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A B S T R A C T

The extraction of drug–drug interactions (DDIs) is an important task in the field of biomedical research, which
can reduce unexpected health risks during patient treatment. Previous work indicates that methods using
external drug information have a much higher performance than those methods not using it. However, the use
of external drug information is time-consuming and resource-costly. In this work, we propose a novel method
for extracting DDIs which does not use external drug information, but still achieves comparable performance.
First, we no longer convert the drug name to standard tokens such as DRUG0, the method commonly used
in previous research. Instead, full drug names with drug entity marking are input to BioBERT, allowing us to
enhance the selected drug entity pair. Second, we adopt the Key Semantic Sentence approach to emphasize the
words closely related to the DDI relation of the selected drug pair. After the above steps, the misclassification of
similar instances which are created from the same sentence but corresponding to different pairs of drug entities
can be significantly reduced. Then, we employ the Gradient Harmonizing Mechanism (GHM) loss to reduce the
weight of mislabeled instances and easy-to-classify instances, both of which can lead to poor performance in
DDI extraction. Overall, we demonstrate in this work that it is better not to use drug blinding with BioBERT,
and show that GHM performs better than Cross-Entropy loss if the proportion of label noise is less than 30%.
The proposed model achieves state-of-the-art results with an F1-score of 84.13% on the DDIExtraction 2013
corpus (a standard English DDI corpus), which fills the performance gap (4%) between methods that rely on
and do not rely on external drug information.
1. Introduction

The phenomenon of taking two or more drugs at the same time is
common, because patients may suffer from more than one disease or
need a drug combination to treat some conditions effectively [1]. How-
ever, some drug combinations may cause drug–drug interactions (DDIs)
leading to serious health risks [2]. DDI extraction is an established field
in which algorithms are developed to recognize DDIs in the published
English medical literature.

In recent years, deep neural networks have been widely applied to
extract DDIs. These methods can be divided into two types according
to the embedding method used, namely the static word embedding-
based method and the dynamic word embedding-based method. The
static word embedding-based methods mainly use Word2Vec or GloVe
word vectors to represent the sentence and utilize convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) to classify the
DDI relations. Liu et al. [3] first proposed a CNN-based network to
extract DDIs. Quan et al. [4] adopted a multichannel CNN and used
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richer vocabulary information to extract relations. In addition, Sahu
et al. [5] proposed a long short-term memory (LSTM) network for
DDI extraction and also achieved a good performance. Yi et al. [6]
further utilized the Bidirectional Gated Recurrent Unit (BiGRU) and
multiple attention layers to improve the ability to extract the DDIs.
Zhang et al. [7] combined CNNs and RNNs to design a network to
extract DDIs, and the results were higher than those based on only
CNNs or RNNs. Sun et al. [8] not only used an LSTM and a hybrid
CNN for DDI extraction but also utilized focal loss to alleviate the data
imbalance problem in the DDI corpus. This achieved the best results
based on static word vectors with an F1 value of 75.4%.

The dynamic word embedding-based methods mainly rely on pre-
trained language models, such as BERT [9,10], BioBERT [11–13],
and SCIBERT [14,15]. Li et al. [12] applied BioBERT and a graph
convolutional network (GCN) to capture comprehensive contextual
information and proposed a multi-task learning framework to alleviate
the data imbalance problem. Peng et al. [10] used BioBERT alone,
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Table 1
All the similar instances generated from the original sentence ‘Barbiturates and glutethimide should not be administered to patients receiving
coumarin drugs’.

Instance Label Prediction

Barbiturates and glutethimide should not be administered to patients receiving coumarin drugs. advice advice
Barbiturates and glutethimide should not be administered to patients receiving coumarin drugs. advice advice
Barbiturates and glutethimide should not be administered to patients receiving coumarin drugs. negative advice
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Fig. 1. The classification confusion matrix of BioBERT alone when applied to the
DDIExtraction 2013 test corpus.

first pre-trained on a corpus collected from PubMed abstracts and
clinical notes, to extract DDIs and achieved the best results without
external drug information, reaching a 79.9% F1-score. Later, external
drug information was utilized to further improve the performance of
DDIs extraction methods. Zhu et al. [13] collected drug description
information with a crawler from DrugBank and Wikipedia, and then
used BioBERT to extract DDIs, reaching an 80.9% F1-score. Asada
et al. [15] not only collected drug description information but also
drug molecular structure information, and used SciBERT to achieve the
current state-of-the-art result with an F1-score of 84.08%.

We can see that the dynamic word embedding-based methods show
better performance than the static word embedding-based methods,
and that external drug information has been utilized to further improve
the performance. Although the use of external knowledge can improve
the performance of extracting DDIs, it is time-consuming and resource-
costly. Typically, such information needs to be collected with crawlers,
converted into vectors, and combined with DDI instances.

In this work, we propose a dynamic word embedding-based method
without external drug information which achieves state-of-the-art re-
sults with an F1-score of 84.13% on the DDIExtraction 2013 [16]
corpus. This fills the performance gap (4%) between methods that rely
on and do not rely on external drug information.

The DDIExtraction 2013 corpus is the standard dataset for the DDI
extraction task. The corpus is in English and contains five types of
DDI: four positive (advice, effect, mechanism, int) and one negative
(negative). More detailed definitions and examples for each type are
given in Section 3.1. Initially, BioBERT was applied to the corpus
and a classification confusion matrix was created, as shown in Fig. 1.
Each row represents the proportions of the corresponding DDI type
which were classified into the types on the columns. From Fig. 1,
we can firstly observe that the four kinds of positive instances (advice,
mechanism, effect, int) are often misclassified into negative instances.
2

It is noteworthy that the negative instances account for 80% of the (
corpus. Therefore, the negative instances are also easily misclassified
as positive. This is similar to Zhu’s [13] observation. We found that
these misclassified instances often have a very similar corresponding
instance in the misclassified type. This is because the DDIExtraction
2013 corpus was constructed by collecting a list of complex sentences
mentioning drugs, and then for each sentence in the list creating several
training instances by marking up different pairs of drug entity instances
and assigning a label accordingly. For example, Table 1 shows training
instances generated from ‘Barbiturates and glutethimide should not be
administered to patients receiving coumarin drugs.’ We can see that the
labels of these similar instances are different: Two are advice type and
the third is negative type, but they are all classified as advice. Here, the
model tends to recognize the DDI relations of the selected drug entity
pair based on the keywords in the instance, and ignores the selected
drug entity pair. For example, the instances containing phrases such as
‘should not be administered’ are often classified as advice whatever the
selected drug pair is. We call the misclassification of similar instances
the similar instance problem.

We believe the similar instance problem can be alleviated by en-
hancing the selected drug entity pair and emphasizing the words closely
related to the DDI relation of the selected drug pair. Therefore, we
mark the selected drug pair by adding tags around the two selected
drug entities ($ for the first and # for the second). Furthermore, we
retain the drug entity name in the instance, which is always replaced by
generic tokens in other works, a process called drug blinding. Finally,
we input raw DDI instances (with $ and # around selected drug names)
to BioBERT. We emphasize the words closely related to the DDI relation
of the selected drug pair by using the Key Semantic Sentence (KSS) to
retain only the keywords related to the selected drug entity pair by
some grammatical dependency.

From Fig. 1, we can also observe that more than 40% of int in-
tances are misclassified into effect type. An int instance only states
hat an interaction occurs and does not provide any additional infor-
ation (e.g. ‘FLEXERIL may have life-threatening interactions with
AO inhibitors.’). Compared to the int instance, an effect instance will

ive more information about the effect of the interaction (e.g. ‘TCAs
ecrease the hypotensive effect of guanfacine.’). We found that the
isclassification between effect instances and int instances is often

aused by label noise, i.e. cases where instance labels are false. For
xample, the sentence ‘Barbiturates may decrease the effectiveness
f oral contraceptives, certain antibiotics, quinidine, theophylline,
orticosteroids, anticoagulants, and beta blockers.’ describes the effect
f the interaction between the selected drug pair. So the instance should
e effect, but is labeled int. Previous researchers [13] also found that
ome of the instances of int type and effect type have similar semantics
nd about 10% of instances labeled as int are also labeled as effect in
he DDIExtraction 2013 training set. We call the problem of poor DDI
xtraction performance due to incorrect labels the label-noise problem.

The label-noise problem is caused by errors made by biomedical
omain experts when annotating the dataset. Some mistakes and in-
onsistencies are inevitable and these will reduce the performance of
ny DDI extraction model. We therefore adopt Gradient Harmonizing
echanism (GHM) loss [17], a development of Focal loss [18], as our

oss function to alleviate this problem. The GHM loss can decrease
he weight of label-noise instances which fall in high-density gradient
reas. At the same time, the DDI corpus also has the problem of
ata imbalance. Specifically, the number of instances of the five types

negative, advice, effect, int, and mechanism) in the corpus are 23,772,
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Fig. 2. The architecture of our model.
826, 1687, 188, and 1319 respectively. This imbalance leads to a
bias towards classifying instances as negative. Fortunately, the GHM
loss function can also reduce the weight of such instances, thereby
alleviating the problem.

To summarize, this paper makes the following contributions:

• We explore the reasons why instances are misclassified when us-
ing BioBERT to extract DDIs, identify the similar instance problem
and the label-noise problem, and propose corresponding solutions.

• We alleviate the similar instance problem by using full drug
names with drug entity marking instead of blinding tokens, and
by converting DDI sentences into KSSs.

• We address the label-noise and data imbalance problems together
by using the GHM loss.

• We demonstrate that it is better not to use drug blinding with
BioBERT, even though drug blinding is an effective technique
when using earlier word embedding methods, such as Word2Vec
and GloVe.

• We also verify the robustness of the GHM loss function to la-
bel noise and prove that GHM loss performs better than Cross-
Entropy loss when the proportion of label-noise instances is lower
than 30% in the training set.

• Overall, the proposed model achieves state-of-the-art results with
an F1-score of 84.13% on the DDIExtraction 2013 corpus, which
fills the performance gap (4%) between methods that rely on and
do not rely on external drug information.

2. Methods

2.1. Model overview

We used a model with a conventional architecture (Fig. 2) to extract
DDIs. There are four stages: (1) Preprocessing the text and encoding
it using BioBERT, (2) Emphasizing the relations between the selected
drug entity pair using KSS, (3) Fusing sentence semantics using a
BiLSTM, and (4) Classifying the DDI type using an MLP.

We use the GHM loss function to train our model, to alleviate the
label-noise and data imbalance problems by changing the weight of
each instance.

2.2. Preprocessing

The aim is to extract all the DDIs in any sentence which has two
or more drug entities. There are 𝐶2 candidate DDI instances that will
3

𝑛

be generated from the same original sentence in total, where 𝑛 is the
number of drug entities. For example, for the sentence, ‘Antacids and
kaolin: Antacids and kaolin can reduce the absorption of chloroquine.’,
there are five drug entities (in bold). A candidate DDI instance of
negative type is ‘Antacids and kaolin: Antacids and kaolin can reduce
absorption of chloroquine.’ and a mechanism type is ‘Antacids and
kaolin: Antacids and kaolin can reduce absorption of chloroquine.’.

After preprocessing, we address the problem of data imbalance,
using a negative instance filtering strategy. All instances which match
one of the following manually-formulated rules are removed from the
training data: (1) Two candidate drug entities have the same name
or one drug is an abbreviation of the other; (2) Two candidate drug
entities are in a coordinate structure; (3) Two candidate drug entities do
not have a common father node in the dependency tree of the sentence.
Rules (1) and (2) are proposed by other researchers [19,20], while Rule
(3) is formulated by us.

2.3. Enhancement of drug entity pairs

As we stated in the introduction, we retain drug entity names in
DDI sentences rather than using drug blinding. Then, we mark the two
selected drug entities in each instance by using the ‘#’ and ‘$’ symbols
to enhance the selected drug pair. For example, $ Barbiturates $ and
glutethimide should not be administered to patients receiving # coumarin
drugs #. Next, we use the WordPiece [9] tokenizer of BioBERT to split
the words in the instance into subword segments (tokens), which is the
standard procedure when using BioBert to encode a sentence. Using
WordPiece gives a good balance between the flexibility of single char-
acters and the efficiency of full words for decoding, and also sidesteps
the need for special treatment of unknown words. Now, the instance
becomes [$, Bar, ##bit, ##ura, ##tes, $, and, g, ##lut, ##eth, ##im,
##ide, should, not, be, administered, to, patients, receiving, #, co,
##uma, ##rin, drugs, #, .].

Formally, a sentence is represented by BioBERT as 𝑆 = [𝑡1,… ,
𝑡$, 𝑡𝑑1 ,… , 𝑡𝑑1 , 𝑡$,… , 𝑡#, 𝑡𝑑2 ,… , 𝑡𝑑2 , 𝑡#,… , 𝑡𝑚] ∈ 𝑅𝑡𝑚∗𝑑𝑡 , where 𝑡𝑖 is the
𝑖th token in the sentence 𝑆, 𝑑𝑡 is the length of the token vector
representation, 𝑡𝑑1 or 𝑡𝑑2 is the token representation of the drug entity,
and 𝑡$ or 𝑡# is the token representation of the drug entity marking.

2.4. Key semantic sentences

After enhancing the selected pair of drug entities, we further empha-
size the relations between those entities to alleviate the similar instance
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Fig. 3. The grammar dependency tree for the sentence ‘CONCLUSIONS: Single-dose diltiazem coadministration leads to higher sirolimus exposure, presumably by inhibition of the
first-pass metabolism of sirolimus.’, shown with solid lines. The LCA subtree is marked in dashed lines, the words in the KSS are shown with underscore, and the candidate drug
entities are in bold underscore. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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problem by using the KSS to delete inessential words. The construction
of a KSS first requires a dependency tree to be built. The KSS is then
extracted from the tree.

To construct the grammar dependency tree, the NLP dependency
parser Stanza [21] is used to obtain the dependency word node ℎ𝑖
of each word 𝑤𝑖 in a sentence. Then, we construct a grammatical
dependency tree 𝑇 in which each word 𝑤𝑖 is treated as a node, and
each dependency relation 𝑤𝑖 − ℎ𝑖 is treated as an edge. For example,
the grammatical dependency tree for the sentence ‘CONCLUSIONS:
Single-dose diltiazem coadministration leads to higher sirolimus exposure,
presumably by inhibition of the first-pass metabolism of sirolimus.’ is shown
in Fig. 3.

After the dependency tree is constructed, we firstly search for the
lowest common ancestor (LCA) of the two drug entity nodes. Then
we determine the LCA subtree, which starts from a drug entity node,
passes through its ancestor nodes, and ends at another drug entity node.
Finally, the KSS is constructed by including the words that are up to
one step away from the words in the LCA subtree. In Fig. 3 example,
the LCA subtree of the selected drug entity is marked in solid red, and
the words in the KSS are marked in dashed red. Finally, the sentence
representation 𝑆 = [𝑡1,… , 𝑡$, 𝑡𝑑1 ,… , 𝑡𝑑1 , 𝑡$,… , 𝑡#, 𝑡𝑑2 ,… , 𝑡𝑑2 , 𝑡#,… , 𝑡𝑚] ∈
𝑅𝑡𝑚∗𝑑𝑡 is optimized by deleting all words which are not in the KSS. The
result is 𝑆𝐾𝑆𝑆 = [𝑡1,… , 𝑡𝑙] ∈ 𝑅𝑡𝑙∗𝑑𝑡 , where 𝑙 is the number of tokens
after the sentence 𝑆 is filtered by KSS.

We consider that words in the LCA subtree retain crucial informa-
tion relating to the two-drug entities, while words one step away can
add robustness to the model. In this way, KSS removes words which
are inessential to the drug entities in order to emphasize the relations
between the selected drug entity pair.

2.5. Fusion of sentence semantics

The 𝑆𝐾𝑆𝑆 contains the retained token representations which not
only enhance the selected drug entity pair but also match the relations
between them. Then, the sentence semantics in the 𝑆𝐾𝑆𝑆 are fused by
the BiLSTM to obtain the forward sentence representation 𝑆𝑓 and the
reverse sentence representation 𝑆𝑏:

𝑆𝑓 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐿𝑆𝑇𝑀(𝑆𝐾𝑆𝑆 )

𝑆𝑏 = ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝐿𝑆𝑇𝑀(𝑆𝐾𝑆𝑆 )
(1)

where 𝑆𝑓 , 𝑆𝑏 ∈ 𝑅𝑑𝑙𝑠𝑡𝑚 , and 𝑑𝑙𝑠𝑡𝑚 is the hidden layer size of the
LSTM. The sentence representations in the two directions are then fused
4

through the MLP layer to obtain the final sentence representation 𝑆𝐹 :

𝑆𝐹 = 𝑀𝐿𝑃 ([𝑆𝑓 ;𝑆𝑏]) (2)

where 𝑆𝐹 ∈ 𝑅𝑑𝑚𝑙𝑝 , 𝑅𝑑𝑚𝑙𝑝 is the hidden layer size of the MLP, and [;]
denotes the concatenation operation.

2.6. Classification

The final sentence representation 𝑆𝐹 is fed into a fully-connected
(FC) softmax layer to obtain the probability P of each DDI type:

𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑆𝐹 + 𝑏) (3)

where 𝑊 ∈ 𝑅𝑑𝑟∗𝑑𝑙𝑠𝑡𝑚 and 𝑏 ∈ 𝑅𝑑𝑟 are the weight matrix and bias
vector of the FC layer, and 𝑑𝑟 is the number of the DDI type.

2.7. Model training

As we discussed in the introduction, there are two main problems
in the DDI corpus, the label-noise problem and the data imbalance
problem. To address both problems, we use GHM [17] as the loss
function. This is an improved method based on Focal loss [18], which
itself is derived from Cross-Entropy loss [22]. GHM readjusts the weight
of each instance according to the gradient density, which is identified
as the number of instances around the gradient. An easy-to-classify
instance will produce a small gradient and a label-noise instance will
produce a very large gradient in the model training. Li et al. [17] found
that the instances with either very small gradient or very large gradient
both have quite large gradient density. The GHM loss reduces the label-
noise problem and data imbalance problem together by reducing the
weight of such instances with high gradient density.

We formulate the GHM loss as:

𝐺𝐻𝑀 = 1
𝑁

𝑁
∑

𝑖=1
𝐿𝐶𝐸 (𝑝𝑖, 𝑦𝑖)𝛽𝑖 (4)

here 𝑁 is the total number of training instances, 𝑖 is the 𝑖th instance,
𝐿𝐶𝐸 is the CE loss which is calculated by the predicted probability 𝑝𝑖
nd the true probability 𝑦𝑖 of each instance, and 𝛽𝑖 is the weight of the
th instance. The 𝛽𝑖 balances the importance of each instance, which is
alculated by the gradient density 𝐺𝐷(𝑔𝑖) of the 𝑖th instance:

𝑖 =
𝑁 (5)
𝐺𝐷(𝑔𝑖)
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Table 2
Statistics of the DDIExtraction 2013 dataset. ‘Filtered’ indicates that negative DDI instances are removed
(see heuristics in 2.2). ‘Proportion’ is calculated by (Original-Filtered)/Original.

Types Training Test

Original Filtered Proportion Original Filtered Proportion

DDI pairs 27792 19381 30.3% 5716 3831 33.0%
Positive 4020 3979 1.0% 979 972 0.7%
Negative 23772 15402 30.2% 4737 2859 39.6%
Advice 826 818 1.0% 221 221 0.0%
Effect 1687 1661 1.5% 360 357 0.8%
Int 188 187 0.5% 96 96 0.0%
Mechanism 1319 1313 0.5% 302 298 1.3%
where 𝑔𝑖 is the gradient of the 𝑖th instance and 𝐺𝐷(𝑔) is calculated as
follows:

𝐺𝐷(𝑔) =
𝑅𝑖𝑛𝑑(𝑔)

𝜖
(6)

where 𝑅𝑖𝑛𝑑(𝑔) is the number of examples lying in the region centered at
𝑔 with a length of 𝜖, and 𝜖 is the valid length of the region which could
normalize the gradient density of 𝑔.

Intuitively, if 𝑖 is a label-noise instance or negative instance (easy-
to-classify), it will result in a very large or small gradient 𝑔𝑖, both of
which correspond to a large gradient density 𝐺𝐷(𝑔𝑖). Hence, a small 𝛽𝑖
will be obtained. Therefore, the weight and importance of the instance
𝑖 is reduced.

In summary, GHM loss can alleviate the label-noise problem and
data imbalance problem together, without increasing the complexity
of the model structure. Hence it can work together with BioBERT.

3. Experiments

3.1. Datasets

We evaluate our model on the DDIExtraction 2013 corpus [16]
which is the standard dataset for the DDIE task. It contains 792 articles
collected from DrugBank, and 233 abstracts collected from MEDLINE.
There are five types of DDI: advice, effect, mechanism, int, and negative:

• Advice is used when a recommendation or advice is described
(e.g. ‘Concomitant use of zalcitabine and lamivudine is not
recommended.’).

• Effect is used when the effect of the DDI is described (e.g. ‘TCAs
decrease the hypotensive effect of guanfacine.’).

• Mechanism is used when a pharmacokinetic mechanism is de-
scribed (e.g. ‘Probenecid competes with meropenem for ac-
tive tubular secretion and thus inhibits the renal excretion of
meropenem.’).

• Int is used when the sentence simply states that an interaction
occurs and does not provide any information about the interaction
(e.g. ‘FLEXERIL may have life-threatening interactions with MAO
inhibitors.’).

• Negative is used when none of the above apply (e.g. ‘The pharma-
cokinetics of ethanol were not affected by multiple-dose admin-
istration of tiagabine.’).

The statistics of the original corpus and the filtered corpus are
hown in Table 2. Two points should be noted. First, there is a serious
ata imbalance problem. Second, a large number of negative instances
nd a small number of positive instances are filtered by the negative
nstance filtering strategy. The filtered instances are equivalent to being
redicated as negative instances.

.2. Experimental settings

In our experiments, we use the PyTorch framework and the Trans-
ormers library [23] to implement our model, and the code is written
n Python 3.6. We use a GeForce GTX TITAN X GPU to train and
5

Table 3
Hyper-parameters of our model.

Hyper-Parameter Value

Batch_size 16
Max sequence length 384
Learning_rate_bert 2e−5
Learning_rate_other 1e−4
LSTM_hidden_size 768
MLP_hidden_size 300
Train_epochs 10
Adam_epsilon 1e−8
Dropout_rate 0.1
Bins 5
Alpha 0.75

evaluate our model. We randomly select 10% of the training set as the
development set to optimize the hyper-parameters which are listed in
Table 3. It is worth mentioning that we use different learning rates for
BERT and other parts to better coordinate and train the model. Bins
and Alpha are hyper-parameters in the GHM loss.

We adopt micro-averaged F-score to evaluate our model, which is
the official evaluation metric of the DDIExtraction 2013 task.

The micro-averaged F-score is defined as follows:

𝑃micro =
∑𝑁

𝑛=1 𝑇𝑃𝑛
∑𝑁

𝑛=1 𝑇𝑃𝑛 +
∑𝑁

𝑛=1 𝐹𝑃𝑛

𝑅micro =
∑𝑁

𝑛=1 𝑇𝑃𝑛
∑𝑁

𝑛=1 𝑇𝑃𝑛 +
∑𝑁

𝑛=1 𝐹𝑁𝑛

𝐹micro =
2 × 𝑃micro × 𝑅micro
𝑃micro + 𝑅micro

,

(7)

where 𝑇𝑃𝑛, 𝐹𝑃𝑛, 𝐹𝑁𝑛 denote the true-positive, false-positive, and
false-negative instance numbers of the 𝑛th class except negative type,
respectively.

3.3. Experiment 1: Performance of proposed DDIE method

The aim was to compare the performance of the proposed model
with eight existing models based on Word2Vec and four based on BERT.
In particular, the two methods BioBERT(DD) and SciBERT(DD+DM)
relied on external drug information. Results are shown in Table 4.

As can be seen, the proposed method achieved a 4% improvement in
F1-score compared to the best drug-knowledge-free method (BioBERT,
79.90%), and even beyond the best method with drug knowledge
(SciBERT(DD+DM), 84.08%) by a very narrow margin (0.05%). Rel-
ative to individual DDI types, the proposed model is 3.28% better
than SciBERT(DD+DM) for Effect and 2.59% better for Int. This can
be attributed to the fact that there are more label-noise instances in
these DDI types than in the others. For Advice, the proposed method
is 90.09%, 0.7% lower than SciBERT(DD+DM), and for Mechanism it
is 84.21%, 3.4% lower. SciBERT(DD+DM) used molecular structure
data for the drugs, information which is closely related to the drug
Mechanism. This can account for the difference.
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Table 4
Experiment 1: Performance comparison on the DDIExtraction 2013 corpus. The highest value in each column is shown in bold. ‘DD’ denotes
the method utilizing drug description information. ‘DM’ denotes the method utilizing drug molecular structure information.

Methods F-score on each DDI type Overall performance

Advice Effect Int Mechanism P R F

Word2Vec-based

CNN [3] 77.72 69.32 46.37 70.23 75.70 64.66 69.75
MCCNN [4] 78.00 68.20 51.00 72.20 75.99 65.25 70.21
Joint-LSTMs [5] 79.41 67.57 43.07 76.32 73.41 69.66 71.48
GRU [6] – – – – 73.67 70.79 72.20
CNN-GCNs [24] 81.62 71.03 45.83 73.83 73.31 71.81 72.55
Recursive NN [25] – – – – 77.80 69.60 73.50
RNN-CNN [7] 80.50 74.20 57.00 77.50 77.10 73.70 75.10
RHCNN [8] 80.54 73.49 58.90 78.25 77.30 73.75 75.48

BERT-based

BioBERT-GCN [12] – – – – 77.60 75.70 76.60
BioBERT [10] – – – – – – 79.90

BioBERT(DD)[13] 86.00 80.10 56.60 84.60 81.00 80.90 80.90
SciBERT(DD+DM)[15] 90.79 82.05 58.74 87.61 85.36 82.83 84.08

Proposed method 90.09 85.33 61.33 84.21 85.49 82.84 84.13
Table 5
Results of Experiment 2: Ablation study. * marks significant differences between our method and ablations
of the method with 𝑝 < 0.05 under the McNemar test.

Ablation P R F ▵

Our method 85.49 82.84 84.13
Our method with drug blinding 85.82 81.53 83.62 −0.51
Our method without KSS 83.71 82.86 83.28 −0.85
Our method without KSS and with drug blinding 81.91 83.16 82.53 −1.59∗

Our method without drug entity marking 79.47 78.98 79.22 −4.91∗

Our method without GHM 83.39 79.90 81.61 −2.52∗
0

We also compare some specific differences between the
ciBERT(DD+DM) method and our approach in terms of time and
esources on the GeForce RTX 3090. For the inference time, our method
4ms/instance) is 2/3 of SciBERT(DD+DM) (6 ms/instance); for the
umber of parameters, our method (1.1 m) is 1/3 of SciBERT(DD+DM)
3.3 m), and for the consumption of memory, our method (12 GB)
s 2/5 of SciBERT(DD+DM) (27 GB). The main difference between
he approaches is that SciBERT(DD+DM) relies on external drug in-
ormation. This requires an additional SciBERT to encode the drug
escription information, and a molecular GNN to encode the drug
olecular structure information. As we can see, this results in a huge
umber of additional parameters, which take up more memory and
esult in longer inference times. In addition, the use of external drug
nformation also requires considerable collection and preparation work
n the early stages.

To investigate the proposed model further, the classification con-
usion matrix of our model (left) and the proportional change in the
lassification confusion matrix between our model and the one using
ioBERT alone (right) are shown in Fig. 4.

We can see that our method improved the classification perfor-
ance of almost all DDI types. The overall trend is that our method

an correctly classify more negative instances into corresponding positive
instances. Specifically, for Advice, Mechanism, Effect and Int, 63.6%,
0.0%, 67.5%, and 50.0% of the misclassified instances respectively
re reduced. The reason is that we increase the discrimination between
imilar instances of positive and negative types.

In addition, the misclassification between Advice and Effect types
as also been largely alleviated. The number of misclassification in-
tances from Advice to Effect has dropped by 84.4%, while the misclas-
ification from Effect to Advice has dropped by 89.3%.

.4. Experiment 2: Ablation study

The aim was to find the contribution of No Blinding, KSS, and the
HM loss function to the performance of the proposed model by means
f an ablation study. We also use the McNemar test to compare our
omplete method with ablations of the method in order to evaluate the
tatistical significance. Table 5 shows the results.
6

Table 6
Experiment 3: The performance changes of the model using word embedding methods
with and without drug blinding technology. * marks significant differences with 𝑝 <
.05 under the McNemar test.
Embedding Drug Blinding F-score Change

GloVe ! 53.33
−8.87∗

% 44.46

BERT ! 81.17
−1.18

% 80.99

SciBERT ! 83.28
−0.55

% 82.73

BioBERT ! 83.62 +0.51
% 84.13

As can be seen, using either the original sentences or KSSs alone is
beneficial, but the improvement is not significant, +0.51% and +0.85%,
respectively. But when both the original sentences and KSSs are used,
the improvement (+1.59%) is statistically significant when compared
with the complete model (𝑝 < 0.05). This indicates that these two
methods can complement each other in improving performance.

Moreover, the model using drug entity marking outperforms the
model not using it by 4.91%, which is also statistically significant.
This shows the necessity of using drug entity marking when not using
drug blinding technology. If it is not used, the input instances derived
from the same sentence will be the same, and the model will suffer
from more serious similar instance problems, resulting in a drop in
performance.

Finally, the model using GHM loss performs better than that using
CE loss (+2.52%) which is once again statistically significant and shows
that the mitigation of the label noise and data imbalance problems
results in an improvement in the model.

3.5. Experiment 3: Word embeddings and drug blinding

The aim was to compare the performance of the proposed model
when different word embeddings were incorporated, namely GloVe
[26], BERT [9], SCIBERT [14] and BioBERT [11]. Moreover, these
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Fig. 4. Experiment 1: The classification confusion matrix of our method (left) and the proportional change in classification confusion matrix (right) of our method compared to
BioBERT alone (Fig. 1), using the DDIExtraction 2013 test corpus.
Table 7
Experiment 4: The changes in F-score for CE and GHM loss with different noise ratios. * marks significant differences with 𝑝 < 0.05 under the
McNemar test.
Loss 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CE 80.86 79.25 76.83 72.13 71.02 61.15 0 15.59 10.64 6.61
GHM 81.37 79.43 77.53 70.89 65.88 48.77 28.38 9.19 14.84 8.32
▵ 0.51 0.18 0.7∗ −1.24 −5.14∗ −12.38∗ 28.38∗ −6.4∗ 4.2∗ 1.71∗
embeddings were used both with and without drug blinding, and any
change was tested for statistical significance using the McNemar test
and 𝑝 < 0.05. Table 6 shows the results.

According to the table, for all word embedding methods except
BioBERT, those using drug blinding technology are better than those
not using it. For GloVe, the performance of the model is greatly
improved by using drug blinding (+8.87%) which is statistically sig-
nificant. This is because models using traditional embeddings are more
susceptible to complex and variable drug names.

However, for BioBERT, the performance when not using drug
blinding technology is slightly better (+0.51%), presumably because
BioBERT is pre-trained on a large-scale biomedical corpus. Therefore,
the token representation of drug names contains drug knowledge simi-
lar to drug description information which is in the text, thus improving
the performance of the model to identify DDI relationships.

3.6. Experiment 4: Robustness of GHM loss for label-noise problem

The aim was to investigate how the performance of the proposed
model with GHM loss varies with the proportion of label-noise instances
in the training set. GHM was also compared to CE loss and any changes
were examined for significance. Once again, the McNemar test was used
(𝑝 < 0.05).

We artificially changed the proportion of label-noise instances in
the original data by modifying the label of each instance with a certain
probability to create a series of different datasets. The model was
then trained with each of these datasets in turn, and the performance
evaluated. The same modified datasets were used to train and evaluate
the model with a CE loss function. The results are shown in Table 7.

When the label-noise ratio is less than 0.3, the performance of the
model is slightly better with GHM loss than it is with CE loss. Here,
GHM loss is more robust to label noise than CE loss because it can
reduce the weight of label-noise instances according to the gradient
density of each instance.

When the label-noise ratio is between 0.4 and 0.6, the performance
of the model is worse with GHM loss than it is with CE loss, and the
7

difference is statistically significant (𝑝 < 0.05) when the ratio is 0.5
or 0.6. The reason may be that GHM relies on the model to give the
correct gradient of the sample in order to work normally. When there
are too many noise samples, the model’s ability to generate the correct
gradient of the sample decreases, resulting in poor performance.

When the label-noise ratio is greater than 0.6, the performance is
poor and fluctuates constantly. Therefore, we could try to use other
solutions that are specifically designed for solving the label-noise prob-
lem [27] to address this problem.

4. Conclusion

In this work, we identified two reasons why DDI instances are
misclassified when using BioBERT to extract DDIs: the similar instance
problem and the label-noise problem. To address these problems, we
proposed a novel DDI extraction method, based on BioBERT, which
consists of (1) No-Blinding that directly inputs the full drug names
with drug entity marking to BioBERT so as to enhance the selected
drug entity pair, (2) Key Semantic Sentences that enhance the relations
between the selected drug entity pair to further alleviate the similar
instance problem, and (3) GHM loss that changes the weight of each in-
stance based on the gradient density to reduce the label-noise problem
and data imbalance problem together. We conducted experiments on
the DDIExtraction 2013 corpus and attained state-of-the-art results with
an F-score of 84.13%, which fills the performance gap (4%) between
methods that rely on external drug information and those that do not.
In particular, the proposed model achieved the best results for Effect
DDIs and Int DDIs: 85.33% and 61.33% F1-scores respectively. Finally,
we verified the robustness of the GHM loss function.

In the future, we will explore how to combine our method with
molecular structure information, which is important for the Mechanism
type, and apply a more robust method to solve the label-noise problem.
Finally, given the high cost of DDI dataset creation, we will study how
to train a model on a small number of labeled instances to extract DDIs.
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