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We consider a stochastic differential equation and its Euler-Maruyama (EM) scheme, under some appropriate
conditions, they both admit a unique invariant measure, denoted by 7 and ; respectively (» is the step size of
the EM scheme). We construct an empirical measure IT, of the EM scheme as a statistic of 7y, and use Stein’s
method developed in Fang, Shao and Xu (Probab. Theory Related Fields 174 (2019) 945-979) to prove a central
limit theorem of IT;. The proof of the self-normalized Cramér-type moderate deviation (SNCMD) is based on a
standard decomposition on Markov chain, splitting rf]/ 2(1'[,7(.) — m(.)) into a martingale difference series sum
"Hy and a negligible remainder R,,. We handle #,, by the time-change technique for martingale, while prove that
Ry is exponentially negligible by concentration inequalities, which have their independent interest. Moreover,
we show that SNCMD holds for x = o(n_l/ 6), which has the same order as that of the classical result in Shao
(J. Theoret. Probab. 12 (1999) 385-398), Jing, Shao and Wang (Ann. Probab. 31 (2003) 2167-2215).

Keywords: Stochastic differential equation; Euler-Maruyama scheme; central limit theorem; self-normalized
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1. Introduction

We consider the following stochastic differential equation (SDE) on R¢:
dX; =g(Xy)dt +o(X)dB;, Xo=x, (1.1)

where ¢ : R? — R%*4 and g : RY — R satisfy Assumption 2.1 below, and B; is a d-dimentional
standard Brownian motion. Given a step size n, the Euler-Maruyama (EM) scheme of (1.1) reads as

Ok+1 = Ok + ng(6k) + /1o O)ék+1, k=0, (1.2)

where (§;)r>1 are i.i.d. standard d-dimensional normal random vectors. When g and o are both Lips-
chitz, (1.1) admits a unique strong solution and the following strong approximation error bound holds,
see Mao [26]: for any T > 0,

E|X7 — Oir/m|* < Cr, (1.3)

the constant C7 usually tends to oo as T — oo and [x] denotes the integer part of x for a x > 0.
When g or o is irregular, there have recently been some works, see Bao, Huang and Yuan [2] for
the convergence rate of degenerate SDEs. We refer the reader to Bao and Shao [3], Shao [35] for the
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EM scheme of path-dependent SDEs and to Bao and Yuan [4] for that of stochastic differential delay
equations.

Let us first discuss a special case of (1.1) in which o (x) = I;x4, d x d identity matrix, and g(x) =
—VU (x) with U being a potential, it is well known that (1.1) is a gradient system and admits a unique
ergodic measure 7 proportional to e~ Y@ from Roberts and Tweedie [34]. (1.2) is called unadjusted
Langevin algorithm (ULA) with constant step size, Roberts and Tweedie [34] mainly established some
criteria for the ergodicity of 6k, while Dalalyan [9], Theorem 2, gave an explicit error in total variation
distance between 6; and 7 in terms of d, k,n when VU is Lipschitz and strong convex. Replacing
the strong convexity assumption in Dalalyan [9] with a strong convexity at infinity condition, Majka,
Mijatovi¢ and Szpruch [25] used a coupling method to show the Wasserstein-2 distance between 6y

and 7 were bounded by C[(1 — n)¥/? + %]. When VU is third order differentiable with a appropriate
growth condition but not necessarily Lipschitz, Fang, Shao and Xu [19] showed that as long as the
above (1.2) admits a unique ergodic measure 1, then the Wasserstein-1 distance between 7, and 7 is
bounded by /7 up to a logarithmic correction. For more research about Langevin algorithm, we refer
the reader to Durmus and Moulines [13,14], Chatterji et al. [6] and the references therein.

The motivations of studying the central limit theorem (CLT) and the self-normalized Cramér type
moderate deviation (SNCMD) of ULA are two folds. One is that there have been many central limit the-
orems and moderate deviation results for Markov chain Monte Carlo (MCMC) algorithm, see Dupuis
and Johnson [12], Meyn and Tweedie [28], Del Moral, Hu and Wu [11], Nyquist [30], Tierney [40],
whereas there are very few these type of fluctuation theorems for Langevin algorithm. The other is that
our result provides a new example for SNCMD for dependent time series, and also a new example that
applies Stein’s method to prove SNCMD, see Chen, Fang and Shao [7], Shao, Zhang and Zhang [37].
Note that there are not many results for SNCMD for dependent time series, see Chen et al. [8], Fan
[15], Fan et al. [16,17], Fang, Luo and Shao [18], Jing, Wang and Zhou [21], Shao and Zhou [38] and
the references therein.

Let us briefly describe our main results and methods as follows. We construct an empirical measure
I, as a statistic of the ergodic measure 7, of (1.2), for any function & € CZ (Rd, R) (see the definition
of Cg (R, R) below), we study the CLT and SNCMD of I1,,(h). In order to prove the CLT, we apply
Stein’s method developed in Fang, Shao and Xu [19]. Assumption 2.1 guarantees that (1.2) admits
a unique invariant measure 1, while the restriction of & € C}% (Rd, R) ensures that the solution ¢
of Stein’s equation (2.9) has bounded 4th order derivatives. Note that the ergodicity of (1.1) does
not imply that of (1.2), see Roberts and Tweedie [34]. The proof of SNCMD is based on a standard
decomposition on Markov chain, splitting n~ 1/2 (IT,; (h) — 7 (h)) into a martingale difference series sum
‘H, and a negligible remainder R,,. We handle H,, by the time-change technique for martingale, while
prove that R, is exponentially negligible by concentration inequalities, which have their independent
interest. Moreover, we show that SNCMD holds for x = o(r]_l/ 6), which has the same order as that
of the classical result in Shao [36], Jing, Shao and Wang [20]. Indeed, the limit lim,_o(TT, (k) —
m(h)) = 0 can be understood as a law of large number (LLN), after zooming in on it by a scale n=1/2,
n~VY 2(l'[,,(h) — m(h)) has a normal distributed fluctuation. Our result showed that this fluctuation is
uniformly comparable with normal distribution for all x € (cn'/%, 0(n~1/)). In contrast, Shao et al.’s
result means that by zooming in on % Yo' Xi — EX with a scale n'/2, nl/z(% Y Xi—EX)hasa
normal distributed fluctuation uniformly comparable with normal distribution for all x € [0, o(n'/ 6)).

The paper is organized as the following. Our main results are stated and discussed in Section 2.
In Section 3, we provide some preliminary lemmas. The proof of the CLT is given in Section 4. In
Section 5, we give the proof of SNCMD. The details of the proof of preliminary lemmas are deferred
to Appendix.

We finish this section by introducing some notations which will be frequently used in sequel. For

with

: : ) 3 a3
x R4, x; denotes the i-th element of x. For function f : RY — R, denote Vl.’ ik fx)= m



CLT and self-normalized Cramér-type moderate deviation 939
i,j,k=1,2,...,d. Cﬁ (Rd ,R) with £ > 1 denotes the collection of all bounded k-th order continu-
ously differentiable functions. The symbols C and ¢ denote positive numbers depending on g and o,
Cp and ¢, denote positive numbers depending on g, o and the parameter p. Their values may vary
from line to line. We denote the Euclidean norm of R? by | - | and for higher rank tensors by || - ||. For
function f, we denote || f|| = sup,cgra | f(x)||. If a random variable £ has a probability distribution

W, we write & ~ . Let {a,},>1 and {b,},>1 be two nonnegative real number sequences, if there exist
some C > 0 such that |a,| < Cb,, we write a, = O (b,). If lim,_, Z—” =0, we write a, = o(b,,).

2. Main results

Assumption 2.1. o(x) = o with o being an invertible d x d matrix. g : R? — R? is second order
differentiable. There exist L, K| > 0 and K> > 0 such that for every x, y € R4

lg(x) — g < Llx —yl, 2.1
(g(x) —g(3),x —y) < —Kilx — yI* + Ka. (2.2)

Moreover, the second order derivative of g is bounded.

Remark 2.2. It is easy to see that the assumption (2.1) implies
s <2L%x P +21g@)%, IVgll <L, (2.3)
and that the assumption (2.2) and Young’s inequality imply

(x,8(x)) = (x =0, g(x) — g(0) + (x, g(0))

K 1 Ky
s—K1|x|2+1<2+7|x|2+m|g<0>|2=—7|x|2+c. (2.4)

The condition that g has bounded second order derivative is only needed for proving the regularity to
the solution of Stein’s equation.

Under Assumption 2.1, the Euler-Maruyama scheme reads as

Okr1 = Ok +ngOk) + /nokky1, k>0, (2.5)

where 6y = x and (& )x>1 are i.i.d. standard d-dimensional normal random vectors.

Lemma 2.3. Under Assumption 2.1, SDE (1.1) and (6x)k>0 are both ergodic with invariant measures
7 and 1y respectively.

Proof. The proof will be given in Appendix A. ]

The generator A of (1.1) is given by

1
Af(x) = (g(x), V() + §<aoT, V2 £ (x))ns, (2.6)
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where T is the transpose operator and (A, B)ps = Z;{j:] A;jBij for A,B € R¥4 and f €

C,% (R4, R). To approximate the behavior of (X;);>0, we can use the Euler-Maruyama scheme to dis-
crete (1.1).
For a small n € (0, 1), define

211
> 3.0 @.7)

k=0

1

()= ——
n®) n=2]

where §,(-) is a delta measure of y, i.e., for any A C R, dy(A)=1if yec Aand 6,(A)=0if y ¢ A.
We shall see that IT;, is an asymptotically consistent statistic of 7 as n — 0.
Parallel to the CLT and tail probability estimates of MCMC algorithms, see Roberts and Rosenthal

[33], it is natural to consider those for IT,. For a test function 4 : RY — R, we consider the limit of
1
w with 7w (h) = fRd h(x)m(dx). Our first main result is

Theorem 2.4. Suppose that Assumption 2.1 holds. Let h € Cl% (R4, R), then we have
1
7T =)= N, 7(lo"Vel?), asn—0, (2.8)

where ¢ is the solution to the following Stein’s equation:
h—m(h)=Agp, (2.9)

and A is the generator (2.6) of the SDE (1.1).

Let Ex[-] and P (-) be respectively the conditional expectation E[-|6;] and conditional probability
P(-|6¢). Let ®(x) be the standard normal distribution function. Denote !

211 1
LY otveeor, w, =W T®)

T = VA

Our second main result is the SNCMD of W, as follows.

Y

Theorem 2.5. Suppose that Assumption 2.1 holds. Let 6y ~ 7, and h € C,f (R4, R), we have

POW, > x) 11
=77 —_ 14+ O(xno 3 2.10
oG + O(xn® +no) (2.10)
uniformly for cné <x= o(n*%) as n vanishes, where ¢, O and o depend on L, K1, K>, |g(0)|%, 0.

For the simplicity of notations below, without loss of generality, we assume from now on that 5 €
(0, 1) is a small number such that n‘l is an integer. We also denote

m=n

—2_
Iprof. Fuqing Gao suggested that we replace the self-normalized factor [nl o ZI[:]:O] 1<gTVgp(0k), Er 1)2 in the previous

—29_
version by [17+2] Z,E';O] ! \UTVgo(Qk)Iz. Since (k) >0 is observable whereas {£}>1 is not known, the new self-normalized
factor is more natural.
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1

and often write n~ " as mn for notational simplicity. Denote

Ay =60k — 6O, k=0.
3. Auxiliary lemmas for Theorem 2.4 and Theorem 2.5

3.1. The strategy of proving Theorem 2.4 and Theorem 2.5

The strategy of proving Theorem 2.4 and Theorem 2.5 is to decompose rf% (IT;(h) — 7 (h)) into a
martingale and a remainder as in (3.1) below, showing that the remainder is negligible, while the mar-
tingale converges weakly to a normal distribution and satisfies the SNCMD. This type of decomposition
is typical for proving CLT for semi-martingales, see e.g., Teh, Thiery and Vollmer [39], (28).

Lemma 3.1. Leth € Cb2 (R4, R), a solution to Stein’s equation (2.9) is given by

p(x) = —/0 E[h(X;(x)) — 7 (h)]dt,

where X;(x) is the solution of equation (1.1) with initial value x. Moreover,

IVkol<C, k=0,1,2,3,4.

Proof. Denote h = h — m(h) and P;h(x) = E[h(X;(x))]. Following the exponential ergodicity of
{X:}i>0,1.e. (A.1), one has

o0 R o0 R o0
|/ Psh(x)ds| 5/ | Psh(x)|ds < CV(x)/ e “ds < oo.
0 0 0

Thus fooo Pyh(x)ds is well defined. For any ¢ > 0, it is known that ¢ — A is invertible (cf. Applebaum
[1], pp. 158-159), and

o0
(e—A)h= / e~ P hdt,
0

oo R R oo R
8/ e_gtplhdt_h:.A(/ e_gtP,hdt>.
0 0

(0.¢] N R R oo R o R
8/ e ' Phdt —h — —h, / e ' P hdt — / Py hdt.
0 0 0

1.€.,
Let ¢ — 0+,

Since A is a closed operator (cf. Partington [31], Theorem 2.2.6), fooo P,fzdt is in the domain of A and

~ 0 A
h =A<—/ Pthdt) .
0
By Krylov and Priola [22], Theorem 2.6, we know that ¢ € Cg (R4, R). Denoting ¢; = 0y, ¢ for

i=1,...,d, it satisfies

Agp; =, h — 0y, 89,
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it is easy to check that the right hand side of this equation belongs to Cll, (R%) by Assumption 2.1, we

know that ¢; € C 2 (Rd, R) by Krylov and Priola [22], Theorem 2.6. Hence, ¢ € Cg (Rd, R). O

By Stein’s equation (2.9), we have,

m—1

1 1 '—
My(h) =7 (h) = — > (h(O) =7 () = — 3 Ap()

k=0
m—1 m—1
=0y [Ap@n — (@Or1) — @) ] +1 Y (@s1) — 9(6h)
k=0 k=0
m—1
=nlgOn) — )1+ 1Y, [Ap@)n — (@) — ()]
k=0

(2.5), (2.6) and the Taylor expansion yield that

Ap©i)n — (9Gk+1) — @ (01))

1
=g<v2¢<9k>, oo s — V1 (Ve(O), 0Et1) — 5<v2<p<9k), (A0 (AG) s

— - / Z V3 10Ok + 108 (A8, (MG, (MG dr.

i1,i1,iz=1

This, together with the previous two relations and A6 = ng(6k) + /N0 ék1, implies

"2 (I, (h) — w(h)) = Hy + Ry,

3.1
where, as we shall see below, H,, is a martingale and R, is a remainder, given by
m—1
=—n Y _(VoO),0k1), Ry= ZR,, i
k=0
with
7’]% m—1
Rt =/1@(00) = ¢On), Ry2=— ) (V*0(00), @&ks) @& — 00 s,
k=0
7]2 m—1
Ry =% [<v2<p<9k>, 8O0 @) s + (V29 (60), 081 (800) s |
k=0

,74—%2 Z V3 10Ok + 1AB) (0 &k )i, (081411 (0 6k )iy di

i1,i2,i3=1

3

3
W
I
o Ii.m

(V20 (61), 8180 T us

~
Il
=}
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I m—1 L1 d
]’]2
+Z / S VR0 + A0 O (00 (B0,
k=070 i .iy.is=1
S m—1 . d
_nz 3
Roe=7 2 | DV @O + 180 (80, (&t )in (0 Ert1)iy
k=0 i1,i2,i3=1

F VIV 1y @O+ 1B (SO0 (3 (E1))iy (01 | .

A crucial lemma for estimating the remainder R, is Lemma 3.3, which has a long proof as below. To
better understand the proof’s strategy, we give a continuous version as the following. For the solution
X, of SDE (1.1) and a constant y > 0 which will be chosen later, 1t6’s formula implies

t t
|Xf|2—|x|2=/O 2<Xs,g<xs>>ds+/0 2(Xy, 0dBy) + 1o |

t t
=< _/ K1|Xs|2d5+v/ 2<an0—st>+(C+”U”2)t»
0 0

where the second line follows (2.4). Then we have

t t
Eexp {}/'XZIZ +f ]/K1|XS|2dS} < eV|X|2eV(C+||UH2)tEeXp {/ 2)/(X5,0'd33>} .
0 0

Holder’s inequality and the exponential martingale property yield

t
Eexp {/ 2y(XS,UdBS)}
0

1
t t 2 4 2
< <Eexp{/0 4y<xs,ast>—/0 8y2|x;fa|2ds}) (Eexp{/o 8y2|X}a|2ds}>
1 1
! 2 t 3
= <Eexp{/ 8y2|XSTU|2ds}> < <Eexp{f yK1|XS|2ds}> ,
0 0

where we choose y small enough such that 8y ||o > < K| in the last inequality. That is

t t 2
]ECXP{V|X1|2 + / yK1|XS|2ds} < eIy (CHlo Pyt (Eexp{ / yK1|XS|2dsD
0 0

¢ 2
< PPy (CHo P <Eexp{y|X,|2+/ J/K1|Xs|2ds}>
0

Hence by (2.3), we have

"yK t vKL s
Eexp{)’le|2+f %|8(Xs)|2ds} SECXp{y|X1|2+/ yK1|XS|2ds}e L5t
0 0

< Ce.
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Replacing ZTKZI by y, we can get
1
Eexp {1, ?] = ce, Eexp{/ f|g(xs>|2ds} < Ce*".
0

3.2. Auxiliary lemmas for R,

We will give in this subsection several lemmas of ‘R, which play a crucial role in proving main results.
Their proofs will be given in Appendix B and the supplemental article Lu, Tan and Xu [24]. In order to
estimate the tail probability of R;, we need the following four lemmas, the first three lemmas paving
a way for proving the last.

Lemma 3.2. Ler V) : RY — RY and W, : R* — R both be measurable Sfunctions. We have

09—

Ex [exp {(W1(00), 0&xr1) + W2 (k. 4 1)}] < (Ek [eXp !2|\I’l(9k)|2||f7||2 + 2W, (6k, é’k+1)}])

fork=0,...,m— 1. Moreover, we have

m—1 m—1 2
Eexp{ ) | (W1(6). o&k1) + 2Bk, £xs1)} < (Eexp{z 2(1W1 @0 P02 + a6, sk+1>)}> :

k=0 k=0
and
m—1
Eoexp{ ) (W1(6h), 0r1) + Wa(6k, £x41))}
k=0

1

m—1 2
< (Eoexp{z2(|w1<9k)|2||o||2+\IJz(ek,skH))}) :

k=0

Lemma 3.3. Under Assumption 2.1, there exist no > 0 and yg > 0, both depending on L, K1, K>,
1g(0)|2 and o, such that as n < no and y < o,

m—1

-1 2
Eoexp {Vn > |g(9k)|2} < Cettr b, (3.2)
k=0

where C and ¢ depend on L, K1, K>, |g(0)|2, o and y. Moreover, if 6y ~ my,
m—1 ]
Eexp iyn > |g(9k)|2} < Ce (3.3)
k=0
where C and ¢ depend on L, K1, K», |g(0)|?, o and y. This particular implies that for all x > 0,

m—1
Py (n > g0 > x) < Cect1n ) o (3.4)
k=0
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where C, c1, c3 depends on L, K1, K>, |g(0)|2, o and yy. Moreover, if 6y ~ ),

m—1
P (n Z 1g@)I* > x) < Ce e, (3.5

k=0

where C, c1, c3 depends on L, K1, K>, |g(0)|2, o and yp.

Lemma 3.4. Let U : R — R? be measurable function satisfying the conditions

Ei[W 6k, 1101 =0 and Pr(W G, &) < KA+ |&112) = 1

fork=0,...,m—1,where K € (0, 00) is an arbitrary constant. Then we have

1 m—1
E [exp { NG PRI skm” <C,
n=0

where C depends on K .

Lemma 3.5. Suppose that Assumption 2.1 holds. Let h € Cg R4, R) and ¢ : R? — R be the solution
of (2.9). We have

1 1 3 2 _ 2
. 2 T Cean 35 —ern~ 2 %3
]P’O(|R,7|>x)§Ce“”9°” (e can zle{x<n_1}+e cn Sx> Ligsy1y +e 2 x3),

where 0 < y < % and x > cmax{n%*@, ngf, n%}. Here C, c, c1, cp depends on L, K1, K>, |g(0)|2,

0. Moreover, for 6y ~ m;, we have

1 32 5 2
P(|R,| >x)§C(e_C”’ R PR P 2“”),

where 0 <y < % and x > cmax{n%_w, n%V, 77%}. Here C, c, c1 depends on L, K1, K, |g(0)|2, o.

The proof of Lemma 3.5 is much more complicated and we give details in the supplemental article
Lu, Tan and Xu [24].

4. Proof of Theorem 2.4

We first introduce following lemma which paves a way to proving the convergence of martingale H,,.
Its proof borrows the idea of the Stein’s method in Fang, Shao and Xu [19], Theorem 2.5.

Lemma 4.1. Let w and m, be the same as those in Lemma 2.3, ¢ be the solution of Stein’s equation
(2.9). We have

1
17, (l0 TV@|?) — 2 (loTVe|?)| < Cn2.
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Here, C depends on g and o.

Proof. We shall use the stationary Markov chain trick in Fang, Shao and Xu [19], Theorem 2.5. Let
{0k }k>0 be the Markov chain with initial value 8y ~ 7. (2.5) implies that

EolA6o] = ng(60).  Eol(A6)(A60)"]=n’g(60)g" (60) +noo™. 4.1
The Taylor expansion and the stationarity of (6x)r>0 yield

0=E[lo V@) * — 0" Ve(@)|*] (4.2)
1
=E[(V|oTVe(0)I?, Abp)] + 5]E[<v2|aTw(eo)|2, Aby(A0p) ") ms]

1! 4
+2 /O El D ViiuloT Ve +1860)17 (Abo)i, (A6o)i, (Abo)is | dir.

i1,i1,i3=1
For the first and the second terms, by (4.1), we have

E[(V]|oTVe(©60)|?, Abo)] =E[(V]o T Ve(60) %, EolAbo])] =E[(V]eTVe(60) %, ng(6o))],

E[(VZoTV@(00) %, Ab(A80) ) us] = E[(VZ o TV@(80)|?, Eol Abo(Abp)  1)us]
=E[(VZo V(@)% n*8B0)g" (B0) + noo Mus].

Combining equalities above with (2.6) and (4.2), we have

1
E[A(o Ve (@)1 = —EE[<V2|GTV¢<9O>|2, ng(60)8" (60))ns]

1! d

“& ) B > V3l TV + 1 A00) 2 (AB0), (Af)iy (Abo)i, | dt.
0 A

i1,i,i3=1

For the first term, the boundedness of ||V3¢| and (A.5) imply

< Cmy(IghH"*n < Cn.

‘%EHVQIGTW(@O)IZ, ng(#0)g" (60))us]

For the second term, by (A.5), we can get
Ellg @)1 < (Ellg @)1l =, (g1 ¥* < oc.

Cauchy’s inequality and the boundedness of || V*¢|| imply

1

1 d
a/o E Z V,'3,,,~2,,~3|UTV<P(90+tA90)|2(A90)i1(A90)52(A90)i3 dr

i1,i1,i3=1

C 1
5;/0 B[ V3|6 TVg (@0 + 1 A6 211 AB) P1dr < C(*Ellg(@0)1*] + n2E[& ) < Cn?.
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Here, the constant C depends on ¢ and g. Hence we have
1
E[A(lo" Ve @0))]l < Cn?2.
From Stein’s equation (2.9), we deduce

7y (10 TVe|?) — (16 TV 2)| = [Ello "V 002 — 7|0 "V = [ELA(e "V @)1 < Cn?.

Lemma 4.2. Under the condition of Theorem 2.4, we have

H,y = N©O,7(loTVe?).

Proof. Recall H, = —n Z;":Bl (Vo(8;),0&11). We denote
Z;i =(Vo(¥),0&41), i=0,....m—1
McLeish [27], Theorem 2.3, will imply the result if we can verify the conditions

E max {n|Z|} -0, (4.3)
0<i

<m-—1

m—1
n* Yz} — m(lo Vgl in probability. (4.4)
i=0

Denoting Zi =Zilyz,p<,-1y and Zi =Zilz,p>y-1), We have

72 max {|Zi1)*=n* max {(Z}}<n® max {Z;*}+n* max {|Z]*}.
0 1 0<i<m—1 0<i<m—1 0<i<m-—1

<i<m-—
It is easily to see that the first term converges to 0 in probability. For the second term, we have

2 712y < 2 5 2
rE max (ZiIF =0t Y, EIZiP

0<i<m-—1

Since IE[ZI.Z] is finite, IEI|Z,'|2 converges to 0 as n — 0 for each i, this implies that 772 X
E[maxo<; Sm_1{|Zvi |2}] converges to 0. Holder’s inequality yields (4.3).
For (4.4), we can finish the proof if we verify

m—1
Bl Y (22 = (1o Vo) )1 45)
i=0
m—1 m—1
< 2B Y (72 = 70" Vo) P +2(n* Y (my(lo Vel —n(laTw|2>))2 — 0.
i=0 i=0

By Lemma 4.1, the second term converges to 0. For the first term, a straight calculation gives that

m—1

m—1
Bt Y (22 =7 (loToP) P = n* 3 BLZ}E - my (0 Tg )P
i=0 i=0
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m—1
210 Y E[@ =m0 - 7o e ).
i,j=0,i<j

For the first term, the boundedness of ||V || implies
E[Z} — my(lo o)) < 2E[Z]]+ 27, (|0 T [*)?
< 2E[|Ve @) *llo I1*[&4+11*1+ 27, (o "0 )

< C+2m,(loTH2. (4.6)
Then we have
m—1
n* Y E1Z7 — (0T el)) < Cip*m — 0.
i=0

For the second term, we can calculate that

m—1 _
> E[@ = moTePNZ] ~ 7o o)
i,j=0,i<j

m—1 _
> E[@ - my(lo e P)EZE — (I o]
i,j=0,i<j

m—1 _

> E[@ w0 oP)Emlle Vo) — (00
i,j=0,i<j

[r]

> E[122 = mlo eI + 16 Pe U]
i,j=0,i<j

IA

where the last inequality follows from (A.3). By Holder’s inequality, we have

m—1
> B[ - o TP~ (1T
i,j=0,i<j
= 2\ 1 . 2\ 2
= [(E (@2 =yt To | ) (E[(1+ 61411070} ) }
i,j=0,i<j

m—1 1
sC Y U (14E0 1Y)
i,j=0,i<j

where the boundedness of E [(Z7 — 71,7(|0T(p|2))]2 follows from (4.6). Now we estimate E|6;1|*. A
similar calculation with (A.4) yields

E[16;+11*1 = E[E;16;+11"1 < (1 — K1n 4 en®)E[6:[*] + Cn.
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By iteration with initial data 8p = x, we obtain
i
E[16:+111 < Cn ) (1 = Kin+ e + Ix[*(1 = Kin+ en®) ™
k=0

Choosing 1 small enough such that 1 — Ky + cn* < 1 gives

E[16]*] < x|* + . k=0,1,...

Ki+cn
Combining the relationships above, we have

m—1 1
2t ) E[(Ziz —ﬂn(IUTwlz))(Z§—nn(|aT<p|2))] <copt Y e

i,j=0,i<j i, j=0,
i<j

m—1 m—1

:C774 Z efc(jfi)+cn4 Z efc(jfi)

i,j=0, i,j=0,
O<j—i<Inm Inm<j—i
<Cn*mlnm+ Cnt*e ™" (m — Inm)? — 0.
Hence we prove the first term of (4.5) converges to 0 and finish the proof. U
Proof of Theorem 2.4. We have shown in (3.1) that
_1
n 2(I,(h) —w(h) =H, +Ry.
Here H,, weakly converges to N (0, 7(|cTVy|?)) by Lemma 4.2. Lemma 3.5 implies ‘R, converges to

0 in probability with fixed initial value 6. Thus 7~ 2 (I, (k) — w(h)) = N(0, 7 (loTVg|?)). O

5. Proof of Theorem 2.5

5.1. Self-normalized Cramér-type moderate deviation of H,

In order to prove the Cramér-type moderate deviation result for H,, we introduce following concen-
tration inequality for stationary process.

Lemma 5.1. Suppose that the conditions of Theorem 2.5 hold. Then, for any y > 0

|

Here, C depends on g and o.

k—1

> 10 o)1 — kry (1o Tl

> y) < 2e_Cy2k71, keN.
i=0

Proof. Since 6y ~ m,, (Oi)i=0 is stationary. Following Dedecker and Gouézel [10], (6), with
lloTe6)|? — nn(|0T<p|2)| < C, we can get the result immediately. ([l
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Lemma 5.2. Under the conditions of Theorem 2.5, one has

P (7—))1 zx) [0 =@y =1+ 060t +1).

n

uniformly for n% <x= 0(17_%) as 1 tends to zero. Here, O and o depend on g, o .

Proof. We first prove the upper bound of ]P’( Hy >x> / (I — ®(x)). Notice that E)Y, =

NAZEE
71,,(|0TV¢|2) by the fact 6y ~ m,;, without loss of generality, we may assume EY, = 71,7(|0TV<p|2) =1.
For y such that 0 < yn? < 1 which will be chosen later, Lemma 5.1 implies

P(Hy/ Py z ) =P (Hy/ Ty z 2021 =W = ) + P (Ha/y Py 2502 [1 = 0| = v)
SIP’(nzll—yn|>y>+]P’(Hn/ l—ynzzx,n2|l—y,,|§y>
52e‘c>'2"2+19><%,7/ 1—yn22x>. (5.1)

Define
Hio=n fo t V(65 TodBy

for any t € RT which is a continuous martingale. Denote its sharp bracket process by (H)(s,1) =
n? fsl |0TV¢(9[r])|2dr and (H)(¢) = (H)(0, r) for simplicity. It is easy to see

~ d
Hm :Hn,
[1]—1

t t
A0 = [ 10"V Pds = 3 Plo Vo) + 7 /[ 107 Ve Pas.
i=0 !

Denoting the stopping time 77 = inf{s : (7—2)(5) > 1}, Dambis-Dubins-Schwarz Theorem (cf. Revuz

and Yor [32], Theorem 5.1.6) yields that H, is a F7,-Brownian motion and ’}-N[T] ~ N(0,1). Then we
have

P H,/ 1—y7722x =P wzx (5.2)
V1—yn?
SPl—/——2z2c0 | +P|———=2=2x—00
(vl—ynz V1—yn?
with small ¢¢ satisfying 0 < co < x which will be chosen later. For the second term on the right hand
side, since H7, ~ N (0, 1),

V1—yn?

P(L z_x—c()):l—q)( 1_y7]2(-x_co))' (53)



CLT and self-normalized Cramér-type moderate deviation 951

For the first term and « € (0, 1), we have

P(M> ):P(Mzco,ﬂg&‘[m—m“,m+m”]> (5.4)
V1—yn?

+P<MZCO, T E[m—m",m+m°‘]>_

VI—=yn?

Without loss of generality, we may assume that m® is an integer. The definition of 7 implies {7} <
m—m*} = {(H)(m m%) > 1} and {T| > m +m®} = {{H)(m +m®) < 1}. Then we can obtain

P 7:lm - 7:ZTI

V1i—yn?

> co, T1 §é[m—m°‘,m+m°‘]) SIP’(Tl <m—m°‘)+]P’(T1 >m+m°‘)

=P<<}2>(m —m%) > 1) +1P>(<“r2>(m +m®) < 1).
Following Lemma 5.1, one has

—m*—1

P((ﬁ)(m—m“)>1)=1?( 3 |UTVg0(9,~)|2—(m—m°‘)>m—(m—m“)>

i=0

< e—sza(m—ma)_] < e_CmZa—l .

Similarly, we can get P ((ﬁ)(m +m%) < 1) < e_C’”Z(H. That is

P Hn — My > co, T1 & [m — m®, m +m®] | <2e=Cm* " (5.5)
V1I—yn?
For the second term of (5.4), we have
Hm —H
P m—leco,Tle[m—ma,m—i—m“] (5.6)
V1—yn?

<P ( sup (Hm —Hy) > coy/ 1 — ynz)

s€[m—m%,m+m%]

P < sup (ﬁm - 7:[?) > €04/ 1- y772> + P( sup (7:[m - 7:[?) > €04/ 1— yﬂ2> .

IA

s€[m,m+m9] s€[m—m%,m]
For the first term and positive number y” which will be chosen later, one has
P sup (,}:lm - 7'23) = €04/ 1- )’772
se€[m,m+m¥]
H)(m,m +m) > ny )

( sup Hm)>co\/1—yn (~>(m,m+m“)§n2y/)-

s€[m, m+m°‘]
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The first probability can be estimate by Lemma 5.1, that is,

co/=m)?

]P)<<,7iz)(m’m +m%) > nzy’) <e ¥

For the second probability, the Bernstein inequality (cf. Barlow, Jacka and Yor [5], Proposition 4.2.3(1))

implies
P ( sup  (Hy — Hm) = coy/ 1 — yn2 (H)(m,m +m*) < nzy’>
S

s€[m,m+m*]

6(2)(1 _ ynZ) _c(%(mw—y)

Thus we have

- - C(y —m®)2 _C(Z)(mfy)
P sup (Hm—Hg) =co\J1—yn? | <e” m@  +e 2. (5.7)
el

s€[m,m+m¥]
For the second term of (5.6),

P ( sup (,;:[m - 7:[A) = €04/ 1 - )”72)

s€[m—m®,m]

m*—1
> P( sup  (Hm — Hy) = coy/ 1 —yn2>
k=0

selm—k—1,m—k]

IA

IA

m®—1 m*—1
~ ~ CO
> P<Hm—Hm_k23 l—yn2>+k§_oﬂ”( sup (Hmk_Hs)EE l—yn)

k=0 s€lm—k—1,m—k]
For the first probability, the stability of 6; and (5.7) yield

m*—1 m*—1

Zp<ﬁm Hon k>3 l—yﬂ) Yo P (Hm+k_Hm23 1-)”7)

k=0 k=0

5m°‘[E”< sup  (Hy Hm)>—\/1—yn>

s€[m,m+m%]

Cly'—m®)2 _ 0(2)(»17}')
<m%le ~ m®  +e & .

For the second probability, by the boundedness of Vg, we have

i ( sup (”Hmk—%)>—\/l—yn>

selm—k—1,m—k]

m—k
Z sup f 1@ odBr = 2 1—yn)

s€[m—k—1,m—k]
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m¥—1 Ceo ;
SZP sup |Bt—Bs|ET 1—yn
k=0

m—k—1<s<t<m—k

Cco
< m“IP’< sup |Bsi(1—s) — Bs| = T 1 —yn )

0<5<1,0<t—s<1
Following [23], Theorem 12.1.c, we can get
2 ¢ 2
—_— 1_
Z sup (Hm k_HS)>_m <cm%e ,72( )’77).
k=0 e[m—k—1,m—k]

Hence we have

P(M>co,Tle[m m*, m+m ])

V1—yn?
 —m )2 f(z)(m_)’)

< 4m (e o) 4 em®eCn R,

Combining (5.1-5.8), we obtain

20—1

P(Hy/y/Pyz ) = 1= ®G/1 = yi2(x — ) + 2677 4 2e7Cn

C(y/—m®)2 C(z)(m—)‘)

FA+m) (e m e W )4 cm®e=Cn =),

By the following well known estimate of normal distribution (cf. Fan et al. [16], (4.1))

1 _a? 1 _a?
7 <] 2, x>0,

N ()‘f(1+x) T
we have
P(Hy/VPy 2 x) [ =0

1 = (D 1 — — 2 o — x2
- (\/IE;X ) + V27 (1 4+ x) [ze—Cy2n2+7 +2€_Cm2 1y

c y’—ma)z w2 ()(m y)

ay (= w2 A o, —Cn 2 (1—yn?)+4
+(1+m*)(e” " T4e O TZ)4em®e O T@UTYITT |

For the normal distribution part, by (5.10) again, we have

1 - ®/1—yn*(x = o))

1 —d(x)
1—<D(\/1—y77 (x—Co)) 1}+1—<I>(\/1—y77 (X—Co)) loeren)

1—®x) = 1 —®(x)

953

(5.8)

(5.9

(5.10)

5.11)
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V201 +2) elxz—%(l—ynz)(x—m)21{){Z

1+\/1—yn (x —co)
Saf et
+/ e zdr / e~ 2dr)1jp<x<1)
A 1=yn?(x—co) x

V2(1 +x) ez treot ety

<
1++/1—yn2(x —co)
+[1 +(1 +x)(x —1=yn?(x— C()))e yegtrcoty (r—coyn ]1{0§x<1}
<e 3 +xco+C(x—co)?yn? Lixs1y + [1 —I—C( /1 _ynz(x _CO))]1{0§x<1}'

Thus,
P (Hn/m > x) /(1 — d(x))
< e‘%c§+xco+c(x—co)2>"721{x21} +[14C(x — /1= yn20x — c0)) ] Ljo<r=1y
+v27 (14 x) |:2eCy2”2+Xz2 + ze*sz""lnL%

O(m )

FU (SRS ) e © 2c3<wn2>+7].

To guarantee the limit of the first two terms is 1 and the last term is 0 as —> 0,i.e. m — 0o. We need

2
y2n? — o0, 2Cy*n? > x2, n’x y—>0andx—0(cO ). Choosing y =n~ 3 co—n% y' =173 and
o =2/3, one has

H
Pl==>x) /(0 -ox)

2 i 2 2 1 1 -2
< e Iy + [ O = (=) =0 9) ] omxeyy +eC7 D)

§1+C(xn%+n%)

converges to 1 uniformly for n 5 <x=o0(n""3) as n tends to 0.
For the lower bound of PP <7y— >x ) /(1 — ®(x)), we have

P<%>x>>P<\/__x n‘z}l—yn|<y>

ZP<L>x,n_2|1—yn|§y>
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Hr, Hr, — Hm )
>Pl————2x+c | -P|——=—=2c|-P 1-Y )
(,/1 Ty CO) <\/1 +n%y CO) (77 1=~ y>

Similar with the estimate of the upper bound, (5.10), (5.4) and Lemma 5.1 imply

7‘[ 1 1
Pl—==>x)/(0-®x)>1-Cxn3 +n3)
(WT >/

1
converges to 1 uniformly for 73 < x = o(n~'/3) as 1 tends to 0. Hence, we have

H 1 |
Pl[—L>x]|/A-®x)=1+0xn3 +13)
(5=)/

uniformly for n% < x =o(n~1/3) as n vanishes. O

5.2. Proof of Theorem 2.5

Proof of Theorem 2.5. We have proved the following decomposition,

1

02 (M (h) — (k) = Ry + Hy.

Noting that, for any x > 0 and 0 < y < x, we have

Ry+H H R
POW, =x) =P sz)gl?(—”zx—y)ﬂ?(—"zy). (5.12)
! ( NAZ: NAZ: NAZ:

For the first term, Lemma 5.2 yields that

H 1 1
P —LZX—)’> (I-=dx—-y)=14+0{(x—y)n3+n3)

uniformly for 17% <x—y= o(n*%) as n tends to zero. We take n% <x=o0(n"% and y = o(1) such

that o <1/3, xy > 0and x — y > n%, here y will be chosen later. Similar with the calculation of
(5.11), (5.10) yields

1 -P(x—y)

Hence,

P(Hy/ Yy Zx—y) P(Hy//Vy=x—y)1—0x—y)
1—®®x) B 1 —®(x—y) 1—®x)

=1+ 0G0 +n3 +xy+y) (5.13)

as 7 vanishes.
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For the second term of (5.12), we have

R"> < < — /N ) >
LT P E S
B(EV, - ¥y > ¥) + P (Ry = v /EY, - ¥).

For the first probability, Lemma 5.1 yields that
-2

PEY, — Yy >y) <e 1

For the second probability, following the stationary of 6 and Lemma 3.5, one has

S 2

3_e- 3
as y > cmax{n2 "%, niy,r;Z}—cnz —6v where% y<i.Hence,wehave

P (_R" > y) <C (g‘cﬂzyz + e‘cﬂzyy§> :
NAZEEY

This, together with (5.10), implies

Ry R
Pl—22y]/(0-2Kx)) <C(1+x)ez" —"2y>-
(\/yn >/ (vyn

It converges to 0 as n — 0 uniformly for

1

1 1
N3 =x (mm{n yan- y3}>.
Since Lemma 5.2 holds uniformly as r)% +y <x=o0(n"%), we need to choose «, y and y such that
. — _y 1 —
min{n =y, n 7 y3} = 7"

By takinga =1/6, y = cn% and y =2/9, we can get

P (%i > y) [ (1= 0() =€ +x)explet? =)} > 0 (5.14)
n

uniformly for cn% <x= o(n*é) as 7 vanishes.
Following (5.12), (5.13) and (5.14), we have

Ry +Hy 1/6 , . 1/6
P(Tnzx)/(l—¢(x))§1+6(xn + /5. (5.15)

uniformly for cné <x= o(n*%) as 7 tends to zero.
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On the other hand,
P(mzx) Zp(mzx+y)_P(—Rn Zy>,
vV yn vV y \Y y’?
Similar as the proof of (5.15), Lemmas 3.5 and 5.2 yield that

P (M zx) [ —0w) = 1-Clant +ab),

VI

uniformly for cn% <x= o(n‘é) as n tends to zero. Combining the last inequality with (5.15), we
deduce that

P(W,, ZX)/(I —®dx)=14+0 (xn1/6+r/1/6),

uniformly for cn% <x= o(n_é) as n tends to zero. O
Appendix A: Proofs of lemmas in Section 2

Proof of Lemma 2.3. We first give the proof of the ergodicity of (X;);>. Following Roberts and
Tweedie [34], Theorem 2.1, it is easy to verify the irreducibility of (X;);>¢. For the Lyapunov function
Vx)=I|x]>+1, following (2.4) and (2.6), we have

K K
AV (x) = (g(x),2x) + o |I* < —Kj|x[* + C < —71V(x) +(C+ 71)1{|x\5¢m}~

By Meyn and Tweedie [29], Theorem 6.1, (X;);>0 is exponential ergodic with invariant measure 7
satisfying

|E[h (X)) — (]| < CV(x)e™ . (A.1)

Then we consider the ergodicity of (6x)x>0. Denote its transition probability by P (x,dy) for x,y €
R?. For any open set A € R and initial value x, since &1 is a normal random vector, we have

P(x,A) =P +ng(x) + /no& € A) > 0.

Suppose P¥(x, A) > 0 for some integer k > 1, then we have
PG = [ PP Ay =0,
R4

The induction yields that (6x)x>0 is irreducible. Following (2.3),(2.4) and (2.5), one has

Ei[V (Ok+1)]1 = Ei[16k + 1g (6k) + /10 Et1171+ 1
= |6c1* + [ng (01> + nlio|I* + 26k, ng(Bp)) + 1
< (1= Kin+2L* )16 1* +21g0)*n* + nllo | +2Cn + 1

1
=(1—3Kin + 2L M)V (6) + b1 p (6. (A2)
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Here b = LK 1n — 2L%n% 4+ 2|g(0)*n%® + nllo||> + 2Cn and set D = {|x| < ,727‘71}. There exists 7o such

that for n < ng, 1 — %Km + 2L2772 < 1. By Roberts and Tweedie [34], (29), we deduce that 6y is
ergodic when n < ng, that is

[E[1(6k) — 7y ()] < CV (Bo)e™*. (A3)

O

Moreover, for the function V(x) = |)c|4 + 1, similarly with the calculation of (A.2), we can get

Ei [V (Ok+1)1 = Ei[10ks11* + 1]
< (1 =2K1n+ Cin)|6|* + Canlb > + C3n* + 1,

where C1, C2, C3 depend on o, K1, L and C in (2.3), (2.4). Then we have
Ex[V 6k+1)] < (1 — Kin+ CinP)V (0r) + b1 5 (60), (A4)

~ 3 ~ _ 1
where b = ﬁn + Kin+Csn? D={x|*< (C3K—1C'n + 1+ (ZCTZI)Z)Z + 2%}. For small enough 7

such that 1 — Kn+ Cm2 < 1, let Oy take the ergodic measure 7, then (6 ) >0 is stationary and (A.4)
implies

7, (V) < (1 = Kin+ CinP)my(V) + b,

ie.

(V) < b
- b
" ~ Kin—

o (A.5)

Notice that for any k =0, ..., m and positive number y, we have
Ex [e)/\9k+1|2]
= B¢ [exp(y 162 + 7 Ing @0 + ynlosie P + 2y (6, ng00) + 2y (0T G+ 1g00), )}
= ¥y O 2y G OO [exply nlor e P + 24/ (0 (6 + ng 01, ) .

A straight calculation to the conditional expectation with respect to the Gaussian random variable &
yields

Ex [exply ot + 2y (07 @ + ng (@), &)} | = 2exp {4ny 2o 1216 + ng @0 2]

here y is chosen small enough such that y|o||?> < 1/4. This estimate, together with (2.3) and (2.4),
implies

B [e"%1] < 2exp{ (1 = Kin +4ny + Cordy 002 +3Cyn)

< (1— Kin+4ny + CiP)e’ % 45,



CLT and self-normalized Cramér-type moderate deviation 959

with 7 and y are small enough such that 1 — K+ 4ny + Ci1n* < 1 and b is big enough such that the
second inequality holds. Let 6 take the ergodic measure 7, then we have

nn(esz) = b 5
Kin—4ny —Cin

(A.6)
Appendix B: The proof of lemmas in Section 4

Proof of Lemma 3.2. For the first inequality, by using Holder’s inequality, we can get

Er exp {{W1(0k), 0&k+1) + Y2(0k, Ekv1)}

2

< (Bxexp2(¥1 (00, 08s1) = 20T W1 00 P)) " (B exp202(6i. &4) + 210 W1 60}

Since &;4 is gaussian distributed and independent of 6, a straightforward calculation gives

1
(Ek exp{2(W1 (6k), 0kt1) — 2|aT\IJ1(9k)|2}) =1

Hence, we have

1
Exexp (W10, 061} + W20k, &) < (Eeexp {2101600 Pl |7 + 2920k, &) |)

For the second inequality of Lemma 3.2, by the same way we have

m—1
Eexp { D (WO, o&ir1) + Yo bk Sk+1))}
k=0

1

m—1 2
< (Eexp { Z 2 ((\IJl k), o&k41) — oW (9k)|2) })
k=0

1

1
m— 2
x (Eexp{Z 2 (lo ™G0 + \Ifz(ek,sm))})

k=0

1

m—1 2

= (Eexp { > 2 (1100 Plo 1 + W26k ) }) :
k=0

where the following relation is obtained by a standard conditional argument:

m—1
Eexp { > 2 (W60, ot — oWy (9k)|2)}

k=0

m—2
=E|ex 2 (W16, 0&k1) — 10T W16 ?) | By [ €2Y1On-0:08m) =201 G0
p +
k=0
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m—2
=Eexp { Z 2 ((‘I’l(é’k), o&kp1) — oWy (9k)|2)} =...=1.
k=0
A similar calculation gives the third inequality. (]

Proof of Lemma 3.3. Since 011 =0 +ng(0k) + \/no&y1, it is easy to calculate that

3
16117 — 10k 1* = 0?1801 + nlo&rr1]* + 2(nbk, g(G)) + 2(/10k + 12 g(0k), T&k+1)-
Summing these equalities from k =0 to k = m — 1, we obtain

m—1

6a2 =160 = Y [ 21800 + nlo s + 2064 8(60) +2(/i64 + 17 8(601). 0811) | B.1)
k=0

For y > 0, (2.4) and (B.1) imply
m—1 Kl m—1 .
o 2 _ Cyn~
Eo exp kZO AL }SEOGXP{ gymek,g(ek))}e

160l
2

m—1
4 3 -1
<Egexp +5 » [n2|g<9k)|2 + nlo &1 [+ 2(/n6k + nZg(0k>,ask+1>] } eCrn
k=0

3

—1 5

3 pal] —1
=Epexpi [ % (n2|g<0k>|2+n|osk+1|2)+y<ﬁ0k+n2g(ek>,o§k+1>]}e Frorn,
=0

>~

. 3
By Lemma 3.2 with W;(6k) = y (/M6 + n2g(6k)) and W26k, &41) = 502 1g 001 + nlorr1]?)
therein, we have

m—1
Egexp { Y- [5 (R18@0r +nlosii ) +v (Vo +n? g @0, askm]}

k=0

1
m—1 2
< (Eo exp{Z (7 0P18@OP + ot ) + 2021 by + n%g(9k>|2||o||2)}>
k=

1
—1 i
< <EoeXp{ 2yn|cr§k+1|2}>
k=0

1

x (Eoexp{Z(zyn2|g<9k>|2+4y2|ﬁek +n%g<9k>|2||a||2>})

k=0

3

1
i

For the first expectation, we take some y,, and 7, such that 1 — 4y n;llo > > 0. Then for any y < Yo
and 1 < 1, we have

m—1 m—1
Eoexp{Zzyn|ask+1|2} onexp{Zzyn||a||2|sk+1|2}

k=0 k=0
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(/OO L expl2ynlio P4 12}dx>m
= €X o X — =X
el 5

_md
=1 —dynlol>H)~ 2.

For the second expectation, by (2.3), we can choose some y;" and 7 such that as y <y} and n < g

3 K
2y 1g@)* + 4y 216k + 02 g0 llo|1* < 7yn|9k|2 + Cny, (B.2)
which leads to
m—1 s . m—1 K]
EOCXP{Z(27W2|8(91<)|2 +4y? | /0 + nfg(ek)|2||a||2)} < e Egexp { > 7yn|ek|2} :
k=0 k=0

Hence, for y < yo = yy A vy and n < no = n;, A 13, we have

1

m—1 K V6ol » 4 m—1 K 4
EOGXP{Z 7yn|ek|2} <e 2 T (1 —dyplolH)TF (EOGXP{Z 7yn|9k|2}> :

k=0 k=0

1.€.,

3
m—1 4
K v16p1? _i _md
(EOCXP{ZTMWD <e 2 T —dynllo|)T.
k=0

Then we have

m-l g 2002 . 2y\\;77u2d
Y -1 N 37
Eq exp { > 71V77|9k|2} <e 3 tCrn <(1 —dynlol? wﬂ)
k=0
2
< T (B3)

This, together with (2.3), implies

m—1 m—1 2

Kl Kl Ki1g0)] -

Eoexp{zmymg(ew}sEoexp{27yn|9k|2}e TR
k=0 k=0

1

-1 2
< Cectr Ho0P),

Writing y = lezy and replacing the y in (3.2) by y, we immediately finish the proof of (3.2).
For (3.3) with 6y ~ 7y, (3.2) and (A.6) yield

m—1 m—1
Eexp {Vn > Ig(9k)|2} =E [EoexP {yn > Ig(Ok)|2” <Ce.

k=0 k=0

The inequalities (3.4) and (3.5) immediately follow by Chebyshev’s inequality. ]
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Proof of Lemma 3.4. It is easy to see that

m—2

E e 1 S= Y On1.Em)
= m m ssm
exp { — nE:o W (O, Ek+1)} E |:6XP { NG ,,E:o W (6, §k+1)} Ep—1 [e } .

By Taylor expansion, we deduce that

1y O 1 Em o0 1 1 n
Ep1 [eﬂ On-15 )}=Em1 [l;ﬁ(ﬁwml,sm)) }

1 n
—\I’(Gm—lagm)) ]

K n
— 1+ |sm|2)> }

For each element, we have

n—1 n
Eot [ L (160D | 2 B [ 2 (K1 51602
n! f n' \m2

s ¥ 4Kd)"
== A+d"'en—1) < ( 2) .
nm m
For small enough 7 such that ‘tf_d =4Kdn < 1, we have
4K d)*
" R - m—4Kdym’
Inductively, we can get
e 4Kd)?> \"
Ee — W (6, <({l+—) <C.
Xpiﬁnz_;) (k§k+1)} ( m—4Kdﬂ) .
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