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Abstract

We offer a minimalist axiomatization of quantiles among all real-valued mappings on a

general set of distributions through only one axiom. This axiom is called ordinality: quan-

tiles are the only mappings that commute with all increasing and continuous transforms.

Other convenient properties of quantiles, monotonicity, semicontinuity, comonotonic addi-

tivity and elicitability in particular, follow from this axiom. Furthermore, on the set of

convexly supported distributions, the median is the only mapping that commutates with all

monotone and continuous transforms. On a general set of distributions, the median inter-

val is pinned down as the unique minimal interval-valued mapping that commutes with all

monotone and continuous transforms. Finally, our main result, put in a decision-theoretic

setting, leads to a minimalist axiomatization of quantile preferences. In banking and in-

surance, quantiles are known as the standard regulatory risk measure Value-at-Risk (VaR),

and thus, an axiomatization of VaR is obtained with only one axiom among law-based risk

measures.
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1 Introduction

Quantiles are prominent objects in statistics, decision theory, optimization, mass trans-

portation, machine learning, and finance. They have also been widely applied in the natural

and social sciences as well as engineering through quantile regression and quantile optimization;

see e.g., Koenker and Hallock (2001). In this paper, we offer a minimalist axiomatization of

quantiles among all mappings on a general set of distributions via only one axiom.
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Let X be a set of random variables in a given atomless probability space (Ω,F ,P), containing

all bounded random variables. The left quantile at probability level p ∈ (0, 1] is defined as

QLp (X) = inf{x ∈ R : P(X ⩽ x) ⩾ p}, X ∈ X ,

where inf ∅ = ∞. The right quantile at probability level p ∈ [0, 1) is defined as

QRp (X) = inf{x ∈ R : P(X ⩽ x) > p}, X ∈ X .

We consider law-based mappings R on X , meaning that R(X) is determined by the distribution

of X.1 Throughout, terms like “increasing” are in the non-strict sense.

Theorem 1. For a law-based mapping R : X → R, the following are equivalent:

(i) R ◦ ϕ = ϕ ◦ R for all increasing and continuous functions ϕ : R → R;

(ii) R is a quantile; that is, R = QLp for some p ∈ (0, 1] or R = QRp for some p ∈ [0, 1).

The commutation property in Theorem 1 (i) will be called G∗-ordinality (formal definition

in Section 2), and R◦ϕ = ϕ ◦R means that R(ϕ(X)) = ϕ(R(X)) for all X ∈ X such that ϕ(X)

remains in X . An alternative version of Theorem 1 on a domain of distributions is formulated

as Theorem 2 in Section 3. We will further show that if G∗-ordinality is slightly strengthened,

then left and right quantiles can be distinguished, i.e., commutating with all left-continuous

and increasing functions leads to a left quantile, and commutating with all right-continuous and

increasing functions yields a right quantile (Proposition 1).

The interpretation of G∗-ordinality in decision making is intuitive: For an index which

quantifies random objects, a possibly non-linear scale change in the random outcomes gives

rise to the same scale change on the index; see e.g., Chambers (2007) in the context of utility

aggregation. We make this interpretation rigorous in a decision-theoretic setting in Section 5.

Theorem 1 is an extension of the main result of Chambers (2009), who showed that the

left quantile is the only function that satisfies the three axioms of monotonicity (with respect

to first-order stochastic dominance), lower semicontinuity, and ordinal covariance (commuting

with strictly increasing and continuous functions). Contrasting Theorem 1 with that result,

our G∗-ordinality is slightly stronger than ordinal covariance imposed by Chambers (2009), and

monotonicity and lower semicontinuity are not needed. Moreover, results of Chambers (2009) are

1Law-based mappings with a specified probability P are common in the axiomatic theory of preferences, risk
measures, and statistical functionals; see e.g., the classic studies von Neumann and Morgenstern (1947), Quiggin
(1982), Yaari (1987) and Kusuoka (2001) or the more recent Mu et al. (2021). The law-based property is also
called probabilistic sophistication (Machina and Schmeidler (1992)) with respect to the probability P, either
objective or subjective. In the risk measure literature, the property is often called law invariance (Föllmer and
Schied (2016)).

2



obtained on either X = L∞ (the set of essentially bounded random variables) or X = L0 (the set

of all random variables) whereas our result holds on any domain X with L∞ ⊆ X ⊆ L0. Despite

the obvious similarity, our extension is by no means technically straightforward. Enlarging the

set of functions that commute with R makes the corresponding ordinality property stronger, but

choosing such an enlargement requires subtle sophistication. For instance, one may be tempted

to require R to commute with all increasing functions, but such R does not exist; see Example

1 below. Therefore, extra care has to be taken when formulating the set which R commutes

with, and this may partially explain why the minimalist characterization in Theorem 1 was not

found in the literature. Moreover, our proof techniques are completely different from Chambers

(2009).

Example 1. There is no such R : L∞ → R satisfying R ◦ ϕ = ϕ ◦ R for all increasing function

ϕ. To see this, suppose otherwise. Take any continuously distributed random variable X ∈ L∞.

Let ϕ1(x) = 1{x⩾R(X)} and ϕ2(x) = 1{x>R(X)}, where 1 is the indicator function. Note that

ϕ1(X) = ϕ2(X) almost surely (and thus they are equal in L∞). A contradiction arises as

R(ϕ1(X)) = ϕ1(R(X)) = 1 > 0 = ϕ2(R(X)) = R(ϕ2(X)) = R(ϕ1(X)).

If one concentrates on strictly increasing distribution functions (equivalently, distributions

with a convex support), then G∗-ordinality, which becomes weaker in this setting due to the

smaller domain, is able to characterize quantiles on such a domain (Proposition 2); if one consid-

ers strictly increasing and continuous distribution functions, then a weaker ordinality property

is sufficient. Commutation with continuous monotone (i.e., increasing or decreasing) functions

(this is called G∗
±-ordinality) further pins down the median on sets of convexly supported dis-

tributions (Theorem 3). As the median is not unique for general distributions, we consider

median intervals, which are characterized as the minimal interval-valued mappings satisfying

G∗
±-ordinality (Theorem 4).

Since quantiles are characterized by G∗-ordinality alone, all the other nice properties of

quantiles, such as monotonicity, constant additivity, positive homogeneity, continuity, comono-

tonic additivity (Yaari (1987); Schmeidler (1989)), elicitability (Lambert et al. (2008); Gneiting

(2011); Ziegel (2016)),2 and tail relevance (Liu and Wang (2021)) are obtained for free. In par-

ticular, it may be surprising that monotonicity is implied, noting that it does not follow from

ordinal covariance used by Chambers (2009).3

Why is monotonicity not needed in our characterization? For a continuous and increasing

2A functional is elicitable if it can be written as the minimizer of an expected loss function.
3An observation in a similar fashion is made by Wang and Wei (2020), in which a comonotonic-additive,

elicitable and uniformly continuous mapping on L∞ is necessarily monotone (either increasing or decreasing),
although no single one of these properties implies monotonicity by itself. Quantiles are a special class of such
mappings.
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function f satisfying f(x) ⩾ x for x ∈ R, we have f(X) ⩾ X for X ∈ X , and G∗-ordinality gives

R(f(X)) = f(R(X)) ⩾ R(X). Therefore, some weak form of monotonicity, which only applies

to random pairs of the form (X, f(X)), is guaranteed by G∗-ordinality. A technical obstacle

is to extend this observation to general random variables, which turns out to be a relatively

challenging task, overcome by the proof of Theorem 1.

The minimalist axiomatic foundation for quantiles are useful in many other contexts, as

quantiles are a useful and important alternative to the standard utility theory in decision making.

Quantiles serve as the building blocks for the dual utility of Yaari (1987) since a dual utility can

be written as a mixture of quantiles. Preferences induced by quantiles are axiomatized by Rostek

(2010) and later by de Castro and Galvao (2022) in Savage and Anscombe-Aumann settings, both

without a pre-specified probability space. Applying Theorem 1, we obtain a concise axiomatic

foundation for quantile maximizers among law-based preferences, characterized by G∗-ordinality

and certainty equivalents (Theorem 5).

There are many other important applications of quantiles in economics and finance. For

instance, Basak and Shapiro (2001) studied utility maximization with quantile constraints, Em-

brechts et al. (2018) studied collaborative and competitive equilibria for quantile agents in risk

sharing games, and de Castro and Galvao (2019) developed a dynamic model for a rational quan-

tile maximizer. Empirical evidence for decision making with quantile optimization is studied by

de Castro et al. (2022). In financial risk management, quantiles are known as Value-at-Risk

(VaR), the dominating risk measure in banking and insurance over the past two decades. Al-

though Expected Shortfall (ES) was proposed to replace VaR in the recent Basel Accords, VaR

is still widely applied in regulatory capital calculation, decision making, performance analysis,

and backtesting. We refer to McNeil et al. (2015) for a general treatment on VaR and other

risk measures. Because of the practical importance of VaR, there are a few other sets of axioms

for VaR, or quantiles, in addition to Chambers (2009). With some other standard properties

including monotonicity, VaR is characterized via elicitability and comonotonic additivity by Kou

and Peng (2016), via surplus invariance by He and Peng (2018), and via elicitability and tail

relevance by Liu and Wang (2021). On the other hand, ES is axiomatized by Wang and Zitikis

(2021) with a property reflecting portfolio diversification. In each result above, a class of risk

measures is characterized by at least three properties, whereas Theorem 1 axiomatizes quantiles

using only one. As far as we are aware, our result is the first characterization of quantiles that

does not assume monotonicity.

All proofs of results are collected in Appendix A. For the rest of the paper, we conveniently

formulate all mappings with domains being sets of distributions instead of random variables.
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2 Model setting

Let M0 be the set all distributions on R and Mc be the set of all compactly supported

distributions in M0. Throughout the paper, M is the domain of a mapping of interest, satisfying

Mc ⊆ M ⊆ M0. Distributions in M will be identified with their cdfs. For a cdf F ∈ M, we

define its left quantile function as

F−1
L (t) = inf{x ∈ R : F (x) ⩾ t}, t ∈ (0, 1], (1)

and its right quantile function as

F−1
R (t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1). (2)

An important object in the paper is the shape transform. For a function ϕ : R → R, the

shape transform T [ϕ] : M → M is defined as a mapping from the distribution of a random

variable X to the distribution of ϕ(X), that is, T [ϕ](F ) = F ◦ ϕ−1, where F is treated as a

measure on R. The transform function ϕ will always be monotone in this paper, which means

that it is either increasing or decreasing. In the context of distributional transforms, which

are mappings from M to M, Liu et al. (2021) showed that shape transforms can be used to

characterize probability distortions.

In the remainder of the paper, different from Section 1, we will conveniently treat law-based

mappings as functions from M to R. We first define ordinality, the most important property in

this paper.

Definition 1. For a mapping ρ : M → R and a set G of measurable functions, we say that ρ is

G-ordinal if ρ ◦T [ϕ] = ϕ ◦ ρ for all ϕ ∈ G. Here, ρ ◦T [ϕ] = ϕ ◦ ρ means that ρ(T [ϕ](F )) = ϕ(ρ(F ))

for all F ∈ M such that T [ϕ](F ) ∈ M.

We say ρ : M → R is a left quantile if there exists p ∈ (0, 1] such that ρ(F ) = F−1
L (p) for

all F ∈ M; ρ : M → R is a right quantile if there exists p ∈ [0, 1) such that ρ(F ) = F−1
R (p)

for all F ∈ M. Note that ρ is assumed to be real-valued on M. The value p = 1 needs to be

excluded for left quantiles if M contains F such that F−1
L (1) = ∞. The value p = 0 needs to be

excluded for right quantiles if M contains F such that F−1
R (0) = −∞. For instance, both would

be excluded if M = M0.

Different choices of G in G-ordinality lead to different results on different domains M.

We collect in Table 1 a summary of definitions of different sets of distributions M and sets

of functions G, which will be used throughout the paper. The most important choice of G is

G∗, the set of continuous and increasing real functions. The classes M of distributions can
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be described using either properties on the distribution function or, equivalently, those on the

quantile function, and we state such equivalence in Table 1.

set left or right quantile functions on (0, 1) distribution functions on its support

M0 all all

Mc bounded compactly supported (c.s.)

M∗
0 continuous strictly increasing

M∗
c bounded and continuous c.s. and strictly increasing

M⋄
0 continuous and strictly increasing continuous and strictly increasing

M⋄
c bounded, continuous and strictly increasing c.s., continuous and strictly increasing

set transform functions ϕ on R
G∗ ϕ is increasing and continuous

G∗
± ϕ is monotone and continuous

GL ϕ is increasing and left-continuous

GR ϕ is increasing and right-continuous

G⋄ ϕ is strictly increasing and continuous

G⋄
± ϕ is strictly monotone and continuous

Table 1: A summary of notation

3 Ordinality axiomatizes quantiles

We first present our main result on the characterization of quantiles based on G∗. Theorem

1 in the Introduction follows directly from Theorem 2 by translating results on M to those on

X .

Theorem 2. A mapping ρ : M → R with Mc ⊆ M ⊆ M0 is G∗-ordinal if and only if it is a

left or right quantile.

We explain here a sketch of the proof of Theorem 2 in the case of a compact support

(M = Mc) for the interested reader, and a detailed proof is put in Appendix A. The “if” part

can be checked by the definition of quantiles, although it requires some derivation. For the

“only if” part, we will first show that for every F ∈ Mc, ρ(F ) belongs to the range of F−1
L

or F−1
R . As a consequence, ρ(F ) is equal to the left or right quantile at a probability level pF

depending on F . Note that the quantile type (left or right quantile) also depends on F . It

remains to show that the probability pF and the quantile type are the same for each F ∈ Mc.

Note that M∗
c (i.e., the set of compactly supported and strictly increasing distributions) can

be generated from a standard uniform distribution FU through shape transforms in G∗, i.e.,

M∗
c = {T [ϕ](FU ) : ϕ ∈ G∗}. Using G∗-ordinality, we can now conclude that the probability pF
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and the quantile type are the same for each F ∈ M∗
c . The remaining challenge is to extend

this observation from M∗
c to Mc, noting that Mc cannot be generated by shape transforms

from a distribution F ∈ Mc; that is, we cannot find F so that Mc = {T [ϕ](F ) : ϕ ∈ G∗}. We

show this extension by two steps. We first show that the result also holds on MI , the set of all

continuous distributions, as T [F ](F ) = FU for all F ∈ MI . Next, for F ∈ Mc \ (M∗
c ∪ MI),

we show by a delicate analysis that F can be connected to distributions in M∗
c ∪MI in one of

the following two ways: i) there exists ϕ ∈ G∗ such that T [ϕ](F ) ∈ M∗
c ∪ MI ; ii) there exists

G ∈ M∗
c ∪MI and ϕ ∈ G∗ such that T [ϕ](F ) = T [ϕ](G). These connections and G∗-ordinality

ensure the uniqueness of pF and the quantile type on Mc.

In Theorem 2, if the set of transforms G∗ is enlarged to GL or GR (i.e., including either

the left-continuous or the right-continuous ones), then we obtain the characterization of left and

right quantiles, respectively.

Proposition 1. Let ρ : M → R where Mc ⊆ M ⊆ M0. We have

(i) ρ is GL-ordinal if and only if ρ is a left quantile;

(ii) ρ is GR-ordinal if and only if ρ is a right quantile.

On a set M of distributions with a convex support (these distributions have strictly in-

creasing distribution functions on their support, i.e., M is a subset of M∗
0), each distribution

has a continuous quantile function, and thus its left and right quantiles coincide on (0, 1), and

we do not distinguish them. Further, we can consider the domain of distributions with con-

tinuous and strictly increasing quantiles, i.e., subsets of M⋄
0. Clearly, M⋄

c ⊊ M∗
c ⊊ Mc and

M⋄
0 ⊊ M∗

0 ⊊ M0. Note that the property of having a continuous and strictly increasing quantile

is satisfied by any distribution with a positive density function on its support.

As such a choice of M is not between Mc and M0, the characterization of quantiles on M

does not directly follow from Theorem 2, which requires M ⊇ Mc as a condition. Nevertheless,

the corresponding arguments for G∗-ordinality on M∗
c can be found in the proof of Theorem 2.

For the smaller sets between M⋄
c and M⋄

0 of more regularized distributions, it turns out that

G⋄-ordinality is sufficient, that is, the set of strictly increasing and continuous transforms, which

is a subset of G∗.

Proposition 2. For a mapping ρ : M → R,

(i) if M∗
c ⊆ M ⊆ M∗

0, then ρ is G∗-ordinal if and only if it is a quantile;

(ii) if M⋄
c ⊆ M ⊆ M⋄

0, then ρ is G⋄-ordinal if and only if it is a quantile.

Another observation is that adding the decreasing and continuous functions to G∗ will lead

to the median. The median is of central importance in robust statistics, and it is a popular

7



quantitative tool in many domains of application, such as assessing income inequality, due to

its many advantages over other central statistics such as the mean or the mode. As far as we

are aware, an axiomatic characterization for the median is still missing in the literature, and the

next theorem fills in this gap. Note that the median is uniquely defined on M∗
0 but not M0,

and for this reason we will work with subsets of M∗
0.

Theorem 3. For a mapping ρ : M → R,

(i) if M∗
c ⊆ M ⊆ M∗

0, then ρ is G∗
±-ordinal if and only if it is the median;

(ii) if M⋄
c ⊆ M ⊆ M⋄

0, then ρ is G⋄
±-ordinal if and only if it is the median.

The characterization of the median in Theorem 3 follows from the fact the median is the only

quantile on M∗
c satisfying antisymmetry, i.e., commutation with the negative identity function.

However, Theorem 3 does not hold on a set of distributions with discontinuous quantiles, such as

Mc. This is because none of the left-median and the right-median on Mc satisfies antisymmetry.

Note that antisymmetry and G∗-ordinality together are equivalent to G∗
±-ordinality. In contrast,

the median is unique on M∗
c , and antisymmetry holds.

Before ending this section, we offer another characterization of quantiles, with the help of

a continuity condition. Below, x+ = max(x, 0) and x− = max(−x, 0).

Proposition 3. For a mapping ρ : M → R with Mc ⊆ M ⊆ M0, ρ is a left or right quantile

if and only if it satisfies

(i) ρ ◦ T [ϕ] = ϕ ◦ ρ for all functions ϕ : x 7→ x+ c where c ∈ R;

(ii) ρ ◦ T [ϕ] = ϕ ◦ ρ for all functions ϕ : x 7→ ax+ − bx− where a, b ⩾ 0;

(iii) ρ is continuous with respect to the sup-norm on quantile functions.

The main intuition behind Proposition 3 is that any continuous and increasing function on a

bounded interval can be uniformly approximated by piece-wise linear functions, which can in turn

be obtained by applying the transforms in (i) and (ii) repeatedly. Property (i) in Proposition 3 is

known as cash additivity, which is a common property of monetary risk measures (e.g., Föllmer

and Schied (2016)). Property (ii) requires that ρ commutes with piece-wise linear transforms that

apply different scaling to the positive and the negative parts of the random variable; this property

is quite strong, and satisfied by e.g., ρ : F 7→
∫
x+dF and ρ : F 7→

∫
x−dF . Property (iii) is a

standard continuity which is satisfied by all law-based monetary risk measures. Continuity of ρ

is not assumed in any other results in this paper.
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4 Quantile and median intervals

We next consider the characterization of quantile intervals on M. Instead of a real number,

the median for a distribution without a continuous quantile may be an interval. We denote by

I = {[a, b] : −∞ < a ⩽ b < ∞}, that is, the set of all compact intervals on R. We consider

mappings ρ : M → I. The property of ordinality is adapted as follows.

Definition 2. For a mapping ρ : M → I and a set G of measurable functions, we say that ρ is

G-ordinal if ρ ◦T [ϕ] = ϕ ◦ ρ for all ϕ ∈ G. Here, ρ ◦T [ϕ] = ϕ ◦ ρ means that ρ(T [ϕ](F )) = ϕ(ρ(F ))

for all F ∈ M such that T [ϕ](F ) ∈ M, where ϕ(I) = {ϕ(x) : x ∈ I} for I ∈ I.

We say that ρ : M → I is a quantile interval if both its endpoints are quantiles. More

precisely, there exist 0 ⩽ p1 ⩽ p2 ⩽ 1 such that one of the following four scenarios holds: (a)

ρ(F ) = [F−1
L (p1), F

−1
R (p2)] for all F ∈ M; (b) ρ(F ) = [F−1

R (p1), F
−1
L (p2)] for all F ∈ M; (c)

ρ(F ) = [F−1
L (p1), F

−1
L (p2)] for all F ∈ M; (d) ρ(F ) = [F−1

R (p1), F
−1
R (p2)] for all F ∈ M.4

A quantile interval ρ is equal-tailed if ρ(F ) = [F−1
L (p), F−1

R (1 − p)] for p ∈ (0, 1/2] or ρ(F ) =

[F−1
R (p), F−1

L (1− p)] for p ∈ (0, 1/2).

Proposition 4. For a mapping ρ : M → I with Mc ⊆ M ⊆ M0,

(i) ρ is G∗-ordinal if and only if it is a quantile interval;

(ii) ρ is G∗
±-ordinal if and only if it is an equal-tailed quantile interval.

For two interval functions ρ : M → I and ρ′ : M → I, we say that ρ contains ρ′ if

ρ′(F ) ⊆ ρ(F ) for all F ∈ M. For a set G of measurable functions, we say that ρ : M → I is

minimally G-ordinal if ρ is G-ordinal and it contains no other G-ordinal function ρ′ : M → I.

Intuitively, minimal G-ordinality leads to smallest intervals, possibly a singleton. Combination of

Proposition 4 and the above definition, we immediately arrive at the following characterization

results.

Theorem 4. For a mapping ρ : M → I where Mc ⊆ M ⊆ M0,

(i) ρ is minimally G∗-ordinal if and only if it is the singleton of a left or right quantile;

(ii) ρ is minimally G∗
±-ordinal if and only if it is the median interval.

Note that minimal G∗
±-ordinality does not imply, and is not implied by, minimal G∗-

ordinality, and the corresponding characterized mappings are non-overlapping. Theorem 4

4Note that for case (b), p1 < p2 is required and for cases (a)-(d), p2 = 1 in excluded if there exists F ∈ M
such that F−1

L (1) = ∞, and p1 = 0 is excluded if there exists F ∈ M such that F−1
R (0) = −∞.
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uniquely pins down the median interval among all interval-valued mappings on M as the small-

est interval which satisfies antisymmetry and G∗-ordinality. Note that in Theorem 4, we see

that, without antisymmetry, the minimal G∗-ordinality does not pin down quantile intervals of

the form [F−1
L (p), F−1

R (p)]. Hence, median interval indeed has a unique role among all quantile

intervals, not only because of its antisymmetry, but also because of its minimality.

5 Axiomatization of quantile maximization

Quantile maximization was axiomatized by Rostek (2010) in decision theory with several

Savage-style axioms. An alternative axiomatization is obtained by de Castro and Galvao (2022)

using ordinal covariance on a finite state space. Both above theories are different from our

framework as we consider mappings and preferences in a pre-specified probability space.5 Our

results in Section 3 lead to an axiomatic characterization for quantile maximization on general

sets with a minimal number of axioms.

Let X be a set of random variables containing all bounded random variables. Each element

of X represents a random prospect, and we treat almost surely equal random variables as iden-

tical. As discussed by Chambers (2007), the interpretation of G-ordinality in decision making is

that a possibly non-linear scale change in G on measuring random outcomes does not affect their

relative desirability. Putting this into a decision-theoretic framework, let the preference ⪯ be a

total preorder on X 6 that is law-based. Its equivalence relation and strict relation are denoted

by ∼ and ≺, respectively. The natural formulation of G-ordinality in this context, which will be

called G-invariance of ⪯, is

X ⪯ Y =⇒ ϕ(X) ⪯ ϕ(Y ) for all ϕ ∈ G. (3)

If ⪯ is represented by a functional R : X → R,7 then the property becomes G-invariance of R,

that is,

R(X) ⩽ R(Y ) =⇒ R(ϕ(X)) ⩽ R(ϕ(Y )) for all ϕ ∈ G. (4)

The G-invariance property in (4) is genuinely weaker than G-ordinality. For instance, G∗-

invariance is satisfied by the constant map R = 0 or any monotone transform of a quantile

functional, and they do not satisfy G∗-ordinality in general.

We say that a preference relation ⪯ has certainty equivalents if for every X ∈ X there exists

5Such a setting is common in the literature of statistics and risk management, in particular on risk measures
or statistical functionals, where quantiles are a prominent object.

6A total preorder is a binary relation on X satisfying, for all X,Y, Z ∈ X , (i) X ⪯ Y and Y ⪯ Z imply
X ⪯ Z, and (ii) X ⪯ Y or Y ⪯ X holds.

7That is, X ⪯ Y if and only if R(X) ⩽ R(Y ).
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a constant c ∈ R such that X ∼ c. We say that a preference relation ⪯ is a quantile maximizer if

⪯ can be numerically represented a constant times a quantile. More precisely, ⪯ being a quantile

maximizer means that it can be represented either by R = λQLp for some p ∈ (0, 1] and λ ∈ R,

or by R = λQRp for some p ∈ [0, 1) and λ ∈ R. Note that λ may be 0 (leading to a degenerate

⪯) or negative (which may be seen as a quantile minimizer).

Theorem 5. A law-based total preorder ⪯ on X with certainty equivalents is G∗-invariant if

and only if it is a quantile maximizer.

A sketch of the proof of Theorem 5 is as follows. Certainty equivalents and G∗-invariance

guarantee that the preorder ⪯ has a numerical representation R. Let h(c) = R(c) for c ∈ R.

There are two possible cases: i) If h is strictly monotone, then h−1
L ◦ R is G∗-ordinal. It follows

from Theorem 1 that h−1
L ◦ R is a left or right quantile, which further implies R is a strictly

monotone transform of a quantile. ii) If h is a constant, then R is a constant. See the details of

the proof in Appendix A. The existence of certainty equivalents is needed for Theorem 5 to ensure

the existence of a numerical representation (otherwise, a counter-example can be constructed).

To distinguish the left and right quantiles for the quantile maximizer characterized in The-

orem 5, we need to enhance G∗-invariance as in the following proposition, in a way similar to

Proposition 1.

Proposition 5. For a law-based total preorder ⪯ on X with certainty equivalents,

(i) it is GL-invariant if and only if it is represented by λQLp for some p ∈ (0, 1] and λ ∈ R;

(ii) it is GR-invariant if and only if it is represented by λQRp for some p ∈ [0, 1) and λ ∈ R.

Other generalizations, such as those on domains of continuously distributed random vari-

ables or characterizing medians, can be done analogously using other results from Sections 3 and

4. We omit a detailed discussion.

6 Conclusion

We found a minimalist characterization of quantiles on a general set of distributions using

only one axiom of ordinality. This result leads to axiomatizations of the median and the median

interval on different domains of distributions, as well as an axiomatization of quantile maximizers,

each with a minimal number of axioms. As far as we are aware, this paper contains the first

characterization of quantiles in the literature that does not impose monotonicity. Our main

results are summarized in Table 2 below.
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domain M G-ordinality ρ : M → R result

Mc ⊆ M ⊆ M0

G∗ (increasing continuous) all quantiles Theorem 2

GL (increasing left-continuous) left quantiles
Proposition 1

GR (increasing right-continuous) right quantiles

M∗
c ⊆ M ⊆ M∗

0 G∗ (increasing continuous)
all quantiles Proposition 2

M⋄
c ⊆ M ⊆ M⋄

0 G⋄ (strictly increasing continuous)

M∗
c ⊆ M ⊆ M∗

0 G∗
± (monotone continuous)

the median Theorem 3
M⋄

c ⊆ M ⊆ M⋄
0 G⋄

± (strictly monotone continuous)

domain M G-ordinality ρ : M → I result

Mc ⊆ M ⊆ M0

G∗ (increasing continuous) quantile intervals
Proposition 4

G∗
± (monotone continuous) equal-tailed intervals

minimal G∗-ordinality quantile singletons
Theorem 4

minimal G∗
±-ordinality median intervals

Table 2: Summary of characterization results
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A Proofs of all results

A.1 Proof of results in Section 3

We first present proofs for the results in Section 3 which characterize real-valued mappings

ρ : M → R that satisfy G-ordinality for different choices of G and M.

Proof of Theorem 2. We first show the “if” part. Note that for functions in G∗,

T [ϕ](F )(x) = F (ϕ−1
R (x)), x ∈ R, where ϕ−1

R (x) = inf{y ∈ R : ϕ(y) > x} with the conven-

tion inf ∅ = ∞. If ρ is a left quantile, then there exists p ∈ (0, 1] such that ρ(F ) = F−1
L (p) for

all F ∈ M. Hence for ϕ ∈ G∗, we have

ρ(T [ϕ](F )) = inf{x ∈ R : F (ϕ−1
R (x)) ⩾ p}

= inf{x ∈ R : ϕ−1
R (x) ⩾ F−1

L (p)}

= inf{x ∈ R : x ⩾ ϕ(F−1
L (p))} = ϕ(ρ(F )).

If ρ is a right quantile, then there exists p ∈ [0, 1) such that ρ(F ) = F−1
R (p) for all F ∈ M.

Hence for ϕ ∈ G∗, if F (F−1
R (p)) > p, we have

ρ(T [ϕ](F )) = inf{x ∈ R : F (ϕ−1
R (x)) > p}

= inf{x ∈ R : ϕ−1
R (x) ⩾ F−1

R (p)}

= inf{x ∈ R : x ⩾ ϕ(F−1
R (p))} = ϕ(ρ(F )).

If F (F−1
R (p)) = p, similarly as above, we have

ρ(T [ϕ](F )) = inf{x ∈ R : ϕ−1
R (x) > F−1

R (p)} = ϕ(F−1
R (p)) = ϕ(ρ(F )).

We next focus on the “only if” part. We will first show the result on Mc and then extend

14



it to M. For F ∈ M, suppose F is flat over (a, b) with a < b. Let ϕ(x) = x1{x/∈(a,b)} +(
a+ (x−a)2

b−a

)
1(a,b)(x). Then we have ϕ ∈ G∗ and T [ϕ](F ) = F . Using G∗-ordinality, we have

ρ(F ) = ρ(T [ϕ](F )) = ϕ(ρ(F )). This implies ρ(F ) /∈ (a, b). Hence for any F ∈ M, there exists a

constant pF depending on F such that

ρ(F ) = F−1
L (pF ) for pF ∈ (0, 1], or ρ(F ) = F−1

R (pF ) for pF ∈ [0, 1). (5)

For F ∈ M∗
c , let

ϕ(x) =


F−1
R (0), x ⩽ 0

F−1
L (x), 0 < x ⩽ 1

F−1
L (1), x > 1.

(6)

Then we have ϕ ∈ G∗ and T [ϕ](FU ) = F , where FU is uniform on [0, 1]. Hence,

ρ(F ) = ρ(T [ϕ](FU )) = ϕ(ρ(FU )). (7)

By (5), we have ρ(FU ) ∈ [0, 1]. Hence combination of (6) and (7) yields that for F ∈ M∗
c , with

p = ρ(FU ),

ρ(F ) =

 F−1
L (p), p ∈ (0, 1],

F−1
R (0), p = 0.

(8)

Let MI
c denote the set of all continuous distributions in Mc. Then for F ∈ MI

c , we have F ∈ G∗

and T [F ](F ) = FU . It follows from G∗-ordinality that ρ(T [F ](F )) = F (ρ(F )), which together

with ρ(T [F ](F )) = ρ(FU ) = p yields F (ρ(F )) = p. Note that ρ(F ) /∈ (F−1
L (p), F−1

R (p)). Hence

we have ρ(F ) = F−1
L (p) for p ∈ (0, 1] or ρ(F ) = F−1

R (p) for p ∈ [0, 1).

Next we show that ρ(F ) = F−1
L (p) for all F ∈ MI

c or ρ(F ) = F−1
R (p) for all F ∈ MI

c .

This is obvious for p = 0 or p = 1. We next consider the case 0 < p < 1. We assume by

contradiction that there exist F,G ∈ MI
c satisfying F−1

L (p) < F−1
R (p) and G−1

L (p) < G−1
R (p)

such that ρ(F ) = F−1
L (p) and ρ(G) = G−1

R (p). Let

ϕ(x) =
x− F−1

L (p)

F−1
R (p)− F−1

L (p)
1{F−1

L (p)<x⩽F−1
R (p)} + 1{x>F−1

R (p)},

and

ϕ̂(x) =
x−G−1

L (p)

G−1
R (p)−G−1

L (p)
1{G−1

L (p)<x⩽G−1
R (p)} + 1{x>G−1

R (p)}.

15



Note that ϕ, ϕ̂ ∈ G∗ and T [ϕ](F ) = T [ϕ̂](G). Using G∗-ordinality, we have

ρ(T [ϕ](F )) = ϕ(ρ(F )) = 0 and ρ(T [ϕ̂](G)) = ϕ̂(ρ(G)) = 1,

leading to a contradiction. Hence we have ρ(F ) = F−1
L (p) for all F ∈ MI

c or ρ(F ) = F−1
R (p) for

all F ∈ MI
c .

Without loss of generality, we assume p ∈ (0, 1] and ρ(F ) = F−1
L (p) for all F ∈ MI

c .

Therefore, we have

ρ(F ) = F−1
L (p) for all F ∈ M∗

c ∪MI
c with p ∈ (0, 1]. (9)

We next show that (9) holds for all F ∈ Mc. We assume by contradiction that there exists

F ∈ Mc \ (M∗
c ∪MI

c) such that ρ(F ) ̸= F−1
L (p). Note that by (5), there exists pF ∈ [0, 1] such

that ρ(F ) = F−1
L (pF ) or ρ(F ) = F−1

R (pF ).

We first consider the case ρ(F ) = F−1
L (pF ). This implies that pF ̸= p and F−1

L (pF ) ̸=

F−1
L (p). Without loss of generality, we assume pF < p and F−1

L (pF ) < F−1
L (p). We distinguish

two scenarios: F−1
L (t) is continuous over [pF , p) and F

−1
L (t) is not continuous at some t0 ∈ [pF , p).

If F−1
L (t) is continuous over [pF , p), let

ϕ(x) = F−1
L (pF )1{x⩽F−1

L (pF )} + x1{F−1
L (pF )<x<F−1

L (p)} + F−1
L (p)1{x⩾F−1

L (p)},

implying that ϕ ∈ G∗ and T [ϕ](F ) ∈ M∗
c . Hence in light of (9), ρ(T [ϕ](F )) = (T [ϕ](F ))−1

L (p) =

ϕ(F−1
L (p)) = F−1

L (p). However, using G∗-ordinality, we have

ρ(T [ϕ](F )) = ϕ(ρ(F )) = ϕ(F−1
L (pF )) = F−1

L (pF ) < F−1
L (p),

leading to a contradiction.

If F−1
L (t) is not continuous at t0 ∈ [pF , p), let

ϕ(x) = (x− F−1
L (t0))1{F−1

L (t0)<x⩽F
−1
R (t0)} + (F−1

R (t0)− F−1
L (t0))1{x>F−1

R (t0)}.

Then it follows that ϕ ∈ G∗. By G∗-ordinality, we have ρ(T [ϕ](F )) = ϕ(ρ(F )) = ϕ(F−1
L (pF )) = 0.

Moreover, define G ∈ Mc via G−1
L (t) = (t − t0 + F−1

L (t0))1{0<t⩽t0} + (t + F−1
R (t0))1{t0<t⩽1}.

Note that G ∈ MI
c and T [ϕ](G) = T [ϕ](F ). However, by G∗-ordinality, ρ(T [ϕ](G)) = ϕ(ρ(G)) =

ϕ(G−1
L (p)) = F−1

R (t0)− F−1
L (t0) > 0 = ρ(T [ϕ](F )), leading to a contradiction.

We next focus on the case ρ(F ) = F−1
R (pF ). If pF ̸= p, the proof follows analogously as the

proof of the case ρ(F ) = F−1
L (pF ). We next consider the case pF = p < 1 which implies F−1

L (p) <
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F−1
R (p) = ρ(F ). Let ϕ(x) = (x − F−1

L (p))1{F−1
L (p)<x⩽F−1

R (p)} + (F−1
R (p) − F−1

L (p))1{x>F−1
R (p)}.

Then we have ϕ ∈ G∗. By G∗-ordinality, we have ρ(T [ϕ](F )) = ϕ(ρ(F )) = F−1
R (p) − F−1

L (p).

Similarly as in the proof of case ρ(F ) = F−1
L (pF ), define G ∈ MI

c by G−1
L (t) = (t − p +

F−1
L (p))1{0<t⩽p} + (t + F−1

R (p))1{p<t⩽1}. It follows that T [ϕ](G) = T [ϕ](F ). By G∗-ordinality,

ρ(T [ϕ](G)) = ϕ(ρ(G)) = ϕ(G−1
L (p)) = ϕ(F−1

L (p)) = 0, leading to a contradiction. Therefore, we

have ρ(F ) = F−1
L (p) for all F ∈ Mc \ (M∗

c ∪MI
c), which further implies

ρ(F ) = F−1
L (p) for all F ∈ Mc. (10)

We next extend (10) from Mc to M. Let ϕ(x) = 1
2 +

1
π arctan(x), x ∈ R. For F ∈ M\Mc,

T [ϕ](F ) ∈ Mc. It follows from (10) that ρ(T [ϕ](F )) = (T [ϕ](F ))−1
L (p) = ϕ(F−1

L (p)). Moreover,

by G∗-ordinality, we have ρ(T [ϕ](F )) = ϕ(ρ(F )). Since ϕ is strictly increasing, we have ρ(F ) =

F−1
L (p). Therefore, ρ is a left quantile.

If (9) is changed to ρ(F ) = F−1
R (p) for all F ∈ M∗

c ∪MI
c with p ∈ [0, 1), we can similarly

show that ρ is a right quantile on M. This completes the proof.

Proof of Proposition 1. The “if” parts of both (i) and (ii) follow similarly as in the proof

of Theorem 2. We next focus on the “only if” parts.

(i) By Theorem 2, ρ is a left or right quantile. We next exclude the right quantile. We

assume by contradiction that there exists p ∈ [0, 1) such that ρ(F ) = F−1
R (p) for all F ∈

M. Let ϕ(x) = −1{x⩽0} + p1{x>p} and FU be uniform on [0, 1]. Then we have ϕ ∈ GL.

By GL-ordinality, we have ρ(T [ϕ](FU )) = ϕ(ρ(FU )) = ϕ(p). Moreover, direct calculation gives

ρ(T [ϕ](FU )) = (T [ϕ](FU ))
−1
R (p) = p ̸= ϕ(p) for p ∈ [0, 1), leading to a contradiction. Hence ρ is

a left quantile.

(ii) Define ρ̂ : Mc → Mc by ρ̂ = −ρ ◦ T [ψ], where ψ(x) = −x is the negative identity

function. Then one can check that ρ̂ satisfies GL-ordinality. It follows from (i) that ρ̂ is a left

quantile, implying that ρ = −ρ̂ ◦ T [ψ] is a right quantile.

Proof of Proposition 2. The “if” parts of both (i) and (ii) follow similarly as in the proof

of Theorem 2. The “only if” part of (i) is implied by (8), which shows that for F ∈ M∗
c , ρ(F )

is a p-quantile of F . The rest follows from the same arguments in Theorem 2.

Next we show the “only if” part of (ii). For F ∈ M⋄
c , let

ϕ(x) =


x+ F−1

R (0), x ⩽ 0

F−1
L (x), 0 < x ⩽ 1

x− 1 + F−1
L (1), x > 1.

(11)
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Then we have ϕ ∈ G⋄ and T [ϕ](FU ) = F , where FU is uniform on [0, 1]. Hence,

ρ(F ) = ρ(T [ϕ](FU )) = ϕ(ρ(FU )). (12)

Using the same argument as in the proof of Theorem 2, we can show that ρ(F ) /∈ (a, b) if F is

flat over an interval (a, b). This implies ρ(FU ) ∈ [0, 1] as FU is flat over (−∞, 0) and (1,∞).

Analogously as in the proof of Theorem 2, we can extend our conclusion on M⋄
c to any M such

that M⋄
c ⊆ M ⊆ M⋄

0.

Proof of Theorem 3. (i) The “if” part is straightforward to check. To show the “only if”

part, by Proposition 2, we know that ρ is a quantile, and denote by p its level. Define ψ : R → R

by ψ(x) = −x which is the negative identity function. Since ψ ∈ G∗
±, we have for F ∈ M∗

c ,

−F−1
L (p) = ψ(ρ(F )) = ρ(T [ψ](F )) = (T [ψ](F ))−1

L (p) = −F−1
L (1 − p). Hence p = 1/2 and ρ is

the median. (ii) follows from the same argument.

Proof of Proposition 3. The “if” part can be checked directly. We next focus on the

“only if” part. For m > 0, let tm : x 7→ min(max(−m,x),m), which is the truncation function

at −m and m.

We first assume M = Mc. Note that a combination of (i) and (ii) yields that ρ(T [ϕ](F )) =

ϕ(ρ(F )) holds for all piece-wise linear (with finite pieces) and continuously increasing functions

ϕ. Using F ∈ Mc, we have for ϕ ∈ G∗, T [ϕ](F ) = T [ϕ∗](F ), where ϕ∗(x) = ϕ(tm(x)) with

F (m) = 1 and F (−m) = 0. Since ϕ∗ is increasing and continuous on [−m,m], there exists a

sequence of piece-wise linear (with finite pieces) and continuously increasing functions ϕn such

that supx∈R |ϕn(x)− ϕ∗(x)| → 0 as n→ ∞. Hence using the continuity of ρ, we have

ρ(T [ϕ](F )) = ρ(T [ϕ∗](F )) = lim
n→∞

ρ(T [ϕn](F )) = lim
n→∞

ϕn(ρ(F )) = ϕ∗(ρ(F )).

Setting m > |ρ(F )|, we have ρ(T [ϕ](F )) = ϕ∗(ρ(F )) = ϕ(ρ(F )) for all ϕ ∈ G∗. By Theorem 2, ρ

is a left or right quantile on Mc.

We next extend the result from Mc to M. Without loss of generality, assume that for

some p ∈ (0, 1], ρ(F ) = F−1
L (p) for all F ∈ Mc. Using the above arguments again, for F ∈

M, ρ(T [tm](F )) = tm(ρ(F )) holds for m > 0. This implies that for F ∈ M, tm(ρ(F )) =

ρ(T [tm](F )) = (T [tm](F ))−1
L (p) = tm(F−1

L (p)). Setting m > |F−1
L (p)|, we have ρ(F ) = F−1

L (p).

This completes the proof.
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A.2 Proof of results in Section 4

Next we present the proofs of results in Section 4 which characterize interval-valued map-

pings ρ : M → I satisfying G-ordinality for different choices of G and Mc ⊆ M ⊆ M0.

Proof of Proposition 4. The “if” parts of both (i) and (ii) are straightforward. We next

consider the “only if” parts.

(i) We write ρ = [ρ1, ρ2]. By Theorem 2, there exist p1, p2 ∈ [0, 1] with p1 ⩽ p2 such that

ρ1(F ) = F−1
L (p1) or F

−1
R (p1) and ρ2(F ) = F−1

L (p2) or F
−1
R (p2) for all F ∈ M. This implies the

four scenarios (a)-(d) of quantile intervals given in Section 4. We establish the claim of (i).

(ii) Using the conclusion of (i), G∗-ordinality implies four scenarios: (a)-(d). We first

consider scenario (a). Note that the negative identity function ψ(x) = −x ∈ G∗
±. Hence G∗

±-

ordinality gives ρ(T [ψ](F )) = ψ(ρ(F )) = [−F−1
R (p2),−F−1

L (p1)]. Moreover, direct calculation

shows

ρ(T [ψ](F )) = [(T [ψ](F ))−1
L (p1), (T

[ψ](F ))−1
R (p2)] = [−F−1

R (1− p1),−F−1
L (1− p2)].

This implies that p1 + p2 = 1 and p1 ∈ (0, 1/2]. Analogously, we can show that for scenario (b),

p1 + p2 = 1 and p1 ∈ (0, 1/2).

We next focus on scenario (c). Note that G∗
±-ordinality gives ρ(T [ψ](F )) = ψ(ρ(F )) =

[−F−1
L (p2),−F−1

L (p1)]. Moreover, direct calculation shows

ρ(T [ψ](F )) = [(T [ψ](F ))−1
L (p1), (T

[ψ](F ))−1
L (p2)] = [−F−1

R (1− p1),−F−1
R (1− p2)].

It is impossible that F−1
L (p2) = F−1

R (1− p1) for all F ∈ Mc, leading to a contradiction. Hence

(c) does not satisfy G∗
±-ordinality. Similarly, we can show that scenario (d) does not satisfy

G∗
±-ordinality. We establish the result in (ii).

Proof of Theorem 4. It follows from Proposition 4 and the definition of minimality.

A.3 Proof of results in Section 5

Finally we present the proofs of Theorem 5 and Proposition 5 and some related technical

discussions. In what follows, let Xb be the set of all bounded random variables.

Lemma 1. (i) For a law-based and G∗-invariant total preorder ⪯ on X , it has a numerical

representation if it has certainty equivalents;

(ii) For a law-based and G∗-invariant total preorder ⪯ on Xb, it has a numerical representation

if and only if it has certainty equivalents.
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Proof. (i) We distinguish three scenarios: 0 ≺ 1, 0 ∼ 1 and 1 ≺ 0. We first assume 0 ≺ 1 and

show that x ≺ y for any x < y. We assume by contradiction that there exist x, y ∈ R with x < y

such that y ⪯ x. By G∗-invariance, it follows that ϕ(y) ⪯ ϕ(x) for all ϕ ∈ G∗. Let ϕ ∈ G∗ such

that ϕ(x) = 0 and ϕ(y) = 1. Then we have 1 ⪯ 0, leading to a contradiction. Hence x ≺ y if

x < y.

Let X1 be the subset of X consisting of all rational numbers. By the property of having

certainty equivalents (this property will be abbreviated as CE hereafter), for any X,Y ∈ X

satisfying X ≺ Y , there exist x, y ∈ R such that X ∼ x, Y ∼ y and x < y. For c ∈ X1 with

x < c < y, it follows that X ≺ c ≺ Y . Using Theorem 2.6 of Föllmer and Schied (2016), the

preorder ⪯ has a numerical representation. The case 1 ≺ 0 can be shown similarly.

We next focus on the case 0 ∼ 1. By G∗-invariance, x ∼ y for all x, y ∈ R. It follows from

CE that X ∼ Y for all X,Y ∈ X . Hence the preorder ⪯ has a numerical representation. This

completes the proof of (i).

(ii) The “if” part follows from (i). We next consider the “only if” part. We distinguish three

scenarios: 0 ≺ 1, 0 ∼ 1 and 1 ≺ 0. We start with 0 ≺ 1, implying x ≺ y if x < y. For Y ∈ Xb,

there exist m1,m2 ∈ R such that m1 ⩽ Y ⩽ m2. We next show that m1 − 1 ⪯ Y ⪯ m2 + 1.

We assume by way of contradiction that m2 + 1 ≺ Y . Let ϕ(x) = max(x −m2, 0). Note that

ϕ ∈ G∗. By G∗-invariance, we have 1 = ϕ(m2+1) ⪯ ϕ(Y ) = 0, leading to a contradiction. Hence

Y ⪯ m2 + 1. We can similarly show m1 − 1 ⪯ Y . Next, assume by way of contradiction that

there exists X ∈ Xb such that X ≺ x or x ≺ X for all x ∈ R. It follows that there exists c ∈ R

such that x ≺ X ≺ y for x < c < y. Without loss of generality, we assume X ≺ c. For t ∈ R, it

follows that x ⪯ X + t ≺ c + t for all x < c + t. We denote X2 by a subset of Xb that is order

dense in Xb. Hence for t ∈ R, there exists Yt ∈ X2 such that X + t ⪯ Yt ⪯ c + t. Note that if

t1 < t2, Yt1 ⪯ c+ t1 ≺ c+ t1+t2
2 ≺ Yt2 . Hence X2 is uncountable. By Theorem 2.6 of Föllmer and

Schied (2016), the preorder ⪯ does not have a numerical representation. The above arguments

show that the preorder ⪯ has certainty equivalents. Analogously, we can establish the claim for

1 ≺ 0.

For the case 0 ∼ 1, we have x ∼ y for all x, y ∈ R. Since for everyX ∈ X , there exist x, y ∈ R

such that x ⪯ X ⪯ y, we have X ∼ x. Hence, the preorder ⪯ has certainty equivalents.

We next consider mapping satisfying G∗-invariance, showing that G∗-invariance is necessary

and sufficient to ensure that R on Xb is a monotone function of quantile. However, an additional

assumption is needed for mappings on general X . For an increasing function ϕ, ϕ−1
L (x) = inf{y ∈

R : ϕ(y) ⩾ x} with the convention inf ∅ = ∞.

Recall that R represents a quantile maximizer ⪯ if and only if there exists a function h on

R such that R = h ◦ QLp for p ∈ (0, 1] or R = h ◦ QRp for p ∈ [0, 1), where h is either strictly
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monotone or a constant (and it suffices to consider linear h as in Section 5). In what follows,

R(A) = {R(X) : X ∈ A} for a set A ⊂ X . We treat the domains of Xb and a general X

separately as the latter requires an additional assumption.

Lemma 2. (i) A law-based mapping R : Xb → R is G∗-invariant if and only if it represents a

quantile maximizer.

(ii) A law-based mapping R : X → R satisfying R(X ) = R(R) is G∗-invariant if and only if it

represents a quantile maximizer.

Proof. The “if” part is obvious in both statements. We will show the “only if” part. Note that

the difference between (i) and (ii) is that the condition R(X ) = R(R) is assumed in (ii). Below,

the only places where we use the fact that Xb contains only bounded random variables are step

2 and step 5 (a), and the other steps can be unified for both cases. Let h : R → R be given by

h(c) = R(c), c ∈ R.

1. We first assume R(0) < R(1). We claim that h is strictly increasing. We assume by way of

contradiction that there exist x, y ∈ R with x < y such that h(x) ⩾ h(y). By G∗-invariance,

it follows that h ◦ ϕ(x) ⩾ h ◦ ϕ(y) for all ϕ ∈ G∗. Let ϕ ∈ G∗ such that ϕ(x) = 0 and

ϕ(y) = 1. Then we have h(0) ⩾ h(1), which contradicts with R(0) < R(1). Hence h is

strictly increasing on R.

2. This step is only needed for the case Xb in (i). We claim that forX ∈ Xb, there exist c1, c2 ∈

R with c1 ⩽ c2 such that h(c1) ⩽ R(X) ⩽ h(c2). Let m1,m2 ∈ R such that m1 ⩽ X ⩽ m2.

We assume by contradiction that R(X) ⩾ supc∈R h(c). Let ϕ(x) = max(x−m2, 0). Then

ϕ(X) = 0. By G∗-invariance, we have R(ϕ(X)) = R(0) = h(0) ⩾ supc∈R h(ϕ(c)), which

contradicts with the fact that h is strictly increasing. Hence we have R(X) ⩽ h(c2) for

some c2 ∈ R. Analogously, we can show that there exists c1 ∈ R such that h(c1) ⩽ R(X)

and c1 ⩽ c2 is implied by the strict increasing monotonicity of h.

We next show thatR(Xb) = R(R). IfR(X) /∈ R(R), there exists c0 ∈ R such that h(c0−) ⩽

R(X) ⩽ h(c0+), where h(x−) and h(x+) are the left and right limits, respectively, of h

at a point x. Let ϕ(x) = x − c0 + x0, where x0 is a continuous point of h. Then ϕ ∈ G∗.

Using G∗-invariance, we have h(ϕ(c0)−) ⩽ R(ϕ(X)) ⩽ h(ϕ(c0)+). Note that h(ϕ(c0)−) =

h(ϕ(c0)+) = h(x0). Hence, R(ϕ(X)) = h(x0). Noting that ϕ−1
L : x 7→ x + c0 − x0 ∈ G∗,

it follows from G∗-invariance that R(X) = h(ϕ−1
L (x0)), leading to a contradiction. Hence,

R(X) ∈ R(R) for all X ∈ Xb.

3. Using the above facts, by defining the mapping R′(X) = h−1
L (R(X)) for X ∈ X , we can
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verify that R′ satisfies

R′(c) = h−1
L (h(c)) = c for all c ∈ R, (13)

and R′ is G∗-invariant. Hence, for ϕ ∈ G∗ and X,Y ∈ X , we have

R′(X) = R′(Y ) =⇒ R′(ϕ(X)) = R′(ϕ(Y )).

Moreover, by (13), we have R′(R′(X)) = R′(X) for X ∈ X . Hence, for ϕ ∈ G∗ and X ∈ X ,

we have R′(ϕ(R′(X))) = R′(ϕ(X)). This implies ϕ(R′(X)) = R′(ϕ(X)) for all ϕ ∈ G∗. In

light of Theorem 1, we have R′ = QLp for p ∈ (0, 1] or R′ = QRp for p ∈ [0, 1).

Using R(X ) = R(R) and the fact that h is strictly increasing, we have R = h ◦ R′. We

establish the claim for the case R(0) < R(1).

4. For the case R(0) > R(1), let R̃ = −R. Then R̃ is law-based, G∗-invariant and R̃(0) <

R̃(1). By the above arguments, there exists a strictly increasing h such that R̃ = h◦QLp for

p ∈ (0, 1] or R̃ = h◦QRp for p ∈ [0, 1). Hence R = (−h)◦QLp for p ∈ (0, 1] or R = (−h)◦QRp
for p ∈ [0, 1). Note that −h is a strictly decreasing function.

5. Finally, we consider the case R(0) = R(1). For c1 < c2, let ϕ(x) = c1 + (c2 − c1)x. Using

G∗-invariance, we have R(c1) = R(ϕ(0)) = R(ϕ(1)) = R(c2). Hence h ≡ h(0) ∈ R.

(a) We first analyze the case of Xb in (i). If R(X) ̸= h(0) for some X ∈ Xb, without loss of

generality, we assume R(X) < h(0). There exist m1,m2 ∈ R with m1 < m2 ∈ R such

that m1 ⩽ X ⩽ m2. If R(X) ⩽ R(X +m2 −m1), let ϕ(x) = max(x−m2 +m1,m1).

Using G∗-invariance, it follows thatR(ϕ(X)) ⩽ R(ϕ(X+m2−m1)), implyingR(m1) ⩽

R(X) < h(0) = R(m1), leading to a contradiction. If R(X) ⩾ R(X +m2 −m1), let

ϕ(x) = min(x,m2). Using G∗-invariance, it follows that R(ϕ(X)) ⩾ R(ϕ(X +m2 −

m1)), implying R(m2) ⩽ R(X) < h(0) = R(m2), leading to a contradiction. Hence,

we have R(X) = h(0) and R ≡ h(0).

(b) In case of a general X in (ii), using the condition R(X ) = R(R) and R(R) = {h(0)},

we get R is a constant on X .

Summarizing the above cases, we establish the desired result.

Proof of Theorem 5. Theorem 5 follows directly from combining Lemmas 1 and 2.

Proof of Proposition 5. (i) The “if” part is straightforward. We next consider the “only

if” part. By Theorem 5, the preorder can be represented by R = λQLp for some p ∈ (0, 1] and
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λ ∈ R, or R = λQRp for some p ∈ [0, 1) and λ ∈ R. We next exclude the case R = λQRp for some

p ∈ [0, 1) and λ ̸= 0. We assume for some p ∈ [0, 1) and λ ̸= 0, X ⪯ Y if and only if λQRp (X) ⩽

λQRp (Y ) for all X,Y ∈ X . Let X be a random variable with distribution pδ0+(1−p)δ1, where δx
represents a probability mass distribution at x, and U be a uniform random variable distributed

on [0, 1]. Hence we have λQRp (X) = λQRp (U + 1 − p) = λ, implying X ∼ U + 1 − p. Note

that ϕ(x) = 1{x>1} ∈ GL. It follows from GL-invariance that ϕ(X) ∼ ϕ(U + 1 − p). However,

0 = λQRp (ϕ(X)) ̸= λQRp (ϕ(U +1− p)) = λ, leading to a contradiction. Hence the case R = λQRp

for some p ∈ [0, 1) and λ ̸= 0 does not satisfy GL-ordinality. We establish claim (i). (ii) follows

from the same argument as in the proof of (i).
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