. Conversely, the alternative H1 is detected with a rate T .

Notice that the value βp = �−1
p γ p appearing in (19) is the same as the “true” value of

the parameter βp estimated by the OLS method in regression (14) when ηt is a white noise
sequence.

REMARK 1. If Assumption H is satisfied with ν = 1, for example, which is the case for
deterministic weights ht = g(t/T ), where g is a continuous piecewise differentiable function
with a bounded derivative, then assumption (18) on the bandwidth H becomes

(21) T 1/2+a ≤ H = o
(
T 3/4)

.
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Note that lower values of ν imply narrower permitted intervals for bandwidth H . Given that
ν is unknown, a theoretical recommendation for the choice of H is that it should be larger
than T 1/2 and less than T 3/4. In practice, we recommend trying different values for H , within
the interval T 1/2 to T 3/4, to establish test robustness. This matter is further discussed in the
Monte Carlo study.

REMARK 2. The moment condition E|ut |3γ < ∞ of Theorem 2.1 implies that testing for
ARCH effects based on regression (14) using u2

t , |ut | or |ut |1/2, which corresponds to γ =
2,1,1/2, requires the existence of E|ut |6, E|ut |3 and E|ut |3/2, respectively. If E|ut |3γ+ε <

∞ for some ε > 0, then (18) can be replaced by

T 1/2 = o(H), H = o
(
T 1−(1/4ν)).

We also suggest two methods to examine whether the unobserved time series {ut } in the
model (1) is a white noise sequence. The first approach is similar to testing for ARCH effects.
It amounts to fitting to ut an AR(p), p ≥ 1 model

(22) ut = β0 + β1ut−1 + · · · + βput−p + ηt

and testing the hypothesis H0 and H1 on (β1, . . . , βp) in (14). The test statistics T S(u) and
T S(û) in Theorem 2.2 correspond to the AR regression (22) on ut and ût = (ĥt )

−1yt . They
satisfy the asymptotic results of Theorem 2.1 with and βp , �p defined as in (19) using

(23) γk = cov(uk, u0), σ 2
p = var(up+1 − β1up − · · · − βpu1).

THEOREM 2.2. Let {yt , t = 1, . . . , T } be as in (1) and E|ut |3 < ∞. Suppose that As-
sumptions M, H and (18) hold. Then statistics T S(u) and T S(û) based on the AR regression
(22), have the following properties.

For any p ≥ 1, as T → ∞,

(24) S(û) = S(u) + oP (1) = σ−2
p β ′

p�pβp + oP (1).

In addition, if {ut } is an i.i.d. sequence, then βp = 0, and

(25) T S(û) = T S(u) + oP (1) →D χ2
p.

The same argument as used below Theorem 2.1, implies that the hypothesis H0 : β1 =
· · · = βp = 0 is equivalent to the absence of correlation up to lag p in {ut }.

Alternatively, absence of correlation in {ut } can be tested using the correlogram of residu-
als ût = (ĥt )

−1yt . This important step of data analysis allows one to verify the model speci-
fication (1) for yt since standard tests for white noise based on yt might not be applicable.

For k = 0,1, . . . , denote

r̂k = T −1
T∑

t=k+1

(ût − û)(ût−k − û),

r̃k = T −1
T∑

t=k+1

(ut − Eut)(ut−k − Eut−k).

(26)

THEOREM 2.3. Suppose that assumptions of Theorem 2.2 are satisfied. Then, as T →
∞,

(27) r̂k = r̃k + oP (1) = cov(uk, u0) + oP (1), k ≥ 0.

In addition, if {ut } is an i.i.d. sequence, then

(28) T 1/2r̂k = T 1/2r̃k + oP (1) → N
(
0,

(
Eu2

1
)2)

, k ≥ 1.
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Denote ρ̂k = r̂k/̂r0, k = 0,1,2, . . . . If {ut } is an i.i.d. sequence then (28) of Theorem 2.3
implies that

(29) T 1/2(ρ̂1, . . . , ρ̂m) →D N (0, Im), m ≥ 1.

This shows that using residuals ût , we can perform standard tests for the absence of correla-
tion in {ut } at individual lag k and Ljung–Box tests, for the cumulative lag m as if variables
{ut } were observed.

Notice that in our setting no ARCH effects in {ut } imply no correlation in {|ut |γ }. This is a
slightly weaker property than the i.i.d. assumption on {ut } under H0. The latter property leads
to standard approximations (20) and (29) for the test statistics, which are not guaranteed for
a non-i.i.d. white noise {ut }.

REMARK 3. In financial and economic applications, the common choice for volatility
modelling is a stationary GARCH-type model. Given this, it is also relevant to test the hy-
pothesis

H0 : yt = ut vs H1 : yt = htut ,

for absence of persistent component ht (ht = 1) in the model (1), where {ut } is a stationary
sequence of uncorrelated random variables. In general, this is equivalent to testing the mean
stability of series y2

t = h2
t Eu2

t + h2
t (u

2
t − Eu2

t ). Tests for the detection of alternatives with
deterministic ht were developed in [12].

REMARK 4. Jumps or abrupt changes in volatility are often observed in real data and
have been widely discussed in the literature; see, for example, [29] and [18]. The smoothness
Assumption H, of our setting excludes intermittently occurring changes with magnitude, that
is bounded away from zero in the persistent part, h2

t of volatility. Discrimination between
persistent and stationary volatility requires extraction of h2

t , which is achieved by using kernel
estimation and Assumption H. In our multiplicative volatility model, jumps can appear in the
stationary volatility component σ 2

t . The presence of jumps in that component will lead to
rejection of the null hypothesis. Simulation evidence supports this finding and is available
upon request.

3. Simulation study. In this section, we use simulations to verify the theoretical proper-
ties of the test statistics T S(ûγ ) for ARCH effects in {ut }, and explore its finite-sample size
and power performance. In particular, we examine the impact of the three types of persistent
volatility ht (constant, deterministic, stochastic) and the choice of the bandwidth parameter
H on the size and power of the test, and how crucial the moment condition E|ut |3γ < ∞ is.

We generate an array of samples

(30) yt = htut , ut = σtεt , t = 1, . . . , T ,

where {εt } is an i.i.d. N(0,1) noise. For σ 2
t , we use stationary ARCH(1) and GARCH(1, 1)

models:

σ 2
t = 1 + βu2

t−1, β = 0,0.2,0.4, ARCH(1) model;
σ 2

t = 1 + 0.2u2
t−1 + 0.7σ 2

t−1, GARCH(1,1) model.
(31)

The case β = 0 leads to σ 2
t = 1 or H0, and

(32) yt = htεt .
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We use (32) to study the empirical size of our test for ARCH effects in unobserved ut at lag
p, in particular, to determine whether the size of this test is robust to the choice of H . For a
persistent volatility component ht , with parameter ν = 1 by Theorem 2.1 under (32),

T S
(
ûγ

) ∼ T S
(
uγ ) ∼ χ2

p if T 0.5 = o(H), H = o
(
T 0.75)

.

Ideally, we expect both the test statistic T S(ûγ ) based on residuals, and T S(uγ ) based on
ut , to exhibit similar empirical size. Further, for β > 0 in ARCH(1) model or GARCH(1,1)

model in (30)–(31), a stationary volatility component is present, and then for the above choice
of H , we expect them to achieve similar empirical power, as shown in Theorem 2.1.

We set the significance level to α = 5% and conduct 5000 replications. We consider T =
200,400,800,1600, γ = 2,1,1/2 and we conduct testing for ARCH effects on |ut |γ at lags
1, 5 and 10 for γ = 2,1,1/2.

In the tables below, we examine the impact of bandwidth H and parameter γ on testing.
The shaded grey range of H = [T 0.60, . . . , T 0.70] denotes theoretically permissible values
of H for smoothness parameter ν = 1. As a reference point, we include a third shaded line
reporting the size and power for statistics T S(uγ ). Theoretically, as the sample size increases,
size and power in the shaded area should approach the benchmark.

We use three models for {yt }.

MODEL 1. We set ht = 1 and σ 2
t follows (31).

This model does not involve a persistent time-varying volatility component. It includes a
stationary volatility component except for the case β = 0, where σt = 1 and yt = εt .

The left panel of Table 1 confirms that both tests T S(û2) and T S(u2) for ARCH effects at
the lag p = 5 based on squares (γ = 2) achieve similar empirical size and power when H is
chosen from the permitted range [T 0.6, T 0.7].

MODEL 2. We set ht = sin(2πt/T ) + 2, t = 1, . . . , T , and σ 2
t follows (31).

This model contains a persistent deterministic volatility component ht , which satisfies
Assumption H with parameter ν = 1. For β = 0, the model yt = htεt includes no stationary
volatility (ARCH effects) in ut . From the right panel of Table 1, we conclude that overall
the empirical size and power of the test T S(û2) are comparable to those of T S(u2) as long
as H ∈ [T 0.6, T 0.7], but the use of a permissible bandwidth H plays an essential role here.
In real data, u2

t is not observed and the test T S(u2) cannot be performed. Not surprisingly,
in the model yt = htεt (β = 0), the empirical size of the test T S(y2) applied on squares y2

t

of the data is close to 100%, that is, it falsely suggests the presence of a stationary volatility
in yt .

MODEL 3. We set ht = T −(d−1/2)|Id,t | + 1, t = 1, . . . , T , where Id,t is a nonstationary
ARFIMA(0, d , 0) process. We consider the values d = 1.2,1.4,1.5 and σ 2

t follows (31).

Here, we assume that {ht } and {εt } are mutually independent. Such a stochastic persistent
process ht satisfies Assumption H with parameter ν = d −1/2 > 1/2; see Example 1. Table 2
shows that overall the performance of the test for ARCH effects on squares of residuals at the
lag p = 5 exhibits similar patterns as for Model 2, although the lower degree of persistence
of ht in Model 3 results in a somewhat smaller rate of detection of spurious presence of
stationary volatility in yt by T S(y2).

In sum, to test for ARCH effects in {ut }, we have used the statistics S(ûγ ) based on resid-
uals ̂|ut |γ . We report testing results for the value γ = 2, while the results for γ = 1,1/2 can
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TABLE 1
Testing for ARCH effects on squares at the lag p = 5 in Model 1 and Model 2. Rejection frequencies (in %) at

the 5% significance level (β = 0 size, β > 0 power)

Model 1 (with ht = 1) Model 2 (with deterministic ht )

T H Data β = 0 β = 0.2 β = 0.4 GARCH β = 0 β = 0.2 β = 0.4 GARCH

200 T 0.50 û2
t 12.98 19.04 48.82 7.22 10.50 17.96 49.14 8.02

T 0.60 4.90 23.30 60.82 28.66 3.20 24.42 62.84 34.96
T 0.70 3.72 30.14 69.60 52.42 7.64 40.68 74.92 66.44
T 0.80 3.60 34.64 74.32 65.52 25.10 60.12 84.08 83.34

u2
t 4.34 40.30 78.94 77.12 4.34 40.30 78.96 77.12

y2
t 4.34 40.30 78.94 77.12 73.66 86.78 93.62 95.22

400 T 0.50 û2
t 13.18 42.80 89.26 33.86 12.10 42.62 89.30 35.12

T 0.60 4.80 52.00 94.12 76.14 3.58 53.36 94.34 79.00
T 0.70 3.62 60.04 96.08 90.56 7.90 68.78 96.86 95.10
T 0.80 3.80 64.70 97.14 94.94 40.86 86.58 98.64 98.60

u2
t 4.68 69.06 97.60 97.22 4.68 69.04 97.60 97.22

y2
t 4.68 69.06 97.60 97.22 95.40 99.14 99.80 99.92

800 T 0.50 û2
t 15.32 80.58 99.92 89.00 14.42 80.62 99.92 89.58

T 0.60 5.60 87.42 100.00 99.38 4.74 88.16 100.00 99.52
T 0.70 4.38 91.38 100.00 99.88 7.78 93.88 100.00 99.96
T 0.80 4.18 92.96 100.00 99.92 60.80 98.98 100.00 100.00

u2
t 4.74 94.14 100.00 99.98 4.74 94.14 100.00 99.98

y2
t 4.74 94.14 100.00 99.98 99.98 100.00 100.00 100.00

1600 T 0.50 û2
t 16.44 99.04 100.00 99.96 15.96 99.08 100.00 99.96

T 0.60 6.20 99.72 100.00 100.00 5.68 99.72 100.00 100.00
T 0.70 5.08 99.82 100.00 100.00 7.06 99.84 100.00 100.00
T 0.80 5.16 99.84 100.00 100.00 80.06 100.00 100.00 100.00

u2
t 5.44 99.86 100.00 100.00 5.44 99.86 100.00 100.00

y2
t 5.44 99.86 100.00 100.00 100.00 100.00 100.00 100.00

be found in Section 8 of the Supplementary Material [7]. Testing results for ARCH effects at
lags p = 1,10 produce similar patterns as for p = 5, and are available upon request. We re-
port additional testing results for errors εt ∼ t (4), in Section 8 of the Supplementary Material
[7]. They show that the lack of finite E|ut |3γ moment has an impact on testing results.

Finally, in Figure 1 we explore the impact of bandwidth H on the size of the test by plotting
the MC average of the T S(ûγ ) test statistic for p = 5 and various values of H under the null
hypothesis. We consider data yt = htεt produced by Model 2 for T = 1600. From theory, the
Monte Carlo average of a well-behaved test statistic should approach the number of degrees
of freedom p = Eχ2

p marked by the light grey line. We see that this is indeed the case for
bandwidths H ∈ [T 0.6, T 0.7], suggesting that such bandwidth values perform well in small
samples and meet the requirements of our theoretical analysis.

Since the absence of a stationary volatility part can be detected, it is intriguing to conduct
a comparison of volatility forecasts for a specific case of the model (1):

(33) yt = htεt , t = 1, . . . , T ,

with a persistent nonparametric volatility var(yt |Ft−1) = h2
t and an i.i.d. (0,1) noise {εt }.

This model does not includes a stationary volatility component σ 2
t ; see (2). Our primary

interest is to verify whether the kernel forecasting method ĥ2
T +1|T := ĥ2

T of the volatility h2
T +1
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TABLE 2
Testing for ARCH effects on squares at the lag p = 5 in Model 3. Rejection frequencies (in %) at the 5%

significance level (β = 0 size, β > 0 power)

Model 3 (with stochastic ht )

β = 0 β = 0.2 β = 0.4

T H Data d = 1.2 d = 1.4 d = 1.5 d = 1.2 d = 1.4 d = 1.5 d = 1.2 d = 1.4 d = 1.5

200 T 0.50 û2
t 11.20 11.80 12.14 19.12 19.48 19.38 49.26 49.00 49.14

T 0.60 3.90 4.06 4.30 23.40 23.30 23.36 62.06 61.40 61.52
T 0.70 3.92 3.82 3.68 31.40 30.00 29.70 71.22 70.86 70.70
T 0.80 6.32 5.04 4.78 38.68 37.14 36.54 77.26 76.54 76.38

u2
t 4.52 4.52 4.52 39.76 39.76 39.76 79.92 79.92 79.92

y2
t 22.58 20.24 19.36 56.08 54.18 53.76 84.12 83.46 83.34

400 T 0.50 û2
t 12.24 13.02 13.10 43.94 43.90 43.86 89.96 90.02 89.88

T 0.60 4.08 4.58 4.68 54.08 53.34 53.50 94.64 94.54 94.42
T 0.70 4.52 4.20 4.04 63.70 62.56 62.22 96.80 96.60 96.56
T 0.80 8.34 6.62 6.00 71.02 69.42 68.80 97.92 97.70 97.68

u2
t 5.12 5.12 5.12 70.10 70.10 70.10 97.84 97.84 97.84

y2
t 36.40 32.48 30.64 83.80 81.96 81.70 98.78 98.68 98.52

800 T 0.50 û2
t 14.22 15.06 15.30 81.62 81.34 81.34 99.92 99.92 99.92

T 0.60 4.86 5.22 5.38 88.68 88.30 88.22 99.98 99.98 99.98
T 0.70 4.66 4.32 4.52 92.58 92.10 91.94 99.98 99.98 99.98
T 0.80 9.46 6.28 5.74 95.22 94.10 93.82 99.98 99.98 99.98

u2
t 5.34 5.34 5.34 94.46 94.46 94.46 99.98 99.98 99.98

y2
t 51.20 45.04 43.28 98.02 97.68 97.46 99.98 99.98 99.98

1600 T 0.50 û2
t 15.44 15.94 16.10 99.28 99.26 99.24 100.00 100.00 100.00

T 0.60 5.32 5.64 5.92 99.72 99.68 99.66 100.00 100.00 100.00
T 0.70 5.76 5.14 5.06 99.86 99.84 99.80 100.00 100.00 100.00
T 0.80 11.98 7.16 6.22 99.92 99.90 99.88 100.00 100.00 100.00

u2
t 5.28 5.28 5.28 99.88 99.88 99.88 100.00 100.00 100.00

y2
t 65.84 57.46 55.22 99.98 99.96 99.96 100.00 100.00 100.00

FIG. 1. Average of T S(ûγ ) test statistic for p = 5 and various values of H under H0, yt = ht εt .
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outperforms the 1-step ahead forecast ĥ2
j ;T +1|T formed from the following five parametric

volatility models denoted by “j”.
We consider the following stationary volatility models for σ 2

t in yt = σtεt . We set εt ∼
i.i.d. N (0,1) in all models except Model 4:

1. The stationary GARCH(1,1) model of [4],

(34) σ 2
t = ω + αu2

t−1 + βσ 2
t−1, t = 1, . . . , T .

This model is the benchmark in our volatility forecasting.
2. The GJR-GARCH(1,1) model of [24]:

σ 2
t = ω + αu2

t−1 + γ u2
t−1I (ut−1 < 0) + βσ 2

t−1, t = 1, . . . , T .

This model enables simulation of the leverage effect, which can be important in forecasting
volatility.

3. The APARCH(1,1,1) model of [15]:

σ δ
t = ω + α

(|ut−1| − γ ut−1
)δ + βσδ

t−1, t = 1, . . . , T .

It adds flexibility capturing volatility dynamics and asymmetries via parameter δ.
4. The GARCH-t(1,1) of [5]. It uses (34) and assumes that εt follows Student t (ν) dis-

tribution with v > 2 (unknown) degrees of freedom. It allows us to assess whether the choice
of an i.i.d. εt noise has impact on forecasting.

5. The stochastic volatility (SV) model of [33]. The presence of two separate generating
noise provides to this model extra flexibility.

Parameters of these models are estimated using the quasi-maximum likelihood method.
In Monte Carlo simulations, h2

t is known. We use two volatility proxies, pt = h2
t and

y2
t . For the given volatility proxy pt , the best forecasting method j minimises the average

quadratic loss

(35) MSFEj = (T − T0)
−1

T∑
t=T0+1

(
pt − ĥ2

j ;t |t−1
)2

,

over t ∈ (T0, T ]. We set T = 1000 and T0 = 200. Forecasting of h2
t with the kernel predictor

ĥ2
t |t−1 is performed with fixed bandwidths H = t0.60, t0.65, t0.70 and with a cross-validated

bandwidth HCV,t , which minimises

(36)
t∑

s=t−t0

(
ps − ĥ2

s|s−1
)2

over H = t0.55, t0.60, . . . , t0.75 where t0 = 50.
To make comparisons across different forecasting methods, we use the benchmark

MSFEGARCH of the parametric GARCH(1,1) volatility model and calculate the relative root

quadratic loss, RMSFEj = (MSFEj )1/2

(MSFEGARCH)1/2 .
Tables 3 and 4 report the average value of the relative RMSFEj over 1000 replications for

data generating Models 2 and 3 of yt , and two proxies, pt = h2
t and y2

t . The smaller that the
entry (< 1) is, the better the forecast.

Table 3 reports RMSFE results where the forecasting performance is evaluated using the
“optimal” proxy pt = h2

t . The kernel forecasting methods produce the smallest values of
RMSFE and clearly outperform the parametric forecasting methods of volatility in both Mod-
els 2 and 3, and the cross-validated bandwidth HCV,t outperforms forecasts with a fixed
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TABLE 3
Comparison of forecasting methods. Table reports RMSFE with the (true) volatility proxy pt = h2

t

Model 2 (with ht = deterministic) Model 3 (with ht = persistent, d = 1.4)

H Kernel GJR SV GARCH-t APARCH H Kernel GJR SV GARCH-t APARCH

t0.55 0.776 1.009 1.309 0.992 1.084 t0.55 1.021 1.041 1.626 1.008 1.095
t0.60 0.700 t0.60 0.887
t0.65 0.660 t0.65 0.790
t0.70 0.668 t0.70 0.738
t0.75 0.738 t0.75 0.742
HCV 0.544 HCV 0.651
H∗

CV 0.664 H∗
CV 0.894

bandwidth. For comparison, we report RMSE for the kernel forecast with a feasible cross-
validated bandwidth H ∗

CV,t that minimises (36) with the commonly used volatility proxy
p∗

t = y2
t ; see [34]. It works well for Model 2 but slightly less well for Model 3.

Table 4 reports results of the same experiments as Table 3, using the imperfect, but ob-
served, proxy pt = y2

t ; see [31]. It is still noticeable that the kernel forecasts outperform
the parametric forecasting methods, but the difference becomes marginal. It is clear that the
choice of proxy for the cross-validation in empirical analysis is crucial. We use realised vari-
ance as a feasible volatility proxy in our empirical forecasting example below.

4. An empirical example. In this section, we illustrate the practical applicability of our
testing methodology for the detection of stationary volatility.

We use weekly stock returns for a group of 254 companies in the S&P 500 over the period
January 1994 to December 2019, obtained from Bloomberg. After data cleaning, it contains
T = 1340 observations. In particular, we split the historical weekly returns into three subpe-
riods: the pre-crisis period (January 1994–December 2007), the period covering the global
financial crisis (January 2005–December 2012), and the post-crisis period (January 2011–
December 2019).

In line with the finance literature, we assume that weekly returns of an individual company
stock follow the model:

rt = μt + yt where yt = rt − μt = htut ,

where μt = E[rt |Ft−1] is the conditional mean and yt is a white noise process. We test for
the presence or absence of stationary volatility σ 2

t = var[rt |Ft−1] in ut . If ARCH effects in
ut are not detected, then rt = μt + htεt , where {εt } is an i.i.d. noise.

TABLE 4
Comparison of forecasting methods. Table reports RMSFE with the volatility proxy pt = y2

t

Model 2 (with ht = deterministic) Model 3 (with ht = persistent, d = 1.4)

H Kernel GJR SV GARCH-t APARCH H Kernel GJR SV GARCH-t APARCH

t0.55 0.988 1.001 1.026 1.000 1.005 t0.55 1.000 1.001 1.023 1.000 1.003
t0.60 0.985 t0.60 0.997
t0.65 0.983 t0.65 0.995
t0.70 0.984 t0.70 0.995
t0.75 0.986 t0.75 0.995
HCV 0.984 HCV 0.997
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TABLE 5
Proportion of stock returns with no ARCH effects. Testing based on squares (γ = 2) and absolutes (γ = 1) for
different bandwidths H , lags p and subperiods as defined in the main text. Testing at the 5% significance level.

μt estimated using the single index model

p = 1 p = 5 p = 10

H Data 1994–2007 2005–2012 2011–2019 1994–2007 2005–2012 2011–2019 1994–2007 2005–2012 2011–2019

Testing on squares (γ = 2)

T 0.50 û2
t 93.31 97.24 97.64 97.64 96.06 96.46 94.88 91.73 92.91

T 0.55 89.76 94.88 96.85 94.49 96.85 97.24 96.85 96.06 98.03
T 0.60 86.61 90.55 95.67 90.55 92.13 96.06 93.31 93.70 98.43
T 0.65 81.10 82.28 93.31 86.61 85.43 95.28 87.80 85.43 97.24
T 0.70 76.77 74.02 92.52 77.95 72.44 92.13 77.17 71.26 93.31
T 0.75 68.50 65.75 92.52 64.17 57.09 90.16 62.21 54.72 91.73

y2
t 39.37 42.91 78.35 22.05 33.47 80.32 20.87 29.53 77.17

Testing on absolutes (γ = 1)
T 0.50 |̂ut | 89.76 94.49 94.49 88.58 84.25 86.22 80.32 72.44 69.69
T 0.55 86.61 93.70 93.31 90.95 91.34 90.16 89.76 87.80 83.07
T 0.60 81.50 87.80 94.09 87.40 89.37 93.70 86.61 87.80 89.37
T 0.65 73.62 80.71 91.73 80.71 83.47 94.09 84.25 82.68 92.91
T 0.70 62.60 70.87 90.16 68.11 70.87 89.76 70.47 70.87 92.52
T 0.75 53.15 59.06 89.37 51.18 56.30 88.58 52.76 53.54 90.55

|yt | 12.60 30.71 72.05 2.36 24.41 71.65 1.97 18.11 72.05

In Table 5, we report the proportion of stock returns (in %) exhibiting no ARCH effects,
according to our test, in ut (among 254 stocks). Testing for ARCH effects is based on resid-
uals ̂|ut |γ = (ĥ

γ
t )−1|yt |γ where yt = rt − μ̂t , and conducted at the 5% significance level. To

obtain an estimate for μt , we use the single index model μt = rf,t + β1(Rm,t − rf,t ), where
Rm,t is the market factor and rf,t is the risk-free rate. Specifically, we would like to under-
stand the impact of the choice for the bandwidth H , lag p, subperiods and values of γ on
testing. The shaded grey range of H = [T 0.60, . . . , T 0.70] denotes theoretically permissible
values of H for smoothness parameter ν = 1.

The empirical testing results can be summarised as follows: Across lags 1, 5, 10, γ = 2,1
and three subperiods, in the recommended (shaded grey) range of H = [T 0.60, . . . , T 0.70],
the vast majority (∼80%) of the stock returns have no ARCH effects. Further, in the more
volatile subperiod 2005–2012, the proportion of stock returns with no ARCH effects falls
slightly. However, when persistent volatility is not taken into account and testing is performed
directly on the powers of yt , the number of stock returns with no ARCH effects drops sharply.

Table 5 shows clear robustness of the testing results across values γ = 1,2, which is a
reassuring finding. Recall that estimation with γ = 2 requires at least sixth moments of ut ,
whereas estimation with γ = 1 requires at least three. We include γ = 1, since by following
the methodology of [35], we find that the majority of the stock returns have finite fifth mo-
ments, but not sixth. More details on this, and empirical testing results for γ = 1/2 can be
found in Section 9 of the Supplementary Material [7].

Overall, these empirical results are in line with the Monte Carlo experiments and provide
clear evidence that stationary volatility might be considerably less pronounced in the data,
than previously thought.

Next, we consider the problem of forecasting of persistent volatility of the weekly log
returns of some major stock indices and exchange rate series using data from the database
“Oxford-Man Institute’s realised library,” Version 0.1, produced by [25] (see also [34]), over
the period from January 3, 1999, to December 23, 2007 (469 observations).
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TABLE 6
Comparison of the forecasting methods. Table reports RMSFE with the realised variance proxy pt

Asset Kernel GJR SV GARCH-t APARCH

Dow Jones 0.654 0.904 0.665 1.001 0.966
Nasdaq 100 0.696 1.238 1.086 1.137 1.311
Nikkei 250 0.831 1.008 0.971 0.996 1.117
S&P 500 0.705 0.901 0.934 1.085 0.851
USD British pound 0.989 1.038 1.116 1.002 1.160
USD Euro 0.915 1.013 1.043 1.000 1.042
USD Swiss franc 0.925 0.986 0.886 1.006 0.998

We consider the same forecasting methods of volatility as in the simulation study section.
In order for these forecasting methods to be applied on returns with persistent volatility as in
the model (33), we employ our test for ARCH effects from Section 2 on demeaned returns rt
of assets and select four stock indices and three exchange rates, which returns do not exhibit
ARCH effects in squares. Instead of using a noisy proxy of squared returns for the volatility,
we use the proxy pt of “realised variance”; see [31].

Table 6 presents the values of relative RMSFEj introduced in Section 3. Kernel prediction
uses cross-validated bandwidth HCV,t . The quadratic loss and the cross-validated bandwidth
HCV,t are derived using the proxy of realised variance in (35) and (36). We set T0 = 200, t0 =
50. The results suggest that for the majority of asset returns, the kernel forecasting method
with cross-validated bandwidth HCV,t , significantly outperforms stationary alternatives.

5. Discussion. This paper contributes to the literature in three ways. First, we introduce
a setup for persistent processes that can provide a general approximation to the volatility
process of a time series. Second, we develop a consistent uniform estimation theory for the
unobserved volatility processes, without strong parametric assumptions, and third, we sug-
gest a testing strategy that enables the separation of stationary volatility from its persistent
counterpart. To prove our main results, the uniform bounds for kernel-type estimates obtained
in [14] and based on Bernstein inequalities for dependent random variables were used.

Testing results on U.S. stock returns provide extensive support for the persistent volatility
paradigm, suggesting that the role of stationary conditional heteroskedasticity is not as out-
standing in the data, as was previously thought. In addition, forecasting results on persistent
volatility of log returns of stock indices and exchange rates provide evidence in favour of
using kernel forecasting methods.

There are a number of interesting avenues for future work, in particular, the extension of
our testing procedure to multivariate time series.

This is a distinct problem rather than a simple generalisation of the univariate case. In
general, a multivariate model for a p × 1 process

yt = H tut , t = 1, . . . , T

can include a p × p matrix, H t , of persistent volatility and a stationary p × 1 white noise
process ut . The objective would be to test whether components of this white noise exhibit
stationary conditional heteroskedasticity (ARCH effects). The estimation of H t that would
enable such testing could be undertaken using the work by [14].

Acknowledgements. We thank the Editor, the Associate Editor and the referees for con-
structive comments and valuable suggestions, which led to significant improvements in the
paper.



3482 I. CHRONOPOULOS, L. GIRAITIS AND G. KAPETANIOS

Funding. The first author was supported by ESRC Grant ES/P000703/1.

SUPPLEMENTARY MATERIAL

Supplement to: “Choosing between persistent and stationary volatility” (DOI:
10.1214/22-AOS2236SUPP; .pdf). The Supplementary Material [7] provides proofs of all
results given in the main paper and additional material for simulation study and empirical
exercise.
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