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a b s t r a c t 

Discrete-time random walks (RWs) have proven to be a powerful modelling tool in ecology, particularly utilised for the study of animal movement at an individual Q1 Q2 

level. There are several descriptors for the analysis of movement paths, but ecologists routinely use two simple metrics: the mean squared displacement and the 
sinuosity index (which measures movement tortuosity). The mathematical expressions for these metrics are already well known in 2D, and recently their 3D equiv- 
alents have been derived. Alongside this, cutting-edge developments in tagging and sensor technology have facilitated the recording of more accurate and refined 
long-term 3D movement data. Motivated by the multitudinous studies that have successfully used 2D RW models as a baseline against observed movement data, our 
viewpoint is that an extension to 3D is evidently due, with prospects of further insights in 3D animal space use in several ecological contexts. 

1. Viewpoint article 1 

Why, how, where and when animals move are fundamental ques- 2 

tions in movement ecology. A better understanding of animal movement 3 

patterns can help explain movement behaviour at a range of spatiotem- 4 

poral scales, from local scale foraging and home range exploration to 5 

large scale migration ( Nathan et al., 2008 ). This has immediate conse- 6 

quences for numerous problems arising in spatial ecology, with focus 7 

on biodiversity ( Jeltsch et al., 2013 ), nature management and conser- 8 

vation ( Allen and Singh, 2016 ; Fraser et al., 2018 ), biological invasions 9 

( Shigesada and Kawasaki, 1997 ), and pest monitoring ( Petrovskii et al., 10 

2014 ). Discrete-time Random Walks (RWs) provide a useful modelling 11 

framework for individual movement by mapping an animal’s continu- 12 

ous movement path as a time-series of distinct locations ( Turchin 1998 , 13 

Grimm and Railsback, 2005 ). The movement trajectory can then be 14 

modelled given the probability distributions of move lengths and turn- 15 

ing angles, which can be obtained directly from observed movement 16 

data by statistical distribution fitting. This methodology has been ap- 17 

plied for a wide variety of animals, such as: marine predators (e.g., 18 

sharks, tuna, billfish and ocean sunfish, Humphries et al., 2010 ), mam- 19 

mals (e.g., brushtail possums, hunter–gatherers, African bull elephants, 20 

Asian black bears, Postlethwaite and Dennis, 2013 ; Raichlen et al., 2014 ; 21 

Bailey and Codling, 2021 ; Ando et al., 2022 ), avian species (e.g., Egyp- 22 

tian vultures, López-López et al., 2013 ) and insects (e.g., butterflies, 23 

beetles, Marsh and Jones, 1988 ; Bailey et al., 2021 ). Moreover, the 24 

step length and turning angle distributions which describe the observed 25 

movement data most accurately can be identified by assessing the abso- 26 
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lute goodness-of-fit of a set of candidate distributions using maximum 27 

likelihood methods ( Plank et al., 2013 ). 28 

The earliest RW models for animal movement were based on purely 29 

random motion (Simple Random Walk, SRW) ( Lin and Segel, 1974 ; 30 

Okubo 1980 ), and later extended to the more realistic Correlated Ran- 31 

dom Walk (CRW). CRWs allow for a short-term localised directional 32 

persistence in the movement path accounting for an individual being 33 

likely to move in a similar direction as their previous step, with a rela- 34 

tively low probability of exercising abrupt turns ( Kareiva and Shigesada, 35 

1983 ; Bovet and Benhamou, 1988 ). CRWs have been used to describe 36 

and analyse the movement of various species, from smaller, simpler or- 37 

ganisms such as microalga ( Garcia et al., 2011 ) and insects ( Byers, 2001 ) 38 

to larger animals, including both terrestrial (elk; Fortin et al., 2005 ) 39 

and marine (sperm whales; Whitehead et al. 2008 ). The Biased Random 40 

Walk (BRW) features a preference towards a certain direction at each 41 

step and, unlike the CRW, retains no knowledge of the previous move- 42 

ment direction. This long-term directional bias can be towards a global 43 

direction (often referred to as a ‘point at infinity’), or a fixed point in 44 

space, in which case the orientation of the preferred direction will de- 45 

pend upon the spatial location of the individual at each step ( Marsh 46 

and Jones, 1988 ; Codling et al., 2008 ). Examples of applications, BRWs 47 

have been used to model the trajectories of swimming microorganisms 48 

( Hill and Hader, 1997 ), and to model the movement of insects in the 49 

presence of baited traps ( Alqubori and Petrovskii, 2022 ), where an ex- 50 

ternal stimulus (e.g., pheromone, light or colour) invokes an attraction 51 

to the trap locations ( Epsky et al., 2008 ). A mixture of both short- and 52 

long-term biases induced by balancing persistence and external navi- 53 

gation components result in the Biased and Correlated Random Walk 54 

(BCRW) ( Benhamou and Bovet, 1992 ), which has been used, for exam- 55 
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ple, to study the navigational efficiency of animals (Bailey et al., 2018),56

including butterflies (Schultz and Crone, 2001), salmon (Morrice et al.,57

2020) and seals (McClintock et al., 2012). Whilst more complex RWs58

have been developed for increased realism, to date these null RWs re-59

main as the most dominant conceptual frameworks, partly due to their60

relative simplicity and efficacy, which in turn has allowed for the devel-61

opment of advanced statistical modelling and analytical techniques that62

are widely used in animal movement research such as hidden Markov63

models (Langrock et al., 2012), state-space models (Patterson et al.,64

2008) and data-driven agent based models (Butts et al., 2022).65

The mathematical properties of RWs in 2D are well known in the66

context of the movement of animals, micro-organisms and cells (Berg,67

1983; Codling et al., 2008; Wadkin et al., 2018). Exact formulae of key68

metrics for the analysis of movement patterns such as the mean squared69

displacement (MSD, which measures the spatial spread of a population),70

and path sinuosity (which quantifies the amount of turning in an indi-71

vidual’s movement path i.e., tortuosity) have been derived in 2D, and its72

equivalent in 3D is recently documented (Benhamou 2018; Ahmed et al.,73

2021). For instance, Sadjadi et al. (2015) first computed the MSD for the74

3D balanced CRW in the context of anomalous transport of self-propelled75

particles using Fourier transforms, and later Benhamou (2018) derived76

the same mathematical expression motivated by the 3D random search77

movement of animals using a probabilistic approach. In terms of sim-78

ulating a movement path in 3D, the distribution of move lengths can79

be inferred by distribution fitting to a histogram of step length data (as80

in the 2D case) and fitting a spherical distribution (e.g., a Fisher distri-81

bution, Mardia and Jupp, 2000) to 3D directional data – the methods82

for which are well established (Fisher et al., 1987; Leong and Carlile,83

1998).84

Due to technological limitations, animal movement was historically85

recorded in 2D, with 3D data usually projected into 2D space to allow86

for easier analysis. This risks losing important behavioural information87

as a degree of freedom is removed from the movement analysis (Tracey88

et al., 2014). However, many animals exercise movement in a clear ver-89

tical direction, such as volant and aquatic animals (Cooper et al., 2014;90

Aspillaga et al., 2019), as well as less obvious terrestrial animals who91

can move through different altitudes (e.g., giant panda, Tracey et al.,92

2014), albeit in this case the movement can be more constrained due93

to increased energy costs whilst traversing steep terrains (Dunford et94

al., 2020). In line with this, recent technological advancements have fa-95

cilitated the recording of high-resolution long-term 3D movement data96

(Katzner and Arlettaz, 2020): GPS trackers are typically used to measure97

longitude and latitude but can also record elevation (albeit with lesser98

accuracy, Cagnacci et al., 2010); digital biotelemetry devices can track99

animals by recording 3D location data expressed precisely as Cartesian100

coordinates (Tracey et al., 2014); accelerometers and magnetometers101

can quantify the orientations of the surge, sway and heave axes with102

respect to gravity and the geomagnetic field (Williams et al., 2017);103

gyrometers provide direct measures of rotations (yaw, pitch and roll)104

(Noda et al., 2012; Gunner et al.,2020); bio-loggers are used to infer105

horizontal and vertical movement of marine animals across time and106

space (Williams et al., 2020); and video-based 3D photogrammetry is107

used for automated tracking of animals (Sellers and Hirasaki, 2014).108

These, along with a substantial increase in data availability and quality,109

has led to a rapid increase in the number of animal movement studies110

in 3D space, with a mixture of tools proposed to analyse 3D space use111

(e.g., see Demšar and Long, 2019) – however, none are based on the112

traditional null RWs.113

Much progress in understanding important ecological processes such114

as population dynamics, navigational strategies, encounter rates and115

foraging theory, have developed due to the use of 2D RW models116

(Bartumeus et al, 2005; Barton et al., 2009; Gurarie and Ovaskainen,117

2011; Viswanathan et al., 2011; Bailey et al., 2018). Yet it is unclear118

whether the same conclusions can be simply extended to three dimen-119

sions without similar rigorous analyses of the null 3D RW models com-120

pared against recorded movement. This is highlighted by recent findings121

that the cognitive processes when exploring a 3D volumetric space com- 122

pared to a 2D planar space, can be inherently different and are yet to be 123

fully understood (Grieves et al., 2021; Ginosar et al., 2021). There are 124

many examples where 2D RWmodels have been useful in real world ap- 125

plications e.g., integrated pest management strategies (Petrovskii et al., 126

2014), diagnosing illnesses in farm animals (Vazquez Diosdado et al., 127

2018), managing fish stocks (Boyd et al., 2020) etc., and it can be ex- 128

pected that analysing movements in 3D can yield similar wide-ranging 129

applications. More broadly, accounting for movement in a vertical direc- 130

tion has clear ecological implications, for instance; a better understand- 131

ing of animal habitat use, spatial differentiation, size of home ranges, 132

encounter rates with stationary non-revisitable targets, and resource use 133

at different altitudes. As an example, some recent progress has been 134

made to simulate the movement of insects in 3D space using 3D RWs, 135

and to analyse the capture efficiency of voluminous traps based on the 136

interplay between different movement types and trap geometry (Ahmed 137

et al., 2021). 138

On synthesis, our viewpoint is that, alongside the usage of more com- 139

plex movement models and the development of new tools for the anal- 140

ysis of space use in movement ecology, these null RW models warrant 141

testing as a baseline against observed movement data for animals that 142

exhibit strong vertical space use, so that important movement behaviour 143

is neither discounted nor missed. 144

Declaration of Competing Interest 145

The authors declare that they have no known competing financial 146

interests or personal relationships that could have appeared to influence 147

the work reported in this paper. 148

Data Availability 149

No data was used for the research described in the article. 150

Acknowledgements 151

We thank Simon Benhamou (Centre d’Ecologie Fonctionnelle et Evo- 152

lutive, CNRS, France) and Sergei Petrovskii (University of Leicester, UK) 153

for comments on this manuscript. 154

References 155

Ahmed, DA, Benhamou, S, Bonsall, MB, Petrovskii, SV, 2021. Three-dimensional random 156
walk models of individual animal movement and their application to trap counts mod- 157
elling. J. Theor. Biol. 524 (7), 110728. 158

Allen, AM, Singh, NJ, 2016. Linking movement ecology with wildlife management and 159
conservation. Front. Ecol. Evol. 3, 155. 160

Ando, K, Yoshikawa, T, Kozakai, C, Yamazaki, K, Naganuma, T, Inagaki, A, Koike, S, 2022. 161
Composite Brownian walks best explain the movement patterns of Asian black bears, 162
irrespective of sex, seasonality, and food availability. Ecol. Res. 37 (4), 522–531 IssPg. 163

Aspillaga, E, Safi, K, Hereu, B, Bartumeus, F, 2019. Modelling the three-dimensional space 164
use of aquatic animals combining topography and Eulerian telemetry data. Methods 165
Ecol. Evol. 10, 1551–1557. 166

Alqubori, O., Petrovskii, S., 2022. Analysis of simulated trap counts arising from correlated 167
and biased random walks. Ecol. Modell. 470, 110016. 168

Bailey, J, Wallis, J, Codling, EA, 2018. Navigational efficiency in a biased and correlated 169
random walk model of individual animal movement. Ecology 99 (1), 217–223. 170

Bailey, JD, Codling, EA, 2021. Emergence of the wrapped Cauchy distribution in mixed 171
directional data. AStA Adv. Stat. Anal. 105, 229–246. 172

Barton, KA, Phillips, BL, Morales, JM, Travis, JM, 2009. The evolution of an ‘intelligent’ 173
dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118 174
(2), 309–319. 175

Bartumeus, F, Viswanathan, GM, Catalan, J, 2005. Animal search strategies: a quantitative 176
random walk analysis. Ecology 86, 3078–3087. 177

Benhamou, S, Bovet, P, 1992. Distinguishing between elementary orientation mechanisms 178
by means of path analysis. Animal Behav. 43 (3), 371–377. 179

Benhamou, S, 2018. Mean squared displacement and sinuosity of three-dimensional ran- 180
dom search movements ArXiv 1801 02435Retrieved from. 181

Berg, HC, 1983. Random walks in biology. Princeton University Press, Princeton. 182
Bovet, P, Benhamou, S, 1988. Spatial analysis of animals’ movements using a correlated 183

random walk model. J. Theor. Biol. 131 (4), 419–433. 184
Boyd, RJ, Sibly, R, Hyder, K, Walker, N, Thorpe, R, Roy, S, 2020. Simulating the summer 185

feeding distribution of Northeast Atlantic mackerel with a mechanistic individual- 186
based model. Progr. Oceanogr. 183, 102299. 187

2

Benhamou, S, 2018. Mean squared displacement and sinuosity of three-dimensional ran- 180
dom search movements ArXiv 1801 02435Retrieved from.



D.A. Ahmed, J.D. Bailey and M.B. Bonsall Ecological Modelling xxx (xxxx) xxx 

ARTICLE IN PRESS 
JID: ECOMOD [m5GeSdc; October 12, 2022;17:14 ] 

Butts, DJ, Thompson, NE, Christensen, SA, Williams, DM, Murillo, MS, 2022. Data-driven 188 
agent-based model building for animal movement through Exploratory Data Analysis. 189 
Ecol. Modell. 470, 110001. 190 

Byers, JA, 2001. Correlated random walk equations of animal dispersal resolved by sim- 191 
ulation. Ecology 82 (6), 1680–1690. 192 

Cagnacci, F, Boitani, L, Powell, RA, Boyce, MS, 2010. Animal ecology meets GPS based 193 
radiotelemetry: a perfect storm of opportunities and challenges. Philos. Trans. R. Soc. 194 
B 365, 2157–2162. 195 

Codling, E, Plank, M, Benhamou, S, 2008. Random walk models in biology. J.R. Soc. 196 
Interface 5 (25), 813–834. 197 

Cooper, NW, Sherry, TW, Marra, PP, 2014. Modeling three-dimensional space use and 198 
overlap in birds. Auk 131, 681–693. 199 

Dem š ar, U, Long, JA, 2019. Potential path volume (PPV): a geometric estimator for space 200 
use in 3D. Mov. Ecol. 7, 14. 201 

Dunford, CE, Marks, NJ, Wilmers, CC, Bryce, CM, Nickel, B, Wolfe, LL, Scantlebury, DM, 202 
Williams, TM, 2020. Surviving in steep terrain: a lab-to-field assessment of locomotor 203 
costs for wild mountain lions (Puma concolor). Mov. Ecol. 8, 34. 204 

Epsky, ND, Morrill, WL, Mankin, RW, 2008. Traps for capturing insects. Encycl. Entomol. 205 
3, 2318–2329. 206 

Fisher, NI, Lewis, T, Embleton, BJJ, 1987. Statistical Analysis of Spherical Data. Cambridge 207 
University Press. 208 

Fortin, D, Beyer, HL, Boyce, MS, Smith, DW, Duchesne, T, Mao, JS, 2005. Wolves influ- 209 
ence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. 210 
Ecology 86 (5), 1320–1330. 211 

Fraser, KC, Davies, KT, Davy, CM, Ford, AT, Flockhart, DTT, Martins, EG, 2018. Tracking 212 
the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150. 213 

Garcia, M, Berti, S, Peyla, P, Rafaï, S, 2011. Random walk of a swimmer in a low-Reynolds- 214 
number medium. Phys. Rev. E 83 (3), 035301. 215 

Ginosar, G, Aljadeff, J, Burak, Y, Sompolinsky, H, Las, L, Ulanovsky, N, 2021. Locally 216 
ordered representation of 3D space in the entorhinal cortex. Nature 596, 404–409. 217 

Grieves, RM, Jedidi-Ayoub, S, Mishchanchuk, K, Liu, A, Renaudineau, S, Duvelle, E, Jef- 218 
fery, KJ, 2021. Irregular distribution of grid cell firing fields in rats exploring a 3D 219 
volumetric space. Nat. Neurosci. 24, 1567–1573. 220 

Grimm, V., Railsback, S.F., 2005. Individual-based Modeling and Ecology. Princeton Uni- 221 
versity Press, Princeton. 222 

Gunner, MR, Wilson, RP, Holton, DM, Scott, R, Hopkins, P, Duarte, MC, 2020. A new 223 
direction for differentiating animal activity based on measuring angular velocity about 224 
the yaw axis. Ecol. Evol 10, 7872–7886. 225 

Gurarie, E, Ovaskainen, O, 2011. Characteristic spatial and temporal scales unify models 226 
of animal movement. Am. Nat. 178, 113–123. 227 

Hill, NA, Hader, DP, 1997. A biased random walk model for the trajectories of swimming 228 
micro-organisms. J. Theor. Biol. 186, 503–526. 229 

Humphries, NE, Queiroz, N, Dyer, JRM, Pade, NG, Musyl, MK, Schaefer, KM, Fuller, DW, 230 
Brunnschweiler, JM, Doyle, TK, Houghton, JDR, Hays, GC, Jones, CS, Noble, LR, 231 
Wearmouth, VJ, Southall, EJ, Sims, DW, 2010. Environmental context explains Lévy 232 
and Brownian movement patterns of marine predators. Nature 465, 1066–1069 2010. 233 

Jeltsch, F, Bonte, D, Pe’er, G, Reineking, B, Leimgruber, P, Balkenhol, N, Schröder, B, 234 
Buchmann, CM, Mueller, T, Blaum, N, Zurell, D, Böhning-Gaese, K, Wiegand, T, Ec- 235 
card, JA, Hofer, H, Reeg, J, Eggers, U, Bauer, S, 2013. Integrating movement ecology 236 
with biodiversity research - exploring new avenues to address spatiotemporal biodi- 237 
versity dynamics. Mov. Ecol. 1, 6. 238 

Kareiva, P, Shigesada, N, 1983. Analyzing insect movement as a correlated random walk. 239 
Oecologia 56 (2–3), 234–238. 240 

Katzner, TE, Arlettaz, R, 2020. Evaluating contributions of recent tracking-based animal 241 
movement ecology to conservation management. Front. Ecol. Evol. 7, 519 2020. 242 

Langrock, R, King, R, Matthiopoulos, J, Thomas, L, Fortin, D, Morales, JM, 2012. Flexible 243 
and practical modeling of animal telemetry data: hidden Markov models and exten- 244 
sions. Ecology 93 (11), 2336–2342. 245 

Leong, P, Carlile, S, 1998. Methods for spherical data analysis and visualization. J. Neu- 246 
rosci. Methods 80 (2), 191–200 VolumeIssuePages. 247 

Lin, CC, Segel, LA, 1974. Mathematics applied to deterministic problems in the natural 248 
sciences. Macmillan, New York, NY. 249 

López-López, P, Benavent-Corai, J, García-Ripollés, C, Urios, V, 2013. Scavengers on the 250 
move: behavioural changes in foraging search patterns during the annual cycle. PLoS 251 
ONE 8 (1), e54352. 252 

Mardia, K, Jupp, P, 2000. Directional Statistics. John Wiley and Sons, Chichester. 253 
Marsh, L, Jones, R, 1988. The form and consequences of random walk movement models. 254 

J. Theor. Biol. 133, 113–131. 255 
McClintock, BT, King, R, Thomas, L, Matthiopoulos, J, McConnell, BJ, Morales, JM, 2012. 256 

A general discrete-time modeling framework for animal movement using multistate 257 
random walks. Ecol. Monogr. 82, 335–349. 258 

Morrice, KJ, Baptista, AM, Burke, BJ, 2020. Environmental and behavioral controls on 259 
juvenile Chinook salmon migration pathways in the Columbia River estuary. Ecol. 260 
Modell. 427, 109003. 261 

Nathan, R, Getz, W, Revilla, E, Holyoak, M, Kadmon, R, Saltz, D, 2008. A movement 262 
ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 263 
USA 105, 19052–19059. 264 

Noda, T, Okuyama, J, Koizumi, T, Arai, N, Kobayashi, M, 2012. Monitoring attitude and 265 
dynamic acceleration of free-moving aquatic animals using a gyroscope. Aquatic Biol. 266 
16 (3), 265–276. 267 

Okubo, A, 1980. Diffusion and ecological problems: mathematical models. Springer, 268 
Berlin. 269 

Patterson, TA, Thomas, L, Wilcox, C, Ovaskainen, O, Matthiopoulos, J, 2008. State–space 270 
models of individual animal movement. Trends Ecol. Evol. 23 (2), 87–94. 271 

Petrovskii, S, Petrovskaya, N, Bearup, D, 2014. Multiscale approach to pest insect mon- 272 
itoring: random walks, pattern formation, synchronization, and networks. Phys. Life 273 
Rev. 11 (3), 467–525. 274 

Plank MJ, Auger-Méthé M, Codling EA (2013). Lévy or not? Analysing positional data 275 
from animal movement paths. In: Lewis, M., Maini, P., Petrovskii, S. (eds) Dispersal, 276 
Individual Movement and Spatial Ecology. Lecture Notes in Mathematics, vol 2071. 277 
Springer, Berlin, Heidelberg. 278 

Postlethwaite, C.M., Dennis, T.E., 2013. Effects of temporal resolution on an inferential 279 
model of animal movement. PLoS One 8, 1–11. 280 

Raichlen, DA, Wood, BM, Gordon, AD, Mabulla, AZ, Marlowe, FW, Pontzer, H, 2014. 281 
Evidence of Levy walk foraging patterns in human hunter-gatherers. Proc. Natl. Acad. 282 
Sci. U S A 111 (2), 728–733. 283 

Sadjadi, Z, Shaebani, MR, Rieger, H, Santen, L, 2015. Phys. Rev. E 91, 062715. 284 
Schultz, CB, Crone, EE, 2001. Edge-mediated dispersal behaviour in a prairie butterfly. 285 

Ecology 82, 1879–1892. 286 
Sellers, WI, Hirasaki, E, 2014. Markerless 3D motion capture for animal locomotion stud- 287 

ies. Biol. Open 3 (7), 656–668. 288 
Shigesada, N, Kawasaki, K, 1997. Biological Invasion: Theory and Practice. Oxford Univ. 289 

Press, New York. 290 
Tracey, JA, Sheppard, J, Zhu, J, Wei, F, Swaisgood, RR, Fisher, RN, 2014. Movement-based 291 

estimation and visualization of space use in 3D for wildlife ecology and conservation. 292 
PLoS ONE 9 (7), e101205. 293 

Turchin, P, 1998. Quantitative Analysis of Movement. Sinauer, Sunderland. 294 
Vázquez Diosdado, JA, Barker, ZE, Hodges, HR, Amory, JR, Croft, DP, Bell, NJ, 295 

Codling, EA, 2018. Space-use patterns highlight behavioural differences linked to 296 
lameness, parity, and days in milk in barn-housed dairy cows. PloS one 13 (12), 297 
e0208424. 298 

Viswanathan, G, Afanasyev, V, Buldryrev, S, Havlin, S, da Luz, M, Stanley, H, 2011. The 299 
Physics of Foraging. Cambridge University Press. 300 

Wadkin, LE, Orozco-Fuentes, S, Neganova, I, Swan, G, Laude, A, Lako, M, Shukurov, A, 301 
Parker, NG, 2018. Correlated random walks of human embryonic stem cells in vitro. 302 
Phys. Biol. 15 (5), 056006 2018 Jun 13. 303 

Whitehead, H, Coakes, A, Jaquet, N, Lusseau, S, 2008. Movements of sperm whales in the 304 
tropical Pacific. Marine Ecol. Progr. Series 361, 291–300. 305 

Williams, HJ, Holton, MD, Shepard, ELC, Largey, N, Norman, B, Ryan, PG, Duriez, O, 306 
Scantlebury, M, Quintana, F, Magowan, EA, Marks, NJ, Alagaili, AN, Bennett, NC, 307 
Wilson, RP, 2017. Identification of animal movement patterns using tri-axial magne- 308 
tometry. Mov. Ecol. 5, 6. 309 

Williams, H, Taylor, L, Benhamou, S, Bijleveld, A, Clay, T, de Grissac, S, Demar, U, En- 310 
glish, H, Franconi, N, GómezÿLaich, A, Griffiths, R, Kay, W, Morales, J, Potts, J, Roger- 311 
son, K, Rutz, C, Spelt, A, Trevail, A, Wilson, R, Börger, L, 2020. Optimising the use of 312 
biologgers for movement ecology research. J. Animal Ecol. 89, 186–206. 313 

3 


