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Abstract

In this paper, we consider the classic Fermi-Pasta-Ulam-Tsingou system as a model of interacting particles connected
by harmonic springs with a quadratic nonlinear term (first system) and a set of second-order ordinary differential
equations with variability (second system) that resembles Hamilton’s equations of motion of the Fermi-Pasta-Ulam-
Tsingou system. In the absence of variability, the second system becomes Hamilton’s equations of motion of the
Fermi-Pasta-Ulam-Tsingou system (first system). Variability is introduced to Hamilton’s equations of motion of
the Fermi-Pasta-Ulam-Tsingou system to take into account inherent variations (for example, due to manufacturing
processes), giving rise to heterogeneity in its parameters. We demonstrate that a percentage of variability smaller
than a threshold can break the well-known energy recurrence phenomenon and induce localization in the energy
normal-mode space. However, percentage of variability larger than the threshold may make the trajectories of
the second system blow up in finite time. Using a multiple-scale expansion, we derive analytically a two normal-
mode approximation that explains the mechanism for energy localization and blow up in the second system. We
also investigate the chaotic behavior of the two systems as the percentage of variability is increased, utilising the
maximum Lyapunov exponent and Smaller Alignment Index. Our analysis shows that when there is almost energy
localization in the second system, it is more probable to observe chaos, as the number of particles increases.
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1. Introduction

Debye suggested that thermal conductivity in a crystal is a consequence of atom vibrations in the lattice

[1, 2]. To model thermalization processes in physical media, Fermi, Pasta, Ulam, with Tsingou’s help

running the computer simulations [3], considered a system of particles connected by harmonic springs with

a quadratic nonlinear term, i.e., the so-called FPUT lattice, that is fixed at both ends.
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A purely linear dynamics of the springs keeps energy, given to a single normal mode, localized in that mode.

However, introducing nonlinear interactions, one would expect that energy introduced to one normal mode,

would slowly spread to other normal modes, until the system reaches a state of equipartition of energy,

i.e., the system relaxes to a thermal equilibrium. Contrary to this expectation, Fermi, Pasta, Ulam, and

Tsingou observed in their seminal paper [3] in 1955 recurrences of the energy to its initial state, the so-called

FPUT recurrences, a phenomenon that led to numerous discoveries in mathematics and physics [4, 5, 6, 7, 8]

thereafter.

The recurrence phenomenon was explained by Zabusky and Kruskal [9] in real space, who derived the

integrable Korteweg-de Vries equation from the continuum limit of the FPUT lattice. Introducing energy

into one normal mode with wave number k is nothing else but taking the sinusoidal initial condition in real

space. As time evolves, the state breaks into a series of localized solutions, i.e., solitons that move and

interact with the fixed ends, i.e. boundaries. Upon interacting with the fixed ends, the solitons bounce

back and return to their initial positions, i.e., giving rise to FPUT recurrences. Another explanation to

the inefficient energy transfer among normal modes was provided by Izrailev and Chirikov [10] who used

the concept of the overlap of nonlinear resonances. They associated equipartition of energy with dynamical

chaos and were able to estimate a threshold that separates regular from chaotic dynamics.

Another direction in the study of the FPUT lattice is that of heat conductivity in the presence of disorder.

The main interest is in its interplay with nonlinearity. For harmonic disordered systems, all eigenmodes of

the infinite system, i.e., Anderson modes, are known to be localized and form a complete basis [11]. As a

linear superposition of Anderson modes, an initially localized wave in the infinite chain will remain localized

at any time. Whether this behavior changes qualitatively by the introduction of nonlinearity is still an open

question (see for example [12, 13, 14] and references therein). Disorder can be introduced in the form of

uniformly distributed random variation of particle masses [15, 12], linear coupling constants between nearest

neighbours [16], or in the nonlinearity coefficients [17]. Recently, by viewing FPUT lattices as systems of

masses coupled with nonlinear springs, Nelson et al. [18] incorporated heterogeneity on a one-dimensional

FPUT array to take into account uncertainties (i.e., in the masses, the spring constants, or the nonlinear

coefficients) during the manufacturing process of such physical systems. They demonstrated numerically

that tolerances degrade the observance of recurrences, often leading to a complete loss in moderately-sized

arrays. Such a variability may therefore provide a plausible explanation to little experimental evidence on

FPUT energy recurrences.

Here, we consider the problem of heterogeneous FPUT systems studied in [18]. In our work, we perform

numerical simulations in great detail to understand the breakdown of FPUT recurrences in the model.

Indeed, we observe recurrence degradation, where the energy peak of the lowest normal mode is decreasing

subsequently. For percentage of variability smaller than a threshold that we derive, the energy is then

localized in the few lowest normal modes. The authors in [19, 20] considered non-equipartition of energy

among normal modes and studied time-periodic states that are exponentially localized in the k- (or q- in

[19, 20]) space of normal modes. Such time-periodic states are referred to as q-breathers. Variability in FPUT
2
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lattices therefore leads to q-breathers. In our work, by transforming the FPUT system into another system

in the normal-mode space and considering a two normal-mode approximation, we provide a qualitative

explanation for the disappearance of FPUT recurrences. In this approximation, q-breathers are periodic

solutions centered around an equilibrium point (i.e., time-independent solutions) in the q-space of normal

modes.

We also perform long-term numerical integrations and compute the maximum Lyapunov exponent (mLE)

[21] and Smaller Alignment Index (SALI) [22, 23] to show that the trajectories of the heterogeneous system

become quickly chaotic, as the number of particles in the system increases for the same percentage of

variability. In homogeneous FPUT lattices (i.e., in the absence of variability), when recurrences occur, the

system reaches a metastable state [24, 25], where only few (low k) normal modes share the total energy of

the system. However, it has also been shown that a rather weak diffusion takes place in the highest normal

modes of the spectrum [26] that gradually leads to equipartition of energy [27]. Using the result in [10],

this weak diffusion process implies weak chaos [28]. Our work shows that variability enhances the chaotic

dynamics of the system.

In this work, we also show that for percentages of variability bigger than a threshold, solutions may blow

up in finite time. Using the same two normal-mode approximation, we have been able to explain the blow

up phenomenon. A bifurcation analysis is further provided that yields a variability threshold for the blow

up of solutions.

The paper is organised as follows: In Sec. 2, we review the original FPUT lattice with a quadratic nonlinearity

(i.e., the FPUT−α system) and discuss energy recurrence. We introduce the governing equations of motion

in the presence of parameter variability in Sec. 3. The phenomena of recurrence breakdown and blow

up of solutions are reported in the same section. In Sec. 4, a two normal-mode approximation in the

normal mode space is derived using multiple-scale analysis. Our analytical results explain why energy

recurrences breakdown when variability is introduced and provide a qualitative reason why solutions blow

up in finite-time after a variability threshold. In Sec. 5, we discuss chaos in the FPUT−α system with

or without variability and the mLE and SALI methods that we use to discriminate between ordered and

chaotic trajectories. Finally, we conclude our study and discuss future work in Sec. 6.

2. Mathematical model and dynamics of FPUT−α lattices

The Hamiltonian of the FPUT−α system is given by

H(x, p) = 1
2

N∑
j=0

p2
j +

N∑
j=0

1
2 (xj+1 − xj)2 + α

3 (xj+1 − xj)3 = E, (1)

where fixed boundary conditions x0 = xN+1 = 0 and p0 = 0 are considered. In this context, α ≥ 0 is the

nonlinear coupling strength and E the total, fixed, energy of the system. By viewing the FPUT−α lattice

as a model of particles coupled with springs, xj(t) represents the relative displacement of the jth-particle

from its equilibrium position at any time t and pj(t) its corresponding conjugate momentum at any time t.
3
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The equations of motion that result from Hamiltonian (1) (i.e., Hamilton’s equations of motion) are then

given by

ẍj =(xj+1 − xj) + α(xj+1 − xj)2 − (xj − xj−1) − α(xj − xj−1)2. (2)

Working in the real space xj and pj , one can express Eqs. (2) in the normal-mode space Qj and Pj . This

can be done by writing the position xj(t) as a superposition of eigenvectors of the linear equation. Using

the normal mode transformation,

x = AQ, p = AP, (3)

where x = [x1 x2 . . . xN ]T , p = [p1 p2 . . . pN ]T , Q = [Q1 Q2 . . . QN ]T , P = [P1 P2 . . . PN ]T , and

A =
√

2
N + 1



sin
(

π
N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ

N+1

)
sin

(
2π

N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)


, (4)

we can rewrite Hamiltonian (1) in the form

H = 1
2

N∑
k=1

(
P 2

k + ω2
kQ2

k

)
+ αH3(Q1, Q2, . . . , QN ),

for some nonlinear function H3, where

ωk = 2 sin
(

kπ

2(N + 1)

)
.

In this framework, Q represents the amplitude of the normal mode, while P its velocity. The energy of

normal mode k for α = 0 can then be defined by

Ek = 1
2

(
P 2

k + ω2
kQ2

k

)
. (5)

Substituting Eq. (3) into Eq. (2), we obtain the equations of motion in normal-mode coordinates as

Q̈ = DQ + A−1F(Q), (6)

where

D =


−ω2

1 0 . . . 0

0 −ω2
2 0

...
. . .

...

0 0 . . . −ω2
N

 , F(Q) =


f1(Q)

f2(Q)
...

fN (Q)


and A−1 is the inverse matrix of A, given by Eq. (4).

In their seminal work, Fermi, Pasta, Ulam and Tsingou [3] excited the lowest possible normal mode, i.e.,

the mode with k = 1. The initial conditions of Eqs. (2) are then

pj = 0, xj = sin
(

πi

N + 1

)
, j = 1, 2, . . . , N, (7)
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which are equivalent to solving Eq. (6) with Q1 =
√

(N + 1)/2, Qk = 0 for k = 2, 3, . . . , N, and Q̇k = 0 for

k = 1, 2, . . . , N .

(a)

0 2 104 6 104 105
0

0.02

0.04

(b)

Fig. 1: FPUT recurrences of the Hamiltonian system (1). (a) Dynamics of xj(t) using the initial condition in (7), where

E = 0.03795. Panel (a) shows the top view of the oscillation envelope of xj(t) in time. (b) Energy of the first four normal

modes in the dynamics shown in panel (a). Note in panel (b) how almost all of the energy returns to the first normal mode

at around t = 6 × 104, i.e., the appearance of an FPUT recurrence. Here we have used N = 64 in the computations in both

panels. The range of values in the vertical axis in panel (a) is between 1 and N = 64.

In Fig. 1, we plot the dynamics of xj of system (1) for N = 64, for the initial condition (7), where

E = 0.03795. Panels (a) and (b) show the dynamics of xj(t) in real space (infact, what is shown is the

oscillation envelope) and the normal mode energy of the first four normal modes of the FPUT−α system

(1), respectively.

In their seminal paper [3], Fermi, Pasta, Ulam and Tsingou expected that the energy E, which was initially

used to excite the lowest normal mode only (i.e., k = 1), would slowly drift to the other normal modes

until the system reaches thermalization, as predicted by Statistical Mechanics. Surprisingly, the numerical

experiment showed that that was not the case and that after several periods of the evolution of the mode,

almost all energy in the system returned to the first normal mode that was excited initially. The authors

witnessed the so-called FPUT recurrences. An example of such recurrences is given in Fig. 1 for N = 64

and E = 0.03795.

3. Disordered FPUT lattices

The authors in [18] proposed various disordered FPUT−α systems that include tolerances v into each particle

as a result of variability in a manufacturing process. In their study, they claimed to incorporate tolerances

into the system in different ways based on manufacturing constraints. They first introduced the following

system with heterogeneity

ẍj =(vj+1xj+1 − vjxj) + α(vj+1xj+1 − vjxj)2 − (vjxj − vj−1xj−1) − α(vjxj − vj−1xj−1)2, (8)

5



Zulkarnain et al. / Chaos, Solitons & Fractals 00 (2022) 1–23 6
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Fig. 2: Energy recurrences in time for the system in Eq. (10) for N = 64, similarly to Fig. 1 for the Hamiltonian system (1).

Panels (a) and (b) are for τ = 5% tolerance and panels (c) and (d) for τ = 10%. Note that the ranges in the vertical axes in

panels (a) and (c) are from 1 to N = 64.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Fig. 3: A similar simulation as in panels (b) and (d) in Fig. 2, for the system in Eq. (10) and N = 64, but for the increased

tolerance τ = 20%, where a finite-time blow up of the solution manifests as the abrupt increase of the energy of the first four

normal modes around t = 2000.
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where, again α ≥ 0 is the nonlinear coupling strength. It can be shown that this system admits the

Hamiltonian function

H(x, p) = 1
2

N∑
j=0

p2
j

vj
+

N∑
j=0

1
2 (vj+1xj+1 − vjxj)2 + α

3 (vj+1xj+1 − vjxj)3 = E. (9)

The disorder is inserted in a symmetric way between the linear and nonlinear coupling. Particularly, the

variabilities vj were generated randomly from a Gaussian distribution, that is for a tolerance τ%, the values

of vj were drawn from a Gaussian distribution with mean 1 and standard deviation σ = 1/3 × 0.01τ .

Therefore, the values of vj would lie in the interval [1 − 0.01τ, 1 + 0.01τ ].

The authors in [18] considered also the case where the variabilities vj are present only in the nonlinear

coupling terms, resulting in the following system of second-order ordinary differential equations

ẍj =(xj+1 − xj) + α(vj+1xj+1 − vjxj)2 − (xj − xj−1) − α(vjxj − vj−1xj−1)2. (10)

In this case, the system is no longer Hamiltonian. Then, they showed numerically that incorporating

variability in the nonlinear coupling terms only has, for a fixed amount of variability, a comparable effect to

incorporating it in only the linear coupling terms. Although in both setups recurrences such as those in Fig.

1 disappear for large enough tolerance and the energy localizes in the first few normal modes, more energy

is transferred to the lower modes in the latter case than in the former.

In this work, we consider the effect of disorder in the second scenario of Eq. (10), which is a toy-dyamical

system that does not necessarily relate to a real physical system. We have decided to study it as we show

in Sec. 4, we can derive a mathematical theory to understand the effect of variability in the localization of

energy and its dynamics.

Throughout the paper, we consider disorder that is generated using the same setup as in [18]. We show in

Fig. 2 the dynamics of xj and normal mode energies Ek of the first four modes of the system of equations

(10) (i.e., for k = 1, . . . , 4) for N = 64 particles and two different percentages of tolerance, i.e., for τ = 5%

and 10%.

Comparing panels (a) in Figs. 1 and 2, one can see that the variability reduces the effectiveness of recurrence,

where a subsequent peak of the mode energy E1 is lower than the preceding ones. In [18], it was reported

that for larger variability, the energy transfer from the lowest to the higher ones becomes ineffective, which

creates a non-recurrent state, shown in panel (d) in Fig. 2. This state is localized in the normal mode space,

i.e., it is a q-breather [19, 20]. In other words, disorder promotes the occurrence of q-breathers.

In Sec. 4, applying a two normal-mode approximation to Eqs. (2) and using multiple-scale expansions,

we show that there is a threshold for the percentage of variability τc ≈ 10.0749%, after which the initial

condition (7) may lead to finite-time blow up of the solutions. This is illustrated in Fig. 3, where the effect

of the blow up is clearly seen in the abrupt increase of the normal-mode energies Ek (see Eq. (5)) of the

first four normal modes (i.e., for k = 1, . . . , 4) for τ = 20% > τc.

7
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Fig. 4: Normal-mode energy in time obtained from integrating Eq. (11) using only 2 normal modes in panels (a), (d), (g), 4

modes in panels (b), (e), (h) and 8 modes in panels (c), (f), (i). The tolerance is 0% in panels (a) - (c), 5% in panels (d) - (f),

and 10% in panels (g) - (i). We note that for illustration purposes, we plot in all panels only the normal mode energy of the

first four modes and that all tolerances are smaller than τc. Despite the fact that the last four modes are activated for 0% and

5% tolerance, they are essentially zero for 10% tolerance in panel (i).
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In the following, we show why the transfer of energy between modes reduces with the increase of the

percentage of variability. This leads to a localized state in the energy-mode space and to finite-time blow up

of solutions if variability is greater than τc. When energy localization occurs, the plots of the normal mode

energies suggest that most of the mode coordinates are vanishing in time. Therefore, we prefer to work in

the normal-mode coordinate system than in the real (physical) space. In this framework, the equations of

motion (10) can be written in the normal-mode coordinates space in a similar manner as in Eq. (6), namely

in the form

Q̈ = DQ + A−1F̂(Q), (11)

for some nonlinear, vector-function F̂(Q) that depends on τ , which is different to F(Q) in Eq. (6) in the

absence of variability. Our main assumption is that we can approximate system (11) by considering only the

first few modes. To illustrate numerically that this assumption is reasonable, we present in Fig. 4 the normal-

mode energy for the set of equations of motion (11) for 2, 4 and 8 normal modes and different percentages

of variability. The parameter values in the set of equations of motion (11) are calculated numerically for

N = 64 and the same percentage of variability as in Figs. 1 and 2, where all remaining modes are set to 0

at all times.

Particularly, looking at Fig. 4, we see that using 2 and 4 modes gives dynamics that are quantitatively

different from those in Figs. 1 and 2, with respect to the recurrence period. Nevertheless, even with only

2 modes, we can still observe energy recurrence and localization for increasing percentage of variability.

Therefore, in the following, we will consider a two normal-mode system in Eq. (11).

4. A two normal-mode system and bifurcation analysis

Figure 4 suggests that when energy localization in the first few normal mode occurs, all higher modes have

relatively much smaller energy. This gives us the idea that we can approximate Eq. (11) by setting Qk(t) = 0

for k = 3, 4, . . . , N , and obtain the following two normal-mode system

Q̈1 = −ω2
1Q1 + ϵ

(
A1Q2

1 + A2Q2
2 + A3Q1Q2

)
, (12a)

Q̈2 = −ω2
2Q2 + ϵ

(
B1Q2

1 + B2Q2
2 + B3Q1Q2

)
, (12b)

where Ai, Bi ∈ R, i = 1, 2, 3 and ωk is given in Eq. (2).

4.1. Multiple-scale expansions

Since ω2 = 2ω1 + ϵ, |ϵ| ≪ 1, we take the following asymptotic series

Q1 = X0(t, T ) + ϵX1(t, T ) + . . . , (13a)

Q2 = Y0(t, T ) + ϵY1(t, T ) + . . . , (13b)

where T = ϵt is a slow-time variable. The leading-order approximations to Eqs. (13) are given by

X0 = q1(T )eiω1t + q∗
1(T )e−iω1t, Y0 = q2(T )eiω2t + q∗

2(T )e−iω2t. (14)
9
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Substituting Eqs. (13), (14) into Eq. (12), expanding the equations in ϵ and applying the standard solvability

condition to avoid secular terms appearing (see e.g., [29]), we obtain

i
dq1(T )

dT
= q1(T ) + Ãq∗

1q2, (15a)

i
dq2(T )

dT
= q2(T ) + B̃q2

1 , (15b)

for q1 and q2, respectively, where Ã = A3/(2ω1) and B̃ = B1/(2ω2). In this context, i is the imaginary unit

of the complex numbers. Following Eqs. (7), the initial conditions of system (15) are given by

q1(0) = Q1(0)
2 , (16)

q2(0) = 0. (17)

We note that parameters Ã and B̃ depend on τ .

In Fig. 5, we plot these parameters as a function of τ for N = 64 particles and 100 realizations. These

realizations have been computed by fixing τ and then opting for 100 sets of N = 64 randomly generated

numbers from the Gaussian distribution with mean 1 and standard deviation σ = 1/3 × 0.01τ . Therefore,

the vjs in the 100 sets lie in the interval [1 − 0.01τ, 1 + 0.01τ ]. As we can see in panel (a), Ã is positive for

all τ , whereas B̃ changes sign at around τ = 10%. Particularly, B̃ starts positive for small τ values before

it becomes negative at around τ = 10%. By using polynomial regression, we have been able to fit the mean

of the 100 realisations in panel (b) by the function B̃ ≈ −0.00893τ2 − 0.000084τ + 0.90728, with a sum of

square errors (SSE) of 3.46 × 10−19. This allowed us to estimate with good accuracy the threshold for the

percentage of variability where B̃ changes sign and found to be given by τc ≈ 10.0749% as B̃(τc) = 0. In

Sec. 4.2, we show that when B̃ < 0, that is for τ > τc, trajectories of Eqs. (2) may blow up in finite time.

A comparison of the dynamics of the normal modes Q1 and Q2 of Eq. (12) and those of the slow-time

variables q1 and q2 of Eqs. (15) is shown in Fig. 6, where one can see that qj is an envelope of Qj for

j = 1, 2.

Next we explain the cause of localization with the increase of the percentage of variability τ . Note that from

Eqs. (15), there can be transfer of energy from q1(t) to q2(t) through the nonlinear coupling coefficient B̃.

Panel (b) in Fig. 5 shows that B̃ decreases from positive values with the increase of τ until τ = τc, after

which it becomes negative. When B̃ vanishes at τ = τc, there is no transfer of energy and hence localization.

In the following, we will also show that when B̃ < 0, i.e., for τ > τc, there might be unbounded trajectories

that blow up in finite time.

4.2. Equilibrium solutions

We start by analyzing the standing wave solutions of the envelope equations (15). To do so, it is convenient

to write q1 and q2 in polar form q1 = r1eiϕ1 and q2 = r2e2iϕ2 , where r1 = |q1|, r2 = |q2|. Then, we define

10
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Fig. 5: Plot of Ã (in panel (a)) and B̃ (in panel (b)) as a function of the tolerance obtained numerically for N = 64. The

dash-dotted curve is the mean value over 100 realisations of the same percentage of variability (see the discussion in the text),

while the lengths of the shaded regions are two standard deviations. Using a polynomial regression, the mean is found to be

given approximately by Ã ≈ 0.01739τ2 − 0.00029τ + 3.62805 and B̃ ≈ −0.00893τ2 − 0.000084τ + 0.90728, where the sums of

square errors are 2.14 × 10−15 and 3.46 × 10−19 in panels (a) and (b), respectively. Note the horizontal grey dashed line at

B̃ = 0 from which τc is derived (see text for details).
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Fig. 6: Time evolution of the normal mode variables Q1 (blue curve) and Q2 (red curve) with their envelopes q1 and q2 (black

curves) from Eqs. (15) for τ = 0% in panel (a) and τ = 10% in panel (b). Note that in both panels τ < τc, so trajectories do

not blow up.
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the new variables

P = r2
1 + r2

2, (18a)

∆ = r2
1 − r2

2, (18b)

θ = ϕ2 − ϕ1. (18c)

These variables satisfy the set of equations (see [30] for a similar derivation)

Ṗ = Ã − B̃

Ã + B̃
∆̇, (19a)

∆̇ =

√
2 (P − ∆) sin (2 θ) (P + ∆)

(
Ã + B̃

)
2 , (19b)

θ̇ = −
2 Ã cos (2 θ) (∆ − P ) + B̃ cos (2 θ) (∆ + P ) −

√
2 (P − ∆)

2
√

2 (P − ∆)
. (19c)

From Eq. (19a), the constant of motion C follows

C = P − Ã − B̃

Ã + B̃
∆.

System (15) is transformed into Eqs. (19) by using Eqs. (18), where we assume that r1 and r2 are non

negative real numbers. Equation (19) requires P − ∆ > 0 in order to have real-valued solutions, whereas

Eq. (18) requires P − ∆ > 0 and P + ∆ ≥ 0, otherwise r1 and r2 will be complex numbers. We call the

region which satisfies these two inequalities the well-defined region and denote it by the shaded area in Fig.

7. ∆2 is outside the shaded region in the area below the red curve and above B̃ = 0. This implies that ∆2

is the equilibrium of system (19) only, but not of system (15).

The latter result implies that the dynamics of Eq. (15) can be described by the remaining equations (19b)

and (19c), i.e., in terms of ∆ and θ only. As discussed before, Eqs. (19b), (19c) are valid only when

P − ∆ > 0. However, Eqs. (18a), (18b) imply that P + ∆ ≥ 0. These two inequalities determine the region

where Eqs. (18a), (18b) are defined in the (∆, θ)-plane. As this region depends on Ã and B̃, we consider

the following cases:

• If Ã−B̃

Ã+B̃
≥ 1, then ∆ > max

{
∆1

crit, ∆2
crit

}
, where

∆1
crit =

C
(

Ã + B̃
)

2B̃
and ∆2

crit = −
C

(
Ã + B̃

)
2Ã

.

• If −1 ≤ Ã−B̃

Ã+B̃
< 1, then ∆2

crit ≤ ∆ < ∆1
crit.

• If Ã−B̃

Ã+B̃
< −1, then ∆ < min

{
∆1

crit, ∆2
crit

}
.

The regions, in which the reduced system (19) is well-defined, are plotted in the (Ã,B̃)-plane in Fig. 7.
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Fig. 7: Bifurcation diagram of the equilibrium points ∆1 and ∆2 and the regions where the dynamics of system (19) is well-

defined (see text for more details).

To study the reduced system of Eqs. (19b), (19c), we restrict the phase difference θ in the interval 0 ≤ θ < π

and obtain two equilibrium points, namely (θj , ∆j), j = 1, 2, where

θ1 = 0 or π/2 and θ2 = π/2. (20)

Particularly, there are two cases with respect to B̃. The first one is when B̃ > 0, in which case θ1 = 0 or

θ2 = π/2, and the second when B̃ < 0, in which case θ1 = θ2 = π/2. Then,

∆j =

(
6 Ã2C − 3 ÃB̃C − (−1)j

√
1 + 6 Ã

(
Ã + B̃

)
C − 1

) (
Ã + B̃

)
18Ã2B̃

. (21)

The stability of the equilibrium points is determined by the eigenvalues of the Jacobian matrix of Eqs. (19b),

(19c), evaluated at the equilibrium points, i.e., by

λ
(j)
1,2 = ±

√
−3 − 18Ã2C − 18ÃB̃C + 6(−1)j

√
1 + 6 Ã

(
Ã + B̃

)
C

3 . (22)

From Eq. (21) it follows that the equilibrium points exist when

1 + 6 Ã
(

Ã + B̃
)

C ≥ 0. (23)

For the initial conditions (16), (17), Eq. (23) becomes

1 + 12ÃB̃r2
1 ≥ 0.

13
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Therefore, the threshold for the existence of the equilibrium is given by

1 + 12ÃB̃r2
1 = 0,

which is the blue curve in Fig. 7. The dashed and solid lines represent the curve below and above the line

Ã + B̃ = 0, respectively.

Comparing Eqs. (21) and (22), we conclude that when the equilibrium points exist, they are either a centre

or a saddle node. Particularly, for the initial conditions in Eqs. (16), (17), the thresholds for the eigenvalues

that discriminate between a centre and a saddle node are

1 + 12ÃB̃r2
1 = 0, (24)

1 − 4ÃB̃r2
1 = 0. (25)

In Fig. (7), we plot Ã + B̃ = 0, Eqs. (24) and (25) as the black dashed, blue and red curves, respectively.

System (19) with parameter values above the red curve in Fig. (7) is bounded, with ∆1
crit and ∆2

crit being

the upper and lower bounds, respectively. The two equilibria given in Eq. (21) are both centres, and are

therefore stable. When the parameter values lie on the red curve, ∆2 = ∆2
crit. Furthermore, if the parameter

values are below the red curve and B̃ > 0, system (19) is still bounded, but it only shares one equilibrium

point ∆1 with system (15), whereas ∆2 does not belong to the well-defined region. Equation (19), on the

other hand, is unbounded when B̃ < 0. In this case, it either extends to ∆ → ∞ or −∞ and depending on

the value of Ã−B̃

Ã+B̃
, ∆1 can be a centre and ∆2 a saddle node in this region. Additionally, the system has

only one equilibrium on the blue curve.

The location of the equilibrium points (θj , ∆j) in Eqs. (20), (21) and their nature are shown in Fig. 7. We

also plot the values of ∆j in Fig. 8. To better visualise ∆2 as it approaches infinity when Ã or B̃ approaches

zero, we plot in Fig. 8 (b) tanh(∆2/100) instead of ∆2.

In the following, we illustrate the phase portrait of the reduced system of Eqs. (19b), (19c) for different

percentages of variability τ , which correspond to different values of Ã and B̃. When there is no variability

(i.e., for τ = 0%), the parameter values are Ã = 3.63 and B̃ = 0.91 and the equilibrium points are

(θ1, ∆1) = (0, 5.09) and (θ2, ∆2) = (π/2, 4.34). Both are stable and the phase space in this case is shown in

Fig. 9(a). As we can see in panel (b) in Fig. 5, as τ increases, B̃ decreases and becomes negative for τ > τc.

The parameter values for τ = 10% variability are Ã = 4.97 and B̃ = 0.05 and the equilibrium points are

(θ1, ∆1) = (0, 6.27) and (θ2, ∆2) = (π/2, 4.08). Similar to the previous case, both equilibrium points are

stable and the phase space is shown in Fig. 9(b). Note that for the initial conditions (17), we have that

lim
B̃→0

∆1
crit = r2

1, lim
B̃→0

∆2
crit = 0,

which shows that ∆ becomes positive as we increase τ . Indeed, ∆ > 0 corresponds to energy localization as

the magnitude of q1 remains larger than q2.

As we can see in Fig. 10 for τ ≈ 10.0833% > τc, B̃ is negative (B̃ = −0.0015) and the region in the

(∆, θ)-space becomes unbounded (see also Fig. 7). It extends to either ∆ → ∞ or −∞ and depends on
14
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Fig. 8: Plot of (a) ∆1 and (b) tanh(∆2/100) as a function of Ã and B̃. In panel (a), the color bar denotes the values of ∆1

and in panel (b), the values of tanh(∆2/100). The black dashed, red and blue curves are discussed in the text and are the

same with those in Fig. 7.
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Fig. 9: Phase portraits of the reduced system of Eqs. (19b), (19c) for (a) τ = 0% percentage of variability and (b) τ = 10%

percentage of variability.
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Fig. 10: The same as Fig. 9, where the parameter values are Ã = 5.3932 and B̃ = −0.0015, which correspond to τ ≈ 10.0833% >

τc. The blue curve is the trajectory of the initial condition in Eqs. (16), (17).

Ã. In this case, the two equilibrium points are (θ1, ∆1) = (π/2, 9.1274), which is a (stable) center, and

(θ2, ∆2) = (π/2, 15.4383), which is a (unstable) saddle point. The plot shows that in this case, one may

obtain bounded solutions as well as unbounded ones, depending on the initial condition. For example, the

initial condition of Eqs. (7) (or Eqs. (16), (17)) results in θ and ∆ values in the unbounded region in Fig.

10, where the trajectory is shown as the blue curve and starts at the bottom of the plot.

5. Chaotic behavior

Energy recurrences arise in the homogeneous FPUT lattice (1) when the system remains in the quasi-

stationary state for an extremely long time, making the approach to equipartition of energy unobservable.

In the quasi-stationary state, the FPUT lattice can be viewed as the perturbation of the regular, integrable

Toda lattice [26].

Here we study the effect of variability on the chaotic properties of system (10). Particularly, we consider

lattices of N = 4, 8, 16, 32, 64 particles in systems (1) (homogeneous, no variability) and (10) (with variabil-

ity) and use the maximum Lyapunov exponent (mLE) [21] and Smaller Alignment Index (SALI) [22, 23] to

discriminate between regular and chaotic dynamics. We want to see if energy localization in the first normal

mode that we observed in Secs. 3 and 4 for τ = 10% < τc corresponds to chaotic dynamics, by increasing τ

from 0 to 10%.

To compute mLE, we follow the evolution of a trajectory starting at the initial point

x(0) = (x1(0), . . . , xN (0), q1(0), . . . , qN (0)),

that evolves according to Hamilton’s equations of motion

ẋ = f(x) =
[

∂H

∂p − ∂H

∂q

]T

,
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Fig. 11: Plot of mLE (panel a)) and SALI (panel b)) in time for a range of N values seen in the insets (denoted by different

colors) in the absence of variability, i.e., of the FPUT system (1). Note that all axes are logarithmic. The black dashed line in

panel (a) is the law 1/t of regular trajectories to guide the eye.

and the evolution of a deviation vector

w(0) = (δx1(0), δx2(0), . . . , δxN (0), δq1(0), δq2(0), . . . , δqN (0)),

that evolves according to the variational equation

ẇ = ∂f
∂x (x(t)) · w. (26)

Then mLE is defined as

λ = lim
t→∞

1
t

ln ||w(t)||
||w(0)|| ,

where ln is the natural logarithm. If mLE converges to zero following the law 1/t, then the trajectory is

regular, whereas if it converges to a positive value in time, then the trajectory is chaotic [31]. Hence it is

convenient to plot mLE in log10− log10 scales as the law 1/t becomes then a line with negative slope and

serves as a guide to the eye.

To compute SALI, we follow the evolution of the same initial condition and two deviation vectors w1(0),

w2(0). Then, SALI is defined by

SALI(t) = min{∥ŵ1(t) − ŵ2(t)∥ , ∥ŵ1(t) + ŵ2(t)∥},

where ŵi(t) = wi(t)
∥wi(t)∥ , i = 1, 2, are the two normalized deviation vectors at time t. SALI approaches

zero exponentially fast in time (as a function of the largest or 2 largest Lyapunov exponents) for chaotic

trajectories and non-zero, positive, values for regular trajectories [23].

First, we consider the case without variability, that is the FPUT−α system (1). We integrate the equations

of motion (2) and its corresponding variational equations (following Eq. (26)) by using the tangent-map

method [32] and Yoshida’s fourth order symplectic integrator [33]. We have found that a time step of 0.01

keeps the relative energy error below 10−9. In all our computations, the final integration time is t = 108.
17
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Here, we use the same initial condition in Eq. (7) for all N . This initial condition then results in different

energies for different N , i.e., E = 0.4775 for N = 4, E = 0.2714 for N = 8, E = 0.1447 for N = 16,

E = 0.0747 for N = 32, and E = 0.0379 for N = 64. Our results in Fig. 11 show that all trajectories for

N = 4, 8, 16, 32, 64 are regular up to t = 108, corroborated by the tendency of the mLEs to converge to zero

following the 1/t law and SALI to tend to fixed positive values, shown in panels (a) and (b), respectively.

These results are in agreement with the fact that energy recurrences in the homogeneous FPUT lattice

(1) arise when it remains in the quasi-stationary state for extremely long times, making the approach to

equipartition of energy unobservable.

Finally, we look at the case of τ = 10% < τc, for which we have observed almost energy localization in the

first normal mode in Sec. 3. Since in this case we only know the equations of motion (10), we integrated

them using the DOP853 integrator [34], an explicit Runge-Kutta method of order 8 due to Dormand and

Prince, to achieve good numerical accuracy. We compute the chaotic indicators for 30 realisations of the

same percentage of variability τ = 10%, while keeping the initial conditions fixed for each number of particles

N . For N = 4 and 8, all trajectories in panels (a)-(d) in Fig. 12 appear to be regular up to final integration

time t = 108, corroborated by the tendency of the mLEs to converge to zero following the 1/t law and

SALI to tend to fixed positive values. However, for N = 16, two of the 30 trajectories in panels (e), (f) in

Fig. 13 are chaotic as their mLEs converge to positive values at t = 108 and their SALI decrease to zero

exponentially fast. Figure 13 shows that there are more chaotic orbits than those for the smaller values of

N in Fig. 12. We show the percentage of chaotic trajectories (out of the 30 realisations) as a function of N

in Fig. 14, where the increase from N = 4, 8, 16 to N = 32, 64 is apparent. These results suggest that in

the case of almost complete energy localization, variability promotes chaos in the system as the number of

particles increases. However, further studies are required to determine whether the increase is monotone.
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Fig. 12: Plot of mLE (panels (a), (c), (e)) and SALI (panels (b), (d), (f)) in time for 30 trajectories (denoted by different

colors) and τ = 10% (see Eq. (10)). Panels (a), (b) are for N = 4, panels (c), (d) for N = 8 and panels (e), (f) for N = 16.

Note that all axes are logarithmic. The black dashed lines in panels (a), (c), (e) are the law 1/t of regular trajectories to guide

the eye.
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Fig. 13: Plot of mLE (panels (a), (c)) and SALI (panels (b), (d)) in time for 30 trajectories (denoted by different colors) and

τ = 10% (see Eq. (10)). Panels (a), (b) are for N = 32 and panels (c), (d) for N = 64. Note that all axes are logarithmic. The

black dashed lines in panels (a), (c) are the law 1/t of regular trajectories to guide the eye.
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Fig. 14: Percentage of chaotic trajectories as a function of N for 30 realisations of variability with τ = 10%. The black-dash

line segments connect the black points and are there to guide the eye.
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6. Conclusions and discussion

In this paper, we have considered a disordered FPUT−α system with variations in its parameters (also

called variability) to take into account inherent manufacturing processes. By using a two normal-mode

approximation, we have been able to explain the mechanism for energy localization and blow up of solutions

for percentage of variability bigger than a threshold, that we have been able to compute using our theory.

Moreover, we have also studied the effect of variability in the chaotic behavior of the system calculating

the maximum Lyapunov exponent and Smaller Alignment Index for a number of realizations for the same

variability percentage that corresponds to energy-localization. We have found that, when there is almost

energy localization, it is more frequent for the trajectories to be chaotic with the increase of the number of

particles N for the same percentage of variability, smaller than the threshold.

Finally, while it has been shown previously that variability leads to energy-recurrence breakdown and energy

localization, we have also shown here that by increasing the percentage of variability beyond a threshold that

we determined using our theory, the solutions of the system may blow up in finite-time. This is because we

have started with the equations of motion without a Hamiltonian that would allow us to keep the energy of

the system constant [18]. The case of the Hamiltonian model with heterogeneity, cf. Eq. (8), will be studied

in a future publication.
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