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ABSTRACT
The recursive solution to the Procrustes problem -with or without
constraints- is thoroughly investigated. Given knownmatricesA and B, the
proposed solution minimizes the square of the Frobenius norm of the dif-
ferenceAX − Bwhen rows or columns are added toA andB. The proposed
method is based on efficient strategies which reduce the computational
cost by utilizing previous computations when new data are acquired. This
is particularly useful in the iterative solution of an unbalanced orthogonal
Procrustes problem. The results show that the computational efficiency of
the proposed recursive algorithms ismore significantwhen the dimensions
of thematrices are large. This demonstrates the usefulness of the proposed
algorithms in the presence of high-dimensional data sets. The practicality
of the new method is demonstrated through an application in machine
learning, namely feature extraction for image processing.
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1. Introduction

In practice, one may be interested in finding the matrix X such that AX = B where matrices A
and B come from experiments. However, A and B often do not satisfy the solvability conditions
and hence, the least squares solution of the difference AX − B is required [15]. Specifically, the
problem of approximating one given matrix A with another given matrix B by a transformation
matrix X so that the square of the difference AX − B is minimized is known as the Procrustes
problem [13,15,33]. Often, depending on the application, it is assumed that X belongs to a specific
class of matrices, and thus setting in this way a set of constraints to the optimization problem. The
most frequent classes of matrices for X is orthogonality and symmetry, and variants thereof, see,
for example [5,11,15,19,21,29,31,33]. In many cases, orthogonal factorizations like the singular value
decomposition (SVD), the eigenvalue decomposition (EVD) and the CS decomposition have been
used to solve the Procrustes problem and variants thereof [8,15,19,22,31,33, pp. 327–328].

The application of the Procrustes problem in factor analysis has a long history [10,13,15,28]. It also
appears in numerical analysis problems for the solution of partial differential equations, in multidi-
mensional scaling, in growth curve modelling, in scientific computing, in computer vision, in image
processing, in system and control theory, in the analysis of space structures and in aerospace engineer-
ing for spacecraft attitude determination [12,23,24,26,27,32,38,41,43]. Moreover, in the case where A
is the identical matrix the problem becomes a matrix nearness problem with many applications in
statistical and financial modelling and in theoretical computer science, see, for example [20,36,39].
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The recursive solution to a least squares problem is needed when the experiment is conducted
repeatedly and as a result the given matrices are updated with new arriving data regularly. Also, in
high dimensional settings, the matrices A and B are very large and it may not be possible to treat
all data at once or the computational cost of processing them may be significantly expensive. In this
case, a sequential procedure which splits A and B into sub-matrices of smaller dimensions and then
proceeds by gradually incorporating the sub-matrices into the least squares solution of AX − B is
essential. Recursive least squares is often needed inmany problems of different areas like engineering,
statistics, econometrics and finance [7,9,17,18,42]. A recursive algorithm reduces the computational
cost and also the storage requirements for large matrices.

Herein, the recursive least squares solution to the matrix equation AX = B when A and B are
known matrices is investigated in depth. Namely, the recursive solution to the Procrustes problem is
examined. The use of the QR decomposition is examined when there are no constraints on X. Also,
the problems of minimizing the difference AX − B when X is orthogonal and when X is symmetric
are also considered and their recursive least squares solution using the eigenvalue and singular value
decompositions is explored in depth. When constraints are imposed on X, the method of Lagrange
multipliers is used to solve the optimization problem. The proposed solution, in each case, is the
matrix which minimizes the square of the Frobenious norm of AX − B. It is an exact solution in the
sense that X is explicitly determined and does not comprise any arbitrary elements. The recursive
numerical solution proposed does not require the matrices be full rank.

Throughout this paper, ‖ · ‖F denotes the Frobenius norm. Also, for known matrices S and P,
when computing partial derivatives [25, p. 201] the following properties are used:

∂(SXP)

∂X
= STPT ,

∂(SXTP)

∂X
= PS. (1)

The paper is organized as follows. Section 2 introduces the general Procrustes problem where no
assumption ismade for the solutionmatrixX. The problem is solved using theQRdecomposition and
then the recursive solution is presented. Section 3 considers the orthogonal Procrustes problemwhere
the solution matrix X is orthogonal and Section 4 derives the solution to the symmetric Procrustes
problem when X is assumed to be symmetric. Section 5 presents computational results and finally, in
Section 6 we conclude and discuss future work.

2. Numerical solution to the general procrustes problem

Consider the problem of finding a matrix X ∈ R
n×n so that the known matrix B ∈ R

m×n is approxi-
mated by matrix AX where A ∈ R

m×n is also known. That is, a solution to the matrix equation

AX = B (2)

is required. The least squares approximation problem to be solved is given by

argmin
X

‖AX − B‖2F , (3)

where

f (X) = ‖AX − B‖2F = trace
(
(AX − B)T(AX − B)

)
= trace

(
XTATAX − XTATB − BTAX + BTB

)
.

On using (1) partial differentiation yields

∂f (X)

∂X
= 2ATAX − 2ATB = 0 (4)
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whence

ATAX = ATB. (5)

WhenATA is non-singular the solution to (5) is given byX = (ATA)−1ATB [14]. However,ATAmay
be ill-conditioned and in this case inverting the matrix may give inaccurate results. In the case where
ATA is singular the latter will fail to give a solution for X. A numerically stable method to obtain X is
to use the QR decomposition (QRD) of A, namely

QT
A
(
A B

) =
(
RA RB1
0 RB2

)
, where QA = (

QA1 QA2
)
. (6)

Then A = QA1RA and hence ATA = RT
ARA and ATB = RT

ARB1. Therefore, X = R−1
A RB1. When A is

rank deficient, the procedure to obtain X is similar to the above, namely (6). In this case, a complete
QRD can be computed to triangularize A [1].

2.1. Recursive solution

We next consider the recursive solution of the Procrustes problem when the matrices A and B are
updated. Without loss of generality, suppose thatA and B are augmented with the addition of a single
row; namely,

Ã =
(
A
a

)
B̃ =

(
B
b

)
, (7)

where A,B are as in (2) and a, b ∈ R
1×n represent new data points. Then, the updated Procrustes

problem, based on Ã and B̃, requires the solution of the least squares problem

argmin
X̃

∥∥∥ÃX̃ − B̃
∥∥∥2
F

(8)

when (3) has already been solved (see (4)–(6)). The efficient solution of (8) requires that previous
computations from the solution of (3) be utilized. Namely,

argmin
X̃

∥∥∥ÃX̃ − B̃
∥∥∥2
F

= argmin
X̃

∥∥∥∥
(
QT
A1 0
0 1n

)[(
A
a

)
X̃ −

(
B
b

)]∥∥∥∥
2

F

= argmin
X̃

∥∥∥∥
(
RA
a

)
X̃ −

(
RB1
b

)∥∥∥∥
2

F
,

where QA1, RA and RB1 are as in (6) and 1n is the n-dimensional row vector of ones. Consider now
the updating QRD

QT
Au

(
RA RB1
a b

)
=
(
R̃A R̃B1
0 R̃B2

)
. (9)

We then have that

argmin
X̃

∥∥∥ÃX̃ − B̃
∥∥∥2
F

= argmin
X̃

(∥∥∥R̃AX̃ − R̃B1

∥∥∥2
F

+
∥∥∥R̃B2

∥∥∥2
F

)

and therefore it follows that X̃ = R̃−1
A R̃B1 .
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In many cases, it is possible that the matrices A and B are updated with a single column, namely

Ǎ = (
A An+1

)
, B̌ = (

B Bn+1
)

where An+1, Bn+1 ∈ R
m×1 denote new variables which become available after (3) has been solved.

As a result, the solution X̌ ∈ R
(n+1)×(n+1) to the updated Procrustes problem

argmin
X̌

∥∥∥ǍX̌ − B̌
∥∥∥2
F
. (10)

needs to be computed. By utilizing efficiently previous computations from the solution of (3), (10) is
written as

argmin
X̌

∥∥∥ǍX̌ − B̌
∥∥∥2
F

= argmin
X̌

∥∥∥QT
A

((
A An+1

)
X̌ − (

B Bn+1
))∥∥∥2

F

= argmin
X̌

∥∥∥∥
(
RA Ãn+1
0 Ân+1

)
X̌ −

(
RB1 B̃n+1
RB2 B̂n+1

)∥∥∥∥
2

F
,

whereQA is from the QRD ofA in (6). The column-updating QRD that needs to be computed is then
given by

(
In 0
0 q̌T

)(
RA Ãn+1
0 Ân+1

)
=
⎛
⎝RA Ãn+1

0 ǎ
0 0

⎞
⎠ ,

where q̌ is an orthogonal transformation that eliminates all but the first element of Ân+1 and ǎ is a
scalar. Hence, the updated Procrustes problem (10) becomes

argmin
X̌

∥∥∥ǍX̌ − B̌
∥∥∥2
F

= argmin
X̌

(∥∥∥ŘAX̌ − ŘB

∥∥∥2
F

+
∥∥∥ŘB2

∥∥∥2
F

)
, (11)

where

ŘA =
(
RA Ãn+1
0 ǎ

)
, ŘB =

(
RB1 B̃n+1

R(1)
B2 B̂

(1)
n+1

)
and ŘB2 =

(
R(2)
B2 B̂

(2)
n+1

)
.

The solution to problem (11) is given by X̌ = Ř
−1
A ŘB.

3. The orthogonal procrustes problem

The orthogonal Procrustes problem (OPP) is that of minimizing the sum of the squared error of
the difference matrix AX − B when the unknown matrix X is orthogonal. The constraint is imposed
by using the method of Lagrange multipliers; the matrices A and B need not be full rank [33]. The
constrained optimization problem is then given by

argmin
X

‖AX − B‖2F subject to XXT = XTX = I, (12)

whereA,B ∈ R
m×n andX ∈ R

n×n is orthogonal.Herein,we aremost interested in caseswherem<n.
To find the solution to (12), we consider the Lagrangian function

L(X) = trace
(
(AX − B)T(AX − B)

)
+ trace

(
�(XXT − I)

)
,
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which is equivalently written as

L(X) =
n∑
j=1

m∑
i=1

⎛
⎝ n∑

q=1
aiqxqj − bij

⎞
⎠

2

+
n∑

q,r=1
λqr

( n∑
k=1

xqsxrs − δqr

)
, (13)

where � = [λqr]nq,r=1 is the symmetric matrix of Lagrange multipliers [15]. Partial differentiation
of (13) yields

∂L(X)

∂xpj
= 2

m∑
i=1

⎛
⎝ n∑

q=1
aiqxqj − bij

⎞
⎠ aip + 2

n∑
r=1

λqrxrj. (14)

On setting (14) equal to zero and using matrix notation, (14) can be written as

AT
qAqXj + �qXj = AT

qBj, q, j = 1, . . . , n,

or equivalently, as

(ATA + �)X = ATB, (15)

whereAq is the qth column ofA, Xj, Bj are the jth columns of X and B, respectively, and�q is the qth
row of �. From (15), (ATA + �)XXT(ATA + �)T = ATB(ATB)T , therefore � = (ATBBTA)1/2 −
ATA and, as observed earlier,� is symmetric. Now on post-multiplying (15) byXT givesATA + � =
ATBXT which implies that � = ATBXT − ATA, whence ATBXT = XBTA. Therefore,

ATB = XBTAX. (16)

Furthermore, letH = ATB and consider the following two matrices

F = HHT = ATBBTA

and

G = HTH = BTAATB.

Matrices F, G ∈ R
n×n are symmetric and thus they are diagonalizable and their eigenvalue decom-

position (EVD) exists, that is,

F = UDUT (17a)

and

G = VDVT , (17b)

whereU ,V ∈ R
n×n are orthogonal. Additionally, since they are of the formHHT andHTH they have

the same eigenvalues. Now on using (16) it follows that

F = ATBBTA

=
(
XBTAX

) (
XBTAX

)T
= XBTAATBXT

= XGXT ,

and from (17a) and (17b) we now have that

F = UDUT = XVDVTXT ,
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which implies that U = XV , where U is as in (17a). Therefore, the solution to the least squares
problem (12) is given by

X = UVT .

Finally, a sufficient conditionwhich guaranties the uniqueness of the solutionX and that the argument
in (12) is minimized requires that all the diagonal elements of the matrixD1/2 in (17a) and (17b) are
non-negative [15,33]. In essence, this condition determines the orientation of the orthogonalmatrices
U and V and is specified by the Eckart–Young decomposition (see [10]) of ATB, namely

ATB = UD1/2VT .

Notice that in the case of symmetric orthogonality the procedure is the same but at the last step the
symmetry of X needs to be taken into account. Namely, the sum of UVT is not explicitly computed
since only the upper or lower part ofX needs to be determined. This results in a dimensional reduction
of the solution matrix from n2 to n(n + 1)/2 [40].

3.1. Recursive solution to the orthogonal procrustes problem

Suppose that an updated orthogonal Procrustes problem needs to be solved when new data become
available. Without loss of generality it is assumed that the original OPP (12) needs to be re-solved
when appending a new single row of data in matrices A and B. That is, let the row updated matrices
Ã and B̃ be as in (7), where A,B are as in (12) with a, b ∈ R

1×n. The updated orthogonal Procrustes
problembased on Ã and B̃ requires that the solution of the following least squares problembe derived:

argmin
X̃

∥∥∥ÃX̃ − B̃
∥∥∥2
F

subject to X̃X̃T = X̃TX̃ = I, (18)

where X̃ ∈ R
n×n. The solution to the least squares problem (18) is obtained by using the method of

Lagrange multipliers, namely

L(X̃) = trace
(
ÃX̃ − B̃)T(ÃX̃ − B̃)

)
+ trace

(
�̃(X̃X̃T − I)

)
(19)

which yields the first order condition

∂L(X̃)

∂X̃
= 2ÃTÃX̃ − 2ÃTB̃ + (�̃

T + �̃)X̃

on using (1). In a way similar to (12), (19) has the solution

X̃ = ŨṼT , (20)

where Ũ and Ṽ are the orthogonal matrices of the EVD of ÃTB̃B̃TÃ and B̃TÃÃTB̃, respectively.
The recursive solution of the OPP presumes that previous computations in (17a) from the solution

of the original Procrustes problem (12) are efficiently utilized. Consider the recursive computation of
the EVD of ÃTB̃B̃TÃ, namely

ÃTB̃B̃TÃ = (ATB + aTb)(ATB + aTb)T

= ATBBTA + ATBbTa + aTbBTA + aTbbTa

= UDUT + ATBbTa + aTbBTA + aTbbTa (21)

on using (17a). Therefore, the recursive solution of an orthogonal Procrustes problem becomes a
modified symmetricmatrix eigenvalue problem [3,4,16]. In particular, (21) implies three rank-1mod-
ifications of the EVDUDUT of thematrixATBBTA in (17a). That is, the EVDof ÃTB̃B̃TÃ is obtained
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recursively in three main steps. First, (21) is written as

ÃTB̃B̃TÃ = UDUT +
(
b̃
a

)T (0 1
1 β

)(
b̃
a

)
, (22)

where b̃ = bBTA and β = bbT is a scalar since b and a are row vectors. Second, the following EVD
is derived

� =
(
0 1
1 β

)
= Q

(
β1 0
0 β2

)
QT (23)

and, since � is a symmetric matrix, it is diagonalizable. Third, on using (22), (23) becomes

ÃTB̃B̃TÃ = UDUT +
(
b̃
a

)T
Q
(

β1 0
0 β2

)
QT

(
b̃
a

)

= UDUT +
(
b̃1
b̃2

)T (
β1 0
0 β2

)(
b̃1
b̃2

)

= UDUT + β1b̃
T
1 b̃1 + β2b̃

T
2 b̃2

= U
(
D + β1

˜̃bT1 ˜̃b1
)
UT + β2b̃

T
2 b̃2, (24)

where ˜̃b1 = b̃1U with β1, β2 being the eigenvalues of �. Consider now the sequential updating of
the diagonal matrix D in two steps. The first step computes the EVD of D + β1

˜̃bT1 ˜̃b1 = U1D1UT
1 ,

where U1 ∈ R
n×n is orthogonal and D1 ∈ R

n×n is diagonal. The second step computes the EVD of
D1 + β2

˜̃bT2 ˜̃b2 = U2D̃UT
2 , whereU2 ∈ R

n×n is orthogonal and D̃ ∈ R
n×n is the diagonal matrix with

elements the eigenvalues of ÃTB̃B̃TÃ. That is, ÃTB̃B̃TÃ = ŨD̃ŨT , where Ũ = UU1U2 and U is as
in (17b). Repeating the procedure at steps (21)–(24) for B̃TÃÃTB̃ will derive its EVD recursively
and will therefore give B̃TÃÃTB̃ = ṼD̃ṼT , where Ṽ = VV1V2, V is defined in (17a) and V1,V2 are
computed in a way similar to that for (24). Therefore, the updated solution (20) to the Procrustes
problem (18) has been derived.

When extra columns are added to A and B, that is when

Ă = ( n k
A An+1

)
and B̆ = ( n k

B Bn+1
)
, (25)

an updated orthogonal Procrustes problem of larger dimensions needs to be solved. Namely,

argmin
X̆

∥∥∥ĂX̆ − B̆
∥∥∥2
F

subject to X̆X̆
T = X̆

T
X̆ = I, (26)

where X̆ ∈ R
(n+k)×(n+k) has been augmented by k columns and k rows. In a similarway as for (18), the

solution of (26) is given by X̆ = ŬV̆
T
. It is obtained recursively, by updating the original orthogonal

decompositions as in (24). Notice that the addition of extra columns implies a rank-k updating of the
EVD decomposition.



8 S. HADJIANTONI AND G. LOIZOU

4. The symmetric procrustes problem

Consider the problem ofminimizing the sumof squared error of the differencematrixAXS − Bwhen
the unknown matrix XS is symmetric. The constrained optimization problem is given by

argmin
XS

‖AXS − B‖2F subject to XT
S = XS,

where XS ∈ R
n×n is a symmetric matrix. As in the case of the OPP (12), the matricesA and B are not

necessarily full rank. Using the method of Lagrange multipliers, the problem becomes that of finding
the matrix XS which minimizes

L(XS) = trace
(
(AXS − B)T(AXS − B)

)
+ trace

(
�(XS − XS

T)
)
.

On using (1) partial differentiation yields

∂L(XS)

∂XS
= 2ATAXS − 2ATB + �T − �,

which is set to zero. Now let the matrixM = � − �T , which is skew-symmetric, that isM = −MT .
It follows that

2ATAXS − 2ATB = −
(
2XSATA − 2BTA

)
,

which yields the Lyapunov equation

ATAXS + XSATA = ATB + BTA. (27)

Since ATA is symmetric, it is therefore a diagonalizable matrix. That is, there is an orthogonal matrix
P and a diagonal matrix DA such that

ATA = PDAPT , (28)

where P ∈ R
n×n has columns the eigenvectors of ATA and DA = diag(μ1, . . . ,μn) has diagonal

elements the eigenvalues of ATA. Using (27), (28) becomes

DAX
(P)
S + X(P)

S DA = S, (29)

whereX(P)
S = PTXSP and S = PT(ATB + BTA)P. By utilizing the diagonal structure ofDA, it follows

that

xi,j = sij
μi + μj

,

where X(P)
S = [xi,j]ni,j=1. The solution is then given by

XS = PX(P)
S PT .

A necessary and sufficient condition for the uniqueness of XS, since S is positive definite, is that all
the eigenvalues of ATA have a negative real part, that is, ATA is a stable matrix [2,34,35].
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4.1. Recursive solution to the symmetric procrustes problem

Consider now the case where the matrices A and B are augmented by the addition of an extra row as
in (7). The updated symmetric Procrustes problem requires the solution of the optimization problem

argmin
X̃S

∥∥∥ÃX̃S − B̃
∥∥∥2
F

subject to X̃S = X̃T
S ,

where Ã and B̃ are defined as in (7). Using the Lagrangemultipliers and the analysis for the symmetric
Procrustes problem as in the previous section, the solution is obtained from the Lyapunov equation

ÃTÃX̃S + X̃SÃ
TÃ = ÃTB̃ + B̃TÃ (30)

by computing the EVD of ÃTÃ. To recursively solve (30) observe that on using (28) yields

ÃTÃ = ATA + aTa

= PDAPT + aTa

= P(DA + ãT ã)PT .

Therefore, the sequential updating ofDA requires one rank-1 update, namely,DA + ãT ã = P1D̃APT
1 ,

whence

ÃTÃ = P̃D̃AP̃
T

with P̃ = PP1. The Lyapunov equation (30) then becomes

D̃AX̃P
S + X̃P

S D̃A = S̃, (31)

where X̃(P)
S = P̃TX̌SP̃ and S̃ = P̃T

(ÃTB̃ + B̃TÃ)P̃. The solution to (31) is obtained in a way similar
to that for (29).

5. Computational remarks

To amplify the practical usability of the proposed method, the theoretical complexity analysis of the
new algorithms has been studied. Consider the general Procrustes problem when no constraint is
imposed to the least squares solutionmatrixX. Let thematrices Ã, B̃ ∈ R

(m+1)×n as in (7) and assume
that the QRD of A in (6) is available. The complexity of computing the QRD of Ã afresh is 2n2(m +
1 − n/3) floating point operations (flops) and that of applying these orthogonal transformations to
matrix B̃ is 2n2(2m − n + 3) flops. The complexities of computing the updating QRD in (9) in order
to updateRA andRB require 4n2 and 8n2 flops, respectively. As a result, to compute the QRD of Ã and
to apply the orthogonal transformations to B̃ will always be computationally more demanding than
computing it recursively utilizing previous calculations. The computational efficiency of the recursive
method compared to computing the QRD from scratch is, approximately, given by (9m + 2n)/18.

The solution of the orthogonal Procrustes problem is derived from the EVD of the squarematrices
F = ATB(ATB)T and G = BTAATB. However, in practice the SVD of ATB = U�VT is computed
since F = U�2UT = UDUT and G = V�2VT = VDVT . When A and B are modified, the com-
putationally efficient solution to the orthogonal Procrustes problem requires that the SVD of ATB
is computed recursively. Therefore, in the recursive solution of the orthogonal and symmetric Pro-
crustes problems, updating SVD decompositions are computed which provide equivalent results
as if the EVD were computed. The SVD of an m × n matrix requires n3 + mn2 + O(mn) flops in
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the first stage and kmn2 + kn2 + O(mn) flops in the second stage where k is the number of itera-
tions required to compute each singular value. Herein, it is assumed that m � n and it holds that
rank(ATB) = r < min(m, n).

The algorithms employ a low-rank modification strategy for the recursive updating of the SVD as
in [3]. Algorithms 5.1–5.3 summarize themain computational steps for the solution of the orthogonal
Procrustes problemand the recursive proposed solutionwhennew rows or columns of data are added,
respectively.

Algorithm 5.1 Solving the OPP in (12).
Require: Known matrices A ∈ R

m×n and B ∈ R
m×n.

Ensure: The solution X and U , V , � from the SVD of ATB.
1. Compute the SVD of ATB = U�VT .
2. Compute X = UVT .

Algorithm 5.2 Solving the OPP in (26) recursively with column updating, given the solution of (12).
Require: The new data added are An+1,Bn+1 ∈ R

m×k, k ≥ 1 as in (25) and U , V , � from the
solution of the OPP (12) .

Ensure: The solution X̃. The Ŭ , V̆ , �̆.
1. Let Ũ1 = (

V1&0k×n
)
.

2. ComputeM = UTAn+1.
3. Compute the SVD K = UK�KVT

K , where K = (
�&M

)
.

4. Compute U1 = UUK and V1 = VVK . Let Ũ1 =
(

U1
0k×n

)
.

5. Compute the QRD QT (V&Bn+1
) =

(
In&N
0&RB

)
and the SVD

(
�K&N
0&RB

)
= UL�LVT

L .

6. Compute X̆ = ŬV̆
T
, where Ŭ = Ũ1UL and V̆ = V1VL.

To evaluate further the new algorithms, experiments based on synthetic and real data have been
conducted. The computational times of the new algorithms have been compared with the algorithm
that solves the same problem afresh in order to obtain the efficiency ratio.

Table 1 presents the execution times (in CPU seconds) of Algorithm 5.1 compared with
Algorithm 5.3 when m = 50, 100, 250, 500 rows and n = 1000, 5000 and a single column of data
is added toA and B, that is k = 1. The results show that keeping n fixed and increasingm reduces the
computational efficiency. However, comparing Panel A and B shows that the efficiency is more signif-
icant when n increases. Table 2 presents the execution times (in CPU seconds) of the Algorithms 5.1
and 5.2 whenm = 100, n = 1000 and whenm = 500, n = 10, 000 with a variable number k of new
columns are added to A and B. All the times presented are the average times after solving the same
OPP (afresh or recursively) 100 times. The computational results in Table 2 show that as the number
of dimensions increase the computational efficiency also increases. Furthermore, the results suggest
that the proposed algorithm for the addition on new column ismore efficient when a small number of
extra columns is included. Comparing the results in Panel A and B of Table 2 we see that the efficiency
of the proposed recursive method increases when the dimensions of the matrices in the original OPP
also increase.

Many a time, the solution of an OPP is applied in the development of algorithms for face recog-
nition, see for example [6,30,37,43]. The algorithm proposed in [43] for feature extraction requires
to solve -until convergence- a series of updating OPPs as in (12) where A is the data matrix and B
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Table 1. Execution times in seconds of the recursive solution of theOPP
when one single column is added.

Alg. 5.1 Alg. 5.2
Alg. 5.1

Alg. 5.2
m afresh recursive

(a) Panel A: Orthogonal Procrustes updating with n = 1000 and k = 1.
50 239 6 37
100 273 11 26
250 285 33 9
500 387 178 2
(b) Panel B: Orthogonal Procrustes updating with n = 5000, k = 1.
50 25723 7 3701
100 25510 14 1800
250 25985 71 366
500 26973 307 88

Notes: Results are presented where the matrices in the original Pro-
crustes have m = 50, 100, 250, 500 rows and n = 1000 or 5000
columns and k = 1 column is added.

Table 2. Execution times in secondsof the recursive solutionof theOPPwhen
new columns are added.

Alg. 5.1 Alg. 5.2
Alg. 5.1

Alg. 5.2
k afresh recursive

(a) Panel A: Orthogonal Procrustes updating withm = 100 and n = 1000.
5 2.0 0.1 24
25 2.1 0.1 22
100 2.7 0.2 15
250 3.7 0.5 8
500 6.5 1.6 4
(b) Panel B: Orthogonal Procrustes updating withm = 500 and n = 10, 000.
5 2216.9 11.3 196
25 2117.3 11.3 187
100 2069.8 14.1 147
250 3.7 0.5 8
500 6.5 1.6 4

Notes: Results are presented where the matrices in the original OPP have
m = 100 or 500 and n = 1000 and k = 5, 25, 100, 250, 500 new columns
are added.

is the class indicator matrix after they have both been centred. The processing of an image starts by
considering their pixels as the elements of a matrix and then converting each matrix (or each image)
to a column vector. Each row in A has length equal to the feature number of the images. When a new
image becomes available and is added to the database, a row will be added to A. The face recognition
algorithm will then have to process the extra image, that is the additional row of the data matrix A.
This is equivalent to row updating as in (18). Herein, Algorithm 5.3 is employed to show the compu-
tational efficiency of utilizing previous computations when a series of updating OPPs is solved after
augmenting the data matrix.

In Table 3 the algorithm that estimates the problems afresh and the recursive algorithm are com-
pared. It is assumed that there are m = 2000, 5000, 10, 000, 15, 000, 20, 000 images available which
have been cropped and re-sized to 16 × 16 and 32 × 32 pixels, that is n = 256, 1024. The run times
(in CPU seconds) when an extra image or alternatively an extra row of data is included 100 times
are presented. The results show that when new rows of data are added to the problem the efficiency
increases as the number of rows increase. The reason for this is the fact that the recursive algorithm
does not depend onm, the number of rows of matricesA and B. Instead, it depends on the number of
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Algorithm 5.3 Solving the OPP in (18) recursively with row updating, given the solution of (12).
Require: The new data added are a, b ∈ R

1×n as in (7) and U , V , � from the solution of the OPP
(12).

Ensure: The solution X̃ and Ũ , Ṽ , �̃.
1. Repeat row updating

Require: The new data added are a, b ∈ R
1×n as in (7) and Ũ , Ṽ , �̃ from the solution of (18).

Ensure: The solution X̃ and Ũ , Ṽ , �̃.
2. Compute au = UTa and bv = VTb.
3. Compute the SVD K = UK�KVT

K , where K = � + aubTv .
4. Compute X̃ = ŨṼT , where Ũ = UUK and Ṽ = VVK .

Table 3. Total execution times in seconds of the recursive solution of
the OPP when a new single row of data is added 100 times.

Alg. 5.1 Alg. 5.3
Alg. 5.1

Alg. 5.3
m afresh recursive

(a) Panel A: Orthogonal Procrustes updating with n = 256 and l = 1.
2000 10 6.1 2
5000 20.9 6.1 3
1000 39.3 6.1 6
15,000 57.1 6.1 9
20,000 74.9 6.1 12
(b) Panel B: Orthogonal Procrustes updating with n = 1024 and l = 1.
2000 369.8 371.9 1
5000 546.3 371.9 1
10,000 823.4 371.9 2
15,000 1090.7 371.9 3
20,000 1369.8 371.9 4

Notes: Results are presentedwhen thematrices in the original OPP have
dimensions m = 2000, 5000, 10, 000, 15, 000, 20, 000 and n = 256,
1024, and during the updating one extra row is added (l = 1).

columns n of A and B and on the number of rows l added to the model. This is also why the timings
of Algorithm 5.3 are the same when n and l are fixed.

Overall, the results show that the computational efficiency of the proposed recursive algorithm
increases when the dimensions of the matrices (data) increase. The computational efficiency is sig-
nificantly more important when a small number of rows or columns is amended -compared to the
originalmatrices- that is, themodification is low-rank. This demonstrates the practicability of the pro-
posed method when solving sequentially OPPs with small modifications in the underlying dataset.
The proposedmethods are particularly usable when thematrices involved are large-scale and the data
are high-dimensional. All the reported computational results were performed on a 64-bit 1.80GHz
Core(TM) i7-8550U processor and 16.0GB RAM using R (version 3.6.1).

6. Conclusions and future work

The recursive least squares solutions to the matrix equation AX = B when new rows or columns
of data are added to data matrices A and B is thoroughly investigated. A computationally efficient
algorithm which is based on the singular value decomposition is proposed. Computational results
are presented for synthetic data and also for a machine learning application based on feature extrac-
tion for face recognition. The recursive solution to the symmetric Procrustes problemwhen including
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extra data is also investigated. The experimental results suggest that the proposed algorithms are com-
putationally more efficient when the matrices are high-dimensional and when they are augmented
with a small number of rows or columns.

The extension of the proposed method to include other special classes of matrices like reflexive
and anti-reflexive, Stiefel matrices or Toeplitz matrices merits further investigation. Future work will
also consider the solution to the Procrustes problem with regularization constraints after modifying
the matrices with the addition or deletion of data.
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