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Abstract: Foraging refers to search involving multiple targets or multiple types of targets, and
as a model task has a long history in animal behaviour and human cognition research. Foraging
behaviour is usually operationalized using summary statistics, such as average distance covered
during target collection (the path length) and the frequency of switching between target types. We
recently introduced an alternative approach, which is to model each instance of target selection as
random selection without replacement. Our model produces estimates of a set of foraging biases,
such as a bias to select closer targets or targets of a particular category. Here we apply this model to
predict individual target selection events. We add a new start position bias to the model, and generate
foraging paths using the parameters estimated from individual participants’ pre-existing data. The
model predicts which target the participant will select next with a range of accuracy from 43% to 69%
across participants (chance is 11%). The model therefore explains a substantial proportion of foraging
behaviour in this paradigm. The situations where the model makes errors reveal useful information
to guide future research on those aspects of foraging that we have not yet explained.

Keywords: foraging; visual search; bayesian model; decision; strategy

1. Introduction

Foraging, the act of searching for and gathering multiple targets (such as food), has
been studied in both nonhuman animal contexts [1] and in human psychology studies [2].
Foraging engages a wide range of different perceptual, cognitive, decision-related and mo-
tor skills, and is an ecologically relevant behaviour for most species, including humans. For
these and other reasons, a sustained interest in foraging has developed our understanding
of how we search for multiple instances of multiple types of targets. For example, the classic
marginal value theorem [3] is generally good at predicting when an organism will decide to
stop searching in a patch and move on to another, based on the finding rate dropping below
an expected rate, and taking into account the relative energy costs of traveling between
patches versus staying within a patch. There has also been a concerted effort to characterize
the spatial patterns of foraging behaviour. The Lévy Walk, for example, has been argued to
be a good description of the foraging path many species take when the locations of targets
are unknown (e.g., [4], but see also [5]).

Another general principle of foraging is that of the “search image”, which describes
the perceptual features that a foraging animal can use to identify targets or classes of
targets [6]. A limited capacity for complex search images means that dividing attention
over more than one kind of potential search target can impede search, particularly when
what distinguished targets from distractors is not a simple feature like colour or motion.
As a result, foragers tend to search in “runs” of one type of target before switching to
another. In humans, this behaviour has been studied using computer-based displays of
targets and distractors (e.g., [2]), in which participants must “collect” targets (by clicking or
tapping on them) and ignore distractors. When targets can be identified based on a single,
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easily distinguishable feature (for example, find all the red and green shapes and ignore
the blue and yellow shapes) participants tend to switch frequently between different types
of targets, taking a relatively efficient path through the array. In contrast, when targets are
defined based on a combination of more than one feature (e.g., find all the red squares and
green circles and ignore the red circles and green squares), participants tend to switch far
less frequently, often selecting all the targets of one category and then all the targets of the
other. Consequently, the path taken to collect the targets is less efficient. In other words,
frequent switching between target types limits the distance travelled between targets, while
collecting all the targets of each type before switching to the other type sacrifices some
efficiency of movement in service of reducing the mental workload.

Different aspects of foraging behaviour, such as the search image and the search
path, clearly interact with one another, but most research has tried to understand them
separately. In many cases, the pattern of foraging behaviour has been studied using
aggregate measures calculated on the level of a trial, such as the mean number of ’runs’
(where the same type of target is selected multiple times in a row) or the total number
of targets found during the longest run. These summary statistics can provide a broad
view of switching behaviour, but they can also be biased by the spatial distribution of
target types, and by a forager’s preference for one target or another. To address the need
for a more precise set of measurements, we recently developed a new model to analyse
foraging data, based on a sampling without replacement procedure [7]. By using this model,
we demonstrated that we were able to break down foraging into a number of different
cognitive biases, such as a preference to stick to the same target type, or a preference for
nearby targets, and used this model to successfully reanalyse data from a number of open
access datasets [2,8–10].

While our model is able to do a good job of allowing us to understand biases at the
level of a trial (e.g., conjunction vs. feature search differences [2] or the influence of high
value targets compared to low value targets [11]), we did not originally investigate to what
extent our model was able to predict target-by-target behaviour within any given trial.
However, as the model is based on target-by-target level information, it is possible for us
to use this information to ask: to what extent does our model predict foraging behaviour
within a trial? Can it predict exactly which target a participant will pick next? If the
model makes mistakes, can we understand where it is failing, in order to improve our
understanding of how human foraging behaviour operates?

The original implementation of our model has little to say about the initial target
selection in each trial: as there is not yet a previous target, the stick/switch and proximity
parameters are all ignored leaving just a simple salience parameter that allows us to model
one set of targets as being more attractive than the other. Taking inspiration from the work
on the central viewing bias in the eye movements literature [12,13] we develop two models
of the spatial bias in initial target selection during visual foraging.

2. Materials and Methods
2.1. Datasets

We use a previously published dataset to explore how well our model can account
for trial-level behaviour: the visual foraging data from Clarke and colleagues [8]. This
is an attractive dataset for our needs as it is very close to the “classic” visual foraging
paradigm conducted by Kristjánsson and colleagues [2], yet with a substantially larger
sample of participants. (The key difference between paradigms is that [2] used an ipad and
finger foraging, while [8] used a desktop computer and mouse clicks.) Furthermore, we
have already demonstrated that our model can capture individual differences in foraging
behaviour [8]. As such, we will only give a brief overview of the data here and refer the
reader to these earlier papers for more details.
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2.2. A Model for Visual Foraging

We will make use of the foraging model from Clarke et al. (2022) [7]. This treats
foraging as a sampling without replacement process in which each item i has probability pi
of being selected as the next target. The pi depend on four parameters:

• bA—preference for selecting items of type A rather than B.
• bS—preference for selecting items of the same type as the previously selected item.
• σd—preference for selecting items close to the previously selected item.
• σθ—preference to keep selecting items along a straight line versus changing direction.

These combine to give:

wi = g(bati + bsm(ti, ti−1))× ρd(i, i − 1)ρθ(i, i − 1) (1)

where ti = 1 if item i is of class A and 0 otherwise, and m(ti, ti−1) = 1 if item i is the
same class as the previously selected item. ρd and ρθ measure proximity and the effect
of direction:

ρd = e−σdd(i,j) (2)

ρθ = e−σdθ(i,j) (3)

d(i, j) is simply the Euclidean distance between items i and j, while θ is defined as:

θ(i, j) =
f (atan2(i, j)− atan2(i − 1, i))

π
(4)

with f (φ1, φ2) = min((φ1 − φ2)%2π, (φ2 − φ1)%2π) calculating the angular difference.
atan2 is the direction of travel from i to j. This model is implemented in a multilevel
framework, allowing each of the four parameters to vary from participant to participant.
Further details including priors and full code can be found with [7].

Note: while our model returns estimates of full posterior probability distribution for
each parameter, to reduce computational complexity and make it easier to compare to the
empirical data, we will work with the means of these distributions for our parameter values.

2.3. Software Environment

We mainly used R v4.2.0 and rStan v2.26.11 [14] (R Foundation for Statistical Com-
puting, Vienna, Austria). For fitting the model to the data from [8] we used a university
computing cluster with R v3.6.3 and rStan v2.19.2.

3. Results: Evaluating the Model

To assess how well our model can account for behaviour at the level of individual
trials, we start by stepping through each trial in the data from Clarke and colleagues [8].
For each target selection (Note: for the reasons discussed above, we ignore the initial target
selection for now, as the model has very little to say about it. We return to this issue in
Section 4), in each trial, we can estimate how likely each of the remaining items are to
be selected using the parameters from our posterior model. As can be seen in Figure 1,
the model is putting somewhere between 25% and 75% of the weight on the target that
is selected next, easily outperforming a chance 1/n baseline. There are also interesting
differences between the two conditions. For example, in the conjunction condition, there is
a clear ’jump’ around target 20, which probably reflects the tendency for participants to
forage in runs, selecting all exemplars of one target and then all exemplars of the other:
there is a decrease in accuracy as people switch and then an increase again. We can also
see that the model is well calibrated in that the probabilities assigned to the most likely
target manage to capture how often that target is actually selected. However, we can see a
decrease in accuracy when it comes to how often “runner-up“ candidate items are selected
as our model appears to systematically undervalue these (presumably by putting too much
of the probabilistic weight on low chance items).
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Figure 1. (a) Top left: Posterior probabilities for target selections during a visual foraging task. Each
dot shows the data from an individual participant, averaged over trials, in the feature condition and
the shaded region indicates the interval in which we expect 67% of participants to fall. The dashed
line indicates chance performance. Top right: As top left, except showing the conjunction condition.
(b) Calibration plot for our foraging model. The x-axis gives the largest weight assigned by the model
while the y-axis shows how often that target was actually selected by a human participant. The
dashed line here and in the right plot is the identity line. (c) This plot shows how often the model
selects the 2nd and 3rd ranked items based on the weights assigned by the model.

We summarise accuracy for each person by calculating the mean proportion of times
the model assigns the most weight to the item that was then selected for each participant
(This metric isn’t perfect as it averages over all target selections within a trial, and these
clearly have different baseline probabilities: 2.5–100%. However, it has the upside of
being more intuitive than anything else we could think of). These accuracy scores can be
compared to our uniform chance baseline that gives a value of 10.9% over the course of a
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trial. Figure 2 hints at some individual differences when it comes to how predictable the
model is: we can see a lot of variation in the size of the weights. However, interestingly,
we find that this variability can be explained by our model parameters: nearly all of the
differences between different participants, as well as the within-participant differences in
the feature and conjunction conditions, can be explained by the bP parameter, which is our
proximity bias. The model does a better job of predicting which will be selected next when
there is a stronger proximity bias (see Supplementary Materials: Part 1 for more details).

We now look at some example trials and compare the behaviour of our human partici-
pants to the predicted behaviour from our model (see Figure 3). When looking at trials in
which our model has done a particularly good job of accounting for the target selections
(model accuracy > 80%) we can see that the disagreements often occur in cases when the
human participant appears to be carrying out some form of local path length optimisa-
tion. In general, the cases in which our model suggests a different target from the one the
participant actually selected appear reasonable.
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Figure 2. (a) Prediction scores for participants. Boxplots show quartile range and the grey lines
indicate individual participants. The dots indicate outliers. (b) How accuracy of our model varies
with the strength of an individual’s bM, bP, pA and pS parameters. We can see two clear outlier
participants (marked with an X).

For trials in which the model does a worse job of predicting (accuracy <50%) we can
see that the human behaviour appears less organised in terms of proximity in general and
it seems unlikely that adding some form of path-length optimisation to our model would
improve accuracy with these participants. We can see this more clearly in Figure 4: while
our model does a good job of capturing the average total path length, there is considerable
variation with some participants generating shorter paths and some longer. We can see
that this appears to be systematically related to how well our model can predict behaviour.
Interestingly, in some cases, poorly predicted trials appear to have very strong pS biases,
collecting all exemplars of one target and then the other: thus, the participants are carrying
out a strategy that the model is not capturing well. This fits with conjunction trials being
harder for the model to predict, as these trials generally have fewer switches.
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Figure 3. (a,b) Two randomly selected trials in which the model does a good job in accounting for
human behaviour. The numbers indicate the order the participant selected targets in. Red arrows
indicate places where the model prediction deviates from participant behaviour. When participants
diverge from the model’s prediction, it appears to be due to some form of path-length optimisation.
(c,d) Two randomly selected examples in which the model does a less good job in accounting for the
order in which human participants selected the items.
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Figure 4. (a) Histogram showing the distribution of the median path lengths for our human par-
ticipants and model (fitted to each human participant via the random effect structure). (b) The
relationship between model accuracy and the proportion of trials in which the human participant has
a shorter total path length than predicted.

4. Improving the Model: Location of the First Target Selection

One weakness of the foraging model by Clarke et al. (2022) [7] is that it makes little
attempt to predict which item will be selected first. In this section we aim to improve this
by modelling participant bias (or preference) in their choice of initial target selection. Our
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approach is inspired by previous work on the central bias in scene viewing [12,13]. These
studies fit truncated Gaussian distributions to the (x, y) coordinates of fixation locations.
Here we will do similar, and fit beta distributions (We use beta distributions here as it is
difficult to specify a mixture model using truncated Gaussians in Stan. However, beta
distributions may well be a more appropriate choice) to locations of the initial target
selections in the visual foraging task.

Figure 5 shows the distribution of the locations of first target selections. We can see that
unlike the central bias in fixations during scene viewing, the distribution of initial target
locations appear to be bimodal: while most targets are positioned in the top left hand corner,
there is a second smaller distribution of central target selections. This appears to be due
to different participants choosing to utilise different strategies rather than within-subject
variation. However, we have no evidence that these different initial strategies affect the
model parameters in any systematic way (see Supplementary Materials: Part 1). We try
two different modelling approaches (multilevel and mixture) to assess whether the less
complex mixture model is able to account for the patterns of starting positions seen.

Figure 5. Hexagonal heatmaps showing the two-dimensional distribution of the location of initial
target selections. Grey areas indicate cells with a count of 0. The left panel shows the distribution
over all initial target selections (i.e., multiple trials per participant) while the right panel shows the
distribution of each participant’s median initial selection (i.e., each participant contributes one data
point to the graph).

4.1. Multi-Level Modelling Results

We first consider a multi-level model in which we fit beta distributions to the x and y
coordinates of each participant’s initial target selections (Full details of the analysis can be
found in the Supplementary Materials: Part 1):

xi ∼ Beta(ax,i, bx,i) (5)

yi ∼ Beta(ay,i, by,i) (6)

The results are shown in Figure 6 and we can clearly see that most participants either
have a strong bias to x = 0 and y = 0, or a more diffuse central bias.
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Figure 6. Posterior fits for (a) horizontal and (b) vertical locations of the initial target selection. Each
line represents a different participant. (c) A scatter plot showing the x and y posterior means for each
participant.

4.2. Mixture Modelling

While the multi-level model outlined above appears to offer a good fit for the between-
subject differences in initial target selection location, it comes at the expense of requiring
four parameters per participant (=290 for the 58 participants in our dataset). Given that the
majority of our participants appear to be following one of two distinct strategies, we can
potentially simplify our model by using a two-component mixture model:

xi ∼ λi × Beta(ax,1, bx,1) + (1 − λi)× Beta(ax,2, bx,2) (7)

yi ∼ λi × Beta(ay,1, by,1) + (1 − λi)× Beta(ay,2, by,2) (8)

This reduces the number of parameters to eight (to specify the two Beta distribu-
tions) and then one λ value per participant (= 66 in our dataset). While the formulae in
Equations (7) and (8) appear more complex than those in Equations (5) and (6), the model
requires less than a quarter as many free parameters.

The model fit is shown in Figure 7. We can see that the two components identified
by the model clearly correspond to the top corner and diffuse-central strategies discussed
above. We can also see from the lambda values that our participants take on a range of
different mixtures between the two.

x

0.00 0.25 0.50 0.75 1.00
0.0

2.5

5.0

7.5

x

lik
el

ih
oo

d

(a)
y

0.00 0.25 0.50 0.75 1.00
0.0

2.5

5.0

7.5

y

(b)

0.00

0.25

0.50

0.75

1.00

observer

la
m

bd
a

(c)

Figure 7. Posterior fits for the (a) horizontal and (b) vertical locations of the initial target selection.
(c) shows the mixing parameters for each participant, with the error bar indicating the 95% HDPI.
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4.3. Posterior Predictions

To compare the two approaches, we assess how well they fit the empirical data: we can
use the fitted distributions to calculate the weight assigned to the selected target by each
method for each trial in our dataset (Figure 8). We can see that both models give a similar
distribution of target weights and accuracies. Overall, both methods select the correct target
in around half of the trials. Interestingly, as above, there is considerable variation between
participants, with participants who favour the top-left corner being easier to predict.
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Figure 8. (a): a count of initial weight values predicted from both methods (mixture and multi-level).
(b): the proportion of times the first selection was correct for both methods. (c): as lambda (the model
parameter underlying initial weight) increases, accuracy increases i.e., the model is more accurate
for the cases where participants are selecting a corner as their initial target selection. The dots each
represent an individual participant, and the line is the line of best fit.

4.4. Replication

To test how well our methods generalise, we used the dataset from [2]. We split this
into a training dataset (50% of the original data i.e., 10 trials per participant) and a test
dataset (the remaining 50% of the data). The foraging model is fit on the training dataset,
and the parameters from this model are then used to predict behaviour at the level of
individual trials. We show that our methods appear to generalise beyond [8]: in particular,
feature foraging was more predictable than conjunction foraging, and the model is well
calibrated, with participants more frequently selecting targets with higher model assigned
weights. Proximity also seems to be an important factor in determining model accuracy,
at least for the feature condition, although the relatively low number of participants in
this experiment makes it harder to draw strong conclusions. One interesting difference
compared to [8] is in initial target selection: while there was a strong bias towards starting
in a corner, there was little evidence of central bias, perhaps because this experiment was
completed on an iPad. Further details and graphs can be found in the Supplementary
Materials: Part 2.

5. Discussion

In our original model of visual foraging [7], we were able to robustly measure aggre-
gate parameters that underlie behaviour, at both an overall mean level across an experiment,
and at the level of individual participants. In the current manuscript, we asked a more
difficult question: could this model make target-by-target predictions, guessing which
target would be picked next within a trial? We found that for some trials our model was
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over 80% accurate, demonstrating that at least in some cases, our model is able to make
good predictions of target behaviour.

A benefit of our approach is that it is relatively easy to interrogate the model to try to
understand why prediction accuracy is higher for some participants and trials than others.
The model is generally better at feature search compared to conjunction search, and also
seems to be better at predicting participants with a stronger proximity bias. The model also
seems to assign more weight to ’runner-up’ items than real humans do. Real foragers thus
seem to seriously consider only a few nearby targets (although they do still have some low
probability of selecting a further away target), in contrast to the model, in which the item
weights assigned fall off more gradually with distance.

However, we can also delve deeper into exploratory hypotheses about other factors
that might influence predictability. One suggestion is that the people who our model is
able to predict are in some way the most ’optimal’. If this is the case, we might expect
that model predictability should correlate with how good people are at the task. There is
some evidence that on a trial-by-trial basis, shorter trials are easier for the model to predict,
and on a target-by-target basis, faster moves from one target to the next are more easily
predicted by the model (see Supplementary Materials: Part 1). This likely is linked to the
fact that our model is better at predicting participants with a stronger proximity bias, as
targets that are closer to the previous target are also likely to be selected more quickly.
Intuitively, it makes sense that the model makes poorer predictions when a participant has
exhausted a local patch and may need to make a bigger jump to a more distant area to carry
on collecting targets, as there may be multiple candidates and distance may no longer be
such a good predictor (for example, people may choose to move to the next most densely
populated patch).

There has been some previous work on within-trial behaviour in the context of for-
aging. For example, ref. [11] found that intertarget times vary across a trial (with targets
selected later in the trial being slower) and intertarget distances also vary (with targets se-
lected later in the trial having greater intertarget distances). Similarly, ref. [10] showed that
switches between target categories can be characterised by a change in foraging ’tempo’,
and if participants are forced to forage at a particular speed, by asking them to synchronise
with an auditory signal, higher tempos led to a systematic decrease in the probability of
participants switching between target categories. In the current version of the model, we
do not consider time explicitly (although distance is likely to be correlated with time in this
task). However, it would be possible to extend the model to incorporate timing information,
and this may help to improve the target-by-target predictions.

From inspection of Figure 3, we noticed that in some cases, participants may be using
a type of local path minimisation procedure, selecting a further away target in order to
minimise overall path length, which the model does not always seem to predict. Could
this help to explain some of the mistakes the model makes? Overall, the model does not
seem to make substantially longer paths through the items than the human participants.
However, there is a relationship between model accuracy and the proportion of times that
participants select paths shorter than the model: as model accuracy increases, people seem
to be more likely to have paths shorter than the model predicts. This seems to suggest that
path minimisation is not a good explanation for the participants our model is failing to
capture, and instead the people that are difficult to predict are taking longer paths than the
model thinks they should take.

Our exploratory analyses seem to hint at the idea that the people who are difficult for
the model to predict are those who do not behave in a manner that optimises path length. It
could be that these participants are simply unpredictable, and do not behave in a consistent
manner on a target-by-target basis, making it difficult for a model to predict their behaviour
at this level of granularity. However, it is possible that there are other factors that we have
not taken into account that could further help explain these discrepancies. Participants
who ’stick’ to one type of target are likely to have longer path lengths, and it seems that the
model does do a poorer job of predicting conjunction trials, which generally have stronger
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pS biases. Thus, one area for future improvement of the model is to try to capture this
behaviour better: it may be that a ’floor’ parameter (on a participant-by-participant basis)
in the spatial fall off, allocating more weight to more distant targets, may help account for
currently difficult to predict trial behaviour.

There are also many other factors that the model does not account for. For example, it
is possible that relatively unpredictable participants use multiple rules and switch between
them in ways that we are not currently captured in the model. Some participants may also
lose track of where they are more frequently (perhaps due to attentional lapses) and thus
may show foraging patterns that are predictable apart from unpredictable discontinuities,
which again may not be easy to model. Another possibility is that participants may make
exploratory, information-seeking visits to different parts of the array due to uncertainty
about the targets present: this may be particularly important for conjunction trials, where
peripheral visual information about shape is likely to be poorer. Finally, the displays
had artificial discontinuities (i.e., screen edges) which may lead to different behaviour in
different participants: some may carry out the task as if they are reading, reaching the right
hand edge and then swinging back to the left, whereas others may ’bounce’ off an edge
they have just reached. Our model may well be able to predict the latter, but make less
good predictions for the former behaviour.

To a large extent, initial item selection strategy seems to be stable within a participant,
with people either starting in the corner or the centre of the screen. Our model is therefore
also relatively accurate for selecting the initial target, selecting the correct target in around
half of the trials (with a mixture model performing similarly to a multilevel model with
many more parameters). Participants who prefer the top left corner were easiest to predict,
probably because these participants formed the majority group in this experiment. Our
results are congruent with [15], who found a bottom left bias in a 3D environment. They
suggest this may be an advantageous strategy because it allows your foraging to be more
organised (e.g., in an ’S-shape’, as has been found in real world search tasks [16]). The
smaller group of participants who prefer to start in the centre of the screen may be display-
ing similar behaviour to the well-known central bias in eye movements [12,17,18] However,
it is worth noting that these findings probably depend strongly on the context of the task.
For example, there was no obvious central bias subgroup in [2], possibly reflecting the fact
that this experiment was carried out on an iPad, compared to the computer screen and
mouse used in [8]. One challenge for future modelling work is to what extent we should try
to account for these types of task-specific details: by incorporating them, we can generate
better predictions for the experiment we are currently modelling, but perhaps at the cost of
generalisability to other paradigms.

One of the key benefits of computational models is that they allow us to rigorously
test how well we are able to predict behaviour, and can provide insights into what factors
we are not capturing that may have important influences on how participants complete
a task. We have demonstrated that our foraging model [7] is not only able to predict
behaviour in aggregate, but can also make reasonable predictions at the target-by-target
level. It is particularly good if a participant has a strong proximity bias, and on ’feature’
trials where participants are normally switching between target types fairly frequently. It
is also good at predicting where participants will start on a trial. The model finds it more
difficult to predict ’discontinuous’ jumps, which could be caused by a range of factors: a
more difficult foraging task (e.g., conjunction searches), local path length minimisation,
inattention, or aspects of the physical search space (e.g., edges of the screen). However, it
would be possible to extend the model to incorporate these factors e.g., by incorporating a
heuristic that would allow for local path minimisation, or introducing time as a predictor
in the model. Our findings also suggest possible future directions for empirical work, such
as evaluating the effect of inattention on foraging behaviour, or how the foraging targets
are organised in space. We suggest that computational modelling is a powerful tool for
helping us to understand behaviour, both by incorporating previous research into a shared
framework, and by making testable predictions for future work.
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