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ABSTRACT. We study in this paper weak approximations in Wasserstein-1 distance to stochastic
variance reduced gradient Langevin dynamics by stochastic delay differential equations, and
obtain uniform error bounds. Our approach is via Malliavin calculus and a refined Lindeberg
principle.
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1. INTRODUCTION

A large body of optimization problems can be formulated as follows: Let ψ1, · · · , ψn be
a sequence of functions from R

d to R, the goal is to find an approximate solution of the
following optimization problem

ω∗ = argminω∈RdP (ω), P (ω) :=
1

n

n
∑

i=1

ψi(ω).(1.1)

In order to fast search the minimizer ω∗, [21, Algorithm 2] puts forward the stochastic
variance reduced gradient Langevin dynamics (SVRG-LD) algorithm as the following: for
an η > 0 as the step size, an m ∈ N as an epoch length, a B ∈ N as the size of mini-batch,
and an inverse temperature parameter δ > 0,

(1) let the initial value be ω̃0 ∈ R
d,

(2) for l = 0, 1, ...,
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(i) we update the internal iteration as follows:

ωl,0 = ω̃l, µ̃l =
1

n

n
∑

i=1

∇ψi(ω̃l),

for t = 1, ..., m,

ωl,t = ωl,t−1 − η
( 1

B

∑

it∈Il

(∇ψit(ωl,t−1)−∇ψit(ω̃l)) + µ̃l

)

+
√

ηδWl,t,

where Il,t is a subset of size B randomly drawn from {1, · · · , n}, Wl,t ∼
N (0, Id×d) and N (0, Id×d) is the d-dimensional normal distribution with mean
0 and covariance matrix Id×d, where Id×d is a d× d identity matrix,

(ii) ω̃l+1 = ωl,m,
(3) the outcomes are ω̃0, ω̃1, ..., .....

In particular, as δ = 0 and B = 1, SVRG-LD turns to be the stochastic variance reduction
gradient descent (SVRG) algorithm in [37]. The step size η is often called learning rate. We
call the procedures (i) and (ii) in (2) as internal iteration, and the those of obtaining (ω̃k)k>0

as external iteration.
We study in this paper the approximation of SVRG-LD by stochastic differential delay

equations (SDDEs) in Wasserstein-1 distance, and understand the algorithm from the point
of view of continuous stochastic dynamics.

1.1. Literature review. Stochastic gradient Langevin dynamics (SGLD) model was put
forward in [58], and has been extensively applied to study optimization problems arising in
lots of research problems, see [15, 65, 53, 43]. However, using SGLD often comes at a cost
of high variance and thus leads to a slow convergence. Borrowing the variance reduction
techniques developed for stochastic gradient descent (SGD) algorithms, Dubey et al. [21]
proposed an SVRG-LD algorithm.

The weak approximations in most of the aforementioned literatures are defined in the
following way: given a family H of test functions with high order derivatives and a certain
growth condition, the approximation error is defined as

(1.2) sup
h∈H

|Eh(ωnη)− Eh(Xnη)|,

where ωnη is the stochastic algorithm at the n-th iteration, Xnη is the continuous dynamics
at the time nη, and η is the step size of the algorithm. As n → ∞ and η → 0, the
bounds obtained in these literatures tends to 0. It is not easily seen that the error defined
in (1.2) implies an error in a Wasserstein type metric. Note that Wasserstein-1 (W1) and
Wasserstein-2 (W2) distances often play a crucial role in approximations arising in machine
learning and probability measure samplings, and are connected to many important research
fields [42, 48, 61, 7]. Although [44] gave a bound for the error between SGD and stochastic
differential equations (SDEs) in a so-called smoothed Wasserstein distance, it seems to us
that smoothed Wasserstein distances have not been widely applied in research.

The works [9, 24, 23, 28], arising from the Langevin dynamics samplings or diffusion
approximations, have a nature similar to ours. Due to the distribution sampling motivation,
the SDEs in [9, 24, 23] are a reversible gradient system, i.e. the drift is the gradient of a
potential U , thus the equilibrium measure is known in advance and has a density proportion
to e−U . Under certain conditions on the drift, they proved non-asymptotic bounds for total
variation or W2 distance between the equilibrium measure and the ergodic measure of the
EM scheme of Langevin dynamics, their analysis heavily depends on the gradient form of
the drift, and is not easily seen to be extended to a non-gradient system. Our SDDE is not
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a gradient system in that the system has a delay and that the diffusion term depends on the
state rather than a constant. [28] is concerning estimating the error between the ergodic
measures of an SDE and its EM scheme, the approach does not work for our problem since
it is especially designed for bounding the errors between ergodic measures. We refer the
reader to [4, 5, 10] for the study of SDDEs.

1.2. Our motivations, contributions and methods. It was recently discovered in [44, 43,
29, 31, 55, 36, 27, 60, 30, 14] that SGD algorithms can be (weakly) approximated by con-
tinuous time SDEs. These SDEs often offer much needed insight to the algorithms under
considerations, for instance, the continuous time treatment allows applications of stochastic
control theory to develop novel adaptive algorithms [64, 66]. It is natural to consider the
continuous time approximation problem of SVRG-LD, and understand the algorithm from
the point of view of continuous stochastic dynamics.

Our approximation result establishes a connection between SVRG-LD and SDDE, we
know from the theory of SDDE if the diffusion term has a delay, a dissipation will be pro-
duced to reduce the fluctuation from Brownian motion, see [54] for instance. This provides
an intuitive interpretation why SVRG and SVRG-LD can reduce variances. As is shown
in Appendix D, when K in Assumption 1.4 and δ in the SDDE (2.7) below both are small
enough, the distribution of the solution of the SDDE (2.7) below is close to the minimizer
ω∗. This gives another motivation to understand the SVRG-LD and SVRG from SDDE.

Under the assumptions which hold true for a large family of nonconvex minimization
problems, our main result Theorem 2.5 provides an error bound for the approximation which
is uniform with respect to external iteration length s and the internal iteration lengthm, from
which we can see that the approximation error tends to 0 as long as the step size η tends to 0,
see Corollary 2.6 and 2.7. Combining this with the exponential convergence result in [21],
we know that our approximating SDDE will be close to the minimizer ω∗ exponentially fast.

Our approach to proving our main results is via a refined Lindeberg principle developed
in [14] and Malliavin calculus, it seems that this method has not been reported in the study
of stochastic algorithms. The classical Lindeberg principle provides an elegant way to prove
the normal CLT, and has been applied to many other research topics, see [16, 13, 56, 11, 17,
45, 38]. Although Malliavin calculus has been extensively applied to statistical simulation
problems such as Langevin dynamics samplings, see [47, 32, 51, 8, 28, 33, 18]. It seems to
us that our paper is the first one to apply Malliavin calculus to study stochastic algorithms
approximation problems.

In order to use the refined Lindeberg principle and Bismut’s version of Malliavin calculus
mentioned above, we need to overcome several difficulties due to the memory property of
SVRG-LD and SDDE. Whereas the iteration sequence of SGD is a Markov chain, that of
SVRG-LD is not Markovian due to the memory in each internal iteration (see (2).(i) in
SVRG-LD algorithm above). The approximation methods developed for SGD is therefore
not applicable. Based on the special structure of SVRG-LD, we divide the algorithm into
local patches which are internal iterations, each patch is a Markov chain, while all of these
patches can be viewed as a function valued Markov chain. It is well known that an SDDE
system is not Markovian, whence many stochastic analysis methods such as Fokker-Planck
equation are not available. Similar as analyzing SVRG-LD, we split the approximating
SDDE into local patches, each patch being a Markov process and all of them forming a
function-valued Markov process. Malliavin calculus is applied to the Markov dynamics in
patches.

1.3. Our Assumptions. For the convenience of analysis, we will consider the case of B =
1 from now on.
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Let I be a uniformly distributed random variable valued on [n] = {1, 2, ..., n}, i.e.,

P(I = i) =
1

n
, i ∈ [n].

The Euclidean norm of x ∈ R
d and the inner product of x, y ∈ R

d are denoted by |x| and
〈x, y〉, respectively. For any x, y ∈ R

d, |x− y| is naturally the Euclidean distance between
x and y. Under the assumptions 1.1 and 1.4 below, [59] gave the analysis of convergence of
SVRG-LD.

Assumption 1.1. (Smoothness) The function ψi(x) is L-smooth for L > 0, i = 1, · · · , n,
i.e.,

|∇ψi(x)−∇ψi(y)| 6 L|x− y|, ∀x, y ∈ R
d.

The assumption above can be relaxed to the following assumption:

Assumption 1.2. Let I be a uniformly distributed random variable valued on [n] = {1, 2, ..., n},

there exists a constant L > 0 such that for any x, y ∈ R
d, we have

E
[

|∇ψI(x)−∇ψI(y)|4
]

6 L4|x− y|4.(1.3)

Remark 1.3. By the Cauchy-Schwarz inequality, Assumption 1.2 immediately implies that
P (x) = 1

n

∑n
i=1 ψi(x) is also L-smooth, i.e.,

|∇P (x)−∇P (y)| 6 L|x− y|, ∀x, y ∈ R
d,(1.4)

which further implies

|∇P (x)| 6 |∇P (0)|+ L|x|, ∀x ∈ R
d.(1.5)

Assumption 1.4. (Dissipative) There exist constants γ,K>0, such that for any x ∈ R
d we

have

〈∇P (x), x〉 > γ|x|2 −K.

Assumption 1.4 is usually replaced by the following condition, which is slightly stronger
than Assumption 1.4.

Assumption 1.5. There exist constants γ > 0 and K>0, such that for any x, y ∈ R
d we

have

〈x− y,∇P (x)−∇P (y)〉 > γ|x− y|2 −K, ∀x, y ∈ R
d.(1.6)

1.4. Notations. Each time we speak about Lipschitz functions on R
d, we use the Euc-

lidean norm. C(Rd,R) denotes the collection of all continuous functions f : R
d → R

and Ck(Rd,R) with k > 1 denotes the collection of all k-th order continuously differenti-
able functions. C∞

0 (Rd,R) denotes the set of smooth functions that vanish at infinity. For
f ∈ C3(Rd,R) and v, v1, v2, v3, x ∈ R

d, the directional derivative ∇vf(x), ∇v2∇v1f(x) and
∇v3∇v2∇v1f(x) are defined by

∇vf(x) = lim
ε→0

f(x+ εv)− f(x)

ε
,

∇v2∇v1f(x) = lim
ε→0

∇v1f(x+ εv2)−∇v1f(x)

ε
,

∇v3∇v2∇v1f(x) = lim
ε→0

∇v2∇v1f(x+ εv3)−∇v2∇v1f(x)

ε
,

respectively. Let ∇f(x) ∈ R
d and ∇2f(x) ∈ R

d×d denote the gradient and the Hessian of f ,
respectively. It is known that ∇vf(x) = 〈∇f(x), v〉 and ∇v2∇v1f(x) = 〈∇2f(x), v1v

T
2 〉HS,
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where T is the transpose operator and 〈A,B〉HS :=
∑d

i,j=1AijBij for A,B ∈ R
d×d. We

define the operator norm of ∇2f(x) by

‖∇2f(x)‖op = sup
|v1|,|v2|=1

|∇v2∇v1f(x)|

and

‖∇2f‖op,∞ = sup
x∈Rd

‖∇2f(x)‖op.

We often drop the subscript "op" in the definitions above and simply write ‖∇2f(x)‖ =
‖∇2f(x)‖op and ‖∇2f(x)‖∞ = ‖∇2f(x)‖op,∞ if no confusions arise. Similarly we define

‖∇3f(x)‖op = sup
|vi|=1,i=1,2,3

|∇v3∇v2∇v1f(x)|

and ‖∇3f‖op,∞ and the short-hand notations ‖∇3f(x)‖ and ‖∇3f‖∞.

Given a matrix A ∈ R
d×d, its Hilbert-Schmidt norm is ‖A‖HS =

√

∑d
i,j=1A

2
ij =

√

Tr(ATA) and its operator norm is ‖A‖op = sup|v|=1 |Av|. We have the following rela-
tions:

(1.7) ‖A‖op = sup
|v1|,|v2|=1

|〈A, v1vT2 〉HS|, ‖A‖op 6 ‖A‖HS 6
√
d‖A‖op.

We can also define ∇vf(x), ∇v2∇v1f(x) and ∇v3∇v2∇v1f(x) for a third-order differen-
tiable function f = (f1, . . . , fd)

T : Rd → R
d in the same way as above. Define ∇f(x) =

(∇f1(x), . . . ,∇fd(x)) ∈ R
d×d, ∇2f(x) = {∇2fi(x)}di=1 ∈ R

d×d×d and ∇3f(x) = {∇3fi(x)}di=1 ∈
R

d×d×d×d. In this case, we have ∇vf(x) = [∇f(x)]Tv,

∇v2∇v1f(x) = {〈∇2f1(x), v1v
T
2 〉HS, . . . , 〈∇2fd(x), v1v

T
2 〉HS}T,

∇v3∇v2∇v1f(x) = {
〈

〈∇3f1(x), v1v
T
2 〉HS, v3

〉

, · · · ,
〈

〈∇3fd(x), v1v
T
2 〉HS, v3

〉

}T ,
here, for any tensor A ∈ R

d×d×d,
〈

〈A, v1vT2 〉HS, v3
〉

=
∑d

i,j,k=1Aijkv
(i)
1 v

(j)
2 v

(k)
3 with v(i)l is

the i-th component of the vector vl, l = 1, 2, 3.
Inductively, for M ∈ C3(Rd,Rd×d) and v, v1, v2, v3, x ∈ R

d, the directional derivative
∇vM(x), ∇v2∇v1M(x) and ∇v3∇v2∇v1M(x) are defined by

∇vM(x) = lim
ǫ→0

M(x + ǫv)−M(x)

ǫ
,

∇v2∇v1M(x) = lim
ǫ→0

∇v1M(x+ ǫv2)−∇v1M(x)

ǫ
and

∇v3∇v2∇v1M(x) = lim
ǫ→0

∇v2∇v1M(x+ ǫv3)−∇v2∇v1M(x)

ǫ
,

respectively. For a more thorough discussion on the norms and the derivatives, we refer the
reader to [20, Chapters V and VIII], [22, Chapter 5] and the references therein.

For any x > 0, let ⌊x⌋ denote the largest integer which is less than x. The symbols C·

denote positive numbers depending on subscripts · and their values may vary from line to
line. In addition, we have the convention that 1

0
= ∞.

The paper is organized as following. Our main results and applications are stated in
Section 2. In Section 3, we provide some preliminary lemmas and the proof of our main
result. We conclude the paper in Section 4. The proofs of example in Section 2 are given in
Appendix A, and the proof of the crucial lemma in Section 3 is deferred to Appendix B. In
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Appendix C, we give the proof of the key preliminary lemma using Malliavian calculus that
can be read independently.

2. MOTIVATION AND MAIN RESULT

On the basis of Assumptions 1.2, 1.5 and Assumption 2.1 below, we establish our main
results, Theorem 2.5, Corollary 2.6 and Corollary 2.7, about approximating the SVRG-LD
by SDDE which are uniform with respect to s and the internal iteration length m. From
Corollary 2.6, we can see that the approximation error tends to 0 as long as the temperature
parameter δ takes δ = C| ln η|−1 and η tends to 0. From Corollary 2.7, the approximation
error tends to 0 when K 6 δ. Combining this with the exponential convergence result in
[21], we know that our approximating SDDE will be close to the minimizer ω∗ exponentially
fast. Furthermore, we can clearly see the variance reduction effect of the SVRG-LD from
the analysis of the SDDE below.

In the above SVRG-LD algorithm, if we take k = ml + t and denote ωk = ωl,t, it is easy
to check that the iteration in the algorithm can be represented as the following difference
equation:

ω0 =ω̃0,

ωk =ωk−1 − η
[

∇ψik(ωk−1)−∇ψik(ω⌈ k
m
⌉m) +∇P (ω⌈ k

m
⌉m)
]

+
√

ηδWk, k > 1,(2.1)

where x ∈ R, ⌈x⌉ is the largest integer which is strictly less than x. Its output is

ω̃s = ωms, s = 0, 1, 2, ....(2.2)

In order to compare (2.1) with an SDDE, we rewrite it as

ωk = ωk−1 − η∇P (ωk−1) +
√
ηVη,δ(ωk−1, ω⌈ k

m
⌉m, ik,Wk),(2.3)

where

Vη,δ(ωk−1, ω⌈ k
m
⌉m, ik,Wk)

= −√
η
[

∇ψik(ωk−1)−∇ψik(ω⌈ k
m
⌉m)−∇P (ωk−1) +∇P (ω⌈ k

m
⌉m)
]

+
√
δWk.

Note that ik is randomly chosen from [n] and independent of each other. Denote by I a uni-
formly distributed random variable valued on the set [n]. Moreover, Wk is also independent
of each other, and it is independent of ik. A straightforward calculation yields

E
[

Vη,δ(ωk−1, ω⌈ k
m
⌉m, ik,Wk)

∣

∣ωk−1, ω⌈ k
m
⌉m

]

= 0,(2.4)

Cov
[

Vη,δ(ωk−1, ω⌈ k
m
⌉m, ik,Wk)

∣

∣ωk−1, ω⌈ k
m
⌉m

]

= ηΣ(ωk−1, ω⌈ k
m
⌉m) + δId,(2.5)

where

Σ
(

ωk−1, ω⌈ k
m
⌉m

)

= EI

[

(

∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)
)(

∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)
)T
]

−EI

[

∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)
] (

EI

[

∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)
])T

.

By Assumption 1.2, we further get

ηtr
(

Σ(ωk−1, ω⌈ k
m
⌉m)
)

(2.6)

= ηE
[

|∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)|2

∣

∣ωk−1, ω⌈ k
m
⌉m

]

− η|∇P (ωk−1)−∇P (ω⌈ k
m
⌉m)|2
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6 ηEI

(

|∇ψI(ωk−1)−∇ψI(ω⌈ k
m
⌉m)|2

)

6 L2η|ωk−1 − ω⌈ k
m
⌉m|2.

Because the renewal of ωk not only depends on ωk−1 but also on ω⌈ k
m
⌉m, it is clear that

{ωk}k>0 is not a Markov chain. Alternatively, if we take them-tuple ωi = {ωim, ωim+1, ..., ωim+m−1}
with i > 0 as one element, then {ωk}k>0 is a Markov chain. This has a nature that is very
similar to an SDDE, and inspires us to consider the following SDDE:

dXt = −∇P (Xt)dt+
√
ηQη,δ(Xt, X⌈ t

mη
⌉mη)dBt,(2.7)

where

Qη,δ(x, y) =
(

Σ(x, y) +
δ

η
Id
)

1
2 ∈ R

d×d

is a positive definite matrix for all x, y ∈ R
d and Bt is a standard d-dimensional Brownian

motion. The Euler-Maruyama discretization with a step-size η to (2.7) reads as

X̂k = X̂k−1 − η∇P (X̂k−1) + ηQη,δ(X̂k−1, X̂⌈ k
m
⌉m)Zk−1,

where Zk−1 is a sequence of d-dimensional i.i.d. standard normally distributed random
vectors. We denote

X̃s = Xsmη, s = 0, 1, 2, ....(2.8)

We know from Assumption 1.2 that ∇P is Lipschitz, it is natural to assume that the higher
order derivatives of P is uniformly bounded. On the other hand, (2.6) implies that

‖Qη,δ(ωk−1, ω⌈ k
m
⌉m)‖HS 6 L|ωk−1 − ω⌈ k

m
⌉m|+

√

δd

η
.(2.9)

We see that Q has linear growth. Based on the analysis above, in order to bound the distri-
butions between the SDDE and the SVRG-LD, we further assume that

Assumption 2.1. There exist constants Ai > 0 with i = 1, 2, ..., 5, such that for any x ∈ R
d

and unit vectors vi ∈ R
d, i.e., |vi| = 1, i = 1, 2, 3,∇P satisfies

|∇v2∇v1∇P (x)| 6 A1, |∇v3∇v2∇v1∇P (x)| 6 A2;

and that any x, y ∈ R
d, Qη,δ satisfies

‖∇1,v1Qη,δ(x, y)‖2HS 6 A3, ‖∇2,v1Qη,δ(x, y)‖2HS 6 A3,(2.10)

‖∇1,v1∇1,v2Qη,δ(x, y)‖2HS 6 A4, ‖∇1,v1∇1,v2∇1,v3Qη,δ(x, y)‖2HS 6 A5,

where ∇1,v is the partial derivative acting on x along the direction v ∈ R
d, i.e.,

∇1,vQη,δ(x, y) = lim
ε→0

Qη,δ(x+ εv, y)−Qη,δ(x, y)

ε

and ∇2,v is the partial derivative acting on y along the direction v ∈ R
d, similarly defined

as above.

In addition, from Assumption 1.2, it is easy to verify that

|∇v1∇P (x)| 6 L|v1|.
Under the Assumptions 1.2, 1.5 and 2.1, there exists a unique solution to the SDDE (2.7)

and (2.7) has a unique invariant measure when K = 0 (see, e.g., [46, 10, 4, 5, 3]). From
now on, we simply write a number CA1,...,A5, depending on A1, ..., A5, by CA in shorthand.

In the following two examples, inspired from the law of large numbers, we will show that
the Assumptions 1.2, 1.5 and 2.1 holds with high probability in Appendix A. Note that in
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practice one only verifies that the designs of statistical models holds with a high probability,
see [63] for lasso models and [14] for logistic regression models.

Example 2.2. (Alternate Model in [44, Section 5.1]). Let H ∈ R
d×d be a symmetric, pos-

itive definite matrix, we diagonalize it in the form H = Q̃DQ̃T , where Q̃ is an orthogonal
matrix andD is a diagonal matrix of eigenvalues. Given a sequence of n samples a1, · · · , an,
where ai ∈ R

d is a sequence of random vectors independently drawn from a standard nor-
mally distributed random vector, that is, ai ∼ N (0, Id) for i = 1, · · · , n. We then define the
loss function

ψi(ω) :=
1

2
(Q̃Tω)T [D + diag(ai)](Q̃

Tω),

where diag(ai) is a diagonal matrix, whose diagonal elements are each component of the
vector ai. Therefore, the SVRG-LD iterates in (2.1) become,

ωk = ωk−1−η
[

Q̃[D + diag(aik)]Q̃
T (ωk−1 − ω⌈ k

m
⌉m) +

1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
Tω⌈ k

m
⌉m)
]

+
√

ηδWk,

which implies

∇P (x) = 1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
Tx = Hx+

1

n

n
∑

i=1

Q̃diag(ai)Q̃
Tx

and

Σ(x, y) =
1

n

n
∑

i=1

(

Q̃[D + diag(ai)]Q̃
T (x− y)

)(

Q̃[D + diag(ai)]Q̃
T (x− y)

)T

−
(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)T

.

Example 2.3. (Penalized Logistic regression). In machine learning, one of the most pop-
ular generalized linear model is the penalized logistic regression for binary classification
problem. Given a sequence of n samples (a1, b1), · · · , (an, bn), where ai is a sequence of
i.i.d. random vectors and the binary response bi ∈ {0, 1} is generated by the following
probabilistic model,

P(bi = 1|ai) =
1

1 + e−aTi ω∗
, P(bi = 0|ai) =

1

1 + ea
T
i ω∗

.

The corresponding loss function at ω is

ψi(ω) := −
[

bia
T
i ω − ln(1 + ea

T
i ω)
]

+
λ

2
ωTω,

where λ > 0 is the tuning parameter (see, e.g., [35, (4.20) and (18.11)]). Therefore, the
SVRG-LD iterates in (2.1) become,

ωk = ωk−1 − η
[

aik(
1

1 + e
−aTik

ωk−1
− 1

1 + e
−aTik

ω
⌈ k
m ⌉m

)

+
1

n

n
∑

i=1

ai(
1

1 + e
−aTi ω

⌈ k
m ⌉m

− bi) + λωk−1

]

+
√

ηδWk,
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which implies

∇P (x) = 1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− bi) + λx

and

Σ(x, y) =
1

n

n
∑

i=1

[(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)T]

−
( 1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)(1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)T

.

Remark 2.4. In Example 2.2, when n is large enough, with high probability, we can calcu-
late the matrix Qη,δ(x, y) directly. However, to the best of our knowledge, for any positive
definite matrix Σ̂(x), it is very difficult to calculate the derivative of Σ̂(x)

1
2 . With the help of

[19], we give a way to estimate the constants A3, A4 and A5 in Assumption 2.1, which de-
pend on η and δ. Moreover, when η 6 δ, A3, A4 and A5 are always bounded. For simplicity,
we assume that 0 < δ 6 1 and η 6 δ throughout the paper.

Recall that W1 distance between two probability measures µ1 and µ2 is defined as

W1(µ1, µ2) = inf
(X,Y )∈C(µ1,µ2)

E|X − Y |,(2.11)

where C(µ1, µ2) is the set of all the coupling realizations of µ1, µ2. By a duality,

W1(µ1, µ2) = sup
h∈Lip(1)

|µ1(h)− µ2(h)|,

where Lip(1) = {h : Rd → R; |h(y)− h(x)| 6 |y − x|} and

µi(h) =

∫

R

h(x)µi(dx), i = 1, 2.

The main result of this paper is the following theorem, which provides an approximation
error between the distributions of ω̃s and X̃s.

Theorem 2.5. Assume that the Assumptions 1.2, 1.5 and 2.1 hold. Choosing 0 < δ 6 1 and

η 6 min{δ,
(

γ
432L4

)
1
3 , γ

96L2 , (
γ

576L3 )
1
2 , γ

8L2 ,
γδ
2A3

}. Then, for any s ∈ N, there exists a constant

λ := γ
4
exp{−2K(L+3γ/4)

γδ
} > 0 such that

W1

(

L
(

X̃s

)

,L (ω̃s)
)

6CA,γ,d,|∇P (0)|,L
1

1− a

(

E|ω̃0|4 +
1 +K2

1− ρ

)
7
4

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

(ηδ)
1
2 ,

where a = e
2K(L+3γ/4)

γδ
−λmη < 1, ρ = (1− γη)m + 1

2
< 1 (when m is large enough).

Corollary 2.6. Keep the same assumptions and notations as Theorem 2.5. In addition,

suppose δ = 8K(L+3γ/4)
γ

| ln η|−1 and m = η
5
4
+ε for any positive ε, then we have

W1

(

L
(

X̃s

)

,L (ω̃s)
)

→ 0, as η → 0.

Corollary 2.7. Keep the same assumptions and notations as Theorem 2.5. In addition,

suppose K 6 δ , then we have

W1

(

L
(

X̃s

)

,L (ω̃s)
)
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6CA,γ,d,|∇P (0)|,L(1− e−
γ
4
mη)−1

(

E|ω̃0|4 +
1

1− ρ

)
7
4

(

1 + | ln η|+ δ

η
1
4

)

(ηδ)
1
2 ,

the error bound tends to 0 as η → 0 and mη = O(1).

Remark 2.8. When K in Assumption 1.4 and δ in the SDDE (2.7) both are small enough,
the distribution of the solution X̃s of the SDDE (2.7) is close to the minimizer ω∗ as s →
∞, see Appendix D below, this gives another motivation to understand the SVRG-LD and
SVRG by SDDE.

3. THE PROOF OF THEOREM 2.5

The strategy of proving Theorem 2.5 is divided into two steps. The first step uses a re-
fined Lindeberg principle and Malliavin calculus to prove an approximation error bound
for the internal Markov chains {ωk}ms6k6m(s+1) and {Xt}msη6t6m(s+1)η in Subsection 3.1,
whereas the second step only uses the refined Lindeberg principle to approximate the ex-
ternal Markov chain {ω̃s}s>0 by {X̃sη}s>0 in Subsection 3.2.

3.1. Approximation of internal Markov chain.

Lemma 3.1. Both (ω̃s)s∈Z+ and (X̃s)s∈Z+ are Markov chains.

Proof. The proof is standard. For an s ∈ Z
+, given ω̃s (i.e. ωsm), by (2.1) we know that

the distribution of ω̃s+1 (i.e. ω(s+1)m) is uniquely determined by ω̃s and the i.i.d. random
variables ism+1, ..., is(m+1), whence

P
(

ω̃s+1 ∈ A
∣

∣ω̃s, ..., ω̃0

)

= P
(

ω̃s+1 ∈ A
∣

∣ω̃s

)

, A ∈ B(Rd).

So (ω̃s)s>0 is a Markov chain.
Similarly, given X̃s (i.e. Xsmη), by (2.7), the distribution of X̃s+1 is determined by X̃s

and (Bt)smη6t6(s+1)mη , from which we know

P

(

X̃s+1η ∈ A
∣

∣X̃s, ..., X̃1, X̃0

)

= P

(

X̃s+1 ∈ A
∣

∣X̃s

)

A ∈ B(Rd),

so (X̃s)s>0 is a Markov chain. �

It is easy to see that an internal iteration of SVRG-LD {ωk}06k6m is a time homogeneous
Markov chain with states on R

d, while the SDDE (2.7) restricted on the time period [0, mη]
reads as

dXt = −∇P (Xt)dt +
√
ηQη,δ(Xt, X0)dBt for t ∈ [0, mη].(3.1)

When X0 = ω0 is fixed, the above SDDE is equivalent to the following SDE:

dXt = −∇P (Xt)dt+
√
ηQη,δ(Xt, ω0)dBt for t ∈ [0, mη],(3.2)

thus the solution (Xt)t∈[0,mη] is a time homogeneous Markov process with states on R
d. We

denote Xx
s,t with s 6 t ∈ [0, η] to stress the dependence of process on the value Xs = x.

For the simplicity of notations, we denote Xx
s,t by Xx

t−s according to time homogeneous
property. ωx

k is denoted by same way.
LetW ∼ N (0, Id),which is independent of I . The infinitesimal generators of {ωk}06k6m

and (Xt)t∈[0,mη] are respectively

Aω
j f(x) = E[f(ωj+1)|ωj = x]− f(x)(3.3)

= E

[

f
(

x− η∇ψI(x) + η∇ψI(ω0)− η∇P (ω0) +
√

ηδW
)

]

− f(x)
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for j = 0, 1, 2, ..., m− 1, and

AX
t f(x) = lim

∆t→0+

E[f(Xt+∆t)|Xt = x]− f(x)

∆t

=
1

2
η〈Qη,δ(x, ω0)

2,∇2f(x)〉HS − 〈∇P (x),∇f(x)〉

=
1

2
〈ηΣ(x, ω0) + δId,∇2f(x)〉HS − 〈∇P (x),∇f(x)〉(3.4)

for t ∈ [0, mη). Due to time homogeneous property of the two processes, their generators
do not depend on the time, as we have seen from the above, so from now on we shall simply
write

(3.5) AX = AX
t , Aω = Aω

j .

Under the above assumptions, we have the following exponential convergence for the
SDE (3.2), which will be proved in Appendix B.

Lemma 3.2. Under Assumption 1.5, (1.4) and (2.10), for any t > 0 and x, y ∈ R
d, as

η 6 min{1, γδ
2A3

}, there exists a constant λ = γ
4
exp{−2K(L+3γ/4)

γδ
} > 0, we have

W1 (L(Xx
t ),L(Xy

t )) 6 Cγλ
−1e−λt|x− y|.(3.6)

Note that the diffusion coefficient of SDE (3.2) is positive definite, we have the following
estimates, which will be proved is Appendix C.

Lemma 3.3. Let Xt be the solution to the equation (3.2) and denote Pth(x) = E[h(Xx
t )]

for h ∈ Lip(1). Then, for any x ∈ R
d and unit vectors v, v1, v2, v3 ∈ R

d, as η ∈ (0, δ] and

t ∈ (0, 1], we have

|∇v(Pth)(x)| 6 eL+4,(3.7)

|∇v2∇v1(Pth)(x)| 6 CA,L,d
1√
δt

(3.8)

and

|∇v3∇v2∇v1Pth(x)| 6 CA,L,d

(

1 +
1

δt
+

1

t
5
4

)

.(3.9)

Now, we give some moment estimates of SDDE and SVRG-LD, which will be proved in
Appendix B.

Lemma 3.4. Let Xt be the solution to the equation (3.2) and η < γ
8L2 . Then, we have

E|Xx
t |2 6 Cγ,d,|∇P (0)|,L(1 + |x|2 + E|ω0|2 +K)(3.10)

and

E|Xx
t − x|2 6 Cγ,d,|∇P (0)|,L(1 + |x|2 + E|ω0|2 +K)t(t+ η + δ).(3.11)

Lemma 3.5. Let ωx
k be defined in (2.1) and η 6 min{1,

(

γ
432L4

)
1
3 , γ

96L2 , (
γ

576L3 )
1
2}. Then, for

any 0 6 k 6 m, we have

E|ωx
k |4 6 Cγ,d,|∇P (0)|,L

(

1 + |x|4 + E|ω0|4 +K2
)

.(3.12)

Moreover, we also need the following lemma, which will be proved in Appendix B.
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Lemma 3.6. Let Zt = Xηt, AZ be the infinitesimal generator. Let Aω be defined by (3.5)

and ut(x) = Eh(Xx
t ) for 0 6 k 6 m. Then, as η 6 min{δ, γ

8L2} and t ∈ (0, 1], we have

∣

∣E

∫ 1

0

[

AZut(Z
x
s )−Aωut(x)

]

ds
∣

∣

6CA,γ,d,|∇P (0)|,L

(

1 +
1

t
+

δ

t
5
4

)

(1 + E|ω0|4 +K)(1 + |x|3)η 3
2 δ

1
2 .

Proposition 3.7. Assume that the Assumptions 1.2, 1.5 and 2.1 hold. Choosing η 6 min{δ,
(

γ
432L4

)
1
3 , γ

96L2 , (
γ

576L3 )
1
2 , γ

8L2 ,
γ

2A3
}, for any 0 6 k 6 m, we have

W1(L(Xkη),L(ωk))

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4 (ηδ)

1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

,

where λ is a positive constant defined in Lemma 3.2.

Proof. When k = 0, 1, the above inequalities hold obviously.
When k > 2, let X0 = Y0 = ω0, denote ut(x) = E[h(Xx

t )] and Zt = Xηt for 0 6 l 6 k
and h ∈ Lip(1). For the ease of further use, for any z ∈ R

d, and any r, t ∈ Z
+ with

t > r, we denote by Zt(t, z) the random variable Zt given Zr = z, and similarly ωt(r, z) is
similarly defined, it is easily seen that

Zt = Zt(r, Zr), ωt = ωt(r, ωr).(3.13)

Then, we have

Eh(Zk) = Eh (Zk(1, Z1))− Eh (Zk(1, ω1)) + Eh (Zk(1, ω1)) .

By (3.13) again, we know Zk(1, ω1) = Zk (2, Z2(1, ω1)) and thus

Eh (Zk(1, ω1)) = Eh (Zk (2, Z2(1, ω1)))− Eh (Zk(2, ω2)) + Eh (Zk(2, ω2)) .

Continue this process with repeatedly using (3.13), we finally obtain

Eh(Zk) =

k
∑

j=1

[Eh (Zk(j, Zj(j − 1, ωj−1)))− Eh (Zk(j, ωj))] + Eh(ωk),

and thus

Eh(Zk)− Eh(ωk) =
k
∑

j=1

[Eh (Zk(j, Zj(j − 1, ωj−1)))− Eh (Zk(j, ωj))] .

Let us now bound each term on the right hand side. Because Zt is a time homogeneous
Markov chain, we have

uη(k−j)(z) = E [h(Xηk)|Xηj = z] = E [h(Zk)|Zj = z] .

Now, we have

Eh (Zk(j, Zj(j − 1, ωj−1)))− Eh (Zk(j, ωj))

=Euη(k−j) (Zj(j − 1, ωj−1))− Euη(k−j)(ωj)

=Euη(k−j) (Zj(j − 1, ωj−1))− Euη(k−j) (ωj(j − 1, ωj−1))

=Euη(k−j)

(

Z
ωj−1

1

)

− Euη(k−j)

(

ω
ωj−1

1

)

,
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where the second equality is by (3.13) and the last one is by the relation Zωj−1

1
d
= Zj(j −

1, ωj−1) and ωωj−1

1
d
= ωj(j − 1, ωj−1). Hence, we have

Eh(Zk)− Eh(ωk) =
k
∑

j=1

[

Euη(k−j)

(

Z
ωj−1

1

)

− Euη(k−j)

(

ω
ωj−1

1

)]

,(3.14)

which further implies

W1 (L(Zk),L(ωk)) 6
k−1
∑

j=1

sup
h∈Lip(1)

∣

∣Euη(k−j)

(

Z
ωj−1

1

)

− Euη(k−j)

(

ω
ωj−1

1

)
∣

∣

+ sup
h∈Lip(1)

∣

∣Eh
(

Z
ωk−1

1

)

− Eh
(

ω
ωk−1

1

)
∣

∣ .(3.15)

For the first term, if k 6 η−1 +1, denote the generator of the process Zt by AZ . Then, by
Itô’s formula and the definition of Aω, for any 1 6 j 6 k − 1, we have

Euη(k−j)

(

Z
ωj−1

1

)

− Euη(k−j)

(

ω
ωj−1

1

)

=E
[

uη(k−j)

(

Z
ωj−1

1

)

− uη(k−j)(ωj−1)
]

− E
[

uη(k−j)

(

ω
ωj−1

1

)

− uη(k−j)(ωj−1)
]

=E

∫ 1

0

[

AZuη(k−j)(Z
ωj−1
s )−Aωuη(k−j)(ωj−1)

]

ds.(3.16)

Since η(k − j) ∈ (0, 1], one can derive from Lemma 3.6, the Hölder inequality and Lemma
3.5 that

k−1
∑

j=1

sup
h∈Lip(1)

∣

∣Euη(k−j)

(

Z
ωj−1

1

)

− Euη(k−j)

(

ω
ωj−1

1

)
∣

∣

6CA,γ,d,|∇P (0)|,L

k−1
∑

j=1

(

1 +
1

η(k − j)
+

δ

[η(k − j)]
5
4

)

(1 + E|ω0|4 +K)(1 + E|ωj−1|3)η
3
2 δ

1
2

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4

k−1
∑

j=1

(

1 +
1

η(k − j)
+

δ

[η(k − j)]
5
4

)

η
3
2 δ

1
2

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4 (ηδ)

1
2

(

1 + | ln η|+ δ

η
1
4

)

.

If k > η−1 + 1, we consider the following two cases. When 1 6 j < k − η−1, notice that

uη(k−j)(x) = E

[

h(Xx
η(k−j))

]

= E

[

h(X
Xx

1

η(k−j)−1)
]

, by (3.6) with t = (k − j)η − 1, we have

sup
h∈Lip(1)

∣

∣Euη(k−j)

(

Xωj−1
η

)

− Euη(k−j)

(

ω
ωj−1

1

)
∣

∣

= sup
h∈Lip(1)

∣

∣

∣

∣

Eh
(

X
X

ωj−1
η

η(k−j)

)

− Eh

(

X
ω
ωj−1
1

η(k−j)

)
∣

∣

∣

∣

= sup
h∈Lip(1)

∣

∣

∣
Eh
(

XX̄
η(k−j)−1

)

− Eh
(

X Ȳ
η(k−j)−1

)
∣

∣

∣

=W1

(

L
(

XX̄
η(k−j)−1

)

,L
(

X Ȳ
η(k−j)−1

))

6 e
2K(L+3γ/4)

γδ e−λ[η(k−j)−1]
E
∣

∣X̄ − Ȳ
∣

∣ ,

where X̄ and Ȳ are any random vectors such that X̄
d
= X

X
ωj−1
η

1 and Ȳ
d
= X

ω
ωj−1
1

1 . Thus,
noting that X̄ and Ȳ are arbitrary, it follows from the definition of the Wasserstein-1 distance
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(see (2.11), taking the infimum about X̄ and Ȳ on the right side of the above inequality) that

sup
h∈Lip(1)

∣

∣Euη(k−j)

(

Xωj−1
η

)

− Euη(k−j)

(

ω
ωj−1

1

)
∣

∣

6Cγλ
−1e−λ[η(k−j)−1]W1

(

L
(

X
X

ωj−1
η

1

)

,L
(

X
ω
ωj−1
1

1

))

=Cγλ
−1e−λ[η(k−j)−1] sup

h∈Lip(1)

∣

∣

∣

∣

Eh
(

X
X

ωj−1
η

1

)

− Eh

(

X
ω
ωj−1
1

1

)
∣

∣

∣

∣

=Cγλ
−1e−λ[η(k−j)−1] sup

h∈Lip(1)

∣

∣Eu1
(

Xωj−1
η

)

− Eu1
(

ω
ωj−1

1

)
∣

∣ .

Then, by (3.16), Lemmas 3.6 and 3.5, we have

⌊k−η−1⌋
∑

j=1

sup
h∈Lip(1)

∣

∣E[uη(k−j)(X
ωj−1
η )− uη(k−j)(ωj)]

∣

∣

6CA,γ,d,|∇P (0)|,Lλ
−1(1 + E|ω0|4 +K)η

3
2 δ

1
2

⌊k−η−1⌋
∑

j=1

e−λ[η(k−j)−1](1 + E|ωj−1|3)

6CA,γ,d,|∇P (0)|,Lλ
−1(1 + E|ω0|4 +K)η

3
2 δ

1
2

⌊k−η−1⌋
∑

j=1

e−λ[η(k−j)−1]
(

1 + (E|ω0|4)
3
4 +K

3
2

)

6CA,γ,d,|∇P (0)|,Lλ
−1eλ(1 + E|ω0|4 +K2)

7
4 η

3
2 δ

1
2

⌊k−η−1⌋
∑

j=1

e−λη(k−j)

which further implies

⌊k−η−1⌋
∑

j=1

sup
h∈Lip(1)

∣

∣E[uη(k−j)(X
ωj−1
η )− uη(k−j)(ωj)]

∣

∣

6CA,γ,d,|∇P (0)|,Lλ
−1eλ(1 + E|ω0|4 +K2)

7
4 η

3
2 δ

1
2

k−1
∑

j=k−⌊k−η−1⌋

e−ληj

6CA,γ,d,|∇P (0)|,Lλ
−1eλ(1 + E|ω0|4 +K2)

7
4 η

3
2 δ

1
2

∫ k

η−1−1

e−ληydy

6CA,γ,d,|∇P (0)|,Lλ
−2eλ(1 + E|ω0|4 +K2)

7
4 (ηδ)

1
2 .

When k − η−1 6 j 6 k − 1, by (3.16), Lemmas 3.6 and 3.5, we have

k−1
∑

j=⌊k−η−1⌋+1

sup
h∈Lip(1)

∣

∣E[uη(k−j)(X
ωj−1
η )− uη(ω−j)(ωj)]

∣

∣

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4η

3
2 δ

1
2

k−1
∑

j=⌊k−η−1⌋+1

(

1 +
1

η(k − j)
+

δ

[η(k − j)]
5
4

)

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4 (ηδ)

1
2

(

1 + | ln η|+ δ

η
1
4

)

.
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Therefore, we have
k−1
∑

j=1

sup
h∈Lip(1)

∣

∣Euη(k−j)

(

Xωj−1
η

)

− Euη(k−j)

(

ω
ωj−1

1

)
∣

∣

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4 (ηδ)

1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

.

For the second term,by (2.1), (1.3), Cauchy-Schwarz inequality and (1.5), we have

E
∣

∣ωk − ωk−1

∣

∣ 6η
[

E
∣

∣∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
∣

∣+ (
δ

η
)
1
2E|Wk|

]

6CLη
(

E|ωk−1|+ E|ω0|+ |∇P (0)|+ (
δd

η
)
1
2

)

.

Then, by the Cauchy-Schwarz inequality, (3.11) and (3.12), we further have
∣

∣Eh
(

Z
ωk−1

1

)

− Eh
(

ω
ωk−1

1

)
∣

∣

6E
∣

∣h
(

Xωk−1
η

)

− h(ωk−1)
∣

∣+ E
∣

∣h(ωk)− h(ωk−1)
∣

∣

6E
∣

∣Xωk−1
η − ωk−1

∣

∣+ E
∣

∣ωk − ωk−1

∣

∣

6Cγ,Lη
(

√

E|ωk−1|2 +K
1
2 + (E|ω0|4)

1
4 + |∇P (0)|+ (

δd

η
)
1
2

)

6Cγ,d,|∇P (0)|,L

[

1 + (E|ω0|4)
1
4 +K

1
2

]

(ηδ)
1
2 .

Combining all of above, we have

W1 (L(XηN ),L(YN))

6CA,γ,d,|∇P (0)|,L(1 + E|ω0|4 +K2)
7
4 (ηδ)

1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

.

�

3.2. Approximation of external Markov chain. Recall X̃s from (2.8). Let h ∈ C1(Rd,R)
be Lipschitz, define

Uh(s, x) = E

[

h(X̃x
s )
]

, s = 0, 1, 2, ....(3.17)

where X̃x
s stresses that the initial value of X̃s is x.

In this subsection, we first give the regularity of (X̃s)s∈Z+ in Lemma 3.8. Combining with
Proposition 3.7, we prove Theorem 2.5 by the Lindeberg principle.

Lemma 3.8. Let h ∈ Lip(1). Choosing η 6 min{1, γδ
2A3

}. Then, for any x, y ∈ R
d, we have

|Uh(s, x)− Uh(s, y)| 6 as|x− y|,

where a = e
2K(L+3γ/4)

γδ
−λmη < 1 (when m is large enough).

In particular, when K = 0, further assume η 6 γ, we have

|Uh(s, x)− Uh(s, y)| 6 e−
γ
2
smη|x− y|.

Proof. For any x, y ∈ R
d, by (3.6), we have

∣

∣

∣
Eh(X̃x

s )− Eh(X̃y
s )
∣

∣

∣
=
∣

∣

∣
Eh
(

Xx
smη

)

− Eh
(

X̃y
smη

)
∣

∣

∣

=

∣

∣

∣

∣

Eh
(

X
Xx

(s−1)mη
mη

)

− Eh

(

X
Xy

(s−1)mη
mη

)
∣

∣

∣

∣
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=
∣

∣

∣
Eh
(

XX̄
mη

)

− Eh
(

X Ȳ
mη

)
∣

∣

∣

6W1

(

L
(

XX̄
mη

)

,L
(

X Ȳ
mη

))

6 e
2K(L+3γ/4)

γδ e−λmη
E|X̄ − Ȳ |,

where X̄ and Ȳ are many random vectors such that X̄
d
= Xx

(s−1)mη and Ȳ
d
= Xy

(s−1)mη .

Thus, noting that X̄ and Ȳ are arbitrary, it follows from the definition of the W1 distance
that
∣

∣

∣
Eh(X̃x

s )− Eh(X̃y
s )
∣

∣

∣
6 e

2K(L+3γ/4)
γδ e−λmη sup

h∈Lip(1)

|Eh
(

Xx
(s−1)mη

)

− Eh
(

Xy
(s−1)mη

)

|.

Continue this process with repeatedly using (3.6), we finally obtain
∣

∣

∣
Eh(X̃x

s )− Eh(X̃y
s )
∣

∣

∣
6 es(

2K(L+3γ/4)
γδ

−λmη)|x− y|.
�

Lemma 3.9. Let ω̃s = ωsm and η 6 min{1,
(

γ
432L4

)
1
3 , γ

96L2 , (
γ

576L3 )
1
2 , γ√

6(1+γ)102L2
}. Then,

for any 0 6 k 6 m, we have

E|ω̃s|4 6 E|ω̃0|4 +
Cγ,d,|∇P (0)|,L(1 +K2)

1− ρ
.(3.18)

where ρ = (1− γη)m + 1
2
< 1 (when m is large enough).

Proof. From the proof of Lemma 3.5 below, it is easy to verify that

E|ω̃1|4 6
[

(1− γη)m + 3× 104(
1

γ
+

1

γ2
)L4η2

]

E|ω̃0|4 + Cγ,d,|∇P (0)|,L(1 +K2),

noticing that η < γ√
6(1+γ)102L2

, we have

E|ω̃1|4 6 ρE|ω̃0|4 + Cγ,d,|∇P (0)|,L(1 +K2).

Inductively, we have

E|ω̃s|4 6 ρsE|ω̃0|4 + Cγ,d,|∇P (0)|,L(1 +K2)
s−1
∑

k=0

ρk 6 E|ω̃0|4 +
Cγ,d,|∇P (0)|,L(1 +K2)

1− ρ
.

�

3.3. Proofs of Theorem 2.5 and Corollary 2.7.

Proof of Theorem 2.5. By the same argument as the proof of (3.15), we have

Eh(X̃s)− Eh(ω̃s) =
s
∑

i=1

[

EUh

(

s− i, X̃
ω̃i−1

1

)

− EUh

(

s− i, ω̃
ω̃i−1

1

)

]

.

Then, according to Proposition 3.7 and Lemma 3.8 withLip(1) function replaced by Lip
(

as−i
)

function for i = 1, 2, · · · , s, we have

|Eh(X̃s)− Eh(ω̃s)|

6

s
∑

i=1

∣

∣

∣
EUh

(

s− i, X̃
ω̃i−1

1

)

− EUh

(

s− i, ω̃
ω̃i−1

1

)

∣

∣

∣

6CA,γ,d,|∇P (0)|,L(ηδ)
1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
) s
∑

i=1

as−i
(

1 + E|ω̃i−1|4 +K2
)

7
4 .
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Thanks to Lemma 3.9, we have

|Eh(X̃s)− Eh(ω̃s)|

6CA,γ,d,|∇P (0)|,L(ηδ)
1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

(

E|ω̃0|4 +
1 +K2

1− ρ

)
7
4

s
∑

i=1

as−i

6CA,γ,d,|∇P (0)|,L(ηδ)
1
2

(

1 + | ln η|+ δ

η
1
4

+ λ−2eλ
)

(

E|ω̃0|4 +
1 +K2

1− ρ

)
7
4

1

1− a
.

The proof is complete. �

Proof of Corollary 2.6. Following the assumption, a straight calculation implies λ = γ
4
η

1
4 ,

thus λ−2eλ(ηδ)1/2 converges to 0. The condition of m guarantees a < 1 and we get the
result. �

Proof of Corollary 2.7. The fact K
δ

6 1 implies 4
γ
exp{−2(L+3γ/4)

γ
} 6 λ 6 4

γ
and thus

λ−2eλ is bounded. We can get the result following the Theorem 2.5. �

4. CONCLUSION

In this paper, we establish a weak approximation error bound (in W1 distance) between
SVRG-LD and SDDE under the assumptions which are true for a large family of nonconvex
minimization problems, from this bound we can see that the approximation error can tends
to 0 by carefully choosing the inverse temperature parameter δ according to the learning
rate η. When the optimization problem is convex, combining our result with the exponential
convergence result in [21], we know that our approximating SDDE will be close to the
minimizer ω∗ exponentially fast. Furthermore, we can clearly see the variance reduction
effect of the SVRG-LD from the analysis of the SDDE.

Our approach to proving the main results is by a refined Lindeberg principle and Malliavin
calculus. This method provides a mathematical framework for weak approximations, and
we hope it can be applied to study other stochastic algorithms. As is shown in Theorem
2.5, the error bound will explode if the inverse temperature parameter δ is not specifically
chosen according to the learning rate η. We will attempt to solve this problem in the future
research, one possible way is to use the frame of Stein’s method developed in [28]. An-
other interesting research direction is borrowing the well established properties of SDDEs
to develop stochastic algorithms with variance reduction effect.

APPENDIX A. PROOFS OF EXAMPLE 2.3

In this section, we will verify Assumptions 1.2, 1.5 and 2.1 for Examples 2.2 and 2.3,
respectively.

A.1. Example 2.2. Recall ai ∼ N (0, Id) for i = 1, · · · , n,

E|∇ψI(x)−∇ψI(y)|4 =
1

n

n
∑

i=1

∣

∣

∣
H(x− y) + Q̃diag(ai)Q̃

T (x− y)
∣

∣

∣

4

,

∇P (x) = Hx+
1

n

n
∑

i=1

Q̃diag(ai)Q̃
Tx,

Σ(x, y) =
1

n

n
∑

i=1

(

Q̃[D + diag(ai)]Q̃
T (x− y)

)(

Q̃[D + diag(ai)]Q̃
T (x− y)

)T
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−
(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)T

.

and Qη,δ(x, y) =
(

Σ(x, y) + δ
η
Id
)

1
2 .

Inspired from the law of large numbers, we first give the following lemma.

Lemma A.1. For any ǫ > 0 and unit vectors v, v1, v2 ∈ R
d, we have

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Q̃diag(ai)Q̃
Tv

∣

∣

∣

∣

∣

> ǫ

)

6
d

nǫ2
,(A.1)

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

|ai|4 − E|a1|4
∣

∣

∣

∣

∣

> ǫ

)

6
E|a1|8
nǫ2

(A.2)

and

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Q̃diag(ai)Q̃
Tv1

(

Q̃diag(ai)Q̃
Tv2

)T

v − Q̃diag(Q̃v1)diag(Q̃v2)Q̃
T v

∣

∣

∣

∣

∣

> ǫ

)

6
6d6

nǫ2
.

(A.3)

Proof. By Chebyshev’s inequality, we have

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Q̃diag(ai)Q̃
T v

∣

∣

∣

∣

∣

> ǫ

)

6

∑n
i=1 E|ai|2
n2ǫ2

=
d

nǫ2

and

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

|ai|4 − E|a1|4
∣

∣

∣

∣

∣

> ǫ

)

6

∑n
i=1 E ||ai|4 − E|a1|4|2

n2ǫ2
6

2E|a1|8
nǫ2

.

Notice thatE

[

Q̃diag(ai)Q̃
Tv1

(

Q̃diag(ai)Q̃
T v2

)T

v

]

= Q̃diag(Q̃v1)diag(Q̃v2)Q̃
Tv, ‖Q̃‖HS =

√
d and E|a1|4 = 3d2, by Chebyshev’s inequality, we have

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Q̃diag(ai)Q̃
T v1

(

Q̃diag(ai)Q̃
Tv2

)T

v − Q̃diag(Q̃v1)diag(Q̃v2)Q̃
Tv

∣

∣

∣

∣

∣

> ǫ

)

6

n
∑

i=1

E

∣

∣

∣

∣

Q̃diag(ai)Q̃
Tv1

(

Q̃diag(ai)Q̃
Tv2

)T

v − Q̃diag(Q̃v1)diag(Q̃v2)Q̃
Tv

∣

∣

∣

∣

2
/

(nǫ)2

6
2‖Q̃‖8HSE|a1|4

nǫ2
=

6d6

nǫ2
.

�

Then, we first verify the Assumptions 1.2 and 1.5.

Lemma A.2. Denote the smallest eigenvalue of H by λmin. When n is large enough, for any

x, y ∈ R
d and unit vectors v ∈ R

d, the following inequalities

〈∇2P (x)v, v〉 > λmin|v|2

and

E|∇ψI(x)−∇ψI(y)|4 6 8(‖H‖4HS + 3d6)|x− y|4

holds with high probability.
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Proof. For any x ∈ R
d, by (A.1), it is easy to verify that with high probability, we have

∇P (x) = Hx,

which implies

〈∇2P (x)v, v〉 > λmin|v|2.

For any x, y ∈ R
d, we have

E|∇ψI(x)−∇ψI(y)|4 =
1

n

n
∑

i=1

∣

∣

∣
H(x− y) + Q̃diag(ai)Q̃

T (x− y)
∣

∣

∣

4

68‖H‖4HS|x− y|4 + 8

n
‖Q̃‖8HS

n
∑

i=1

|ai|4|x− y|4,

by (A.2), with high probability, we further have

E|∇ψI(x)−∇ψI(y)|4 6 8(‖H‖4HS + 3d6)|x− y|4.
�

Next, with the help of Lemma A.1, we will calculate the matrix Qη,δ(x, y) directly.

Lemma A.3. When n is large enough, for any x, y ∈ R
d, the following equality

Qη,δ(x, y) = Q̃

[

diag(Q̃(x− y))2 +
δ

η
Id

]
1
2

Q̃T

holds with high probability.

Proof. Since 1
n

∑n
i=1

(

Q̃[D+diag(ai)]Q̃
T0
)(

Q̃[D+diag(ai)]Q̃
T0
)T

0 = 0, by integration

and (A.3), the following equality

1

n

n
∑

i=1

Q̃diag(ai)Q̃
T (x− y)

(

Q̃diag(ai)Q̃
T (x− y)

)T

= Q̃diag(Q̃(x− y))2Q̃T .

By (A.1), with high probability, we have 1
n

∑n
i=1 Q̃diag(ai)Q̃

Tx = 0. These imply that with
high probability,

Σ(x, y) =
1

n

n
∑

i=1

(

Q̃[D + diag(ai)]Q̃
T (x− y)

)(

Q̃[D + diag(ai)]Q̃
T (x− y)

)T

−
(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)(1

n

n
∑

i=1

Q̃[D + diag(ai)]Q̃
T (x− y)

)T

=Q̃diag(Q̃(x− y))2Q̃T .

Hence, we have

Qη,δ(x, y) =

(

Σ(x, y) +
δ

η
Id

)
1
2

= Q̃

[

diag(Q̃(x− y))2 +
δ

η
Id

]
1
2

Q̃T .

�

With the above results, we will verify Assumption 2.1.
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Lemma A.4. When n is large enough, for any x, y ∈ R
d and unit vectors vi ∈ R

d, i =
1, 2, 3, the following inequalities

|∇v2∇v1∇P (x)| = 0, |∇v3∇v2∇v1∇P (x)| = 0,

‖∇1,v1Qη,δ(x, y)‖HS 6 d2, ‖∇2,v1Qη,δ(x, y)‖HS 6 d2

and

‖∇1,v1∇1,v2Qη,δ(x, y)‖HS 6 (
η

δ
)
1
2d2, ‖∇1,v1∇1,v2∇1,v3Qη,δ(x, y)‖HS 6 3

η

δ
d3.

hold with high probability.

Proof. For any x ∈ R
d, by (A.1), the equality

∇P (x) = Hx

holds with high probability, which implies

∇v2∇v1∇P (x) = 0, ∇v3∇v2∇v1∇P (x) = 0.

By Lemma A.3, it is straightforward to calculate that with high probability, we have

‖∇1,v1Qη,δ(x, y)‖HS 6 ‖Q̃‖3HS

√
d = d2, ‖∇2,v1Qη,δ(x, y)‖HS 6 d2,

‖∇1,v1∇1,v2Qη,δ(x, y)‖HS 6 ‖Q̃‖4HS(
η

δ
)
1
2

√
d = (

η

δ
)
1
2d

5
2

and

‖∇1,v1∇1,v2∇1,v3Qη,δ(x, y)‖HS 6 3‖Q̃‖5HS

η

δ

√
d = 3

η

δ
d3.

�

A.2. Example 2.3. Recall

E|∇ψI(x)−∇ψI(y)|4 =
1

n

n
∑

i=1

∣

∣

∣

∣

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
) + λ(x− y)

∣

∣

∣

∣

4

,

∇P (x) = 1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− bi) + λx,

Σ(x, y) =
1

n

n
∑

i=1

(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)T

−
( 1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)(1

n

n
∑

i=1

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)T

.

and Qη,δ(x, y) =
(

Σ(x, y) + δ
η
Id
)

1
2 .

Inspired from the law of large numbers, we immediately have the following lemma.

Lemma A.5. In Example 2.3, suppose E|ai|16 <∞, i = 1, · · · , n. Then, for any ǫ > 0 and

x, y ∈ R
d, we have

P

(
∣

∣

∣

1

n

n
∑

i=1

ai

1 + e−aTi x
− E

[ a1

1 + e−aT1 x

]

∣

∣

∣
> ǫ
)

6
2E|a1|2
nǫ2

,(A.4)

P

(

∣

∣

1

n

n
∑

i=1

aibi − E[aibi]
∣

∣ > ǫ
)

6
2E|a1|2
nǫ2

,(A.5)
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P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

|ai|8 − E|a1|8
∣

∣

∣

∣

∣

> ǫ

)

6
2E|a1|16
nǫ2

,(A.6)

and

P

(
∥

∥

∥

1

n

n
∑

i=1

(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)(

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)
)T

− E
[(

a1(
1

1 + e−aT1 x
− 1

1 + e−aT1 y
)
)(

a1(
1

1 + e−aT1 x
− 1

1 + e−aT1 y
)
)T ]
∥

∥

∥

HS
> ǫ
)

6
2E|a1|4
nǫ2

.

(A.7)

Proof. We only give the proof of the first inequality, the other three are similar. By Cheby-
shev’s inequality, we have

P

(
∣

∣

∣

1

n

n
∑

i=1

ai

1 + e−aTi x
− E

[ a1

1 + e−aT1 x

]

∣

∣

∣
> ǫ
)

=P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

[

ai

1 + e−aTi x
− E

[ a1

1 + e−aT1 x

]

]

∣

∣

∣

∣

∣

> ǫ

)

6

∑n
i=1 E

∣

∣

∣

ai

1+e−aT
i
x
− E

[

a1

1+e−aT
1
x

]

∣

∣

∣

2

n2ǫ2
6

2E|a1|2
nǫ2

.

�

From above lemma, it is easily seen that with high probability, we have

∇P (x) = E

[

a1(
1

1 + e−aT1 x
− b1)

]

+ λx.

Then, we first verify the Assumptions 1.2 and 1.5.

Lemma A.6. In Example 2.3, suppose E|ai|16 <∞, i = 1, · · · , n. When n is large enough,

for any x, y ∈ R
d and unit vectors v ∈ R

d, we have

〈∇2P (x)v, v〉 > λ|v|2,
and the following inequality

E|∇ψI(x)−∇ψI(y)|4 6 8(E|a1|8 + λ4)|x− y|4

holds with high probability.

Proof. For any x ∈ R
d, notice

∇2P (x) =
1

n

n
∑

i=1

aia
T
i e

−aTi x

(1 + e−aTi x)2
+ λId,

since 1
n

∑n
i=1

aiaTi

(1+e−aT
i
x)2

is a positive semi-definite matrix, we have

〈∇2P (x)v, v〉 > λ|v|2.
For any x, y ∈ R

d, we have

E|∇ψI(x)−∇ψI(y)|4 =
1

n

n
∑

i=1

∣

∣

∣

∣

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
) + λ(x− y)

∣

∣

∣

∣

4
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=
8

n

n
∑

i=1

∣

∣

∣

∣

ai(
1

1 + e−aTi x
− 1

1 + e−aTi y
)

∣

∣

∣

∣

4

+ 8λ4|x− y|4

6
8

n

n
∑

i=1

|ai|8|x− y|+ 8λ4|x− y|4,

by (A.6), with high probability, we further have

E|∇ψI(x)−∇ψI(y)|4 6 8(E|a1|8 + λ4)|x− y|4,
the desired result follows. �

Before verifying Assumption 2.1, we first give the following lemma, which plays a crucial
role in proving Assumption 2.1. We first state the following lemma, which gives the upper
bounds of the derivatives of Qη,δ(x, y). Since x, y in the function Qη,δ(x, y) is symmetric,
for simplicity, we only consider the univariate function in the following.

Lemma A.7. Let Σ̂(x) be a symmetric positive function matrix and Σ̂(x) ∈ C3(Rd,Rd×d).
Then, for any x, v, v1, v2, v3 ∈ R

d, we have

‖∇vΣ̂(x)
1
2‖HS 6

1

2
λmin

(

Σ̂(x)
)− 1

2‖∇vΣ̂(x)‖HS,

‖∇v1∇v2Σ̂(x)
1
2‖HS

6
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2‖∇v1Σ̂(x)‖HS‖∇v2Σ̂(x)‖HS +
1

2
λmin

(

Σ̂(x)
)− 1

2‖∇v1∇v2Σ̂(x)‖HS

and
∥

∥∇v1∇v2∇v3

(

Σ̂(x)
1
2

)
∥

∥

HS

6
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2
(

‖∇v2Σ̂(x)‖HS‖∇v1∇v3Σ̂(x)‖HS + ‖∇v1∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

)

+
3

8
dλmin

(

Σ̂(x)
)− 5

2‖∇v1Σ̂(x)‖HS‖∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

+
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2‖∇v1Σ̂(x)‖HS‖∇v2∇v3Σ̂(x)‖HS

+
1

2
λmin

(

Σ̂(x)
)− 1

2‖∇v1∇v2∇v3Σ̂(x)‖HS,

where λmin

(

Σ̂(x)
)

is the smallest eigenvalue of Σ̂(x).

Proof. For simplicity, denote the square root function ϕ(Σ̂) = Σ̂
1
2 for any symmetric posit-

ive matrix Σ̂. Then, [19, Theorem 1.1] shows that for n > 0

‖|∇n+1ϕ(Σ̂)|‖ 6 d
n
2
(2n)!

n!
2−(2n+1)λmin(Σ̂)

−(n+ 1
2
),(A.8)

where the multi-linear operator norm ‖| · |‖ is defined by

‖|∇n+1ϕ(Σ̂)|‖ = sup
‖H‖HS=1

‖∇n+1ϕ(Σ̂)H‖HS.

Therefore, by Chain rule (see, e.g., [1, Proposition 3.2]), we have
∥

∥∇v

(

Σ̂(x)
1
2

)
∥

∥

HS
=
∥

∥∇vϕ
(

Σ̂(x)
)
∥

∥

HS
=
∥

∥∇ϕ
(

Σ̂(x)
)

∇vΣ̂(x)
∥

∥

HS

=
∥

∥

∣

∣∇ϕ
(

Σ̂(x)
)
∣

∣

∥

∥‖∇vΣ̂(x)‖HS

6
1

2
λmin

(

Σ̂(x)
)− 1

2‖∇vΣ̂(x)‖HS.
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By Product rule (see, e.g., [1, Proposition 3.3]) and Chain rule, we have
∥

∥∇v1∇v2

(

Σ̂(x)
1
2

)
∥

∥

HS
=
∥

∥

∥
∇v1

(

∇ϕ
(

Σ̂(x)
)

∇v2Σ̂(x)
)
∥

∥

∥

HS

=
∥

∥∇2ϕ
(

Σ̂(x)
)

∇v1Σ̂(x)∇v2Σ̂(x) +∇ϕ
(

Σ̂(x)
)

∇v1∇v2Σ̂(x)
∥

∥

HS

6
∥

∥∇2ϕ
(

Σ̂(x)
)

∇v1Σ̂(x)∇v2Σ̂(x)
∥

∥

HS
+
∥

∥∇ϕ
(

Σ̂(x)
)

∇v1∇v2Σ̂(x)
∥

∥

HS
,

then, by (A.8) and Cauchy-Schwarz inequality, we have

‖∇v1∇v2Σ̂(x)
1
2‖HS

6
∥

∥

∣

∣∇2ϕ
(

Σ̂(x)
)
∣

∣

∥

∥‖∇v1Σ̂(x)∇v2Σ̂(x)‖HS +
∥

∥

∣

∣∇ϕ
(

Σ̂(x)
)
∣

∣

∥

∥‖∇v1∇v2Σ̂(x)‖HS

6
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2‖∇v1Σ̂(x)‖HS‖∇v2Σ̂(x)‖HS +
1

2
λmin

(

Σ̂(x)
)− 1

2‖∇v1∇v2Σ̂(x)‖HS.

Furthermore, notice

∇v1∇v2∇v3

(

Σ̂(x)
1
2

)

= ∇v1

(

∇2ϕ
(

Σ̂(x)
)

∇v2Σ̂(x)∇v3Σ̂(x) +∇ϕ
(

Σ̂(x)
)

∇v2∇v3Σ̂(x)
)

,

by Linearity (see, e.g., [1, Proposition 3.1]), Product rule and Chain rule, we have

∇v1∇v2∇v3

(

Σ̂(x)
1
2

)

=∇v1

(

∇2ϕ
(

Σ̂(x)
)

∇v2Σ̂(x)∇v3Σ̂(x)
)

+∇v1

(

∇ϕ
(

Σ̂(x)
)

∇v2∇v3Σ̂(x)
)

=∇3ϕ
(

Σ̂(x)
)

∇v1Σ̂(x)∇v2Σ̂(x)∇v3Σ̂(x) +∇2ϕ
(

Σ̂(x)
)

∇v1∇v2Σ̂(x)∇v3Σ̂(x)

+∇2ϕ
(

Σ̂(x)
)

∇v2Σ̂(x)∇v1∇v3Σ̂(x) +∇2ϕ
(

Σ̂(x)
)

∇v1Σ̂(x)∇v2∇v3Σ̂(x)

+∇ϕ
(

Σ̂(x)
)

∇v1∇v2∇v3Σ̂(x),

which implies that
∥

∥∇v1∇v2∇v3

(

Σ̂(x)
1
2

)∥

∥

HS

6
∥

∥

∣

∣∇3ϕ
(

Σ̂(x)
)
∣

∣

∥

∥‖∇v1Σ̂(x)‖HS‖∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

+
∥

∥

∣

∣∇2ϕ
(

Σ̂(x)
)
∣

∣

∥

∥

(

‖∇v2Σ̂(x)‖HS‖∇v1∇v3Σ̂(x)
∥

∥

HS
+ ‖∇v1∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

)

+
∥

∥

∣

∣∇2ϕ
(

Σ̂(x)
)
∣

∣

∥

∥‖∇v1Σ̂(x)‖HS‖∇v2∇v3Σ̂(x)‖HS

+
∥

∥

∣

∣∇ϕ
(

Σ̂(x)
)∣

∣

∥

∥‖∇v1∇v2∇v3Σ̂(x)‖HS.

Hence, by (A.8), we have
∥

∥∇v1∇v2∇v3

(

Σ̂(x)
1
2

)
∥

∥

HS

6
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2
(

‖∇v2Σ̂(x)‖HS‖∇v1∇v3Σ̂(x)‖HS + ‖∇v1∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

)

+
3

8
dλmin

(

Σ̂(x)
)− 5

2‖∇v1Σ̂(x)‖HS‖∇v2Σ̂(x)‖HS‖∇v3Σ̂(x)‖HS

+
1

4
d

1
2λmin

(

Σ̂(x)
)− 3

2‖∇v1Σ̂(x)‖HS‖∇v2∇v3Σ̂(x)‖HS

+
1

2
λmin

(

Σ̂(x)
)− 1

2‖∇v1∇v2∇v3Σ̂(x)‖HS.

�

Now, we can verify Assumption 2.1.
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Lemma A.8. In Example 2.3, suppose E|ai|9 <∞, i = 1, · · · , n. When n is large enough,

for any x, y ∈ R
d and unit vectors vi ∈ R

d, i = 1, 2, 3, the following inequalities

|∇v2∇v1∇P (x)| 6 3E|a1|3, |∇v3∇v2∇v1∇P (x)| 6 13E|a1|4,

‖∇1,v1Qη,δ(x, y)‖HS 6 2E|a1|3(
η

δ
)
1
2 , ‖∇2,v1Qη,δ(x, y)‖HS 6 2E|a1|3(

η

δ
)
1
2 ,

‖∇1,v1∇1,v2Qη,δ(x, y)‖HS 6 4(
η

δ
)
1
2

(

2E|a1|4 + E|a1|6d
1
2
η

δ

)

,

‖∇1,v1∇1,v2∇1,v3Qη,δ(x, y)‖HS 6 4(
η

δ
)
1
2

[

12d
1
2E|a1|7

η

δ
+ 6dE|a1|9(

η

δ
)2 + 11E|a1|5

]

.

hold with high probability.

Proof. By (A.4), with high probability, we have

∇2P (x) = E
[ a1a

T
1 e

−aTi x

(1 + e−aTi x)2

]

− λId,

which implies

|∇v2∇v1∇P (x)| 6 E
[ e−aT1 x

(1 + e−aT1 x)2
|a1|3

]

+ 2E
[ e−2aT1 x

(1 + e−aT1 x)3
|a1|3

]

6 3E|a1|3,

|∇v3∇v2∇v1∇P (x)|

6E
[ e−aT1 x

(1 + e−aT1 x)2
|a1|4

]

+ 6E
[ e−2aT1 x

(1 + e−aT1 x)3
|a1|4

]

+ 6E
[ e−3aT1 x

(1 + e−aT1 x)4
|a1|4

]

6 13E|a1|4.

Since Qη,δ(x, y)
2 = Σ(x, y) + δ

η
Id and Σ(x, y) is a positive semi-definite matrix, we have

infx,y∈Rd λmin

(

Qη,δ(x, y)
2
)

> δ
η
. Moreover, by (A.7), with high probability, we have

‖∇1,v1Σ(x, y)‖HS 62E
[ e−aT1 x

(1 + e−aT1 x)2

∣

∣

1

1 + e−aT1 x
− 1

1 + e−aT1 y

∣

∣|a1|3
]

+2E
[ |a1|2e−aT1 x

(1 + e−aT1 x)2

]
∣

∣

∣
E

[

a1
( 1

1 + e−aT1 x
− 1

1 + e−aT1 y

)

]
∣

∣

∣

64E|a1|3,

‖∇2,v1Σ(x, y)‖HS 6 4E|a1|3,

‖∇1,v1∇1,v2Σ(x, y)‖HS

64E
[(

( e−aT1 x

(1 + e−aT1 x)2
+

2e−2aT1 x

(1 + e−aT1 x)3

)
∣

∣

1

1 + e−aT1 x
− 1

1 + e−aT1 y

∣

∣ +
e−2aT1 x

(1 + e−aT1 x)4

)

|a1|4
]

616E|a1|4

and

‖∇1,v1∇1,v2∇1,v3Σ(x, y)‖HS 6 88E|a1|5.
Therefore, by Lemma A.7, we have

‖∇1,v1Qη,δ(x, y)‖HS 6
1

2
λmin

(

Qη,δ(x, y)
2
)− 1

2‖∇1,vQη,δ(x, y)
2‖HS 6 2E|a1|3(

η

δ
)
1
2 ,

‖∇2,v1Qη,δ(x, y)‖HS 6 2E|a1|3(
η

δ
)
1
2 ,
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‖∇1,v1∇1,v2Qη,δ(x, y)‖HS

6
1

4
d

1
2λmin

(

Qη,δ(x, y)
2
)− 3

2‖∇1,v1Qη,δ(x, y)
2‖HS‖∇1,v2Qη,δ(x, y)

2(x)‖HS

+
1

2
λmin

(

Qη,δ(x, y)
2
)− 1

2‖∇1,v1∇1,v2Qη,δ(x, y)
2‖HS

6
1

4
d

1
2 (
η

δ
)
3
216E|a1|6 +

1

2
(
η

δ
)
1
216E|a1|4 = 4(

η

δ
)
1
2

(

2E|a1|4 + E|a1|6d
1
2
η

δ

)

and

‖∇1,v1∇1,v2∇1,v3Qη,δ(x, y)‖HS

632d
1
2 (
η

δ
)
3
2E|a1|7 + 24d(

η

δ
)
5
2E|a1|9 + 16d

1
2 (
η

δ
)
3
2E|a1|7 + 44(

η

δ
)
1
2E|a1|5

=4(
η

δ
)
1
2

[

12d
1
2E|a1|7

η

δ
+ 6dE|a1|9(

η

δ
)2 + 11E|a1|5

]

.

�

APPENDIX B. PROOF OF LEMMAS IN SECTION 3

B.1. Proof of Lemma 3.2. Following [62, Theorem 2.1], one can immediately finish the
proof. To verify the condition of [62, Theorem 2.1], we take

σ(x) =
√
ηQη,δ(x, ω0) = (ηΣ(x, ω0) + δId)

1
2 ,

σ2
0 = δ/2, θ = 0, q = 1 and σ̃(x) = (σ2(x)− σ2

0Id)
1
2 therein. Following [62, Example 2.4]

and assumption (2.10), it is easy to see

‖σ̃(x)− σ̃(y)‖2HS 6
1

2σ2
0

|σ(x)− σ(y)|2HS 6
ηA3

2σ2
0

|x− y|2 6 γ

2
|x− y|2.

Combining equation above with assumptions (1.4) and (1.6), one has

〈−∇P (x) +∇P (y), x− y〉+ 1

2
‖σ̃(x)− σ̃(y)‖2HS + (q − 3/2)

|σ̃(x)− σ̃(y)(x− y)|2
|x− y|2

6 (L+
γ

4
+
γ

2
)|x− y|21{|x−y|26 4K

γ
} −

γ

2
|x− y|2.

Taking K̄1(x) = (L + 3
4
γ)1{|x|26 4K

γ
}|x|2 and K̄2 = γ

2
, [62, Condition (H)] is satisfied. Let

K̃2 = γ
2
, a straight calculation implies that C1 = 1, c0 = C2 = exp{2K

δγ
(L + 3

4
γ)} and

κ = γ
4
exp{−2K

δγ
(L+ 3

4
γ)} therein, then we obtain

W1 (L(Xx
t ),L(Xy

t )) 6 e
2K(L+3

4γ)

γδ e−λt|x− y| = 4

γ
λ−1e−λt|x− y|,

where λ = γ
4
exp{−2K(L+ 3

4
γ)

γδ
}.

�

B.2. Proof of Lemma 3.4. Recall (3.2), by Itô’s formula, (1.6) and (2.9), we have

d

ds
E|Xx

s |2 = 2E〈Xs,−∇P (Xs)〉+ ηE‖Qη,δ(Xs, ω0)‖2HS

6 −2γE|Xx
s |2 + 2K + 2E|Xs||∇P (0)|+ 2η

(

L2|Xs − ω0|2 +
δd

η

)

6 −(2γ − 4L2η − γ

2

)

E|Xx
s |2 + 2K +

2

γ
|∇P (0)|2 + 4ηL2

E|ω0|2 + 2δd
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6 −γE|Xx
s |2 + 2K +

2

γ
|∇P (0)|2 + 4ηL2

E|ω0|2 + 2δd,

where the last two lines following Young’s inequality and the fact η < γ
8L2 . Solving this

differential inequality with initial data Xx
0 = x, gives

E|Xx
t |2 6 e−γt|x|2 + 2(K + γ−1|∇P (0)|2 + 2ηL2

E|ω0|2 + δd)

γ
(B.1)

6 Cγ,d,|∇P (0)|,L(1 + |x|2 + E|ω0|2 +K).

Thus (3.10) is proved.
By the Cauchy-Schwarz inequality, Itô’s isometry, (1.5) and (2.9), we have

E|Xx
t − x|2 6 2E|

∫ t

0

−∇P (Xx
r )dr|2 + 2E|

∫ t

0

√
ηQη,δ(Xr, ω0)dBr|2

6 2t

∫ t

0

E|∇P (Xx
r )|2dr + 2η

∫ t

0

E‖Qη,δ(Xr, ω0)‖2HSdr

6 4t

∫ t

0

(

|∇P (0)|2 + L2
E|Xr|2

)

dr + 4η

∫ t

0

(

L2
E|Xs − ω0|2 +

δd

η

)

dr

6 4L2(t+ 2η)

∫ t

0

E|Xr|2dr + 4t
(

t|∇P (0)|2 + 2L2ηE|ω0|2 + δd
)

,

which, together with (3.10), implies (3.11). �

B.3. Proof of Lemma 3.5. By (2.1), it is easy to see

E|ωk|4 =E|ωk−1|4 + E
∣

∣η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

∣

∣

4

− 4E
[

|ωk−1|2
〈

ωk−1, η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

〉

]

+ 4E
[

〈

ωk−1, η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

〉2
]

+ 2E
[

|ωk−1|2
∣

∣η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

∣

∣

2
]

− 4E
[

∣

∣η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

∣

∣

2

〈

ωk−1, η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

〉

]

.

Now we estimate each term on the right hand side. For the second term, the fact η <
(

γ
432L4

)
1
3 , (1.3) and (1.5) imply

E
∣

∣η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

∣

∣

4

627η4
[

E|∇ψik(ωk−1)−∇ψik(ω0)|4 + E|∇P (ω0)|4
]

+ 27(ηδ)2E|W1|4

627η4
[

L4
E|ωk−1 − ω0|4 + E|∇P (ω0)|4

]

+ 27(ηδ)2E|W |4

6
γ

2
ηE|ωk−1|4 + 216η4

(

2L4
E|ω0|4 + |∇P (0)|4

)

+ 81(ηδd)2,

where the last line following E|W |4 6 3d2.
For the third term, since ik is independent of ωk−1 and uniformly distributed on [n], (1.6)

yields

E
[

|ωk−1|2〈ωk−1,∇ψik(ωk−1)〉
]

= EEI

[

|ωk−1|2〈∇ψI(ωk−1), ωk−1〉
]
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= E
[

|ωk−1|2〈∇P (ωk−1)−∇P (0), ωk−1〉
]

+ E
[

|ωk−1|2〈∇P (0), ωk−1〉
]

> γE|ωk−1|4 −KE|ωk−1|2 + E
[

|ωk−1|2〈∇P (0), ωk−1〉
]

,

which implies

− 4ηE
[

|ωk−1|2〈ωk−1,∇ψik(ωk−1)〉
]

6− 4γηE|ωk−1|4 + 4KηE|ωk−1|2 + 4ηE
[

|ωk−1|3|∇P (0)|
]

6− 3γηE|ωk−1|4 +
8K2

γ
η +

216|∇P (0)|4
γ3

η,

where the last inequality is by Young’s inequality. In addition, since Wk is independent of
ik and ωk−1, we have

E

[

|ωk−1|2
〈

ωk−1, η
[

∇ψik(ω0)−∇P (ω0)
]

+
√

ηδWk

〉

]

= 0.

For the forth term, the fact η < γ
96L2 implies

4E
[

〈

ωk−1, η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

〉2
]

612η2E
[

|ωk−1|2
(

|∇ψik(ωk−1)−∇ψik(ω0)|2 + |∇P (ω0)|2
)

]

+ 12ηδE[|ωk−1|2|Wk|2]

612η2E
[

|ωk−1|2
(

2L2|ωk−1|2 + 4L2|ω0|2 + 2|∇P (0)|2
)

]

+ 12ηδdE[|ωk−1|2]

6
γ

2
ηE|ωk−1|4 +

144η

γ
E
[

4L2η|ω0|2 + 2η|∇P (0)|2 + δd
]2

6
γ

2
ηE|ωk−1|4 +

432η

γ

(

16L4η2E|ω0|4 + 4η2|∇P (0)|4 + (δd)2
)

.

The fifth term can be estimated by a similar calculation with the forth term, and we have

2E
[

|ωk−1|2
∣

∣η (∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0))−
√

ηδWk

∣

∣

2
]

6
γ

4
ηE|ωk−1|4 +

216η

γ

[

16L4η2E|ω0|4 + 4η2|∇P (0)|4 + (δd)2
]

.

For the last term, noticing that η < ( γ
576L3 )

1
2 , by (1.3), the Hölder inequality, (1.5) and

Young’s inequality, we can get

4E
[

∣

∣η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

∣

∣

2

〈

ωk−1, η
[

∇ψik(ωk−1)−∇ψik(ω0) +∇P (ω0)
]

−
√

ηδWk

〉

]

636E
[

[

η3|∇ψik(ωk−1)−∇ψik(ω0)|3 + η3|∇P (ω0)|3 + |
√

ηδWk|3
]

|ωk−1|
]

6144η3E
[

|ωk−1|
[

L3|ωk−1|3 + 2L3|ω0|3 + |∇P (0)|3)
]

]

+ 36(ηδ)
3
2E
[

|ωk−1||W |3]

6
3γ

4
ηE|ωk−1|4 +

200η
5
3

γ
1
3

[

16η2(L4
E|ω0|4 + |∇P (0)|4) + (δd)2

]

.

Since η < 1, the inequalities above imply

E|ωk|4 6
(

1− γη
)

E|ωk−1|4 + Cγ,L

(

K2 + |∇P (0)|4 + E|ω0|4 + δ2d2
)

η.
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Therefore,

E|ωx
k |4 6(1− γη)k|x|4 + Cγ,L

(

K2 + |∇P (0)|4 + E|ω0|4 + δ2d2
)

η
k−1
∑

j=0

(1− γη)j

6Cγ,d,|∇P (0)|,L

(

1 + |x|4 + E|ω0|4 +K2
)

.

�

B.4. Proof of Lemma 3.6. Recall (3.4), for any f ∈ C2
b (R

d), it is easy to calculate that

AZf(x) = lim
t→0

Ef(Xx
ηt)− f(x)

ηt
η

=
1

2
η〈ηΣ(x, ω0) + δId,∇2f(x)〉HS − η〈∇P (x),∇f(x)〉.

Then, for any ut(x) = Eh(Xx
t ) with k > 1, we have

E

∫ 1

0

AZut(X
x
ηs)ds

=− ηE

∫ 1

0

〈∇ut(Xx
ηs),∇P (Xx

ηs)〉ds+
1

2
ηE

∫ 1

0

〈∇2ut(X
x
ηs), ηΣ(X

x
ηs, ω0) + δId〉HSds

=− E

∫ η

0

〈∇ut(Xx
s ),∇P (Xx

s )〉ds+
1

2
E

∫ η

0

〈∇2ut(X
x
s ), ηΣ(X

x
s , ω0) + δId〉HSds.

Recall (3.3), we further have

Aωut(x) =E

[

ut
(

x− η∇ψI(x) + η∇ψI(ω0)− η∇P (ω0) +
√

ηδW
)

]

− ut(x)

=E
[

ut
(

x+
√
ηVη,δ(x, ω0, I,W )− η∇P (x)

)]

− ut(x)

with Vη,δ(x, ω0, I,W ) = −√
η
[

∇ψI(x) −∇ψI(ω0)−∇P (x) +∇P (ω0)
]

+
√
δW . Then,

by Taylor’s expansion, we have

Aωut(x) =E

[

〈

∇ut(x),
√
ηVη,δ(x, ω0, I,W )− η∇P (x)

〉

]

+ E[Rut(x)]

+
1

2
E
〈

∇2ut(x),
[√
ηVη,δ(x, ω0, I,W )− η∇P (x)

]

[√
ηVη,δ(x, ω0, I,W )− η∇P (x)

]T〉

HS

=〈∇ut(x),−η∇P (x)〉+
1

2
η2〈∇2ut(x),E[Qη,δ(x, ω0)]

2 +∇P (x)
(

∇P (x)
)T 〉HS

+ E[Rut(x)],

where

Rut(x)

=

∫ 1

0

∫ r

0

〈∇2ut
(

x+ s
[√
ηVη,δ(x, ω0, I,W )− η∇P (x)

])

−∇2ut(x),

[√
ηVη,δ(x, ω0, I,W )− η∇P (x)

][√
ηVη,δ(x, ω0, I,W )− η∇P (x)

]T 〉dsdr.
Therefore, we have

∣

∣E

∫ 1

0

[

AZut(Z
x
s )−Aωut(x)

]

ds
∣

∣ 6 J1 + J2 + E|Rut(x)|,
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where

J1 :=
∣

∣

∣
E

∫ η

0

〈∇ut(Xx
s ),∇P (Xx

s )〉ds− η〈∇ut(x),∇P (x)〉

+
1

2
η2〈∇2ut(x),∇P (x)

(

∇P (x)
)T 〉HS

∣

∣

∣

and

J2 :=
∣

∣

∣

1

2
E

∫ η

0

〈∇2ut(X
x
s ), ηΣ(X

x
s , ω0) + δId〉HSds−

1

2
η2〈∇2ut(x),E[Qη,δ(x, ω0)]

2〉HS

∣

∣

∣
.

For J1, we have

J1 6
∣

∣E

∫ η

0

〈∇ut(Xx
s ),∇P (Xx

s )−∇P (x)〉ds
∣

∣

+
∣

∣E

∫ η

0

〈∇ut(Xx
s )−∇ut(x),∇P (x)〉ds+

1

2
η2〈∇2ut(x),∇P (x)

(

∇P (x)
)T 〉HS

∣

∣

:=J11 + J12.

By (3.7), (1.4), the Cauchy-Schwarz inequality and (3.11), one has

J11 6CL

∫ η

0

E
∣

∣Xx
s − x

∣

∣ds

6Cγ,d,|∇P (0)|,L

∫ η

0

(1 + |x|+
√

E|ω0|2 +K
1
2 )
√

s(s+ η + δ)ds

6Cγ,d,|∇P (0)|,L(1 + |x|+
√

E|ω0|2 +K
1
2 )η

3
2 (η

1
2 + δ

1
2 ).

Notice that

E〈∇ut(Xx
s )−∇ut(x),∇P (x)〉

=E〈∇2ut(x), (X
x
s − x)

(

∇P (x)
)T 〉HS

+

∫ 1

0

E〈∇2ut
(

x+ r(Xx
s − x)

)

−∇2ut(x), (X
x
s − x)

(

∇P (x)
)T 〉HSdr

=−
∫ s

0

E〈∇2ut(x),∇P (Xx
v )
(

∇P (x)
)T 〉HSdv

+

∫ 1

0

E〈∇2ut
(

x+ r(Xx
s − x)

)

−∇2ut(x), (X
x
s − x)

(

∇P (x)
)T 〉HSdr.

By (3.8), (3.9), (1.4) and (1.5), we have

J12 6
∣

∣E

∫ η

0

∫ s

0

E〈∇2ut(x),
(

∇P (Xx
v )−∇P (x)

)(

∇P (x)
)T 〉HSdvds

∣

∣

+
∣

∣

∫ η

0

∫ 1

0

E〈∇2ut
(

x+ r(Xx
s − x)

)

−∇2ut(x), (X
x
s − x)

(

∇P (x)
)T 〉HSdrds

∣

∣

6CA,γ,d,|∇P (0)|,L

(

1 +
1√
δt

)

(1 + |x|)
∫ η

0

∫ s

0

E
∣

∣Xx
v − x

∣

∣dvds

+ CA,γ,d,|∇P (0)|,L

(

1 +
1

δt
+

1

t
5
4

)

(1 + |x|)
∫ η

0

∫ 1

0

rE|Xx
s − x|2drds.

Then, by the Cauchy-Schwarz inequality and (3.11), we can get

J12 6CA,γ,d,|∇P (0)|,L

(

1 +
1√
δt

)

(1 + |x|2 + E|ω0|2 +K)η
5
2 (η

1
2 + δ

1
2 )
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+ CA,γ,d,|∇P (0)|,L

(

1 +
1

δt
+

1

t
5
4

)

(1 + |x|)(1 + |x|2 + E|ω0|2 +K)η2(η + δ).

The condition η 6 δ 6 1 further implies

J12 6CA,γ,d,|∇P (0)|,L

(

1 +
1

t
+

δ

t
5
4

)

(1 + |x|)(1 + |x|2 + E|ω0|2 +K)η2.

Hence,

J1 6 CA,γ,d,|∇P (0)|,L(1 + |x|)(1 + |x|2 + E|ω0|2 +K)
[(1

t
+

δ

t
5
4

)

η
1
2 + δ

1
2

]

η
3
2 .

For J2, notice that ηE[Qη,δ(x, ω0)]
2 = ηE[Σ(x, ω0)]+δId, and for x, y, z ∈ R

d, following
the definition of Σ (x, y), a straight calculation gives that

Σ(x, y)− Σ(z, y) =E

[

(∇ψI(x)−∇ψI(z)) (∇ψI(x)−∇ψI(y))
T
]

− E [∇ψI(x)−∇ψI(z)] (EI [∇ψI(x)−∇ψI(y)])
T

+ E

[

(∇ψI(z)−∇ψI(y)) (∇ψI(x)−∇ψI(z))
T
]

− E [∇ψI(z)−∇ψI(y)] (EI [∇ψI(x)−∇ψI(z)])
T .

By (1.3), (1.4) and the Cauchy-Schwarz inequality, we further have

‖Σ(x, y)‖HS 6 2L2|x− y|2 6 4L2(|x|2 + |y|2),(B.2)

and

‖Σ(x, y)− Σ(z, y)‖HS 6 2L2(|x− y|+ |z − y|)|x− z| 6 2L2(|x|+ 2|y|+ |z|)|x− z|.
(B.3)

Then, the Cauchy-Schwarz inequality, (3.8) and (3.9) imply

J2 6
η

2
E
∣

∣

∫ η

0

〈∇2ut(X
x
s ),Σ(X

x
s , ω0)− Σ(x, ω0)〉HSds

∣

∣

+
1

2
E
∣

∣

∫ η

0

〈∇2ut(X
x
s )−∇2ut(x), ηΣ(x, ω0) + δId〉HSds

∣

∣

6ηCA,γ,d,L

(

1 +
1√
δt

)

∫ η

0

E
[

(|Xx
s |+ |ω0|+ |x|)|Xx

s − x|
]

ds

+ CA,γ,d,L

(

1 +
1

δt
+

1

t
5
4

)

∫ η

0

E
[

|Xx
s − x|(η|x|2 + η|ω0|2 + δ)

]

ds,

Following the Cauchy-Schwarz inequality, (3.10) and (3.11), one has

J2 6CA,γ,d,|∇P (0)|,L

(

1 +
1√
δt

)

(1 + |x|2 + E|ω0|2 +K)η
5
2 (η

1
2 + δ

1
2 )

+ CA,γ,d,L

(

1 +
1

δt
+

1

t
5
4

)

(1 +
√

E|ω0|2 +K
1
2 )

(1 +
√

E|ω0|4)(1 + |x|3)η 3
2 (η

1
2 + δ

1
2 )(η + δ).

The condition η 6 δ 6 1 further implies

J2 6 CA,γ,d,|∇P (0)|,L

(

1 +
1

t
+

δ

t
5
4

)

(1 + E|ω0|4 +K)(1 + |x|3)η 3
2 δ

1
2 .

In addition, by (3.9), (1.3), Hölder’s inequality and (1.4), we have

E|Rut(x)|
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6CA,γ,d

(

1 +
1

δt
+

1

t
5
4

)

E
∣

∣

√
ηVη,δ(x, ω0, I,W )− η∇P (x)

∣

∣

3

6CA,γ,d,|∇P (0)|,L

(

1 +
1

δt
+

1

t
5
4

)[

η3(1 + |x|3 + E|ω0|3) + (ηδ)
3
2

]

6CA,γ,d,|∇P (0)|,L

(

1 +
1

t
+

δ

t
5
4

)

(1 + |x|3 + E|ω0|3)η
3
2 δ

1
2 .

Combining all of above, we have

∣

∣E

∫ 1

0

[

AZut(Z
x
s )−Aωut(x)

]

ds
∣

∣

6CA,γ,d,|∇P (0)|,L

(

1 +
1

t
+

δ

t
5
4

)

(1 + E|ω0|4 +K)(1 + |x|3)η 3
2 δ

1
2 .

�

APPENDIX C. PROOF OF LEMMA 3.3

Under the Assumptions 1.2, 1.5 and 2.1 in Sections 1 and 2, we recall some preliminary
of Malliavin calculus and derive standard estimates related to Malliavin calculus and SDE,
which will be applied to prove the Lemma 3.3 in Section 3.

C.1. Malliavin calculus of SDE (3.2) ([28]). For simplicity, denote B(x) := −∇P (x)
and ση,δ,ω0(x) = Qη,δ(x, ω0). If there is no ambiguity, we abbreviate it as σ(x) = ση,δ,ω0(x).
Then, the SDE (3.2) can be written as the following form:

dXt = B(Xt)dt+
√
ησ(Xt)dBt, X0 = x,(C.1)

where Bt is a standard d−dimensional Brownian motion. Moreover, the Assumptions 1.2
and 2.1 can be rewritten as the following form:

Assumption A There exist constants L > 0, Ai > 0 with i = 1, 2, ..., 5, such that for any
x, y ∈ R

d and unit vectors v, v1, v2, v3 ∈ R
d, we have

|∇vB(x)| 6 L, |∇v2∇v1B(x)| 6 A1,(C.2)

|∇v3∇v2∇v1B(x)| 6 A2, ‖∇v1σ(x)‖2HS 6 A3(C.3)

‖∇v1∇v2σ(x)‖2HS 6 A4, ‖∇v1∇v2∇v3σ(x)‖2HS 6 A5.(C.4)

Remark C.1. Since S(x) = σ(x)σ(x)T = Σ(x) + δ
η
Id and Σ(x) is semi-positive definite,

for any 0 6= ξ ∈ R
d, we have

ξTS(x)ξ >
δ

η
ξT Idξ =

δ

η
|ξ|2.(C.5)

Under the Assumption A, there exists a unique solution to the SDE (C.1) and the SDE
(C.1) has a unique non-degenerate invariant measure (see, e.g., [6, 12, 26, 39, 50]).

Next, we briefly recall Bismut’s approach to Malliavin calculus, which is crucial to prove
Lemma 3.3.

We first consider the derivative of Xx
t with respect to initial value x, which is called the

Jacobian flow. Let v ∈ R
d, the Jacobian flow ∇vX

x
t along the direction u is defined by

∇vX
x
t = lim

ǫ→0

Xx+ǫv
t −Xx

t

ǫ
, t > 0.

The above limit exists and satisfies

d∇vX
x
t = ∇B(Xx

t )∇vX
x
t dt +

√
η∇σ(Xx

t )∇vX
x
t dBt, ∇vX

x
0 = v.(C.6)
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Then, we use the notations Jx
s,t with 0 6 s 6 t < ∞ for the stochastic flow between time s

and t, that is,

∇vX
x
t = Jx

0,tv.

Note that we have the important cocycle property Jx
0,sJ

x
s,t = Jx

0,t for all 0 6 s 6 t <∞. For
a more thorough discussion on stochastic flow, we refer the reader to [40, 41, 2, 34] and the
references therein.

For v1, v2 ∈ R
d, we can define ∇v2∇v1X

x
t , which satisfies

d∇v2∇v1X
x
t =∇B(Xx

t )∇v2∇v1X
x
t dt+∇2B(Xx

t )∇v2X
x
t ∇v1X

x
t dt

+
√
η∇σ(Xx

t )∇v2∇v1X
x
t dBt +

√
η∇2σ(Xx

t )∇v2X
x
t ∇v1X

x
t dBt,(C.7)

with ∇v2∇v1X
x
0 = 0.

For v1, v2, v3 ∈ R
d, we can define ∇v3∇v2∇v1X

x
t , which satisfies

d∇v3∇v2∇v1X
x
t =∇2B(Xx

t )∇v3X
x
t ∇v2∇v1X

x
t dt+∇B(Xx

t )∇v3∇v2∇v1X
x
t dt

+∇3B(Xx
t )∇v3X

x
t ∇v2X

x
t ∇v1X

x
t dt+∇2B(Xx

t )∇v3∇v2X
x
t ∇v1X

x
t dt

+∇2B(Xx
t )∇v2X

x
t ∇v3∇v1X

x
t dt+ η

1
2∇2σ(Xx

t )∇v3X
x
t ∇v2∇v1X

x
t dBt

+ η
1
2

[

∇σ(Xx
t )∇v3∇v2∇v1X

x
t +∇3σ(Xx

t )∇v3X
x
t ∇v2X

x
t ∇v1X

x
t

]

dBt

+ η
1
2

[

∇2σ(Xx
t )∇v3∇v2X

x
t ∇v1X

x
t +∇2σ(Xx

t )∇v2X
x
t ∇v3∇v1X

x
t

]

dBt,

with ∇v3∇v2∇v1X
x
0 = 0.

Then, we have the following estimate:

Lemma C.2. For all x ∈ R
d and v, v1, v2, v3 ∈ R

d, as η ∈ (0, 1) and t ∈ (0, 1], we have

E|∇vX
x
t |8 6 e8L+28A3 |v|8,(C.8)

E|∇v2∇v1X
x
t |4 6 2(A1 + 6A4)e

12L+3A1+12A3+6A4+28|v1|4|v2|4,(C.9)

and

E|∇v3∇v2∇v1X
x
t |2 6 CA,L|v1|2|v2|2|v3|2.(C.10)

Proof. Recalling (C.6), by Itô’s formula, (C.2), (C.3) and (1.7), we have

d

ds
E|∇vX

x
s |8 =8E[|∇vX

x
s |6〈∇B(Xx

s )∇vX
x
s ,∇vX

x
s 〉] + 4ηE[|∇vX

x
s |6‖∇σ(Xx

s )∇vX
x
s ‖2HS]

+ 24ηE[|∇vX
x
s |4|∇σ(Xx

s )∇vX
x
s∇vX

x
s |2]

6(8L+ 28ηA3)E|∇vX
x
s |8.

This inequality, together with ∇vX
x
0 = v and Gronwall inequality, implies

E|∇vX
x
t |8 6 |v|8e(8L+28ηA3)t 6 e8L+28A3 |v|8.

Using Itô’s formula to ς1(t) = ∇v2∇v1X
x
t , by (C.7), the Cauchy-Schwarz inequality, and

Assumption A, we have

d

ds
E|ς1(s)|4 =4E

[

|ς1(s)|2〈∇B(Xx
s )ς1(s) +∇2B(Xx

s )∇v2X
x
s∇v1X

x
s , ς1(s)〉

]

+ 2ηE
[

|ς1(s)|2‖∇σ(Xx
s )ς1(s) +∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s ‖2HS

]

+ 4ηE
[

|(∇σ(Xx
s )ς1(s) +∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s )ς1(s)|2

]

64LE|ς1(s)|4 + 4A1E[|∇v2X
x
s ||∇v1X

x
s ||ς1(s)|3]

+ 12ηE
[

|ς1(s)|2
(

‖∇σ(Xx
s )ς1(s)‖2HS + ‖∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s ‖2HS

)]
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64(L+ 3A3η)E|ς1(s)|4 + 4A1E[|∇v2X
x
s ||∇v1X

x
s ||ς1(s)|3]

+ 12A4ηE
[

|ς1(s)|2|∇v2X
x
s |2|∇v1X

x
s |2
]

,

By Young’s inequality and (C.8), we further have

d

ds
E|ς1(s)|4 6(4L+ 3A1 + 12A3 + 6A4)E|ς1(s)|4 + (A1 + 6A4)E[|∇v2X

x
s |4|∇v1X

x
s |4]

6(4L+ 3A1 + 12A3 + 6A4)E|ς1(s)|4 + (A1 + 6A4)e
8L+28A3 |v1|4|v2|4.

This inequality, together with ς1(0) = 0 and Gronwall’s inequality, implies

E|ς1(t)|4 6(A1 + 6A4)e
8L+28A3 |v1|4|v2|4t+ (A1 + 6A4)e

8L+28A3 |v1|4|v2|4

(4L+ 3A1 + 12A3 + 6A4)

∫ t

0

se(4L+3A1+12A3+6A4)(t−s)ds

62(A1 + 6A4)e
12L+3A1+12A3+6A4+28A3 |v1|4|v2|4.

Writing ς2(t) = ∇v3∇v2∇v1X
x
t , by Itô’s formula, one has

d

ds
E|ς2(s)|2

=2E
[

〈∇B(Xx
s )ς2(s) +∇2B(Xx

s )∇v3X
x
s∇v2∇v1X

x
s , ς2(s)〉

]

+ 2E
[

〈∇2B(Xx
s )∇v3∇v2X

x
s∇v1X

x
s +∇2B(Xx

s )∇v2X
x
s∇v3∇v1X

x
s , ς2(s)〉

]

+ 2E
[

〈∇3B(Xx
s )∇v3X

x
s∇v2X

x
s∇v1X

x
s , ς2(s)〉

]

+ ηE
[

‖∇σ(Xx
s )ς2(s) +∇2σ(Xx

s )
(

∇v3X
x
s∇v2∇v1X

x
s +∇v3∇v2X

x
s∇v1X

x
s

)

+∇3σ(Xx
s )∇v3X

x
s∇v2X

x
s∇v1X

x
s +∇2σ(Xx

s )∇v2X
x
s∇v3∇v1X

x
s ‖2HS

]

.

By (C.2), (C.3) and (C.4), we further have

d

ds
E|ς2(s)|2 62LE|ς2(s)|2 + 2A2E

[

|∇v3X
x
s ||∇v2X

x
s ||∇v1X

x
s ||ς2(s)|

]

+ 2A1E
[(

|∇v3X
x
s ||∇v2∇v1X

x
s |+ |∇v2X

x
s ||∇v3∇v1X

x
s |
)

|ς2(s)|
]

+ 2A1E
[

|∇v1X
x
s ||∇v3∇v2X

x
s ||ς2(s)|

]

+ 5A3ηE|ς2(s)|2

+ 5η
(

A5E
[

|∇v3X
x
s ||∇v2X

x
s ||∇v1X

x
s |
]2

+ A4E
[

|∇v3X
x
s ||∇v2∇v1X

x
s |
]2)

+ 5A4ηE
[

|∇v2X
x
s |2|∇v3∇v1X

x
s |2 + |∇v1X

x
s |2|∇v3∇v2X

x
s |2
]

.

Using Young’s inequality, (C.8) and (C.9), we can get

d

ds
E|ς2(s)|2 6(2L+ A2 + 3A1 + 5A3)E|ς2(s)|2 + CA,L|v1|2|v2|2|v3|2.

This inequality, together with ς2(0) = 0 and Gronwall inequality, implies

E|ς2(t)|2 6CA,L|v1|2|v2|2|v3|2.
�

Next, we use Bismut’s approach to Malliavin calculus for SDE (C.1)([49]). Let u ∈
L2
loc([0,∞) × (Ω,F ,P);Rd), i.e., E

∫ t

0
|u(s)|2ds < ∞ for all t > 0. Further assume that u

is adapted to the filtration (Ft)t>0 with Ft := σ(Bs : 0 6 s 6 t); i.e., u(t) is Ft measurable
for t > 0. Define

Ut =

∫ t

0

u(s)ds, t > 0.(C.11)
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For a t > 0, let Ft : C([0, t],Rd) → R be a Ft measurable map. If the following limit exists

DUFt(B) = lim
ǫ→0

Ft(B + ǫU)− Ft(B)

ǫ

in L2((Ω,F ,P);R), then Ft(B) is said to be Malliavin differentiable and DUFt(B) is called
the Malliavin derivative of Ft(B) in the direction u.

Let Ft(B) and Gt(B) both be Malliavin differentiable, then the following product rule
holds:

DU(Ft(B)Gt(B)) = Ft(B)DUGt(B) +Gt(B)DUFt(B).(C.12)

When

Ft(B) =

∫ t

0

〈a(s), dB(s)〉,

where a(s) = (a1(s), · · · , ad(s)) is a deterministic function such that
∫ t

0
|a(s)|2ds <∞ for

all t > 0, and it is easy to verify that

DUFt(B) =

∫ t

0

〈a(s), u(s)〉ds.

Moreover, if a(s) is a stochastic process adapted to the filtrationFs such thatE
∫ t

0
|a(s)|2ds <

∞ for all t > 0, it is easy to check that

DUFt(B) =

∫ t

0

〈a(s), u(s)〉ds+
∫ t

0

〈DUa(s), dBs〉.(C.13)

Then, we consider the following integration by parts formula, which is called Bismut’s
formula. For Malliavin differentiable Ft(B) such that Ft(B), DUFt(B) ∈ L2((Ω,F ,P);R),
we have

E[DUFt(B)] = E
[

Ft(B)

∫ t

0

〈u(s), dBs〉
]

.(C.14)

Let φ ∈ Lip(1) and let Ft(B) = (F 1
t (B), · · · , F d

t (B)) be a d-dimensional Malliavin
differentiable functional. The following chain rule holds:

DUφ(Ft(B)) = 〈∇φ(Ft(B)), DUFt(B)〉 =
d
∑

i=1

∂iφ(Ft(B))DUF
i
t (B).

Now, we come back to the SDE (C.1). Fixing t > 0 and x ∈ R
d, the solution Xx

t is a
d-dimensional functional of Brownian motion (Bs)06s6t.

The following Malliavin derivative ofXx
t along the directionU exists inL2((Ω,F ,P);Rd)

and is defined by

DUX
x
t (B) = lim

ǫ→0

Xx
t (B + ǫU) −Xx

t (B)

ǫ
.

We drop the B in DUX
x
t (B) and write DUX

x
t = DUX

x
t (B) for simplicity. It satisfies the

equation

dDUX
x
t = ∇B(Xx

t )DUX
x
t dt + η

1
2∇σ(Xx

t )DUX
x
t dBt + η

1
2σ(Xx

t )u(t)dt, DUX
x
0 = 0,

and the equation has a unique solution:

DUX
x
t =

∫ t

0

Jx
r,tη

1
2σ(Xx

r )u(r)dr.
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Noticing that ∇vX
x
t = Jx

0,tv, if we take

u(s) =
1

t
η−

1
2σ(Xx

s )
−1∇vX

x
s , 0 6 s 6 t,(C.15)

then (C.5) and (C.8) imply u ∈ L2
loc([0,∞) × (Ω,F ,P);Rd). Since ∇vX

x
r = Jx

0,rv and
Jx
0,rJ

x
r,t = Jx

0,t, for all 0 6 r 6 t, we have

DUX
x
t = ∇vX

x
t(C.16)

and

DUX
x
s =

s

t
∇vX

x
s , 0 6 s 6 t.(C.17)

Let v1, v2 ∈ R
d, and define ui and Ui as (C.15) and (C.11), respectively, for i = 1, 2. We

can similarly define DU2∇v1X
x
s , which satisfies the following equation: for s ∈ [0, t],

dDU2∇v1X
x
s

=
[

∇B(Xx
s )DU2∇v1X

x
s +∇2B(Xx

s )DU2X
x
s∇v1X

x
s + η

1
2∇σ(Xx

s )∇v1X
x
s u2(s)

]

ds

+ η
1
2

[

∇σ(Xx
s )DU2∇v1X

x
s +∇2σ(Xx

s )DU2X
x
s∇v1X

x
s

]

dBs

=
[

∇B(Xx
s )DU2∇v1X

x
s +

s

t
∇2B(Xx

s )∇v2X
x
s∇v1X

x
s

+
1

t
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1∇v2X
x
s

]

ds

+ η
1
2

[

∇σ(Xx
s )DU2∇v1X

x
s +

s

t
∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s

]

dBs,(C.18)

with DU2∇v1X
x
0 = 0, where the second equality is by (C.15) and (C.17).

For further use, we define

Ix
v1
(t) :=

1

t

∫ t

0

〈η− 1
2σ(Xx

s )
−1∇v1X

x
s , dBs〉

and

Rx
v1,v2

(t) := ∇v2∇v1X
x
t −DU2∇v1X

x
t .

Then, we have the following upper bounds on Malliavin derivatives.

Lemma C.3. Let v1, v2 ∈ R
d and

Ui,s =

∫ s

0

ui(r)dr, 0 6 s 6 t,

where ui(r) = 1
t
η−

1
2σ(Xx

r )
−1∇viX

x
r for 0 6 r 6 t and i = 1, 2. Then, as η ∈ (0, δ] and

t ∈ (0, 1), we have

E|DU2∇v1X
x
s |2 6 CA,L,d(1 +

1

t
)|v1|2|v2|2(C.19)

and

E|DU2∇v1X
x
s |4 6 CA,L,d(1 +

1

t3
)|v1|4|v2|4.(C.20)

Proof. Writing ζ(s) = DU2∇v1X
x
s , by Itô’s formula, Cauchy-Schwarz inequality, (C.2),

(C.3) and (C.4), we have
d

dr
E|ζ(r)|2 =2E[〈∇B(Xx

r )ζ(r) +
r

t
∇2B(Xx

r )∇v2X
x
r∇v1X

x
r , ζr〉]

+ 2E[〈1
t
∇σ(Xx

r )∇v1X
x
r σ(X

x
r )

−1∇v2X
x
r , ζr〉]
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+ ηE[‖∇σ(Xx
r )ζ(r) +

r

t
∇2σ(Xx

r )∇v2X
x
r∇v1X

x
r ‖2HS]

62LE|ζ(r)|2 + 2A1
r

t
E[|ζ(r)||∇v1X

x
r ||∇v2X

x
r |]

+ 2
√

A3
1

t
E[|ζ(r)||∇v1X

x
r ||∇v2X

x
r |‖σ(Xx

r )
−1‖HS]

+ 2ηE
[

A3|ζ(r)|2 + A4
r2

t2
|∇v1X

x
r |2|∇v2X

x
r |2
]

.

By Young’s inequality, (C.5), Cauchy’s inequality, (C.8) and the assumption η 6 δ, we
further have

d

dr
E|ζ(r)|2 6(2L+ A1 + 3A3)E|ζ(r)|2

+ E

[(

A1 + 2A4 +
1

t2
‖σ(Xx

r )
−1‖2HS

)

|∇v1X
x
r |2|∇v2X

x
r |2
]

6(2L+ A1 + 3A3)E|ζ(r)|2 +
(

A1 + 2A4 +
ηd

δ

1

t2

)

e4L+14A3 |v1|2|v2|2

6(2L+ A1 + 3A3)E|ζ(r)|2 +
(

A1 + 2A4 +
d

t2

)

e4L+14A3 |v1|2|v2|2.

This inequality, together with ζ(0) = 0 and Gronwall inequality, implies

E|ζ(s)|2 6
(

A1 + 2A4 +
d

t2

)

e4L+14A3 |v1|2|v2|2
[

s+

∫ s

0

r(2L+ A1 + 3A3)e
(2L+A1+3A3)(s−r)dr

]

6CA,L,d(1 +
1

t
)|v1|2|v2|2.

For (C.20), Itô’s formula, the Cauchy-Schwarz inequality and Assumption A yield

d

dr
E|ζ(r)|4 =4E[|ζ(r)|2〈∇B(Xx

r )ζ(r) +
r

t
∇2B(Xr)∇v2X

x
r∇v1X

x
r , ζr〉]

+ 4E[|ζ(r)|2〈1
t
∇σ(Xx

r )∇v1X
x
r σ(X

x
r )

−1∇v2X
x
r , ζr〉]

+ 2ηE[|ζ(r)|2‖∇σ(Xx
r )ζ(r) +

r

t
∇2σ(Xx

r )∇v2X
x
r∇v1X

x
r ‖2HS]

+ 4ηE[|(∇σ(Xx
r )ζ(r) +

r

t
∇2σ(Xx

r )∇v2X
x
r∇v1X

x
r )ζ(r)|2]

64LE|ζ(r)|4 + 4A1E[|ζ(r)|3|∇v1X
x
r ||∇v2X

x
r |]

+ 4
√

A3
1

t
E[|ζ(r)|3|∇v1X

x
r ||∇v2X

x
r |‖σ(Xx

r )
−1‖HS]

+ 12ηE
[

|ζ(r)|2
(

A3|ζ(r)|2 + A4|∇v1X
x
r |2|∇v2X

x
r |2
)]

.

Then, by Young’s inequality, (C.5), the assumption η 6 δ and (C.8), we have

d

dr
E|ζ(r)|4 6(4L+ 3A1 + 3A

2
3
3 + 12A3 + 6A4)E|ζ(r)|4

+ E

[(

A1 + 6A4 +
1

t4
‖σ(Xx

r )
−1‖4HS

)

|∇v1X
x
r |4|∇v2X

x
r |4
]

6(4L+ 3A1 + 3A
2
3
3 + 12A3 + 6A4)E|ζ(r)|4

+

(

A1 + 6A4 +
d2

t4

)

e8L+28A3 |v1|4|v2|4.
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This inequality, together with ζ(0) = 0 and Gronwall inequality, implies

E|ζ(s)|4 6CA,L,d(1 +
1

t3
)|v1|4|v2|4.

�

Based on the results above, we have the following two lemmas:

Lemma C.4. Let v1, v2 ∈ R
d and x ∈ R

d. Then, for all η 6 (0, δ] and t ∈ (0, 1], we have

E|Ix
v1(t)|4 6

10

t2
d2

δ2
e4L+14A3 |v1|4,(C.21)

E|∇v2Ix
v1(t)|2 6

CA,L,d

tδ
|v1|2|v2|2,(C.22)

E|DU2Ix
v1
(t)|2 6 CA,L,d

1

tδ
(1 +

1

tδ
)|v1|2|v2|2.(C.23)

Proof. By Burkholder’s inequality [52, Theorem 2], (C.5) and (C.8), we have

E|Ix
v1
(t)|4 =E|1

t

∫ t

0

〈η− 1
2σ(Xx

s )
−1∇v1X

x
s , dBs〉|4

6
4
√
2

t4
η−2

E
(

∫ t

0

|σ(Xx
s )

−1∇v1X
x
s |2ds

)2

6
10

t4
d2

δ2
E
(

∫ t

0

|∇v1X
x
s |2ds

)2

6
10

t3
d2

δ2

∫ t

0

E|∇v1X
x
s |4ds 6

10

t2
d2

δ2
e4L+14A3 |v1|4.

For (C.22), the definition of Ix
v1
(t) yields

∇v2Ix
v1
(t) =

1

t

∫ t

0

∇v2〈η−
1
2σ(Xx

s )
−1∇v1X

x
s , dBs〉

=
1

t
η−

1
2

∫ t

0

〈−σ(Xx
s )

−1∇v2σ(X
x
s )σ(X

x
s )

−1∇v1X
x
s + σ(Xx

s )
−1∇v2∇v1X

x
s , dBs〉.

Then, by Itô isometry, (C.3) and (C.5), we have

E|∇v2Ix
v1(t)|2

=
1

t2
η−1

∫ t

0

E|σ(Xx
s )

−1∇v2σ(X
x
s )σ(X

x
s )

−1∇v1X
x
s − σ(Xx

s )
−1∇v2∇v1X

x
s |2ds

6
2

t2
η−1

∫ t

0

E[|σ(Xx
s )

−1∇v2σ(X
x
s )σ(X

x
s )

−1∇v1X
x
s |2 + |σ(Xx

s )
−1∇v2∇v1X

x
s |2]ds

6
2

t2
η−1

∫ t

0

E[A3‖σ(Xx
s )

−1‖4HS|∇v2X
x
s |2|∇v1X

x
s |2 + ‖σ(Xx

s )
−1‖2HS|∇v2∇v1X

x
s |2]ds

6
2

t2
η−1

∫ t

0

E[A3
η2d2

δ2
|∇v2X

x
s |2|∇v1X

x
s |2 +

ηd

δ
|∇v2∇v1X

x
s |2]ds.

By Cauchy-Schwarz inequality, (C.8) and (C.9), we further have

E|∇v2Ix
v1(t)|2 6CA,L,d

1

t2
η−1

∫ t

0

[

η2

δ2
+
η

δ

]

|v1|2|v2|2ds 6
CA,L,d

tδ
|v1|2|v2|2.
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Recall (C.15) and (C.17), it is easy to see that DU2Ix
v1
(t) can be computed by (C.13) as

DU2Ix
v1(t)

=
1

t

∫ t

0

〈η− 1
2σ(Xx

s )
−1∇v1X

x
s , u2(s)〉ds+

1

t

∫ t

0

〈η− 1
2σ(Xx

s )
−1DU2∇v1X

x
s , dBs〉

− 1

t

∫ t

0

η−
1
2 〈σ(Xx

s )
−1∇σ(Xx

s )σ(X
x
s )

−1DU2X
x
s∇v1X

x
s , dBs〉

=
η−1

t2

∫ t

0

〈σ(Xx
s )

−1∇v1X
x
s , σ(X

x
s )

−1∇v2X
x
s 〉ds+

η−
1
2

t

∫ t

0

〈σ(Xx
s )

−1DU2∇v1X
x
s , dBs〉

− 1

t
η−

1
2

∫ t

0

〈σ(Xx
s )

−1∇σ(Xx
s )σ(X

x
s )

−1s

t
∇v2X

x
s∇v1X

x
s , dBs〉.

Then, by the Cauchy-Schwarz inequality, Itô isometry and (C.3), we have

E|DU2Ix
v1
(t)|2

6
3η−2

t3

∫ t

0

E|〈σ(Xx
s )

−1∇v1X
x
s , σ(X

x
s )

−1∇v2X
x
s 〉|2ds+

3η−1

t2

∫ t

0

E|σ(Xx
s )

−1DU2∇v1X
x
s |2ds

+
3η−1

t2

∫ t

0

E|σ(Xx
s )

−1∇σ(Xx
s )σ(X

x
s )

−1 s

t
∇v2X

x
s∇v1X

x
s |2ds

6
3η−2

t3

∫ t

0

E[‖σ(Xx
s )

−1‖4HS|∇v1X
x
s |2|∇v2X

x
s |2]ds+

3η−1

t2

∫ t

0

E[‖σ(Xx
s )

−1‖2HS|DU2∇v1X
x
s |2]ds

+ A3
3η−1

t2

∫ t

0

E
[

‖σ(Xx
s )

−1‖4HS|∇v2X
x
s |2|∇v1X

x
s |2
]

ds.

It follows from (C.5), the Cauchy-Schwarz inequality, (C.8) and (C.19) that

E|DU2Ix
v1
(t)|2

6
3η−1

t2
(
η−1

t
+ A3)

∫ t

0

η2d2

δ2
E[|∇v1X

x
s |2|∇v2X

x
s |2]ds+

3η−1

t2

∫ t

0

ηd

δ
E|DU2∇v1X

x
s |2ds

6CA,L,d
1

tδ
(1 +

1

tδ
)|v1|2|v2|2.

�

Furthermore, let v1, v2, v3 ∈ R
d, and define ui and Ui as (C.15) and (C.11), respectively,

for i = 1, 2, 3. From (C.18), we can similarly define ∇v3DU2∇v1X
x
s , which satisfies the

following equation: for s ∈ [0, t],

d∇v3DU2∇v1X
x
s

=
[

∇2B(Xx
s )∇v3X

x
sDU2∇v1X

x
s +∇B(Xx

s )∇v3DU2∇v1X
x
s

+
s

t
∇3B(Xx

s )∇v3X
x
s∇v2X

x
s∇v1X

x
s +

s

t
∇2B(Xx

s )∇v3∇v2X
x
s∇v1X

x
s

+
s

t
∇2B(Xx

s )∇v2X
x
s∇v3∇v1X

x
s +

1

t
∇2σ(Xx

s )∇v3X
x
s∇v1X

x
s σ(X

x
s )

−1∇v2X
x
s

+
1

t
∇σ(Xx

s )
(

∇v3∇v1X
x
s σ(X

x
s )

−1∇v2X
x
s +∇v1X

x
s σ(X

x
s )

−1∇v3∇v2X
x
s

)

− 1

t
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1∇σ(Xx
s )∇v3X

x
s σ(X

x
s )

−1∇v2X
x
s

]

ds

+ η
1
2

[

∇2σ(Xx
s )∇v3X

x
sDU2∇v1X

x
s +∇σ(Xx

s )∇v3DU2∇v1X
x
s
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+
s

t
∇3σ(Xx

s )∇v3X
x
s∇v2X

x
s∇v1X

x
s +

s

t
∇2σ(Xx

s )∇v3∇v2X
x
s∇v1X

x
s

+
s

t
∇2σ(Xx

s )∇v2X
x
s∇v3∇v1X

x
s

]

dBs

with ∇v3DU2∇v1X
x
0 = 0.

Then, we have the following upper bounds on Malliavin derivatives.

Lemma C.5. Let vi ∈ R
d for i = 1, 2, 3, and let

Ui,s =

∫ s

0

ui(r)dr, 0 6 s 6 t,

where ui(r) =
1
t
η−

1
2σ(Xx

r )
−1∇viX

x
r for 0 6 r 6 t. Then, for all η ∈ (0, δ] and t ∈ (0, 1],

we have

E|∇v3DU2∇v1X
x
s |2 6 CA,L,d(1 +

1

t
)|v1|2|v2|2|v3|2.(C.24)

Proof. Writing τ1(s) = ∇v3DU2∇v1X
x
s , by Itô’s formula, we have

d

dr
E|τ1(r)|2

=2E〈∇2B(Xx
r )∇v3X

x
rDU2∇v1X

x
r +∇B(Xx

r )τ1(r)

+
r

t
∇3B(Xr)∇v3X

x
r∇v2X

x
r∇v1X

x
r +

r

t
∇2B(Xr)∇v3∇v2X

x
r∇v1X

x
r

+
r

t
∇2B(Xr)∇v2X

x
r∇v3∇v1X

x
r +

1

t
∇2σ(Xx

r )∇v3X
x
r∇v1X

x
r σ(X

x
r )

−1∇v2X
x
r

+
1

t
∇σ(Xx

r )
(

∇v3∇v1X
x
r σ(X

x
r )

−1∇v2X
x
r +∇v1X

x
r σ(X

x
r )

−1∇v3∇v2X
x
r

)

− 1

t
∇σ(Xx

r )∇v1X
x
r σ(X

x
r )

−1∇σ(Xx
r )∇v3X

x
r σ(X

x
r )

−1∇v2X
x
r , τ1(r)〉

+ ηE‖∇2σ(Xx
r )∇v3X

x
rDU2∇v1X

x
r +∇σ(Xx

r )τ1(r) +
r

t
∇2σ(Xx

r )∇v2X
x
r∇v3∇v1X

x
r

+
r

t
∇3σ(Xx

r )∇v3X
x
r∇v2X

x
r∇v1X

x
r +

r

t
∇2σ(Xx

r )∇v3∇v2X
x
r∇v1X

x
r ‖2HS.

It follows from Assumption A and the Cauchy-Schwarz inequality that

d

dr
E|τ1(r)|2

62LE|τ1(r)|2 + 2A1E
[

|∇v3X
x
r ||DU2∇v1X

x
r ||τ1(r)|

]

+ 2E
[

A2|∇v3X
x
r ||∇v2X

x
r ||∇v1X

x
r ||τ1(r)|+ A1|∇v3∇v2X

x
r ||∇v1X

x
r ||τ1(r)|

]

+ 2E
[(

A1|∇v3∇v1X
x
r |+

√
A4

t
|∇v3X

x
r ||∇v1X

x
r |‖σ(Xx

r )
−1‖HS

)

|∇v2X
x
r ||τ1(r)|

]

+ 2
√

A3
1

t
E
[(

|∇v3∇v1X
x
r ||∇v2X

x
r |+ |∇v1X

x
r ||∇v3∇v2X

x
r |
)

‖σ(Xx
r )

−1‖HS|τ1(r)|
]

+ 2A3
1

t
E
[

|∇v1X
x
r |‖σ(Xx

r )
−1‖2HS|∇v3X

x
r ||∇v2X

x
r ||τ1(r)|

]

+ 5A4ηE
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |∇v2X

x
r |2|∇v3∇v1X

x
r |2 + |∇v3∇v2X

x
r |2|∇v1X

x
r |2
]

+ 5ηE
[

A3|τ1(r)|2 + A5|∇v3X
x
r |2|∇v2X

x
r |2|∇v1X

x
r |2
]

.

Then, by (C.5) and Young’s inequality, we have

d

dr
E|τ1(r)|2
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6(2L+ 3A1 + A2 + 8A3 + A4)E|τ1(r)|2

+

(

A2 +
1

t2
ηd

δ
+
A3

t2
η2d2

δ2
+ 5A5

)

E[|∇v1X
x
r |2|∇v2X

x
r |2|∇v3X

x
r |2]

+ A1E
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |∇v3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v3∇v1X

x
r |2|∇v2X

x
r |2
]

+
1

t2
ηd

δ
E
[

|∇v3∇v1X
x
r |2|∇v2X

x
r |2 + |∇v1X

x
r |2|∇v3∇v2X

x
r |2
]

+ 5A4ηE
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |∇v2X

x
r |2|∇v3∇v1X

x
r |2 + |∇v3∇v2X

x
r |2|∇v1X

x
r |2
]

,

By the Cauchy-Schwarz inequality, (C.8), (C.20) and (C.9), we further have

d

dr
E|τ1(r)|2 6(2L+ 3A1 + A2 + 8A3 + A4)E|τ1(r)|2 + CA,L,d(1 +

1

t2
)|v1|2|v2|2|v3|2.

This inequality, together with τ1(0) = 0 and Gronwall inequality, implies

E|τ1(s)|2 6CA,L,d(1 +
1

t
)|v1|2|v2|2|v3|2.

�

Let v1, v2, v3 ∈ R
d, and define ui and Ui as (C.15) and (C.11), respectively, for i = 1, 2, 3.

From (C.7), we can similarly define DU3∇v2∇v1X
x
s , which satisfies the following equation:

for s ∈ [0, t],

dDU3∇v2∇v1X
x
s

=
[

∇B(Xx
s )DU3∇v2∇v1X

x
s +∇3B(Xx

s )DU3X
x
s∇v2X

x
s∇v1X

x
s

]

ds

+∇2B(Xx
s )
[

DU3X
x
s∇v2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

ds

+ η
1
2

[

∇σ(Xx
s )∇v2∇v1X

x
s +∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s

]

u3(s)ds

+ η
1
2

[

∇σ(Xx
s )DU3∇v2∇v1X

x
s +∇3σ(Xx

s )DU3X
x
s∇v2X

x
s∇v1X

x
s

]

dBs

+ η
1
2∇2σ(Xx

s )
[

DU3X
x
s∇v2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

dBs

=
[

∇B(Xx
s )DU3∇v2∇v1X

x
s +∇3B(Xx

s )
s

t
∇v3X

x
s∇v2X

x
s∇v1X

x
s

]

ds

+∇2B(Xx
s )
[s

t
∇v3X

x
s∇v2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

ds

+
[

∇σ(Xx
s )∇v2∇v1X

x
s +∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s

]1

t
σ(Xx

s )
−1∇v3X

x
s ds

+ η
1
2

[

∇σ(Xx
s )DU3∇v2∇v1X

x
s +∇3σ(Xx

s )
s

t
∇v3X

x
s∇v2X

x
s∇v1X

x
s

]

dBs

+ η
1
2∇2σ(Xx

s )
[s

t
∇v3X

x
s∇v2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

dBs

with DU3∇v2∇v1X
x
0 = 0, where the second equality is by (C.15) and (C.17).

Then, we have the following upper bounds on Malliavin derivatives.

Lemma C.6. Let vi ∈ R
d for i = 1, 2, 3, and let

Ui,s =

∫ s

0

ui(r)dr, 0 6 s 6 t,

where ui(r) =
1
t
σ(Xx

r )
−1∇viX

x
r for 0 6 r 6 t. Then, for all η ∈ (0, δ] and t ∈ (0, 1], we

have

E|DU3∇v2∇v1X
x
s |2 6 CA,L,d(1 +

1

t
)|v1|2|v2|2|v3|3.(C.25)
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Proof. Writing τ2(s) = DU3∇v2∇v1X
x
s , by Itô’s formula, we have

d

dr
E|τ2(r)|2

=2E〈∇B(Xx
r )τ2(r) +∇3B(Xx

r )
r

t
∇v3X

x
r∇v2X

x
r∇v1X

x
r , τ2(r)〉

+ 2E〈∇2B(Xx
r )
[r

t
∇v3X

x
r∇v2∇v1X

x
r +DU3∇v2X

x
r∇v1X

x
r +∇v2X

x
rDU3∇v1X

x
r

]

, τ2(r)〉

+ 2E〈
[

∇σ(Xx
r )∇v2∇v1X

x
r +∇2σ(Xx

r )∇v2X
x
r∇v1X

x
r

]1

t
σ(Xx

r )
−1∇v3X

x
r , τ2(r)〉

+ ηE‖∇σ(Xx
r )τ2(r) +∇3σ(Xx

r )
r

t
∇v3X

x
r∇v2X

x
r∇v1X

x
r

+∇2σ(Xx
r )
[r

t
∇v3X

x
r∇v2∇v1X

x
r +DU3∇v2X

x
r∇v1X

x
r +∇v2X

x
rDU3∇v1X

x
r

]

‖2HS.

The Cauchy-Schwarz inequality and Assumption A imply

d

dr
E|τ2(r)|2

62LE|τ2(r)|2 + 2A2E
[

|∇v3X
x
r ||∇v2X

x
r ||∇v1X

x
r ||τ2(r)|

]

+ 2A1E
[(

|∇v3X
x
r ||∇v2∇v1X

x
r |+ |DU3∇v2X

x
r ||∇v1X

x
r |+ |∇v2X

x
r ||DU3∇v1X

x
r |
)

|τ2(r)|
]

+ 2E
[(

√

A3|∇v2∇v1X
x
r |+

√

A4|∇v2X
x
r ||∇v1X

x
r |
)1

t
‖σ(Xx

r )
−1‖HS|∇v3X

x
r ||τ2(r)|

]

+ 5ηE
[

A3|τ2(r)|2 + A5|∇v3X
x
r |2|∇v2X

x
r |2|∇v1X

x
r |2
]

+ 5A4ηE
[

|∇v3X
x
r |2|∇v2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

.

Then, by (C.5) and Young’s inequality, we have

d

dr
E|τ2(r)|2

6(2L+ 3A1 + A2 + 6A3 + A4)E|τ2(r)|2 + (A2 + 5A5)E[|∇v3X
x
r |2|∇v2X

x
r |2|∇v1X

x
r |2]

+ A1E
[

|∇v3X
x
r |2|∇v2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

+ E
[(

|∇v2∇v1X
x
r |2 + |∇v2X

x
r |2|∇v1X

x
r |2
) 1

t2
ηd

δ
|∇v3X

x
r |2
]

+ 5A4ηE
[

|∇v3X
x
r |2|∇v2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

.

It follows the Cauchy-Schwarz inequality, (C.8), (C.9) and (C.20) that

d

dr
E|τ2(r)|2 6(2L+ 3A1 + A2 + 6A3 + A4)E|τ2(r)|2 + CA,L,d(1 +

1

t2
)|v1|2|v2|2|v3|3.

This inequality, together with τ2(0) = 0 and Gronwall inequality, implies

E|τ2(s)|2 6CA,L,d(1 +
1

t
)|v1|2|v2|2|v3|3.

�

Let v1, v2, v3 ∈ R
d, and define ui and Ui as (C.15) and (C.11), respectively, for i =

1, 2, 3. From (C.18), we can similarly define DU3DU2∇v1X
x
s , which satisfies the following

equation: for s ∈ [0, t],

dDU3DU2∇v1X
x
s

=
[s

t
∇3B(Xx

s )DU3X
x
s∇v2X

x
s∇v1X

x
s +∇B(Xx

s )DU3DU2∇v1X
x
s

]

ds
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+∇2B(Xx
s )
[

DU3X
x
sDU2∇v1X

x
s +

s

t
DU3∇v2X

x
s∇v1X

x
s +

s

t
∇v2X

x
sDU3∇v1X

x
s

]

ds

+
1

t

[

∇2σ(Xx
s )DU3X

x
s∇v1X

x
s σ(X

x
s )

−1∇v2X
x
s +∇σ(Xx

s )DU3∇v1X
x
s σ(X

x
s )

−1∇v2X
x
s

]

ds

+
1

t
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1DU3∇v2X
x
s ds

− 1

t
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1∇σ(Xx
s )DU3X

x
s σ(X

x
s )

−1∇v2X
x
s ds

+ η
1
2

[

∇σ(Xx
s )DU2∇v1X

x
s +

s

t
∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s

]

u3(s)ds

+ η
1
2∇2σ(Xx

s )
[

DU3X
x
sDU2∇v1X

x
s +

s

t
DU3∇v2X

x
s∇v1X

x
s +

s

t
∇v2X

x
sDU3∇v1X

x
s

]

dBs

+ η
1
2

[s

t
∇3σ(Xx

s )DU3X
x
s∇v2X

x
s∇v1X

x
s +∇σ(Xx

s )DU3DU2∇v1X
x
s

]

dBs

with DU3DU2∇v1X
x
0 = 0. Furthermore, by (C.15) and (C.17), we have

dDU3DU2∇v1X
x
s

=
[s2

t2
∇3B(Xx

s )∇v3X
x
s∇v2X

x
s∇v1X

x
s +∇B(Xx

s )DU3DU2∇v1X
x
s

]

ds

+
s

t
∇2B(Xx

s )
[

∇v3X
x
sDU2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

ds

+
1

t

[

∇2σ(Xx
s )
s

t
∇v3X

x
s∇v1X

x
s σ(X

x
s )

−1∇v2X
x
s +∇σ(Xx

s )DU3∇v1X
x
s σ(X

x
s )

−1∇v2X
x
s

]

ds

+
1

t
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1DU3∇v2X
x
s ds

− s

t2
∇σ(Xx

s )∇v1X
x
s σ(X

x
s )

−1∇σ(Xx
s )∇v3X

x
s σ(X

x
s )

−1∇v2X
x
s ds

+
[

∇σ(Xx
s )DU2∇v1X

x
s +

s

t
∇2σ(Xx

s )∇v2X
x
s∇v1X

x
s

]1

t
σ(Xx

s )
−1∇v3X

x
s ds

+ η
1
2
s

t
∇2σ(Xx

s )
[

∇v3X
x
sDU2∇v1X

x
s +DU3∇v2X

x
s∇v1X

x
s +∇v2X

x
sDU3∇v1X

x
s

]

dBs

+ η
1
2

[s2

t2
∇3σ(Xx

s )∇v3X
x
s∇v2X

x
s∇v1X

x
s +∇σ(Xx

s )DU3DU2∇v1X
x
s

]

dBs.

Then, we have the following upper bounds on Malliavin derivatives.

Lemma C.7. Let vi ∈ R
d for i = 1, 2, 3, and let

Ui,s =

∫ s

0

ui(r)dr, 0 6 s 6 t,

where ui(r) =
1
t
σ(Xx

r )
−1∇viX

x
r for 0 6 r 6 t. Then, for all η ∈ (0, δ] and t ∈ (0, 1], we

have

E|DU3DU2∇v1X
x
s |2 6 CA,L,d(1 +

1

t
5
2

)|v1|2|v2|2|v3|2.(C.26)

Proof. Writing τ3(s) = DU3DU2∇v1X
x
s , by Itô’s formula, we have

d

dr
E|τ3(r)|2

=2E〈r
2

t2
∇3B(Xx

r )∇v3X
x
r∇v2X

x
r∇v1X

x
r +∇B(Xx

r )τ3(r), τ3(r)〉

+ 2E〈r
t
∇2B(Xx

r )
[

∇v3X
x
rDU2∇v1X

x
r +DU3∇v2X

x
r∇v1X

x
r +∇v2X

x
rDU3∇v1X

x
r

]

, τ3(r)〉
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+ 2E〈1
t

[

∇2σ(Xx
r )
r

t
∇v3X

x
r∇v1X

x
r +∇σ(Xx

r )DU3∇v1X
x
r

]

σ(Xx
r )

−1∇v2X
x
r , τ3(r)〉

+ 2E〈1
t
∇σ(Xx

r )∇v1X
x
r σ(X

x
r )

−1DU3∇v2X
x
r , τ3(r)〉

− 2E〈 r
t2
∇σ(Xx

r )∇v1X
x
r σ(X

x
r )

−1∇σ(Xx
r )∇v3X

x
r σ(X

x
r )

−1∇v2X
x
r , τ3(r)〉

+ 2E〈
[

∇σ(Xx
r )DU2∇v1X

x
r +

r

t
∇2σ(Xx

r )∇v2X
x
r∇v1X

x
r

]1

t
σ(Xx

r )
−1∇v3X

x
r , τ3(r)〉

+ ηE‖r
t
∇2σ(Xx

r )
[

∇v3X
x
rDU2∇v1X

x
r +DU3∇v2X

x
r∇v1X

x
r +∇v2X

x
rDU3∇v1X

x
r

]

+
r2

t2
∇3σ(Xx

r )∇v3X
x
r∇v2X

x
r∇v1X

x
r +∇σ(Xx

r )τ3(r)‖2HS,

Following the Cauchy-Schwarz inequality and Assumption A , one has

d

dr
E|τ3(r)|2

62LE|τ3(r)|2 + 2A2E
[

|∇v3X
x
r ||∇v2X

x
r ||∇v1X

x
r ||τ3(r)|

]

+ 2A1E
[(

|∇v3X
x
r ||DU2∇v1X

x
r |+ |DU3∇v2X

x
r ||∇v1X

x
r |+ |∇v2X

x
r ||DU3∇v1X

x
r |
)

|τ3(r)|
]

+
2

t
E
[(

√

A4|∇v3X
x
r ||∇v1X

x
r |+

√

A3|DU3∇v1X
x
r |
)

‖σ(Xx
r )

−1‖HS|∇v2X
x
r ||τ3(r)|

]

+
2

t

√

A3E
[

|∇v1X
x
r |‖σ(Xx

r )
−1‖HS|DU3∇v2X

x
r ||τ3(r)|

]

+
2

t
A3E

[

|∇v1X
x
r |‖σ(Xx

r )
−1‖2HS|∇v3X

x
r ||∇v2X

x
r ||τ3(r)|

]

+
2

t
E
[(

√

A3|DU2∇v1X
x
r |+

√

A4|∇v2X
x
r ||∇v1X

x
r |
)

‖σ(Xx
r )

−1‖HS|∇v3X
x
r ||τ3(r)|

]

+ 5A4ηE
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

+ 5ηE
[

A5|∇v3X
x
r |2|∇v2X

x
r |2|∇v1X

x
r |2 + A3|τ3(r)|2

]

.

By (C.5) and Young’s inequality, we have

d

dr
E|τ3(r)|2

6(2L+ 3A1 + A2 + 9A3 + 2A4)E|τ3(r)|2 + (A2 + 5A5)E[|∇v1X
x
r |2|∇v2X

x
r |2|∇v3X

x
r |2]

+ A1E
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

+
1

t2
E
[(

|∇v3X
x
r |2|∇v1X

x
r |2 + |DU3∇v1X

x
r |2
)ηd

δ
|∇v2X

x
r |2
]

+
1

t2
E
[

|∇v1X
x
r |2|DU3∇v2X

x
r |2

ηd

δ
+ A3

η2d2

δ2
|∇v1X

x
r |2|∇v2X

x
r |2|∇v3X

x
r |2
]

+
1

t2
E
[(

|DU2∇v1X
x
r |2 + |∇v2X

x
r |2|∇v1X

x
r |2
)

|∇v3X
x
r |2

ηd

δ

]

+ 5A4ηE
[

|∇v3X
x
r |2|DU2∇v1X

x
r |2 + |DU3∇v2X

x
r |2|∇v1X

x
r |2 + |∇v2X

x
r |2|DU3∇v1X

x
r |2
]

.

Then, by the Cauchy-Schwarz inequality, (C.8) and (C.20), we have

d

dr
E|τ3(r)|2 6(2L+ 3A1 + A2 + 9A3 + 2A4)E|τ3(r)|2 + CA,L,d(1 +

1

t
7
2

)|v1|2|v2|2|v3|2.
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This inequality, together with τ3(0) = 0 and Gronwall inequality, implies

E|τ3(s)|2 6CA,L,d(1 +
1

t
5
2

)|v1|2|v2|2|v3|2.

�

With the above results, we have the following estimates:

Lemma C.8. Let v1, v2, v3 ∈ R
d and x ∈ R

d. Then, as η ∈ (0, δ] and t ∈ (0, 1], we have

E|Rx
v1,v2(t)|2 6 CA,L,d(1 +

1

t
)|v1|2|v2|2,(C.27)

E|∇v3Rx
v1,v2(t)|2 6 CA,L,d(1 +

1

t
)|v1|2|v2|2|v3|2(C.28)

and

E|DU3Rx
v1,v2(t)|2 6 CA,L,d(1 +

1

t
5
2

)|v1|2|v2|2|v3|2.(C.29)

Proof. By the Cauchy-Schwarz inequality, (C.9) and (C.19), we have

E|Rx
v1,v2(t)|2 =E|∇v2∇v1X

x
t −DU2∇v1X

x
t |2

62E|∇v2∇v1X
x
t |2 + 2E|DU2∇v1X

x
t |2

62
√

E|∇v2∇v1X
x
t |4 + 2E|DU2∇v1X

x
t |2

6CA,L,d(1 +
1

t
)|v1|2|v2|2.

Noticing that t 6 4
γ
e

γ
4
t, by (C.10) and (C.24), we have

E|∇v3Rx
v1,v2

(t)|2 =E|∇v3∇v2∇v1X
x
t −∇v3DU2∇v1X

x
t |2

62E|∇v3∇v2∇v1X
x
t |2 + 2E|∇v3DU2∇v1X

x
t |2

6CA,L,d(1 +
1

t
)|v1|2|v2|2|v3|2.

By (C.25) and (C.26), we have

E|DU3Rx
v1,v2(t)|2 =E|DU3∇v2∇v1X

x
t −DU3DU2∇v1X

x
t |2

62E|DU3∇v2∇v1X
x
t |2 + 2E|DU3DU2∇v1X

x
t |2

6CA,L,d(1 +
1

t
5
2

)|v1|2|v2|2|v3|2.

�

C.2. Proof of Lemma 3.3. Recall Pth(x) = E[h(Xx
t )] for h ∈ Lip(1), by Lebesgue’s

dominated convergence theorem, the Cauchy-Schwarz inequality and (C.8), we have

|∇vE[h(X
x
t )]| = |E[∇h(Xx

t )∇vX
x
t ]| 6 ‖∇h‖E|∇vX

x
t | 6 eL+4,

(3.7) is proved.
Denote

hǫ(x) =

∫

Rd

fǫ(y)h(x− y)dy,(C.30)

with ǫ > 0 and fǫ is the density of the normal distributionN(0, ǫ2Id). It is easy to see that hǫ
is smooth, limǫ→0 hǫ(x) = h(x), limǫ→0∇hǫ(x) = ∇h(x) and |hǫ(x)| 6 C(1 + |x|) for all
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x ∈ R
d and some C > 0. Moreover, ‖∇hǫ‖ 6 ‖∇h‖ 6 1. Then, by Lebesgue’s dominated

convergence theorem, we have

∇v2∇v1E
[

hǫ(X
x
t )
]

= E
[

∇2hǫ(X
x
t )∇v2X

x
t ∇v1X

x
t

]

+ E
[

∇hǫ(Xx
t )∇v2∇v1X

x
t

]

,

by (C.15) and (C.16), we further have

E
[

∇2hǫ(X
x
t )∇v2X

x
t ∇v1X

x
t

]

=E
[

∇2hǫ(X
x
t )DU2X

x
t ∇v1X

x
t

]

=E
[

DU2

(

∇hǫ(Xx
t )
)

∇v1X
x
t

]

=E
[

DU2

(

∇hǫ(Xx
t )∇v1X

x
t

)]

− E
[

∇hǫ(Xx
t )DU2∇v1X

x
t

]

=E
[

∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)
]

− E
[

∇hǫ(Xx
t )DU2∇v1X

x
t

]

.

where the last equality is by Bismut’s formula (C.14). These imply

∇v2∇v1E
[

hǫ(X
x
t )
]

= E
[

∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)
]

+ E
[

∇hǫ(Xx
t )Rx

v1,v2
(t)
]

(C.31)

Therefore, by Lebesgue’s dominated convergence theorem, the Cauchy-Schwarz inequality,
(C.8), (C.21) and (C.27), we have

|∇v2∇v1E[h(X
x
t )]| =| lim

ǫ→0
∇v2∇v1E[hǫ(X

x
t )]|

6E|∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)|+ E|Rx

v1,v2
(t)|

6

√

E|∇v1X
x
t |2E|Ix

v2
(t)|2 +

√

E|Rx
v1,v2

(t)|2 6 CA,L,d
1√
δt
,

(3.8) is proved.
By (C.31) and Lebesgue’s dominated convergence theorem, we have

∇v3∇v2∇v1E
[

hǫ(X
x
t )
]

=∇v3E
[

∇hǫ(Xx
t )∇v1X

x
t Ix

v2(t)
]

+∇v3E
[

∇hǫ(Xx
t )Rx

v1,v2(t)
]

=E
[

∇2hǫ(X
x
t )∇v3X

x
t ∇v1X

x
t Ix

v2(t)
]

+ E
[

∇hǫ(Xx
t )∇v3∇v1X

x
t Ix

v2(t)
]

+ E
[

∇hǫ(Xx
t )∇v1X

x
t ∇v3Ix

v2(t)
]

+ E
[

∇2hǫ(X
x
t )∇v3X

x
t Rx

v1,v2(t)
]

+ E
[

∇hǫ(Xx
t )∇v3Rx

v1,v2(t)
]

,

by (C.15), (C.16) and (C.14), we further have

E
[

∇2hǫ(X
x
t )∇v3X

x
t ∇v1X

x
t Ix

v2(t)
]

=E
[

∇2hǫ(X
x
t )DU3X

x
t ∇v1X

x
t Ix

v2(t)
]

=E
[

DU3

(

∇hǫ(Xx
t )
)

∇v1X
x
t Ix

v2(t)
]

=E
[

DU3

(

∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)
)]

− E
[

∇hǫ(Xx
t )DU3∇v1X

x
t Ix

v2
(t)
]

− E
[

∇hǫ(Xx
t )∇v1X

x
t DU3Ix

v2
(t)
]

=E
[

∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)Ix

v3
(t)
]

− E
[

∇hǫ(Xx
t )DU3∇v1X

x
t Ix

v2
(t)
]

− E
[

∇hǫ(Xx
t )∇v1X

x
t DU3Ix

v2
(t)
]

and

E
[

∇2hǫ(X
x
t )∇v3X

x
t Rx

v1,v2
(t)
]

=E
[

∇2hǫ(X
x
t )DU3X

x
t Rx

v1,v2
(t)
]

=E
[

DU3

(

∇hǫ(Xx
t )
)

Rx
v1,v2

(t)
]

=E
[

DU3

(

∇hǫ(Xx
t )Rx

v1,v2
(t)
)]

− E
[

∇hǫ(Xx
t )DU3Rx

v1,v2
(t)
]

=E
[

∇hǫ(Xx
t )Rx

v1,v2
(t)Ix

v3
(t)
]

− E
[

∇hǫ(Xx
t )DU3Rx

v1,v2
(t)
]

.
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These imply

∇v3∇v2∇v1E
[

hǫ(X
x
t )
]

=E
[

∇hǫ(Xx
t )∇v1X

x
t Ix

v2
(t)Ix

v3
(t)
]

− E
[

∇hǫ(Xx
t )DU3∇v1X

x
t Ix

v2
(t)
]

− E
[

∇hǫ(Xx
t )∇v1X

x
t DU3Ix

v2
(t)
]

+ E
[

∇hǫ(Xx
t )∇v3∇v1X

x
t Ix

v2
(t)
]

+ E
[

∇hǫ(Xx
t )∇v1X

x
t ∇v3Ix

v2
(t)
]

+ E
[

∇hǫ(Xx
t )Rx

v1,v2
(t)Ix

v3
(t)
]

− E
[

∇hǫ(Xx
t )DU3Rx

v1,v2(t)
]

+ E
[

∇hǫ(Xx
t )∇v3Rx

v1,v2(t)
]

.

Therefore, by Lebesgue’s dominated convergence theorem, we have

|∇v3∇v2∇v1E[h(X
x
t )]| =| lim

ǫ→0
∇v3∇v2∇v1E[hǫ(X

x
t )]|

6E|∇v1X
x
t Ix

v2
(t)Ix

v3
(t)|+ E|DU3∇v1X

x
t Ix

v2
(t)|

+ E|∇v1X
x
t DU3Ix

v2
(t)|+ E|∇v3∇v1X

x
t Ix

v2
(t)|

+ E|∇v1X
x
t ∇v3Ix

v2
(t)|+ E|Rx

v1,v2
(t)Ix

v3
(t)|

+ E|DU3Rx
v1,v2

(t)|+ E|∇v3Rx
v1,v2

(t)|.
Then, by the Cauchy-Schwarz inequality, (C.8) and (C.21), we have

E|∇v1X
x
t Ix

v2
(t)Ix

v3
(t)| 6 CL,d

1

δt
.

By (C.19) and (C.21), we have

E|DU3∇v1X
x
t Ix

v2
(t)| 6CA,L,d

1√
δt
(1 +

1√
t
).

By (C.8) and (C.23), we have

E|∇v1X
x
t DU3Ix

v2(t)| 6CA,L,d
1√
δt
(1 +

1√
δt
).

By (C.9) and (C.21), we have

E|∇v3∇v1X
x
t Ix

v2
(t)| 6CA,L,d

1√
δt
.

By (C.8) and (C.22), we have

E|∇v1X
x
t ∇v3Ix

v2
(t)| 6 CA,L,d√

δt
.

By (C.27) and (C.21), we have

E|Rx
v1,v2

(t)Ix
v3
(t)| 6CA,L,d

1√
δt
(1 +

1√
t
).

By (C.29), we have

E|DU3Rx
v1,v2(t)| 6 CA,L,d(1 +

1

t
5
4

).

By (C.28), we have

E|∇v3Rx
v1,v2

(t)| 6 CA,L,d(1 +
1√
t
).

These imply

|∇v3∇v2∇v1E[h(X
x
t )]| 6 CA,L,d

(

1 +
1

δt
+

1

t
5
4

)

.

�
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APPENDIX D. THE DISTRIBUTION OF THE SOLUTION OF THE SDDE (2.7)

In this section, we will prove that when K in Assumption 1.4 and δ in the SDDE (2.7)
both are small enough, the distribution of the solution X̃s of the SDDE (2.7) is close to the
minimizer ω∗ as s→ ∞.

Lemma D.1. Under the Assumptions 1.2 and 1.4. Let b := e−2(γ−L2η)mη + ηL2

γ−L2η
. For any

s ∈ N, as η 6
γ

3L2 and b < 1, we have

E|X̃s − ω∗|2 6 bs|x− ω∗|2 + 2K + δd

2(γ − L2η)

1

1− b
.

Proof. By Itô’s formula, for any s, t ∈ [0, mη] with s 6 t we have

E|Xt − ω∗|2 =E|Xs − ω∗|2 − 2

∫ t

s

E〈Xr − ω∗,∇P (Xr)〉dr

+ η

∫ t

s

Etr [Σ(Xr, x)] dr + δd(t− s).

Since ∇P (ω∗) = 0 for the minimizer ω∗, (1.6) implies

〈Xr − ω∗,∇P (Xr)〉 = 〈Xr − ω∗,∇P (Xr)−∇P (ω∗)〉 > γ|Xr − ω∗|2 −K.

By (2.6), one has

Etr [Σ(Xr, x)] 6 L2
E|Xr − x|2 6 2L2

E|Xr − ω∗|2 + 2L2|x− ω∗|2.
Therefore,

E|Xt − ω∗|2 − |Xs − ω∗|2

6− 2(γ − L2η)

∫ t

s

E|Xr − ω∗|2dr + (2K + 2ηL2|x− ω∗|2 + δd)(t− s).

Denote F (t) = E|Xt − ω∗|2 for t > 0, then for any 0 6 s 6 t 6 mη,

F (t)− F (s) 6 −2(γ − L2η)

∫ t

s

F (r)dr + (2K + 2ηL2|x− ω∗|2 + δd)(t− s).(D.1)

Let s = 0 and η < γ
L2 , the relation above yields

F (t) 6 F (0) + (2K + 2ηL2|x− ω∗|2 + δd)mη, t ∈ [0, mη],

which, together with (D.1), further implies F (t) is absolutely continuous on [0, mη]. So
F (t) is differentiable on [0, η] a.e.. Moreover, it is easy to see that the following differential
inequality holds by (D.1),

F ′(t) 6 −2(γ − L2η)F (t) + 2K + 2ηL2|x− ω∗|2 + δd t ∈ (0, mη].

Solving this differential inequality further gives

F (t) 6 e−2(γ−L2η)tF (0) +
2K + 2ηL2|x− ω∗|2 + δd

2(γ − L2η)
,

that is,

E|Xt − ω∗|2 6

[

e−2(γ−L2η)t +
ηL2

γ − L2η

]

|x− ω∗|2 + 2K + δd

2(γ − L2η)
, t ∈ [0, mη].

Inductively, for any s > 1 we have

E|X̃s − ω∗|2 = E

[

E

[

|X̃s − ω∗|2|X̃s−1

]]
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6 bE|X(s−1)mη − ω∗|2 + 2K + δd

2(γ − L2η)

6 bs|x− ω∗|2 + 2K + δd

2(γ − L2η)

s−1
∑

k=0

bk

6 bs|x− ω∗|2 + 2K + δd

2(γ − L2η)

1

1− b
.

The case s = 0 holds obviously and we finish the proof. �
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