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Abstract. This paper is concerned with the asymptotic analysis of sojourn times of random fields

with continuous sample paths. Under a very general framework we show that there is an interesting

relationship between tail asymptotics of sojourn times and that of supremum. Moreover, we establish

the uniform double-sum method to derive the tail asymptotics of sojourn times. In the literature,

based on the pioneering research of S. Berman the sojourn times have been utilised to derive the tail

asymptotics of supremum of Gaussian processes. In this paper we show that the opposite direction is

even more fruitful, namely knowing the asymptotics of supremum of random processes and fields (in

particular Gaussian) it is possible to establish the asymptotics of their sojourn times. We illustrate

our findings considering i) two dimensional Gaussian random fields, ii) chi-process generated by

stationary Gaussian processes and iii) stationary Gaussian queueing processes.
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1. Introduction & First Result

Let X(t), t ∈ E be a random field with compact parameter set E ⊂ Rd, d ≥ 1 and almost surely

continuous sample paths. For a given level u ∈ R define the excursion set of X above the level u by

Au(X) := {t ∈ E : X(t) > u}.

The probability that Au is not empty

P {Au(X) 6= ∅} = P {∃t ∈ E : X(t) > u} = P
{

sup
t∈E

X(t) > u

}
=: pu

is widely studied in the literature under the asymptotic regime u → ∞, and the assumption that

X has marginals with infinite upper endpoint; see, e.g., Piterbarg (1996); Adler and Taylor (2007)

for X being Gaussian processes and related random fields.

Define the Lebesgue volume of Au(X) by

V ol(Au(X)) =

∫
E
I(X(t) > u)dt.

For specific cases, commonly d = 1 and X is stationary, asymptotic results as u → ∞ are also

known for the probability that the volume of the excursion set (occupation time or sojourn time)

exceeds v(u)x, x ≥ 0, i.e., approximations of

ru(x) := P {V ol(Au(X)) > v(u)x} , u→∞

for some specific positive scale function v and x ≥ 0 are available, see the seminal contribution

Berman (1982).

The non-stationary case has been considered in Berman (1985a,b). See also Berman (1992) for

the comprehensive introduction of extremes of sojourns for Gaussian processes.

In this contribution we are mainly interested in the formalisation of the uniform double-sum method

for sojourns of random processes and fields focusing on the multidimensional case d ≥ 2, for which

no asymptotic results for ru(z) are available in the literature.

The first question of our study is whether we can determine a positive scaling functions v(u), u > 0

and some survival function F̄ such that

lim
u→∞

P
{
V ol(Au(X)) > v(u)x

∣∣∣V ol(Au(X)) > 0
}

= lim
u→∞

P
{
V ol(Au(X)) > v(u)x

∣∣∣sup
t∈E

X(t) > u

}
= F̄ (x) (1.1)

is valid for all x ≥ 0. If (1.1) holds for some x positive such that F̄ (x) > 0 the asymptotics of ru(x)

is proportional to that of pu, i.e.,

ru(x) ∼ F̄ (x)pu, u→∞.

Here a(t) ∼ b(t) means limt→∞ a(t)/b(t) = 1.
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The following theorem states tractable conditions that imply (1.1) for X as above and E = Eu.

In order to avoid repetition, all Gaussian processes hereafter are assumed to have almost surely

continuous sample paths.

Theorem 1.1. Let Eu, u > 0 be compact sets of Rd such that limu→∞ P
{

supt∈Eu X(t) > u
}

= 0.

Suppose that there exist collections of Lebesgue measurable disjoint compact sets Ik(u, n), k ∈ Ku,n

with Ku,n non-empty countable index sets such that

E(u, n) :=
⋃

k∈Ku,n

Ik(u, n) ⊂ Eu,

then (1.1) holds with E = Eu if the following three conditions are satisfied:

A1) (Reduction to relevant sets)

lim
n→∞

lim sup
u→∞

P
{

supt∈Eu\E(u,n)X(t) > u
}

P
{

supt∈E(u,n)X(t) > u
} = 0.

A2) (Uniform single-sum approximation) There exists v(u) > 0 and F̄n, n ≥ 1 such that

lim
u→∞

sup
k∈Ku,n

∣∣∣∣P {V ol({t ∈ Ik(u, n) : X(t) > u}) > v(u)x}

P
{

supt∈Ik(u,n)X(t) > u
} − F̄n(x)

∣∣∣∣ = 0, x ≥ 0, n ≥ 1 (1.2)

and for all x ≥ 0

F̄ (x) := lim
n→∞

F̄n(x) ∈ (0, 1]. (1.3)

A3) (Double-sum negligibility) For all large n and large u the set Ku,n has at least two elements and

lim
n→∞

lim sup
u→∞

∑
i 6=j,i,j∈Ku,n P

{
supt∈Ii(u,n)X(t) > u, supt∈Ij(u,n)X(t) > u

}
∑

k∈Ku,n P
{

supt∈Ik(u,n)X(t) > u
} = 0.

For X(t), t ∈ R being a Gaussian process, Dȩbicki et al. (2017c) shows that conditions A1)-

A3) are satisfied under very general assumptions on X. In this case the choice of the family of

sets E(u, n) is strongly governed by the set of maximizers of the variance function of X and local

behaviour of the variance around its neighbourhood, while sets Ik(u, n) are chosen according to the

local structure of the correlation function of X, in a similar fashion as used in the method of the

double sum for suprema of Gaussian processes; see e.g., Piterbarg (1996, Chapter 2). From Dȩbicki

et al. (2017c), we can formulate some general conditions on X that imply

lim
u→∞

sup
k∈Ku,n

∣∣∣∣P
{

supt∈Ik(u,n)X(t) > u
}

Ξk(u)
− Cn

∣∣∣∣ = 0 (1.4)

for some known deterministic functions Ξk(u), k ∈ Ku,n and Cn positive constants such that

limn→∞Cn = C ∈ (0,∞). In order to prove (1.2) if (1.4) holds, we shall prove that

lim
u→∞

sup
k∈Ku,n

∣∣∣∣P {V ol({t ∈ Ik(u, n) : X(t) > u}) > v(u)x}
Ξk(u)

−Dn(x)

∣∣∣∣ = 0, (1.5)
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where Dn, n ≥ 1 are deterministic functions such that limn→∞Dn(x) = D(x) > 0, x ≥ 0. This

then in turn implies that (1.3) holds with

F̄ (x) =
D(x)

C
.

Note that in case that D is continuous at x = 0 we also expect that C = D(0).

In the literature various results are known for supremum of functions of Gaussian vector processes,

for instance for chi-square processes, chaos of Gaussian processes, order statistics of Gaussian pro-

cesses, (see, e.g., Piterbarg, 1994, 1996; Hashorva and Ji, 2015; Bai, 2019) or reflected Gaussian

processes modelling a queueing process with Gaussian input (see, e.g., Norros, 1994; Hüsler and

Piterbarg, 1999; Dȩbicki, 2002; Piterbarg, 2001; Dȩbicki and Mandjes, 2003; Hüsler and Piterbarg,

2004; Dieker, 2005; Mandjes, 2007; Dȩbicki and Liu, 2016, 2018). In Section 3 we illustrate the

applicability of Theorem 1.1 by the analysis of three diverse families of stochastic processes: 1)

Gaussian random fields (GRF’s), 2) chi-processes and 3) reflected fractional Brownian motions. For

all this families of stochastic processes the available results in the literature show that both A1) and

A3) hold under quite general conditions; see Section 2. Hence, in view of Theorem 1.1, in order to

get (1.1) it suffices to determine F̄ in A2).

In insurance applications, investigation of sojourn ruin is of particular importance. Therein,

cumulative Parisian ruin is used instead of sojourn ruin, see e.g., Ji (2020); Kriukov (2022); Krystecki

(2022); Jasnovidov (2021) and the references therein. Besides the above examples, our findings can

also be applied to many other GRF’s. For instance, multi-dimensional GRF’s with d ≥ 3, non-

stationary chi-process or chi-square process, Gaussian chaos process, non-stationary Gaussian fluid

queues and so on. However, we shall not analyse these random processes or fields in this paper.

Brief organisation of the rest of the paper. In Section 2 we introduce some notation and Berman-

type constants that play the core role in the description of F̄ . In Section 3, we provide examples

that illustrate the derived in Theorem 1.1 technique for getting (1.1). Some technical lemmas are

given in Section 4; their proofs are deferred to Section 6. The proofs of the main contributions of

this paper are presented in Section 5.

2. Berman-type constants

We begin with the introduction of the Berman-type constants for given independent fBm’s

Bαi(s), s ∈ R with Hurst index αi/2 ∈ (0, 1], i = 1, 2. For given continuous functions h1, h2

set

Wα1,α2,h1,h2(t) :=
2∑
i=1

(Wαi(ti)− hi(ti)), t = (t1, t2) ∈ R2, Wαi(ti) =
√

2Bαi(ti)− |ti|
αi .

Set next B0(s) ≡ 0, s ∈ R. For αi ∈ [0, 2], i = 1, 2, x ≥ 0 and E ⊂ R2 a compact set, let

Bh1,h2
α1,α2

(x,E) =

∫
R
P
{∫

E
I(Wα1,α2,h1,h2(t) > z)dt > x

}
ezdz
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and if the limit exists, define

Bb1|t1|β1 ,b2|t2|β2

α1,α2
(x) := lim

S→∞

Bb1|t1|
β1 ,b2|t2|β2

α1,α2 (x,G(S, α1, β1, α2, β2))

SI(α1<β1)+I(α2<β2)
,

where

G(S, α1, β1, α2, β2) =


[0, S]2, α1 < β1, α2 < β2,

[−S, S]× [0, S], α1 ≥ β1, α2 < β2,

[0, S]× [−S, S], α1 < β1, α2 ≥ β2,

[−S, S]2 α1 ≥ β1, α2 ≥ β2.

We omit superscripts hi’s if h1(s) = h2(s) = 0, s ∈ R and then we put in our notation β1 = β2 =∞
(this implies that α1 < β1 and α2 < β2). Notice that for x = 0, Bh1,h2

α1,α2(x) reduces to the classical

Pickands or Piterbarg constants, see e.g., Piterbarg (1996). The one-dimensional Berman type

constant is defined by

Bα(x, [a, b]) =

∫
R
P

{∫
[a,b]

I(Wα(s) > t)ds > x

}
etdt

for α ∈ (0, 2], a < b, a, b ∈ R, and

Bα(x) = lim
S→∞

Bα(x, [0, S])

S
.

One can refer to Dȩbicki et al. (2019) and Dȩbicki et al. (2020b) for the existence and properties

of one-dimensional Berman constants. For x = 0, Hα := Bα(0) reduces to the classical Pickands

constant; see, e.g., Piterbarg (1996).

The next lemma deals with properties of

B̂α1,...,αm

(
x,

m∏
i=1

[0, ni]

)
:=

∫
R
P

{∫
[0,n1]

I

{
sup

ti∈[0,ni],i=2,...,m

m∑
i=1

Wαi(ti) > s

}
dt1 > x

}
esds

for αi ∈ (0, 2], i = 1, . . . ,m and m ≥ 1.

Lemma 2.1. For any x ≥ 0, and n1 > 0

B̂α1,...,αm(x, n1) := lim
ni→∞,i=2,...,m

B̂α1,...,αm (x,
∏m
i=1[0, ni])∏m

i=2 ni

=

m∏
i=2

Hαi
∫
R
P

{∫
[0,n1]

I {Wα1(t) > s} dt > x

}
esds ∈ (0,∞) (2.1)

and

B̂α1,...,αm(x) := lim
n→∞

B̂α1,...,αm(x, n)

n
= Bα1(x)

m∏
i=2

Hαi ∈ (0,∞). (2.2)

Remark 2.2. The limits in (2.1) are finite and positive and B̂α1,...,αm(x, n1) is a continuous function

of x ∈ [0, n1) which follows from the combination of Lemma 2.1 and Dȩbicki et al. (2020b, Lem 4.1).

The claim of Lemma 2.1 still holds if we replace Bαi by Xi being independent centered Gaussian
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processes with stationary increments and variance function satisfying some regular conditions as

e.g., in Dȩbicki (2002).

3. Illustrating examples

In this section we shall apply Theorem 1.1 to three classes of processes:

i) GRF’s;

ii) chi-process generated by a stationary Gaussian process;

iii) stationary reflected fractional Brownian motions with drift.

3.1. Sojourns of GRF’s. Although numerous results for the tail asymptotics of supremum of GRF’s

are available for both stationary and non-stationary cases (see e.g., Piterbarg, 1996, 2015), asymp-

totic behaviour of sojourns times for random fields have not been analysed so far in the literature.

It follows from the available results in the literature, that A1) holds under quite general conditions,

for instance when the variance function has a unique point of maximum and X satisfies a global

Hölder continuity condition, see e.g., Piterbarg (1996). The main tool for proving A1) is the so-

called Piterbarg inequality, see Piterbarg (1996, Thm 8.1) and the recent contribution Dȩbicki et al.

(2017a). In the following we set

σ(t) =
√
V ar(X(t)).

Under some further weak assumptions on σ and the covariance function of X, also A3) has been

shown to hold for a wide collection of cases of interest, see Piterbarg (1996); Dȩbicki et al. (2016).

Thus, in light of Theorem 1.1, in order to prove (1.1) for GRF’s the main task is the explicit

calculation of F̄ .

3.1.1. Stationary GRF’s. First we consider X being a centered stationary GRF with σ(t) = 1, t ∈
E ⊂ R2 and the correlation function r(t, s) = ρ(t− s), t, s ∈ R2 satisfying

1− r(t1, t2, s1, s2) ∼ a1|t1 − s1|α1 + a2|t2 − s2|α2 , (t1, t2), (s1, s2) ∈ E, |ti − si| → 0, i = 1, 2, (3.1)

with ai > 0 and αi ∈ (0, 2], i = 1, 2. Moreover, suppose that

r(t1, t2, s1, s2) < 1, (t1, t2), (s1, s2) ∈ E, (t1, t2) 6= (s1, s2). (3.2)

For notational simplicity we shall consider E = [0, T1] × [0, T2], with T1, T2 positive constants.

Results for general hypercubes or even for bounded Jordan measurable sets E ⊂ Rd follow with

similar calculations.

Proposition 3.1. Let X(t), t ∈ E = [0, T1] × [0, T2] be a centred stationary GRF which satisfies

(3.1) and (3.2) and assume that v(u) = a
−1/α1

1 a
−1/α2

2 u−2/α1−2/α2. Then for all x ≥ 0

lim
u→∞

P
{∫

E
I(X(t) > u)dt > v(u)x

∣∣∣sup
t∈E

X(t) > u

}
=
Bα1,α2(x)

Bα1,α2(0)
.
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Remark 3.2. The case that Ti = Ti,u, i = 1, 2 depend on u needs some extra care. Ti,u’s should not

be too small, i.e.,

lim
u→∞

Ti,uu
2/αi =∞, i = 1, 2.

On the other side Ti,u’s cannot be too large. For some β ∈ (0, 1) we shall require

lim
u→∞

T1,uT2,ue
−βu2/2 = 0.

3.1.2. GRF’s with non-constant variance. Suppose that

t∗ = (t∗1, t
∗
2) ∈ E = [−T1, T1]× [−T2, T2] is a unique inner point of E such that σ(t∗) = supt∈E σ(t) =

1 and further for some positive constants bi, βi, i = 1, 2

1− σ(t) ∼ b1|t1 − t∗1|β1 + b2|t2 − t∗2|β2 , t = (t1, t2) ∈ E, ‖t− t∗‖ → 0. (3.3)

Here ‖·‖ denotes the Euclidean norm. Moreover, for the correlation function r of X we shall assume

that

1− r(t, s) ∼ a1|t1 − s1|α1 + a2|t2 − s2|α2 (3.4)

as t, s ∈ E, ‖t − t∗‖, ‖s − t∗‖ → 0 with ai > 0 and αi ∈ (0, 2], i = 1, 2, s = (s1, s2). Below we

interpret ∞ · 0 as 0.

Proposition 3.3. If X(t), t ∈ E is a centered GRF which satisfies (3.3) and (3.4) and v(u) =∏2
i=1

(
a
−1/α∗i
i u−2/min(αi,βi)

)
with α∗i = αiI(αi ≤ βi) +∞I(αi > βi), then for all x ≥ 0

lim
u→∞

P
{∫

E
I(X(t) > u)dt > v(u)x

∣∣∣sup
t∈E

X(t) > u

}
=
Bā1b1|t1|β1 ,ā2b2|t2|β2

α̂1,α̂2
(x)

Bā1b1|t1|β1 ,ā2b2|t2|β2

α̂1,α̂2
(0)

,

where

āi =


0 αi < βi
1
ai

αi = βi

1 αi > βi

, α̂i =

{
αi αi ≤ βi
0 αi > βi

, i = 1, 2.

3.2. Sojourns of chi-processes. Let X(t), t ∈ [0, T ] be a centered stationary Gaussian process with

unit variance and correlation function satisfying

1− r(s, t) ∼ a|t− s|α, |s− t| → 0, α ∈ (0, 2]

and for all s 6= t, s, t ∈ [0, T ]

r(s, t) < 1.

Define the chi-process χ with m ≥ 1 degrees by

χ(t) :=

√√√√ m∑
i=1

X2
i (t), t ∈ R, (3.5)
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where Xi, 1 ≤ i ≤ m are iid copies of X. The exact asymptotics of P
{

supt∈[0,T ] χ(t) > u
}

has

been investigated in Piterbarg (1994, 1996); Hashorva and Ji (2015). In the following theorem we

consider the sojourn time of χ.

Proposition 3.4. Let χ be defined as in (3.5). If v(u) = a−1/αu−2/α, then for all x ≥ 0

lim
u→∞

P

{∫
[0,T ]

I(χ(t) > u)dt > v(u)x
∣∣∣ sup
t∈[0,T ]

χ(t) > u

}
=
Bα(x)

Bα(0)
.

3.3. Sojourns of stationary reflected fractional Brownian motion with drift. Consider a stationary

reflected fractional Brownian motion with drift Q(t), t ≥ 0, i.e.,

Q(t) := sup
s≥t

(Bα(s)−Bα(t)− c(s− t)) ,

where Bα is an fBm with Hurst parameter α/2 ∈ (0, 1) and c ∈ (0,∞). Motivated by some

applications to queueing theory, the seminal paper Hüsler and Piterbarg (1999) studied the tail

asymptotics of Q(0). Later on, Piterbarg (2001) considered the tail asymptotics of the supremum

of Q(t) over a finite time horizon.

Recently, the findings of Piterbarg have been extended to Gaussian processes with stationary

increments Dȩbicki and Liu (2016). We consider next the case of fBm and note that a more general

case of Gaussian processes with stationary increments can be also dealt with using results from

Dȩbicki and Liu (2016). In the following we consider Eu = [0, Tu], where Tu is a non-negative

function of u > 0.

Proposition 3.5. Let v(u) = u
2(α−1)
α

(√
2(τ∗)α

1+cτ∗

)2/α
with τ∗ = α

c(2−α) and α ∈ (0, 2).

i) If limu→∞
Tu
v(u) = T ∈ (0,∞), then for T > x ≥ 0

lim
u→∞

P

{∫
[0,Tu]

I(Q(t) > u)dt > v(u)x
∣∣∣ sup
t∈[0,Tu]

Q(t) > u

}
=
Bα(x, [0, T ])

Bα(0, [0, T ])
.

ii) If limu→∞
Tu
v(u) =∞ and Tu < eβu

2−α with β ∈
(

0,
(

1+cτ∗√
2(τ∗)α/2

)2
)
, then for all x ≥ 0

lim
u→∞

P

{∫
[0,Tu]

I(Q(t) > u)dt > v(u)x
∣∣∣ sup
t∈[0,Tu]

Q(t) > u

}
=
Bα(x)

Bα(0)
.

Remark 3.6. i) Note that limu→∞ v(u) =∞ for α > 1, and limu→∞ v(u) = 0 for α < 1.

ii) Conclusion in i) of Proposition 3.5 still holds for x > T since both sides in the equality of

i) are 0. However, it becomes tricky for the case T = x. We consider two special cases for

T = x. If T = x and Tu ≤ xv(u) for u sufficiently large, then both sides in the equality of

i) are 0. If T = x and Tu > xv(u) for sufficiently large u, as u→∞

P

{∫
[0,Tu]

I(Q(t) > u)dt > v(u)x
∣∣∣ sup
t∈[0,Tu]

Q(t) > u

}
∼

P
{

inft∈[0,Tu]Q(t) > u
}

P
{

supt∈[0,Tu]Q(t) > u
} .
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Combining the above two cases for T = x, we conclude that the limit for T = x generally

does not exist.

4. Auxiliary lemmas

In this section we collect some lemmas that play important, although mostly technical role in

the proofs of results given in Sections 1-3. Their proofs are deferred to Section 6. We begin with

a lemma which is an extension of Theorem 2.1 from Dȩbicki et al. (2017c). Suppose that for a

compact d−dimensional hyperrectangle K ⊂ Rd we have

Ik(u, n) = {tu,n,k + (v1(u)t1, . . . vd(u)td) : t ∈ K},

where vi(u) > 0, i = 1, . . . , d and t = (t1, . . . , td) ∈ Rd. Then, by transforming time, we have

P {V ol({t ∈ Ik(u, n) : X(t) > u}) > v(u)z}

= P

{∫
Ik(u,n)

I(X(t) > u)dt > v(u)z

}

= P
{∫

K
I(X(tu,n,k + (v1(u)t1, ..., vd(u)td)) > u)dt > z

}
,

where v(u) =
∏d
i=1 vi(u).

Motivated by these calculations, we consider next ξu,j(t), t ∈ E1, j ∈ Su, u ≥ 0 a family of centered

GRF’s with continuous sample paths and variance function σ2
u,j .

Suppose in the following that Su is a countable set for all u large.

For simplicity in the following we assume that 0 ∈ E1. For a random variable Z, we set Z = Z√
V ar(Z)

if V ar(Z) > 0.

We introduce next three assumptions:

C0: {gu,j , j ∈ Su} is a sequence of deterministic functions of u satisfying

lim
u→∞

inf
j∈Su

gu,j =∞.

C1: V ar(ξu,j(0)) = 1 for all large u and any j ∈ Su and there exists some bounded continuous

function h on E1 such that

lim
u→∞

sup
s∈E1,j∈Su

∣∣g2
u,j (1− σu,j(s))− h(s)

∣∣ = 0.

C2: There exists a centered GRF ζ(s), s ∈ Rd with a.s. continuous sample paths such that

lim
u→∞

sup
s,s′∈E1,j∈Su

∣∣g2
u,j

(
V ar(ξu,j(s)− ξu,j(s′))

)
− 2V ar(ζ(s)− ζ(s′))

∣∣ = 0. (4.1)

C3: There exist positive constants C, ν, u0 such that

sup
j∈Su

g2
u,jV ar(ξu,j(s)− ξu,j(s′)) ≤ C‖s− s′‖ν

holds for all s, s′ ∈ E1, u ≥ u0.



258 Krzysztof Dȩbicki et al.

Denote by C(Ei), i = 1, 2 the Banach space of all continuous functions f : Ei 7→ R, with Ei ⊂
Rdi , di ≥ 1, i = 1, 2 being compact rectangles equipped with the sup-norm.

Let Γ : C(E1)→ C(E2) be a continuous functional satisfying

F1: For any f ∈ C(E1), and a > 0, b ∈ R, Γ(af + b) = aΓ(f) + b;

F2: There exists c > 0 such that

sup
t∈E2

Γ(f)(t) ≤ c sup
s∈E1

f(s), ∀f ∈ C(E1).

Hereafter, Qi, i ∈ N are some positive constants which might be different from line to line and

f(u, n) ∼ g(u), u→∞, n→∞ means that

lim
n→∞

lim
u→∞

f(u, n)

g(u)
= 1.

Lemma 4.1. Let {ξu,j(s), s ∈ E1, j ∈ Su, u ≥ 0} be a family of centered GRF’s defined as above

satisfying C0-C3 and let Γ satisfy F1-F2. Let η be a positive σ-finite measure on E2 being equivalent

with the Lebesgues measure on E2. If for all large u and all j ∈ Su

P
{

sup
t∈E2

Γ(ξu,j)(t) > gu,j

}
> 0,

then for all x ∈ [0, η(E2))

lim
u→∞

sup
j∈Su

∣∣∣∣P
{∫

E2
I (Γ(ξu,j)(t) > gu,j) η(dt) > x

}
Ψ(gu,j)

− BΓ,h,η
ζ (x,E2)

∣∣∣∣ = 0, (4.2)

where Ψ is the tail of the standard normal distribution and

BΓ,h,η
ζ (x,E2) :=

∫
R
P
{∫

E2

I
(
Γ(
√

2ζ − V ar(ζ)− h)(t) + y > 0
)
η(dt) > x

}
e−ydy

and the function BΓ,h,η
ζ (x,E2) is continuous at x ∈ (0, η(E2)).

Lemma 4.2. Let x ≥ 0. Then

(i) Bα1,α2(x) = limn→∞
Bα1,α2 (x,[0,n]2)

n2 ∈ (0,∞),

(ii) limn→∞
B
a−1
1 b1|t1|

α1 ,0
α1,α2

(x,[−n,n]×[0,n])

n ∈ (0,∞),

(iii) limn→∞ B
a−1

1 b1|t1|α1 ,a−1
2 b2|t2|α2

α1,α2 (x, [−n, n]2) ∈ (0,∞).
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5. Proofs

5.1. Proof of Theorem 1.1. Let next Au(X) := {t ∈ Eu : X(t) > u}. For all x ≥ 0 and all u

positive, since v(u) is non-negative, assuming that P
{

supt∈Eu X(t) > u
}
> 0 we have

π(u) := P
{
V ol(Au(X)) > v(u)x

∣∣∣V ol(Au(X)) > 0
}

= P
{
V ol(Au(X)) > v(u)x

∣∣∣ sup
t∈Eu

X(t) > u

}
=

P
{∫

E I(X(t) > u)dt > v(u)x
}

P
{

supt∈Eu X(t) > u
}

and further for all n ≥ 1

π(u) ≥
P
{∫

E(u,n) I(X(t) > u)dt > v(u)x
}

P
{

supt∈E(u,n)X(t) > u
}

+ P
{

supt∈Eu\E(u,n)X(t) > u
} ,

π(u) ≤
P
{∫

E(u,n) I(X(t) > u)dt > v(u)x
}

P
{

supt∈E(u,n)X(t) > u
} +

P
{

supt∈Eu\E(u,n)X(t) > u
}

P
{

supt∈E(u,n)X(t) > u
} .

Applying A1, it follows that

π(u) ∼
P
{∫

E(u,n) I(X(t) > u)dt > v(u)x
}

P
{

supt∈E(u,n)X(t) > u
} =: π(u, n), u→∞, n→∞.

IfKu,n has only one element for all u, n large, the claim follows straightforwardly by A2. We suppose

next that Ku,n has at least two elements for all u, n large. In order to proceed we shall apply the

standard scheme utilising Bonferroni inequality. Set therefore

Σu,n :=
∑

k∈Ku,n

P

{
sup

t∈Ik(u,n)
X(t) > u

}
, ΣΣu,n :=

∑
i 6=j,i,j∈Ku,n

P

{
sup

t∈Ii(u,n)
X(t) > u, sup

t∈Ij(u,n)
X(t) > u

}
.

By the Bonferroni inequality

Σu,n − ΣΣu,n ≤ P

{
sup

t∈E(u,n)
X(t) > u

}
≤ Σu,n.

The asymptotic behaviour of the probability of interest in the above inequality can be derived if the

following two-step procedure is successful (which will work in our settings here). First we determine

the exact asymptotics of the upper bound and then in a second step we show that the correction in

the lower bound is asymptotically negligible.

Now we want to apply the same idea for the sojourn functional, here the analysis is however more
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involved. Observe first that for any u > 0

P

{∫
E(u,n)

I(X(t) > u)dt > v(u)x

}

≤ P

 ∑
k∈Ku,n

∫
Ik(u,n)

I(X(t) > u)dt > v(u)x


≤ P

{
∃k ∈ Ku,n,

∫
Ik(u,n)

I(X(t) > u)dt > v(u)x

}

+P

{
∃i, j ∈ Ku,n, i 6= j,

∫
Ii(u,n)

I(X(t) > u)dt > 0,

∫
Ij(u,n)

I(X(t) > u)dt > 0

}
≤ π̂(u, n) + ΣΣu,n,

where

π̂(u, n) =
∑

k∈Ku,n

P

{∫
Ik(u,n)

I(X(t) > u)dt > v(u)x

}
.

Using the Bonferroni inequality again we have

P

{∫
E(u,n)

I(X(t) > u)dt > v(u)x

}
≥ P

{
∃k ∈ Ku,n,

∫
Ik(u,n)

I(X(t) > u)dt > v(u)x

}
≥ π̂(u, n)− ΣΣu,n.

The sojourn integral can then be approximated by π̂(u, n) if we show the correction in the lower

bound is negligible. We have

lim sup
u→∞

π(u, n) ≤ lim sup
u→∞

π̂(u, n) + ΣΣu,n

Σu,n − ΣΣu,n
= lim sup

u→∞

π̂(u, n)

Σu,n
×

1 + lim supu→∞
ΣΣu,n
π̂(u,n)

1− lim supu→∞
ΣΣu,n
Σu,n

,

lim inf
u→∞

π(u, n) ≥ lim inf
u→∞

π̂(u, n)− ΣΣu,n

Σu,n
= lim inf

u→∞

π̂(u, n)

Σu,n
− lim sup

u→∞

ΣΣu,n

Σu,n
.

By (1.2) in A2 for any n ≥ 1 and x ≥ 0

lim sup
u→∞

π̂(u, n)

Σu,n
= lim inf

u→∞

π̂(u, n)

Σu,n
= F̄n(x)

implying

F̄n(x)− lim sup
u→∞

ΣΣu,n

Σu,n
≤ lim inf

u→∞
π(u, n)

≤ lim sup
u→∞

π(u, n) ≤ F̄n(x)

1 + lim sup
u→∞

ΣΣu,n
F̄n(x)Σu,n

1− lim sup
u→∞

ΣΣu,n
Σu,n

. (5.1)

In view of A3, letting n→∞ in the above inequalities we have that for x ≥ 0

lim
n→∞

lim
u→∞

π(u, n) = F̄ (x) ∈ (0, 1].

This completes the proof. �
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5.2. Proof of Lemma 2.1. By the independence of Wαi ’s for any positive n1, . . . , nm

B̂α1,...,αm

(
x,

m∏
i=1

[0, ni]

)
= E

{∫
R
I

(∫
[0,n1]

I

{
sup

ti∈[0,ni],i=2,...,m

m∑
i=1

Wαi(ti) > s

}
dt1 > x

)
esds

}

= E

{
e

∑m
i=2 sup

ti∈[0,ni]
Wαi (ti)

∫
R
I

(∫
[0,n1]

I {Wα1(t1) > s} dt1 > x

)
esds

}

=
m∏
i=2

E

{
sup

ti∈[0,ni]
eWαi (ti)

}∫
R
P

{∫
[0,n1]

I {Wα1(t1) > s} dt1 > x

}
esds.

Hence the claim follows by the definition of Pickands and Berman constants. �

5.3. Proof of Proposition 3.1. The proof will be established by checking that A1-A3 in Theorem 1.1

are satisfied. We begin with the introduction of partition

Ik1,k2(u, n) =

2∏
i=1

[a
−1/αi
i u−2/αikin, a

−1/αi
i u−2/αi(ki + 1)n],

for

0 ≤ ki ≤ [Tia
1/αi
i u2/αin−1]− 1 =: Ni(u, n), i = 1, 2.

Let next

Ku,n = {(k1, k2) : 0 ≤ k1 ≤ N1(u, n), 0 ≤ k2 ≤ N2(u, n)}

and E(u, n) =
⋃

(k1,k2)∈Ku,n Ik1,k2(u, n), hence E(u, n) ⊂ E.

Condition A1. It follows straightforwardly from Lemma 7.1 in Piterbarg (1996) that

P
{

sup
t∈E

X(t) > u

}
∼

∑
0≤ki≤Ni(u,n),i=1,2

P

{
sup

t∈Ik1,k2
(u,n)

X(t) > u

}
, u→∞, n→∞, (5.2)

which implies the validity of condition A1.

Condition A2. Let for t = (t1, t2)

ξu,n,k1,k2(t) = X(a
−1/α1

1 u−2/α1(k1n+ t1), a
−1/α2

2 u−2/α2(k2n+ t2)),

v(u) = a
−1/α1

1 a
−1/α2

2 u−2/α1−2/α2 .

We derive the uniform asymptotics, as u→∞, of

P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) > v(u)x} = P

{∫
[0,n]2

I(ξu,n,k1,k2(t) > u)dt > x

}
,

with x ≥ 0. For this, we check conditions C0-C3 of Lemma 4.1 with Γ(f) = f, f ∈ C([0, n]2). First
note that C0-C1 follow trivially with h = 0 and gu,j = u. Moreover, by (3.1), we have

lim
u→∞

sup
0≤ki≤Ni(u,n),

i=1,2

sup
s,t∈[0,n]2

∣∣∣∣∣u2V ar(ξu,n,k1,k2(t)− ξu,n,k1,k2(s))− 2V ar

(
2∑
i=1

Bαi
(ti)−

2∑
i=1

Bαi
(si)

)∣∣∣∣∣ = 0,
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with Bαi , i = 1, 2 being two independent fBms’ with indices αi/2, respectively. This implies that

C2 is satisfied with ζ(t) =
∑2

i=1Bαi(ti). Additionally, in light of (3.1) and the stationarity, we have

that

sup
0≤ki≤Ni(u,n)+1,i=1,2

u2V ar(ξu,n,k1,k2(t)− ξu,n,k1,k2(s)) ≤ C‖t− s‖min(α1,α2), s, t ∈ [0, n]2

implying C3. Consequetnly, by Lemma 4.1

lim
u→∞

sup
0≤ki≤Ni(u,n),i=1,2

∣∣∣∣P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) > v(u)x}
Ψ(u)

− Bα1,α2(x, [0, n]2)

∣∣∣∣ = 0.(5.3)

Hence Piterbarg (1996, Lem 6.1) yields

lim
u→∞

sup
0≤ki≤Ni(u,n),i=1,2

∣∣∣∣∣∣P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) > v(u)x}

P
{

supt∈Ik1,k2
(u,n)X(t) > u

} − Bα1,α2(x, [0, n]2)

Bα1,α2(0, [0, n]2)

∣∣∣∣∣∣ = 0.

Since, by (i) of Lemma 4.2, for all x ≥ 0 we have

Bα1,α2(x) = lim
n→∞

Bα1,α2(x, [0, n]2)

n2
∈ (0,∞), (5.4)

then

Bα1,α2(x)

Bα1,α2(0)
= lim

n→∞

Bα1,α2(x, [0, n]2)

Bα1,α2(0, [0, n]2)
∈ (0, 1], x ≥ 0, (5.5)

which confirms that A2 holds with F̄ (x) =
Bα1,α2 (x)

Bα1,α2 (0) .

Condition A3. By (7.4) in the proof of Piterbarg (1996, Lem 7.1), for all large u and n

∑
0≤ki,k′i≤Ni(u,n),i=1,2,(k1,k2)6=(k′1,k

′
2)

P

 sup
t∈Ik1,k2

(u,n)
X(t) > u, sup

t∈Ik′1,k′2
(u,n)

X(t) > u


≤
(
C2√
n

+ e−C1nC
)
P
{

sup
t∈E

X(t) > u

}
,

where C,C1 and C2 are some positive constants, which gives that A3 is satisfied. This completes

the proof. �

5.4. Proof of Proposition 3.3. Without loss of generality, we assume that t∗ = (0, 0). The proof relies

on verification that A1-A3 in Theorem 1.1 are satisfied. We begin by introducing some notation.

Let

Ik1,k2(u, n) =

2∏
i=1

[kivi(u)n, (ki + 1)vi(u)n], vi(u) = a
−1/α∗i
i u−2/min(αi,βi), i = 1, 2 (5.6)

and v(u) = v1(u)v2(u), where α∗i = αiI(αi ≤ βi) +∞I(αi > βi). Additionally, let

e(t) =
1− σ(t)∑2
i=1 bi|ti|βi

− 1, |t| 6= 0, eu = sup
0<|ti|<( lnu

u )
2/βi

|e(t)|,
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and set

N ′i(u, n) =

[
(e
−1/4
u ∧ lnu)2/βi

u2/βivi(u)n

]
, i = 1, 2.

We distinguish between different scenarios according to the values of αi, βi, i = 1, 2.

Case αi < βi, i = 1, 2. In this scenario

vi(u) = a
−1/αi
i u−2/αi , i = 1, 2, Ku,n = {(k1, k2) : 0 ≤ |ki| ≤ N ′i(u, n), i = 1, 2}

and E(u, n) =
⋃

(k1,k2)∈Ku,n Ik1,k2(u, n).

Conditions A1 and A3. Following the same reasoning as in the proof of Proposition 3.1, the

validity of conditions A1 and A3 follows straightforwardly from (34), (40) and (41) in Dȩbicki et al.

(2017b).

Condition A2. Let

ξu,n,k1,k2(t) = X(v1(u)(k1n+ t1), v2(u)(k2n+ t2)),

u−n,k1,k2
= u inf

t∈Ik1,k2
(u,n)

1

σ(t)
, u+

n,k1,k2
= u sup

t∈Ik1,k2
(u,n)

1

σ(t)
. (5.7)

Then we have the following bounds

P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) ≥ v(u)x} ≤ P

{∫
[0,n]2

I(ξu,n,k1,k2(t) > u−n,k1,k2
)dt > x

}
,

P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) ≥ v(u)x} ≥ P

{∫
[0,n]2

I(ξu,n,k1,k2(t) > u+
n,k1,k2

)dt > x

}
.

In order to derive the uniform asymptotics of the above terms we check conditions C0-C3 of Lemma

4.1 with Γ(f) = f, f ∈ C([0, n]2) for ξu,n,k1,k2(t), (k1, k2) ∈ Ku,n.

Note that C0-C1 holds with h = 0 and gu,j = u±n,k1,k2
. By (3.3) and (3.4), we have

lim
u→∞

sup
s,t∈[0,n]2,

(k1,k2)∈Ku,n

∣∣∣∣∣(u±n,k1,k2)2V ar(ξu,n,k1,k2(t)− ξu,n,k1,k2(s))− 2V ar

(
2∑
i=1

Bαi(ti)−
2∑
i=1

Bαi(si)

)∣∣∣∣∣ = 0,

where Bαi , i = 1, 2 are two independent fBm’s with indices αi, i = 1, 2 respectively. This confirms

that C2 holds with ζ(t1, t2) = Bα1(t1) +Bα2(t2). By (3.4), we have

sup
(k1,k2)∈Ku,n

(u±n,k1,k2
)2(V ar(ξu,n,k1,k2(t)− ξu,n,k1,k2(s))) ≤ Q||s− t||min(α1,α2), s, t ∈ [0, n]2.

Thus C3 is satisfied.

Therefore, by Lemma 4.1, we have that for 0 ≤ x < n2

lim
u→∞

sup
(k1,k2)∈Ku,n

∣∣∣∣∣∣
P
{∫

[0,n]2 I(ξu,n,k1,k2(t) > u±n,k1,k2
)dt > x

}
Ψ(u±n,k1,k2

)
− Bα1,α2(x, [0, n]2)

∣∣∣∣∣∣ = 0. (5.8)



264 Krzysztof Dȩbicki et al.

Since

lim
u→∞

sup
(k1,k2)∈Ku,n

∣∣∣∣∣Ψ(u−n,k1,k2
)

Ψ(u+
n,k1,k2

)
− 1

∣∣∣∣∣ = 0 (5.9)

(see Section 6 for the validation of (5.9)), by (5.8) we obtain for 0 ≤ x < n2

lim
u→∞

sup
(k1,k2)∈Ku,n

∣∣∣∣∣P {V ol({t ∈ Ik1,k2(u, n) : X(t) > u}) ≥ v(u)x}
Ψ(u−n,k1,k2

)
− Bα1,α2(x, [0, n]2)

∣∣∣∣∣ = 0.

Therefore, (1.2) holds with

F̄n(x) =
Bα1,α2(x, [0, n]2)

Bα1,α2(0, [0, n]2)
, x ≥ 0.

Finally, by (5.5), we have that A2 holds. Thus the claim is established with

F̄ (x) =
Bα1,α2(x)

Bα1,α2(0)
.

Case α1 = β1, α2 < β2. In this case vi(u) = a
−1/αi
i u−2/αi , i = 1, 2. Let

Îk2(u, n) = I−1,k2(u, n) ∪ I0,k2(u, n), E1(u, n) =
⋃

k2∈Ku,n

Îk2(u, n), (5.10)

where Ku,n := {k2 ∈ Z : |k2| ≤ N ′2(u, n)}.
Conditions A1 and A3. Analogously to the previous case, conditions A1 and A3 hold with

E(u, n) := E1(u, n) and Ik(u, n) := Îk2(u, n), by (34), (46), (48) and (49) of Dȩbicki et al. (2017b).

Condition A2. Rewrite (3.3) as

1

σ(t)
=
(

1 + (1 + e1(t1))b1|t1|β1

)(
1 + (1 + e2(t2))b2|t2|β2

)
for some functions e1(t1) and e2(t2) which satisfy

lim
u→∞

sup
t∈E1(u,n)

|ei(ti)| = 0, i = 1, 2.

Let

ξu,n,k2(t) =
X(v1(u)t1, v2(u)(k2n+ t2))

1 + b1|v1(u)t1|β1(1 + e1(v1(u)t1))
, v(u) = a

−1/α1

1 a
−1/α2

2 u−2/α1−2/α2 ,

u−k2,n
= u inf

t∈Îk2
(u,n)

(1 + b2|t2|β2(1 + e2(t2))), u+
k2,n

= u sup
t∈Îk2

(u,n)

(1 + b2|t2|β2(1 + e2(t2))).

Then it follows that

P
{
V ol({t ∈ Îk2(u, n) : X(t) > u}) > v(u)x

}
≤ P

{∫
[−n,n]×[0,n]

I(ξu,n,k2(t) > u−k2,n
)dt > x

}
,

P
{
V ol({t ∈ Îk2(u, n) : X(t) > u}) > v(u)x

}
≥ P

{∫
[−n,n]×[0,n]

I(ξu,n,k2(t) > u+
k2,n

)dt > x

}
.
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Straightforward application of Lemma 4.1 with Γ(f) = f, f ∈ C([−n, n] × [0, n]) and h(t) =

a−1
1 b1|t1|α1 in C1, gives that for 0 ≤ x < 2n2

lim
u→∞

sup
k2∈Ku,n

∣∣∣∣∣∣
P
{∫

[−n,n]×[0,n] I(ξu,n,k2(t) > u±k2,n
)dt > x

}
Ψ(u±k2,n

)
− Ba

−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

∣∣∣∣∣∣ = 0.

Similarly to (5.9), we have

lim
u→∞

sup
k2∈Ku,n

∣∣∣∣∣Ψ(u−k2,n
)

Ψ(u+
k2,n

)
− 1

∣∣∣∣∣ = 0. (5.11)

Consequently, for 0 ≤ x < 2n2

lim
u→∞

sup
k2∈Ku,n

∣∣∣∣∣∣
P
{
V ol({t ∈ Îk2(u, n) : X(t) > u}) > v(u)x

}
Ψ(u−k2,n

)
− Ba

−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

∣∣∣∣∣∣ = 0.

(5.12)

Thus (1.2) holds with

F̄n(x) =
Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (0, [−n, n]× [0, n])

.

By (ii) of Lemma 4.2 it follows that

lim
n→∞

F̄n(x) =
Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x)

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (0)

∈ (0, 1], (5.13)

which confirms that A2 holds. Thus, applying Theorem 1.1, we establish the claim with

F̄ (x) =
Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x)

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (0)

.

Case α1 = β1, α2 = β2. In this case we have vi(u) = a
−1/αi
i u−2/αi , i = 1, 2. Let

E(u, n) := Î(u, n) :=
⋃

i,j=−1,0

Ii,j(u, n). (5.14)

Conditions A1 and A3. It follows from (34) and (52) in the proof of theorem 3.1 of Dȩbicki et al.

(2017b) that A1 holds. Since we take only one interval I1(u, n), condition A3 is not applicable to

this case.

Condition A2. Let

ξu,n(t) = X(v1(u)t1, v2(u)t2)), v(u) = a
−1/α1

1 a
−1/α2

2 u−2/α1u−2/α2 .

Then

P
{
V ol({t ∈ Î(u, n) : X(t) > u}) ≥ v(u)x

}
= P

{∫
[−n,n]2

I(ξu,n(t) > u)dt > x

}
.
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In order to derive the asymptotics of the above term, similarly to the previous cases, we observe

that C1 in Lemma 4.1 holds with h(t) = a−1
1 b1|t1|α1 + a−1

2 b2|t2|α2 while C2 and C3 have been

checked in the case of αi < βi, i = 1, 2.

Hence we have

lim
u→∞

∣∣∣∣∣∣
P
{∫

[−n,n]2 I(ξu,n(t) > u)dt > x
}

Ψ(u)
− Ba

−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (x, [−n, n]2)

∣∣∣∣∣∣ = 0.

Combining the above with the fact that, by (iii) of Lemma 4.2,

lim
n→∞

Ba
−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (x, [−n, n]2) ∈ (0,∞)

we conclude that A2 holds with

F̄ (x) =
Ba
−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (x)

Ba
−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (0)
∈ (0, 1].

Hence we establish the claim.

For the cases α1 > β1, α2 = β2, and α1 > β1, α2 > β2, we can establish the claim similarly to the

case of α1 = β1, α2 = β2. For the case α1 > β1, α2 < β2, the proof is similar to the case of α1 = β1,

α2 < β2. This completes the proof. �

5.5. Proof of Proposition 3.4. In order to apply Theorem 1.1, we introduce some useful notation.

Let

Ik(u, n) = [kv(u)n, (k + 1)v(u)n], N(u, n) =

[
T

v(u)n

]
− 1,

and E(u, n) =
⋃
k∈Ku,n Ik(u, n), with Ku,n = {k ∈ N : 0 ≤ k ≤ N(u, n)} and v(u) = a−1/αu−2/α.

We denote by

Z(t, θ) =
m∑
i=1

Xi(t)vi(θ), A = [0, π]m−2 × [0, 2π),

where θ = (θ1, . . . , θm−1) and v1(θ) = cos θ1, v2(θ) = sin θ1 cos θ2, v3(θ) = sin θ1 sin θ2 cos θ3,

. . . , vm−1(θ) = (
∏m−2
i=1 sin θi) cos θm−1, vm(θ) =

∏m−1
i=1 sin θi. In this proof, we will use that

χ(t) = sup
θ∈A

Z(t, θ).

We split the set A into (setting k = (k1, . . . , km−1))

A =
⋃
k∈Λ

Ak, Λ = {(k1, . . . , km−1) : 1 ≤ ki ≤ L, 1 ≤ i ≤ m− 2, 1 ≤ km−1 ≤ 2L},

where

Ak =
m−1∏
i=1

[
(ki − 1)π

L
,
kiπ

L

]
, km−1 ≤ 2L− 1,

Ak1,...,km−2,2L =

(
m−2∏
i=1

[
(ki − 1)π

L
,
kiπ

L

])
×
[
2π − π

L
, 2π
)
,
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and L is a positive integer. Moreover, let

π1(u) :=
∑

k 6=k′,k,k′∈Λ

P

{
sup

t∈[0,v(u)n],θ∈Ak
Z(t, θ) > u, sup

t∈[0,v(u)n],θ∈Ak′
Z(t, θ) > u

}
, (5.15)

ΣΣu,n :=
∑

0≤k1<k2≤N(u,n)

P

{
sup

t∈Ik1
(u,n)

χ(t) > u, sup
t∈Ik2

(u,n)
χ(t) > u

}

=
∑

0≤k1<k2≤N(u,n)

P

{
sup

(t,θ)∈Ik1
(u,n)×A

Z(t, θ) > u, sup
(t,θ)∈Ik2

(u,n)×A
Z(t, θ) > u

}

≤
∑

0≤k1<k2≤N(u,n),i,j∈Λ

P

{
sup

(t,θ)∈Ik1
(u,n)×Ai

Z(t, θ) > u, sup
(t,θ)∈Ik2

(u,n)×Aj
Z(t, θ) > u

}
.

Denote by (with k = (k1, . . . , km−1), l = (l1, . . . , lm−1))

Jk,l(u) =

m−1∏
i=1

[
(ki − 1)π

L
+ liu

−1n1,
(ki − 1)π

L
+ (li + 1)u−1n1

]
,

Λ1(u) =

{
l : 0 ≤ li ≤

[
πu

Ln1

]
, 1 ≤ i ≤ m− 1

}
and let

p∗k(u) =
∑

l,l′∈Λ1(u),l 6=l′
P

{
sup

t∈[0,v(u)n],θ∈Jk,l(u)
Z(t, θ) > u, sup

t∈[0,v(u)n],θ∈Jk,l′ (u)
Z(t, θ) > u

}
. (5.16)

Conditions A1 and A3. Condition A1 follows from Piterbarg (1996, Cor 7.3) while A3 can be

deduced from equations (7.4), (7.6) and (7.18) in the proofs of Piterbarg (1996, Lem 7.1, Thm 7.1).

Condition A2. Let us put

π(n, u) := P

{∫
[0,v(u)n]

I(χ(t) > u)dt > v(u)x

}
= P

{∫
[0,v(u)n]

I
(

sup
θ∈A

Z(t, θ) > u

)
dt > v(u)x

}
.

To verify A2, by stationarity we have to find the asymptotics of π(n, u) as u → ∞, which is given

in the following lemma.

Lemma 5.1. For n > x

π(n, u) ∼ B̂α,2,...,2(x, n)

B̂α,2,...,2(0, n)
P

{
sup

[0,v(u)n]
χ(t) > u

}
, u→∞.

Proof of Lemma 5.1. Let Dk = {t ∈ [0, v(u)n] : supθ∈Ak Z(t, θ) > u}. Then we have∫
[0,v(u)n]

I
(

sup
θ∈A

Z(t, θ) > u

)
dt =

∫
[0,v(u)n]

I⋃
k∈Λ Dk

(t)dt

≤
∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt
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and∫
[0,v(u)n]

I
(

sup
θ∈A

Z(t, θ) > u

)
dt ≥

∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt−
∑

k 6=k′,k,k′∈Λ

∫
[0,v(u)n]

IDk
⋂
Dk′

(t)dt.

Note that

π(n, u) ≥ P

∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt−
∑

k 6=k′,k,k′∈Λ

∫
[0,v(u)n]

IDk
⋂
Dk′

(t)dt > v(u)x


≥ P

∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt > v(u)(x+ ε),
∑

k 6=k′,k,k′∈Λ

∫
[0,v(u)n]

IDk
⋂
Dk′

(t)dt ≤ v(u)ε


≥ P

{∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt > v(u)(x+ ε)

}
− P

 ∑
k 6=k′,k,k′∈Λ

∫
[0,v(u)n]

IDk
⋂
Dk′

(t)dt > v(u)ε


≥ P

{∑
k∈Λ

∫
[0,v(u)n]

IDk(t)dt > v(u)(x+ ε)

}
− π1(u)

≥
∑
k∈Λ∗

pk(x+ ε, u)− 2π1(u),

where ε > 0 and π1(u) is given in (5.15) and

pk(x, u) = P

{∫
[0,v(u)n]

I

(
sup
θ∈Ak

Z(t, θ) > u

)
dt > v(u)x

}
,

Λ∗ = {k ∈ Λ, 1 < ki < L, 1 ≤ i ≤ m− 2, km−1 6= 1, L, 2L}.

Similarly we get

π(n, u) ≤
∑
k∈Λ

pk(x, u) + π1(u).

Hence ∑
k∈Λ∗

pk(x+ ε, u)− 2π1(u) ≤ π(n, u) ≤
∑
k∈Λ

pk(x, u) + π1(u). (5.17)

� Upper bound for pk(x, u). A direct calculations show

V ar(Z(t, θ)) = 1,

Corr(Z(t, θ), Z(t′, θ′)) = Corr(X(t), X(t′))
(
cos(θ1 − θ′1)− sin θ1 sin θ′1(1− cos(θ2 − θ′2))

− · · · −

(
m−2∏
i=1

sin θi sin θ′i

)(
1− cos(θm−1 − θ′m−1)

))
.

Hence

1− Corr(Z(t, θ), Z(t′, θ′)) ∼ a|t− t′|α +
1

2
(θ1 − θ′1)2 +

sin2 θ1

2
(θ2 − θ′2)2

+
1

2

(
m−2∏
i=1

sin2 θi

)
(θm−1 − θ′m−1)2, |t− t′| → 0, ||θ − θ′|| → 0.(5.18)
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We have

pk(x, u) ≤
∑

l∈Λ1(u)

P

{∫
[0,v(u)n]

I

(
sup

θ∈Jk,l(u)
Z(t, θ) > u

)
dt > v(u)x

}
+ p∗k(u), (5.19)

where p∗k(u) is given in (5.16). Let

Zu,k,l(t, θ) = Z

(
v(u)t,

(k1 − 1)π

L
+ l1u

−1n1 + u−1c−1
1 (θk,l(u))θ1, ...,

(km−1 − 1)π

L
+ lm−1u

−1n1 + u−1c−1
m−1(θk,l(u))θm−1

)
,

and Gl =
∏m−1
i=1 [0, ci(θk,l(u))n1], where ck(θ) = 2−1/2

∏k−1
i=1 | sin θi|, 2 ≤ k ≤ m− 1, c1(θ) = 2−1/2,

θk,l(u) =
(

(k1−1)π
L + l1u

−1n1, . . . ,
(km−1−1)π

L + lm−1u
−1n1

)
. Noting that

Gl =
m−1∏
i=1

[0, ci(θk,l(u))n1] ⊂
m−1∏
i=1

[0, c+
k,in1] =: G+

k , c+
k,i = sup

θ∈Ak
ci(θ),

we have

P

{∫
[0,v(u)n]

I

(
sup

θ∈Jk,l(u)

Z(t, θ) > u

)
dt > v(u)x

}
= P

{∫
[0,n]

I
(

sup
θ∈Gl

Zu,k,l(t, θ) > u

)
dt > v(u)x

}

≤ P

{∫
[0,n]

I

(
sup
θ∈G+

k

Zu,k,l(t, θ) > u

)
dt > v(u)x

}
.

A straightforward application of Lemma 4.1 for Γ : C([0, n] ×G+
k ) → C([0, n]) defined by Γ(f) =

supθ∈G+
k
f(t, θ), f ∈ C([0, n] × G+

k ), where h = 0 in C1 and ζ(t, θ) = Bα(t) +
∑m−1

i=1 Niθi, with
Ni, i = 1, . . . ,m−1 being independent standard normal random variables independent of Bα, implies
that for all x ≥ 0 we have

lim
u→∞

sup
l∈Λ1(u)

∣∣∣∣∣∣
P
{∫

[0,n]
I
(

supθ∈G+
k
Zu,k,l(t, θ) > u

)
dt > v(u)x

}
Ψ(u)

− B̂α,2,...,2(x, [0, n]×G+
k )

∣∣∣∣∣∣ = 0. (5.20)

By (7.18) in the proof of Piterbarg (1996, Thm 7.1), we have

p∗k(u) = o
(
um−1Ψ(u)

)
, u→∞, n1 →∞. (5.21)

Hence, by (5.19)-(5.21) and using Lemma 2.1 we have

pk(x, u) ≤ lim sup
n1→∞

B̂α,2,...,2(x, [0, n]×G+
k )

(n1)m−1

(π
L

)m−1
um−1Ψ(u)

≤ B̂α,2,...,2(x, n)
m−1∏
i=1

c+
k,i

(π
L

)m−1
um−1Ψ(u), u→∞, n→∞.
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� Lower bound for pk(x, u). By (5.17), we have that for ε > 0

pk(x, u) ≥
∑

l∈Λ2(u)

P

{∫
[0,v(u)n]

I

(
sup

θ∈Jk,l(u)
Z(t, θ) > u

)
dt > v(u)(x+ ε)

}
− 2p∗k(u)

≥
∑

l∈Λ2(u)

P

{∫
[0,n]

I

(
sup
θ∈G−k

Zu,k,l(t, θ) > u

)
dt > v(u)(x+ ε)

}
− 2p∗k(u),

where

Λ2(u) =

{
l : 0 ≤ li ≤

[
πu

Ln1

]
− 1, 1 ≤ i ≤ m− 1

}
,

Gl =
m−1∏
i=1

[0, ci(θk,l(u))n1] ⊃
m−1∏
i=1

[0, c−k,in1] =: G−k , c−k,i = min
θ∈Ak

ci(θ).

By (5.20), (5.21), Lemma 2.1 and Remark 2.2 we have for n > x

pk(x, u) ≥ lim inf
n1→∞

B̂α,2,...,2(x+ ε, [0, n]×G−k )

(n1)m−1

(π
L

)m−1
um−1Ψ(u)

≥ B̂α,2,...,2(x+ ε, n)
m−1∏
i=1

c−k,i

(π
L

)m−1
um−1Ψ(u)

≥ B̂α,2,...,2(x, n)
m−1∏
i=1

c−k,i

(π
L

)m−1
um−1Ψ(u), u→∞, ε→ 0.

� Asymptotics of π(n, u). By (7.6) in Piterbarg (1996)

π1(u) = o
(
um−1Ψ(u)

)
, u→∞, L→∞.

Therefore, in view of (5.17)

lim sup
u→∞

π(n, u)

um−1Ψ(u)
≤ lim sup

L→∞

∑
k∈Λ

(
m−1∏
i=1

c+
k,i

)(π
L

)m−1
B̂α,2,...,2(x, n),

lim inf
u→∞

π(n, u)

um−1Ψ(u)
≥ lim inf

L→∞

∑
k∈Λ∗

(
m−1∏
i=1

c−k,i

)(π
L

)m−1
B̂α,2,...,2(x, n).

Using the fact that

lim sup
L→∞

∑
k∈Λ

(
m−1∏
i=1

c+
k,i

)(π
L

)m−1
= lim inf

L→∞

∑
k∈Λ∗

(
m−1∏
i=1

c−k,i

)(π
L

)m−1
= V ol(Sm−1)

it follows that

π(n, u) ∼ B̂α,2,...,2(x, n)

B̂α,2,...,2(0, n)
P

{
sup

[0,v(u)n]
χ(t) > u

}
, u→∞.

This completes the proof of Lemma 5.1. �

Condition A2 continued. Lemma 2.1 yields that for x ≥ 0

B̂α,2,...,2(x)

B̂α,2,...,2(0)
= lim

n→∞

B̂α,2,...,2(x, [0, n])

B̂α,2,...,2(0, [0, n])
∈ (0, 1].
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Hence A2 holds with

F̄ (x) =
B̂α,2,...,2(x)

B̂α,2,...,2(0)
, x ≥ 0.

Thus we establish the claim and hence the proof is complete. �

5.6. Proof of Proposition 3.5. We first apply Theorem 1.1 to derive the asymptotics for case ii) of

Proposition 3.5. Let

E(u, n) =

N(u,n)⋃
i=0

Ii(u, n), Ii(u, n) = [iv(u)n, (i+ 1)v(u)n], N(u, n) =

[
Tu

nv(u)

]
− 2

and

v(u) = u
2(α−1)
α

(
(τ∗)α/2

1 + cτ∗

)2/α

, τ∗ =
α

c(2− α)
.

Let

Z(s, t) =
Bα(s)−Bα(t)

1 + c(s− t)
, I ′i(u, n) = [iq(u)n, (i+ 1)q(u)n], q(u) = u−1v(u),

and

ΣΣ(u, n)

:=
∑

i 6=j,0≤i,j≤N(u,n)

P

{
sup

t∈Ii(n,u)
Q(t) > u, sup

t∈Ij(n,u)
Q(t) > u

}

=
∑

i 6=j,0≤i,j≤N(u,n)

P

{
sup

t∈Ii(n,u),s≥t
(Bα(s)−Bα(t)− c(s− t)) > u

}
.

sup
t∈Ij(n,u),s≥t

(Bα(s)−Bα(t)− c(s− t)) > u

}

=
∑

i 6=j,0≤i,j≤N(u,n)

P

{
sup

t∈I′i(n,u),s≥t
Z(s, t) > u1−α/2, sup

t∈I′j(n,u),s≥t
Z(s, t) > u1−α/2

}
,

where in the last equality we use the self-similarity of fBm. Moreover, let

Li(u) = [τ∗ + iq(u)n1, τ
∗ + (i+ 1)q(u)n1], M(u) =

[
uα/2 lnu

v(u)n1

]
, (5.22)

G(u) = {s : |s− τ∗| < uα/2−1 lnu}, Gc(u) = [0,∞) \G(u) (5.23)

and

π2(u) =
∑

−M(u)−1≤i<j≤M(u)+1

P

{
sup

t∈[0,q(u)n],s∈Li(u)

Z(s, t) > u1−α/2, sup
t∈[0,q(u)n],s∈Lj(u)

Z(s, t) > u1−α/2

}
. (5.24)

Conditions A1 and A3. Condition A1 follows from Theorems 3.1-3.3 of Dȩbicki and Liu (2016) while

A3 is due to Lemma 5.6 of Dȩbicki and Liu (2016) and the upper bounds of Σi(u), i = 1, 2, 3, 4 in

the proof of Dȩbicki and Liu (2016, Thm 3.1).
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Condition A2. Due to stationarity of the process Q, in order to show (1.2) it suffices to find the
exact asymptotics of P

{∫
[0,v(u)n] I(Q(t) > u)dt > v(u)x

}
as u → ∞. By the self-similarity of Bα,

we have

P

{∫
[0,v(u)n]

I(Q(t) > u)dt > v(u)x

}
= P

{∫
[0,v(u)n]

I
(

sup
s≥t

(Bα(s)−Bα(t)− c(s− t)) > u

)
dt > v(u)x

}

= P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > u1−α/2
)
dt > q(u)x

}
.

We set next

m(u) =
1 + cτ∗

(τ∗)α/2
u1−α/2, τ∗ =

α

c(2− α)
,

A =

(
α

c(2− α)

)−α/2 2

2− α
, B =

(
α

c(2− α)

)−α/2−1 α

2
.

Lemma 5.2. For n > x

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > u1−α/2
)
dt > q(u)x

}
∼ B̂α,α(x, n)

√
2A

B

u

m(u)v(u)
Ψ(m(u)), u→∞. (5.25)

Proof. Upper bound. Using the fact that (set uα = u1−α/2

I
(

sup
s≥t

Z(s, t) > uα

)
≤ I

(
sup

s∈G(u)
Z(s, t) > uα

)
+ I

(
sup

s∈Gc(u)
Z(s, t) > uα

)
we obtain

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}

≤ P

{∫
[0,q(u)n]

(
I

(
sup

s∈G(u)

Z(s, t) > uα

)
+ I

(
sup

s∈Gc(u)

Z(s, t) > uα

))
dt > q(u)x

}

≤ P

{∫
[0,q(u)n]

I

(
sup

s∈G(u)

Z(s, t) > uα

)
dt > q(u)x

}

+P

{∫
[0,q(u)n]

I

(
sup

s∈Gc(u)

Z(s, t) > uα

)
dt > q(u)x

}

+P

{∫
[0,q(u)n]

I

(
sup

s∈G(u)

Z(s, t) > uα

)
dt > 0,

∫
[0,q(u)n]

I

(
sup

s∈Gc(u)

Z(s, t) > uα

)
dt > 0

}

≤ P

{∫
[0,q(u)n]

I

(
sup

s∈G(u)

Z(s, t) > uα

)
dt > q(u)x

}
+ 2P

{
sup

t∈[0,q(u)n],s∈Gc(u)

Z(s, t) > uα

}
.

Using that (recall (5.22), (5.23))

I

(
sup

s∈G(u)
Z(s, t) > uα

)
≤

∑
|i|≤M(u)+1

I

(
sup

s∈Li(u)
Z(s, t) > uα

)
we have

P

{∫
[0,q(u)n]

I

(
sup

s∈G(u)
Z(s, t) > uα

)
dt > q(u)x

}
≤ π1(u) + π2(u),
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where π2(u) is given in (5.24) and

π1(u) =
∑

|i|≤M(u)+1

P

{∫
t∈[0,q(u)n]

I

(
sup

s∈Li(u)
Z(s, t) > uα

)
dt > q(u)x

}
. (5.26)

By Dȩbicki and Liu (2016, Lem 5.6) we obtain

P

{
sup

t∈[0,q(u)n],s∈Gc(u)
Z(s, t) > uα

}
= o

(
P

{
sup

t∈[0,v(u)n]
Q(t) > u

})
, u→∞

and in light of the upper bounds of Λi(u), i = 1, 2, 3, 4 in the proof of Theorem 3.1 of Dȩbicki and

Liu (2016)

π2(u) = o

(
P

{
sup

t∈[0,v(u)n]
Q(t) > u

})
, u→∞, n1 →∞. (5.27)

Next we focus on π1(u). Rewrite

P

{∫
t∈[0,q(u)n]

I
(

sup
s∈Li(u)

Z(s, t) > uα

)
dt > q(u)x

}
= P

{∫
t∈[0,n]

I
(

sup
s∈[0,n1]

Zu,i(s, t) > m(u)
)
dt > x

}
,

where

Zu,i(s, t) =
Bα(τ∗ + q(u)(in1 + s))−Bα(q(u)t)

1 + c(τ∗ + q(u)(in1 + s− t))
· 1 + cτ∗

(τ∗)α/2
.

Let for 0 < ε < 1

m±i (u) = m(u)

(
1 +

(
B

2A
± ε
)
q(u)(in1 ± n)2

)
.

A direct calculation shows (see also Lemmas 5.3-5.4 in Dȩbicki and Liu, 2016) that

m−i (u) ≤ m(u)(V ar(Zu,i(s, t)))
−1/2 ≤ m+

i (u), |i| ≤M(u) + 1 (5.28)

and

lim
u→∞

sup
|i|≤M(u)+1,(s,t) 6=(s′,t′),(s,t),(s′,t′)∈[0,n1]×[0,n]

∣∣∣∣(m±i (u))2 1− Corr(Zu,i(s, t), Zu,i(s′, t′))
|t− t′|α + |s− s′|α

− 1

∣∣∣∣ = 0. (5.29)

Hence

P

{∫
t∈[0,n]

I

(
sup

s∈[0,n1]

Zu,i(s, t) > m(u)

)
dt > x

}
≤ P

{∫
t∈[0,n]

I

(
sup

s∈[0,n1]

Zu,i(s, t) > m−i (u)

)
dt > x

}
.

Next, by Lemma 4.1 applied to Γ : C([0, n]×[0, n1])→ C([0, n]) defined by Γ(f) = supt∈[0,n1] f(s, t),
f ∈ C([0, n]× [0, n1]), with h = 0 in C0-C1 and C2 satisfied with ζ(s, t) = Bα(s)+B′α(t), we have

lim
u→∞

sup
|i|≤M(u)+1

∣∣∣∣∣∣
P
{∫

t∈[0,n]
I
(

sups∈[0,n1] Zu,i(s, t) > m−i (u)
)
dt > x

}
Ψ(m−i (u))

− B̂α,α(x, [0, n]× [0, n1])

∣∣∣∣∣∣ = 0 (5.30)
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and in light of Lemma 2.1, we have

π1(u) ≤ B̂α,α(x, [0, n]× [0, n1])
∑

|i|≤M(u)+1

Ψ(m−i (u))

≤ B̂α,α(x, [0, n]× [0, n1])Ψ(m(u))
∑

|i|≤M(u)+1

e−m
2(u)( B

2A
−ε)(u−1v(u)(in1))

2

≤ B̂α,α(x, [0, n]× [0, n1])

n1

√
2Aπ

B

u

m(u)v(u)
Ψ(m(u))

∼ B̂α,α(x, n)

√
2Aπ

B

u

m(u)v(u)
Ψ(m(u)) (5.31)

as u→∞, n1 →∞, ε→ 0. Therefore, we conclude that

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}
≤ B̂α,α(x, n)

√
2Aπ

B

u

m(u)v(u)
Ψ(m(u)), u→∞.

Lower bound. Observe that for u sufficiently large, s > t holds for all s ∈ G(u), t ∈ [0, q(u)n].
Therefore,

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}
≥ P

{∫
[0,q(u)n]

I

(
sup

s∈G(u)

Z(s, t) > uα

)
dt > q(u)x

}
.

By the fact that

I

(
sup

s∈G(u)

Z(s, t) > uα

)
≥

∑
|i|≤M(u)

I

(
sup

s∈Li(u)

Z(s, t) > uα

)

−
∑

−M(u)≤i<j≤M(u)

I

(
sup

s∈Li(u)

Z(s, t) > uα, sup
s∈Lj(u)

Z(s, t) > uα

)
=: A1(u, t)−A2(u, t)

it follows that for ε > 0 (recall q(u) = u−1v(u))

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}

≥ P

{∫
[0,q(u)n]

(A1(u, t)−A2(u, t)) dt > q(u)x

}

≥ P

{∫
[0,q(u)n]

A1(u, t)dt > q(u)(x+ ε),

∫
[0,q(u)n]

A2(u, t)dt < q(u)ε

}

≥ P

{∫
[0,q(u)n]

A1(u, t)dt > q(u)(x+ ε)

}
− P

{∫
[0,q(u)n]

A2(u, t)dt ≥ q(u)ε

}

≥ P

{
∃i : |i| ≤M(u),

∫
[0,q(u)n]

I

(
sup

s∈Li(u)
Z(s, t) > uα

)
dt > q(u)(x+ ε)

}
− π2(u)

≥
∑

|i|≤M(u)

P

{∫
t∈[0,q(u)n]

I

(
sup

s∈Li(u)
Z(s, t) > uα

)
dt > q(u)(x+ ε)

}
− 2π2(u), (5.32)
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where π2(u) is defined in (5.24). Similarly as in (5.31) and in light of (5.27), we have

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}
≥ B̂α,α(x+ ε, n)

√
2A

B

u

m(u)v(u)
Ψ(m(u))

≥ B̂α,α(x, n)

√
2A

B

u

m(u)v(u)
Ψ(m(u))

as u→∞, ε→ 0. Consequently, for n > x

P

{∫
[0,q(u)n]

I
(

sup
s≥t

Z(s, t) > uα

)
dt > q(u)x

}
∼ B̂α,α(x, n)

√
2A

B

u

m(u)v(u)
Ψ(m(u)), u→∞. (5.33)

�

Moreover, by Lemma 2.1

Bα(x)

Bα(0)
=
B̂α,α(x)

B̂α,α(0)
= lim

n→∞

B̂α,α(x, n)

B̂α,α(0, n)
∈ (0, 1].

Thus A2 holds with

F̄ (x) =
Bα(x)

Bα(0)
, x ≥ 0.

This completes the proof of case ii).

For case i), note that if x = 0, the claim clearly holds. Next we suppose that 0 < x < T . By

(5.25) for any 0 < ε < min(x/2, (T − x)/2),

P

{∫
[0,Tu]

I(Q(t) > u)dt > v(u)x

}
≤ P

{∫
[0,v(u)(T+ε)]

I(Q(t) > u)dt > v(u)x

}

≤ P

{∫
[0,v(u)T ]

I(Q(t) > u)dt > v(u)(x− ε)

}

∼ B̂α,α(x− ε, T )

B̂α,α(0, T )
P

{
sup

t∈[0,v(u)T ]
Q(t) > u

}
, u→∞.

Analogously, we have

P

{∫
[0,Tu]

I(Q(t) > u)dt > v(u)x

}
≥ B̂α,α(x+ ε, T )

B̂α,α(0, T )
P

{
sup

t∈[0,v(u)T ]
Q(t) > u

}
, u→∞.

In light of Remark 2.2 we establish the claim by letting ε → 0 in the above inequalities. This

completes the proof. �

6. Appendix

Proof of Lemma 4.1 For notational simplicity denote by ρu,j the correlation function of the

random field ξu,j . Further set

χu,j(s) := gu,j(ξu,j(s)− ρu,j(s, 0)ξu,j(0)), s ∈ E1
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and

fu,j(s, y) := yρu,j(s, 0)− g2
u,j (1− ρu,j(s, 0))− g2

u,j

1− σu,j(s)
σu,j(s)

, s ∈ E1, y ∈ R.

Conditioning on ξu,j(0), by F1 and using that ξu,j(0) and ξu,j(s) − ρu,j(s, 0)ξu,j(0) are mutually
independent we obtain

P
{∫

E2

I {Γ (gu,j(ξu,j(s)− gu,j)) (t) > 0} η(dt) > x

}

=
e−g

2
u,j/2

√
2πgu,j

∫
R

exp

(
−y − y2

2g2
u,j

)
×

×P
{∫

E2

I {Γ (gu,j(ξu,j(s)− gu,j)) (t) > 0} η(dt) > x|ξu,j(0) = gu,j + yg−1
u,j

}
dy

=
e−g

2
u,j/2

√
2πgu,j

∫
R

exp

(
−y − y2

2g2
u,j

)
P
{∫

E2

I {Γ (σu,j(s) (χu,j(s) + fu,j(s, y))) (t) > 0} η(dt) > x

}
dy

=
e−g

2
u,j/2

√
2πgu,j

∫
R

exp

(
−y − y2

2g2
u,j

)
Iu,j(y;x)dy,

where

Iu,j(y;x) := P
{∫

E2

I {Γ (σu,j(s) (χu,j(s) + fu,j(s, y))) (t) > 0} η(dt) > x

}
.

Noting that

lim
u→∞

sup
j∈Su

∣∣∣∣∣∣∣
e
−g2u,j/2√
2πgu,j

Ψ(gu,j)
− 1

∣∣∣∣∣∣∣ = 0

in order to show the claim it suffices to prove that

lim
u→∞

sup
j∈Su

∣∣∣∣∣
∫
R

exp

(
−y − y2

2g2
u,j

)
Iu,j(y;x)dy − BΓ,h,η

ζ (x,E2)

∣∣∣∣∣ = 0 (6.1)

for all x ≥ 0. In view of C3 it follows that that for u > u0

V ar(χu,j(s)− χu,j(s′)) ≤ g2
u,jE

{
ξu,j(s)− ξu,j(s′)

}2 ≤ Q1‖s− s′‖ν , s, s′ ∈ E1,

with ν > 0. Further, by C0-C2 for each y ∈ R

lim
u→∞

sup
j∈Su,s∈E1

∣∣fu,j(s, y)− y + σ2
ζ (s) + h(s)

∣∣ = 0. (6.2)

Hence, by F2

sup
j∈Su

e−yIu,j(y;x) ≤ e−y sup
j∈Su

P
{

sup
t∈E2

Γ (χu,j(s) + fu,j(s, y)) (t) > 0

}
≤ e−y sup

j∈Su
P
{

sup
s∈E1

{χu,j(s) + fu,j(s, y)} > 0

}
≤ e−y sup

j∈Su
P
{

sup
s∈E1

χu,j(s) > Q2 |y| −Q3

}
≤ Q4 |y|2n/ν−1 e−Q5y2−y, y < −M, (6.3)
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where in the last inequality we used Piterbarg inequality and M > 0. Moreover, it follows trivially

that for all x ≥ 0

sup
j∈Su

e−yIu,j(y;x) ≤ e−y, y ∈ R. (6.4)

Therefore by the dominated convergence theorem and assumption C0

sup
j∈Su

∣∣∣∣∣
∫
R

exp

(
−y − y2

2g2
u,j

)
Iu,j(y;x)dy −

∫
R
e−yIu,j(y;x)dy

∣∣∣∣∣
≤
∫
R

sup
j∈Su

(
e−yIu,j(y;x)(1− e−y

2/(2g2
u,j))

)
dy → 0, u→∞.

Hence in order to prove the convergence in (6.1) it suffices to show that

lim
u→∞

sup
j∈Su

∣∣∣∣∫
R
e−yIu,j(y;x)dy − BΓ,h,η

ζ (x,E2)

∣∣∣∣ = 0 (6.5)

for all x ∈ [0, η(E2)).
Weak convergence. The claim follows from the same arguments as in Dȩbicki et al. (2020a, Lem 4.3,
4.7), where the precise meaning of uniform weak convergence is also given. Thus let C(E1) denote
the Banach space of all continuous functions on the compact set E1 equipped with supremum norm.
For any s, s′ ∈ E1, by C2 we have

V ar(χu,j(s)− χu,j(s′)) = g2
u,j

(
E
{
ξu,j(s)− ξu,j(s′)

}2 − (ρu,j(s, 0)− ρu,j(s′, 0))
2
)
→ 2V ar(ζ(s)− ζ(s′))

uniformly with respect to j ∈ Su as u → ∞. Hence, the finite-dimensional distributions of

χu,j(s), s ∈ E1 weakly converge to those of
√

2ζ(s), s ∈ E1 uniformly with respect to j ∈ Su. In

view of C3, we know that the measures on C(E1) induced by {χu,j(s), s ∈ E1, j ∈ Su} are uniformly

tight for large u, and by C1, σu,j(s) converges to 1 uniformly for s ∈ E1 and j ∈ Su as u → ∞.

Therefore, {σu,j(s)χu,j(s), s ∈ E1} converge weakly to {
√

2ζ(s), s ∈ E1} as u → ∞ uniformly

with respect to j ∈ Su, which together with (6.2) implies that for each y ∈ R, the probability

measures on C(E1) induced by {χfu,j(s, y), s ∈ E1} converges weakly as u→∞ to those induced by

{ζh(s) + y, t ∈ E1} uniformly with respect to j ∈ Su, where

χfu,j(s, y) := σu,j(s) (χu,j(s) + fu,j(s, y)) and ζh(s) :=
√

2ζ(s)− σ2
ζ (t)− h(s).

Continuous mapping theorem implies that for each y ∈ R, the push-forward probability measures

Pu,y on C(E2) induced by {Γ
(
χfu,j(·, y)

)
(t), t ∈ E2} converges weakly to the push-forward proba-

bility measure Py induced by {Γ (ζh) (t) + y, t ∈ E2} as u→∞ uniformly with respect to j ∈ Su.
The issues regarding the non-continuity of the sojourn functional are discussed in Berman (1973,

Lem 4.2). A sequence of functions fn ∈ C(E2) converges to f ∈ C(E2) as n → ∞ with respect to

uniform topology if fn → f uniformly as n → ∞. Since η is absolutely continuous with respect to

Lebesgue measure on E2 we can define the set

A∗ =

{
f ∈ C(E2) :

∫
E2

I(f(t) = 0)η(dt) > 0

}
,
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which is measurable in the completion Cµ of C with respect to µ, where C is the Borel σ-field of

C2(E). Its complement belongs to Cµ, i.e.,

Ac∗ = C(E2) \A∗ ∈ Cµ.

Any function f ∈ Ac∗ is a continuity point of the sojourn functional J : C(E2) 7→ [0, η(E2)], where

J(f) =

∫
E2

I(f(t) > 0)η(dt), f ∈ C(E2).

This functional is measurable C/B(R) by the assumption on η. We shall show that it is continuous

at any f ∈ Ac∗. Let such f be given. By the definition of the integral such f is not equal to zero on

any compact interval of R. Let fn → f uniformly as n → ∞. Then I(fn(t) > 0) → I(f(t) > 0) as

n→∞ for almost all t ∈ R (with respect to Lebesgue measure). Hence by dominated convergence

theorem we have J(fn) → J(f) as n → ∞, which means that the functional is continuous for all

f ∈ Ac∗. Recall that Py is the push-forward (image measure) on C(E2) with respect to Γ(ξh) + y.

We claim that

Py(A∗) > 0

is possible only for y in a countable set of R. Indeed, any f ∈ A∗ is such that it is constant equal

to zero on a compact interval. Consequently, Py(A∗) > 0 means that the functions f ∈ A∗ are

constant equal to −y on some interval of R. If this is true for two different y’s, then the intervals

where f is constant equal −y must be disjoint, therefore this can be true only for countable y’s.

Alternatively, using the fact that P {Γ(ζh)(t) + y = 0} = 0 a.e., y ∈ R, by the σ-finiteness of η,

Fubini-Tonelli theorem yields∫
R
E
{∫

E2

I(Γ(ζh)(t) + y = 0)η(dt)

}
dy =

∫
E2

∫
R
P {Γ(ζh)(t) + y = 0} dyη(dt) = 0.

Hence for almost all y ∈ R

E
{∫

E2

I(Γ(ζh)(t) + y = 0)η(dt)

}
= 0,

which means that, for almost all y ∈ R

Py(A∗) = P
{∫

E2

I(Γ(ζh)(t) + y = 0)η(dt) > 0

}
= 0.

Consequently, since J(f) is continuous for f ∈ Ac∗, by the continuous mapping theorem, as u→∞∫
E2

I
(

Γ
(
χfu,j(·, y)

)
(t) > 0

)
η(dt) (6.6)

weakly converges to ∫
E2

I (Γ (ζh) (t) + y > 0) η(dt)

uniformly with respect to j ∈ Su for almost all y ∈ R.
Convergence on continuity points. Define

I(y;x) := P
{∫

E2

I (Γ(ζh)(t) + y > 0) η(dt) > x

}
.
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We draw a similar argument as in Theorem 1.3.1 of Berman (1992) to verify (6.5) for all continuity

points x ∈ (0, η(E2)) of BΓ,h,η
ζ (x,E2). Let x0 ∈ (0, η(E2)) be such a continuity point, that is

lim
ε→0

∫
R

(I(y;x0 + ε)− I(y;x0 − ε)) e−ydy = 0.

Since for large M and all x ≥ 0 by F2 as in the derivation of (6.3) we have

e−yI(y;x) ≤ Q′4 |y|
2n/ν−1 e−Q5y2−y, y < −M (6.7)

it follows from the dominated convergence theorem that∫
R

(I(y;x0+)− I(y;x0−)) e−ydy = 0

and thus by the monotonicity of I(y;x) in x for each fixed y, x0 is a continuous point of I(y;x) for

a.e. y ∈ R. Thus by (6.6) for a.e. y ∈ R

lim
u→∞

sup
j∈Su
|Iu,j(y;x0)− I(y;x0)| = 0. (6.8)

As shown in (6.3), (6.4) and (6.7) it follows from the dominated convergence theorem that

sup
j∈Su

∣∣∣∣∫
R
e−yIu,j(y;x0)dy −

∫
R
e−yI(y;x0)dy

∣∣∣∣
≤
∫
R

sup
j∈Su
|Iu,j(y;x0)− I(y;x0)| e−ydy → 0, u→∞ (6.9)

establishing the proof for all continuity points x ∈ (0, η(E2)). Moreover, for the case that x = 0,

(6.9) also holds by replacing sojourn with supremum. This can be shown directly without any

continuity requirement for BΓ,h,η
ζ (x,E2) at x = 0.

Continuity of BΓ,h,η
ζ (x,E2). Next we show that BΓ,h,η

ζ (x,E2) is continuous at any x ∈ (0, η(E2))

using that η is equivalent with Lebesgue measure on E2. Note that BΓ,h,η
ζ (x,E2) is clearly right

continuous at 0. Next we show the continuity at x ∈ (0, E2). The claimed continuity at x follows if

we show ∫
R
P {Ay} e−ydy = 0, Ay =

{∫
E2

I
(
Γ(ζh)(t) + y > 0

)
η(dt) = x

}
, y ∈ R.

Note that Ay is an event for any y which is consequence of Fubini-Tonelli theorem. If for 0 < x <

η(E2) we have ∫
E2

I
(
Γ(ζh)(t) + y > 0

)
η(dt) = x,

then using the fact that Γ(ζh)(t) is continuous over E2 and the Lebesgue measure is absolutely

continuous with respect to η, we have that for any y′ > y∫
E2

I
(
Γ(ζh)(t) + y′ > 0

)
η(dt) > x.

This implies that Ay ∩Ay′ = ∅, y 6= y′, y, y′ ∈ R. Noting that the continuity of Γ(ζh) guarantees the

measurability of Ay, and {y : y ∈ R such that P {Ay} > 0} is a countable set because if it were

not we would find countably many (disjoint) Ay such that
∑

P {Ay} =∞.
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Thus we get
∫
R P {Ay} e−ydy = 0, hence BΓ,h,η

ζ (x,E2) is continuous on (0, η(E2)), establishing

the claim. �

Before proceeding to the proof of Lemma 4.2, under the notation introduced in the proof of
Proposition 3.1, we denote and analyze

ΣΣ1(u, n) :=
∑

0≤ki,k′i≤Ni(u,n),i=1,2,(k1,k2) 6=(k′1,k
′
2)

P

 sup
t∈Ik1,k2

(u,n)

X(t) > u, sup
t∈Ik′

1,k′
2
(u,n)

X(t) > u

 , (6.10)

ΣΣ2(u, n) :=
∑

0≤2ki,2k′i≤Ni(u,n),i=1,2,(k1,k2)6=(k′1,k
′
2)

P

 sup
t∈I2k1,2k2

(u,n)

X(t) > u, sup
t∈I2k′

1,2k′
2
(u,n)

X(t) > u

 ,(6.11)

Θ(u) := T1T2a
1/α1

1 a
1/α2

2 u2/α1+2/α2Ψ(u). (6.12)

Moreover, following notation introduced in the proof of Proposition 3.3, let

ΣΣ′′3(u, n) :=
∑

|ki|,|k′i|≤N ′i(u,n),i=1,2,(k1,k2) 6=(k′1,k
′
2)

P

 sup
t∈Ik1,k2

(u,n)
X(t) > u, sup

t∈Ik′1,k′2
(u,n)

X(t) > u

 .

Îk2(u, n) := I−1,k2(u, n) ∪ I0,k2(u, n), E1(u, n) :=
⋃

|k2|≤N ′2(u,n)

Îk2(u, n), (6.13)

and

Σ′3(u, n) :=
∑

|ki|≤N ′i(u,n)+1,i=1,2, k1 6=−1,0

P

{
sup

t∈Ik1,k2
(u,n)

X(t) > u

}
, (6.14)

ΣΣ3(u, n) :=
∑

|k2|,|k′2|≤N ′2(u,n),k2 6=k′2

P

 sup
t∈Îk2

(u,n)

X(t) > u, sup
t∈Îk′2

(u,n)

X(t) > u

 , (6.15)

ΣΣ4(u, n) :=
∑

|2k2|,|2k′2|≤N ′2(u,n)−1,k2 6=k′2

P

 sup
t∈Î2k2

(u,n)

X(t) > u, sup
t∈Î2k′2

(u,n)

X(t) > u

 . (6.16)

Lemma 6.1. Under the assumptions of Proposition 3.1

P
{

sup
t∈E

X(t) > u

}
∼

∑
0≤ki≤Ni(u,n),i=1,2

P

{
sup

t∈Ik1,k2
(u,n)

X(t) > u

}
∼ C0Θ(u) (6.17)

as u→∞, n→∞, where C0 > 0. Moreover, for all large u and n

ΣΣ1(u, n) ≤
(
C2√
n

+ e−C1nC
)

Θ(u), ΣΣ2(u, n) ≤ e−C1nC
Θ(u),

where C,C1 and C2 are some positive constants.

Proof of Lemma 6.1 Asymptotics (6.17) follow from Piterbarg (1996, Lem 7.1), while the bounds

can be deduced from equations (7.4) and (7.6) in the proof of the aforementioned lemma. �
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Lemma 6.2. Under the assumptions of Proposition 3.3, for αi < βi, i = 1, 2,

P

{
sup

t∈E\E(u,n)
X(t) > u

}
= o

(
P
{

sup
t∈E

X(t) > u

})
as u→∞, n→∞, and

ΣΣ′′3(u, n) = o

 ∑
0≤ki≤N ′i(u,n),i=1,2

P

{
sup

t∈Ik1,k2
(u,n)

X(t) > u

} ,

as u→∞, n→∞. For α1 = β1, α2 < β2

P

{
sup

t∈E\E1(u,n)
X(t) > u

}
= o

(
P
{

sup
t∈E

X(t) > u

})
,

as u→∞, n→∞, and for u and n sufficiently large

ΣΣ3(u, n) ≤
(
C2√
n

+ e−C1nC
)
P
{

sup
t∈E

X(t) > u

}
,

Σ′3(u, n) ≤ e−C1nC
P
{

sup
t∈E

X(t) > u

}
,

ΣΣ4(u, n) ≤ e−C1nC
P
{

sup
t∈E

X(t) > u

}
.

For α1 = β1 and α2 = β2

P

{
sup

t∈E\
⋃
i,j∈{−1,0} Ii,j(u,n)

X(t) > u

}
= o

(
P
{

sup
t∈E

X(t) > u

})
,

as u→∞, n→∞.

Proof of Lemma 6.2 The proof of Lemma 6.2 follows from Dȩbicki et al. (2017b). Specifically, the

first one follows from (34), the second one from (40) and (41), the third one from (34) and (46), the

fourth one from (48) and (49), the fifth one from (46), the six one from (48), and the last one from

(34) and (52) in the proof of Dȩbicki et al. (2017b, Thm 3.1). �

Now we are in the position to prove Lemma 4.2.

Proof of Lemma 4.2 Ad (i). We follow notation introduced in the proof of Proposition 3.1. For

any n, n1 >
√
x, we have

Σ−1 (u, n1)− ΣΣ1(u, n1) ≤ P

{∫
E(u,n)

I(X(t) > u)dt > v(u)x

}
≤ Σ+

1 (u, n) + ΣΣ1(u, n), (6.18)

where ΣΣ1(u, n) is given in (6.10) and

Σ±1 (u, n) =
∑

0≤ki≤Ni(u,n)±1,i=1,2

P

{∫
Ik1,k2

(u,n)
I(X(t) > u)dt > v(u)x

}
.



282 Krzysztof Dȩbicki et al.

By (5.3), it follows that

Σ+
1 (u, n) ≤

∑
0≤ki≤Ni(u,n),i=1,2

Bα1,α2(x, [0, n]2)Ψ(u)

≤ Bα1,α2(x, [0, n]2)

n2
Θ(u), u→∞,

where Θ(u) is defined in (6.12). Analogously, we obtain the lower bound

Σ−1 (u, n) ≥ Bα1,α2(x, [0, n]2)

n2
Θ(u), u→∞.

Lemma 6.1 shows that for u and n sufficiently large

ΣΣ1(u, n) ≤
(
C2√
n

+ e−C1nC
)

Θ(u).

Dividing both sides of (6.18) by Θ(u) and letting u→∞, we have

Bα1,α2(x, [0, n1]2)

n2
1

− C2√
n1
− e−C1nC

1 ≤ Bα1,α2(x, [0, n]2)

n2
+

C2√
n

+ e−C1nC
.

The above implies that

lim sup
n→∞

Bα1,α2(x, [0, n]2)

n2
= lim inf

n→∞

Bα1,α2(x, [0, n]2)

n2
<∞.

Next we show that

lim inf
n→∞

Bα1,α2(x, [0, n]2)

n2
> 0.

Observe that

P
{∫

E
I(X(t) > u)dt > v(u)x

}
≥ Σ2(u, n)− ΣΣ2(u, n), (6.19)

where ΣΣ2(u) is given in (6.11) and

Σ2(u, n) =
∑

0≤2ki≤N ′i(u,n),i=1,2

P

{∫
I2k1,2k2

(u,n)
I(X(t) > u)dt > v(u)x

}
.

In light of (5.3), we have

Σ2(u, n) ≥
∑

0≤2ki≤N ′i(u,n),i=1,2

Bα1,α2(x, [0, n]2)Ψ(u)

≥ Bα1,α2(x, [0, n]2)

4n2
Θ(u), u→∞.

Moreover, by Lemma 6.1 we have, for u and n large enough

ΣΣ2(u, n) ≤ e−C1nC
Θ(u).

Combination of upper bound in (6.18) and lower bound in (6.19) leads to

lim inf
n→∞

Bα1,α2(x, [0, n]2)

n2
≥ Bα1,α2(x, [0, n1]2)

4n2
1

− e−C1nC
1 . (6.20)
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For n1 >
√
x

Bα1,α2(x, [0, n1]2) =

∫
R
P

{∫
[0,n1]2

I

(
2∑
i=1

(
√

2Bαi(ti)− |ti|
αi) > s

)
dt > x

}
esds

≥
∫
R
P

{
inf

t∈[0,n1]2

2∑
i=1

(√
2Bαi(ti)− |ti|

αi
)
> s

}
esds > 0,

which combined with the monotonicity of Bα1,α2(x, [0, n1]2) in n1 and (6.20) implies that for suffi-

ciently large n1

lim inf
n→∞

Bα1,α2(x, [0, n]2)

n2
≥ Bα1,α2(x, [0, n1]2)− 4n2

1e
−C1nC

1

4n2
1

> 0,

establishing the proof of (i).

Ad (ii). We follow notation introduced in the proof of Proposition 3.3 for the case α1 = β1 and
α2 < β2. Let next for u > 0

E2(u) :=

−(e−1/4
u ∧ lnu

u

)2/β1

,

(
e
−1/4
u ∧ lnu

u

)2/β1
×

−(e−1/4
u ∧ lnu

u

)2/β2

,

(
e
−1/4
u ∧ lnu

u

)2/β2
 ,

Ik1,k2(u, n) := [k1v1(u)n, (k1 + 1)v1(u)n]× [k2v2(u)n, (k2 + 1)v2(u)n],

Θ1(u) := 2Γ̂(1/β2 + 1)a
1/α2

2 b
−1/β2

2 u2/α2−2/β2Ψ(u),

where Γ̂(·) is the gamma function and

eu = sup
0<|ti|<( lnu

u )
2/βi ,i=1,2

|e(t)|, e(t) =
1− σ(t)∑2
i=1 bi|ti|βi

− 1, |t| 6= 0.

Observe that

P

{∫
E2(u)

I(X(t) > u)dt > v(u)x

}
≥ P

{∫
E1(u,n)

I(X(t) > u)dt > v(u)x

}
,

P

{∫
E2(u)

I(X(t) > u)dt > v(u)x

}
≤ P


∫
⋃
|k2|≤N′2(u,n)+1 Îk2

(u,n)
I(X(t) > u)dt > v(u)x


+P

 sup
E2(u)\(

⋃
|k2|≤N′2(u,n)+1 Îk2

(u,n))

X(t) > u

 .

Hence it follows that

Σ−3 (u, n1)− ΣΣ3(u, n1) ≤ P

{∫
E2(u)

I(X(t) > u)dt > v(u)x

}
≤ Σ+

3 (u, n) + Σ′3(u, n), (6.21)

with

Σ±3 (u, n) =
∑

|k2|≤N ′2(u,n)±1

P

{∫
Îk2

(u,n)
I(X(t) > u)dt > v(u)x

}
,
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where Ik1,k2(u, n) is defined in (5.6) and Σ′3 and ΣΣ3 are given in (6.14) and (6.15) respectively.

Noting that (5.12) also holds for |k2| ≤ N ′2(u, n) + 1, we have for x ≥ 0

Σ±3 (u, n) ∼ Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

∑
|k2|≤N ′2(u,n)+1

Ψ(u±k2,n
)

∼ Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])Ψ(u)

∑
|k2|≤N ′2(u,n)+1

e−u
2b2(|k2|v2(u)n)β2

∼ Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
Θ1(u), u→∞.

In light of Lemma 6.2, we have that for u and n sufficiently large

ΣΣ3(u, n) + Σ′3(u, n) ≤
(
C2√
n

+ e−C1nC
)

Θ1(u).

Dividing both sides of (6.21) by Θ1(u) respectively and letting u→∞, we have that

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n1, n1]× [0, n1])

n1
− C2√

n1
−e−C1nC

1 ≤ B
a−1

1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
+

C2√
n

+e−C1nC
,

which gives that

lim inf
n→∞

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
= lim sup

n→∞

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
<∞.

Moreover, we have

P

{∫
E2(u)

I(X(t) > u)dt > v(u)x

}
≥ Σ4(u, n)− ΣΣ4(u, n),

where ΣΣ4(u, n) is defined in (6.16) and

Σ4(u, n) =
∑

|2k2|≤N ′2(u,n)−1

P

{∫
Î2k2

(u,n)
I(X(t) > u)dt > v(u)x

}
.

By (5.12), for x ≥ 0 we have

Σ4(u, n) ∼ Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

∑
|2k2|≤N ′2(u,n)−1

Ψ(u−k2,n
)

∼ Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

2n
Θ1(u), u→∞.

By Lemma 6.2, for u and n sufficiently large, we have

ΣΣ4(u, n) ≤ e−C1nC
Θ1(u).

In view of (6.21) for the upper bound, we have

lim inf
n→∞

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
≥ Ba

−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n1, n1]× [0, n1])

n1
− e−C1nC

1 .
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Noting that for n >
√
x

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

=

∫
R
P

{∫
[−n,n]×[0,n]

I

(
2∑
i=1

(Bαi(ti)− |ti|
αi)− a−1

1 b1|t1|α1 > s

)
dt > x

}
esds

≥
∫
R
P

{
inf

t∈[−n,n]×[0,n]

(
2∑
i=1

(Bαi(ti)− |ti|
αi)− a−1

1 b1|t1|α1

)
> s

}
esds > 0,

and by the monotonicity of Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n] × [0, n]) with respect to n, we have, for n1

sufficiently large,

lim inf
n→∞

Ba
−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n, n]× [0, n])

n
≥ Ba

−1
1 b1|t1|α1 ,0
α1,α2 (x, [−n1, n1]× [0, n1])

n1
− e−C1nC

1 > 0.

This completes the proof of (ii).

Ad (iii). We follow notation introduced in the proof of Proposition 3.3 for the case αi = βi,

i = 1, 2 Observe that

Σ5(u, n) ≤ P

{∫
E′(u,n)

I(X(t) > u)dt > v(u)x

}
≤ Σ5(u, n) + ΣΣ5(u, n), (6.22)

where E′(u, n) =
⋃

(k1,k2)∈Ku,n Ik1,k2(u, n) and

Σ5(u, n) = P

{∫
Î(u,n)

I(X(t) > u)dt > v(u)x

}
,

ΣΣ5(u, n) =
∑

|ki|≤N ′i(u,n),ki 6=−1,0,i=1,2

P

{
sup

t∈Ik1,k2
(u,n)

X(t) > u−n,k1,k2

}
,

with u−n,k1,k2
defined in (5.7) and Î(u, n) in (5.14). In light of (5.8) and (3.3), we have that for u

sufficiently large

ΣΣ5(u, n) ≤ Bα1,α2(x, [0, n]2)
∑

|ki|≤N ′i(u,n),ki 6=−1,0,i=1,2

Ψ(u−n,k1,k2
)

≤ Bα1,α2(x, [0, n]2)Ψ(u)
∑

|ki|≤N ′i(u,n),ki 6=−1,0,i=1,2

e−a
−1
1 b1|k∗1n|β1−a−1

2 b2|k∗2n|β2

≤ Bα1,α2(x, [0, n]2)e−Q1(nβ1+nβ2 )Ψ(u),

where k∗i = kiI{ki>0} + (|ki| − 1)I{ki<0}, i = 1, 2.

Hence dividing (6.22) by Ψ(u) and letting u→∞, we have for any n, n1 >
√
x

0 < Ba
−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (x, [−n, n]2)

≤ Ba
−1
1 b1|t1|α1 ,a−1

2 b2|t2|α2

α1,α2 (x, [−n1, n1]2) + Bα1,α2(x, [0, n1]2)e−Q1(n
β1
1 +n

β2
1 ).

Letting n→∞ with n1 fixed in the above inequality, we complete the proof. �
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Proof of (5.9): Observe that

Ψ(u−n,k1,k2
)

Ψ(u+
n,k1,k2

)
∼ e

(
u+
n,k1,k2

)2
−
(
u−
n,k1,k2

)2

2 , u→∞

uniformly with respect to 0 ≤ |ki| ≤ Ni
′(u, n), i = 1, 2. Furthermore, by (3.3), for u sufficiently

large(
u+
n,k1,k2

)2

−
(
u−n,k1,k2

)2

= u2

(
sup

t∈Ik1,k2
(u,n)

1

σ2(t)
− inf
t∈Ik1,k2

(u,n)

1

σ2(t)

)

= u2 sup
s,t∈Ik1,k2

(u,n)

σ2(t)− σ2(s)

σ2(t)σ2(s)

≤ 4u2 sup
s,t∈Ik1,k2

(u,n)

|σ(t)− σ(s)|

= 4u2 sup
s,t∈Ik1,k2

(u,n)

∣∣∣∣∣(1 + e(t))

2∑
i=1

bi|ti|βi − (1 + e(s))

2∑
i=1

bi|si|βi

∣∣∣∣∣
≤ 4u2 sup

s,t∈Ik1,k2
(u,n)

∣∣∣∣∣
2∑
i=1

bi|ti|βi −
2∑
i=1

bi|si|βi

∣∣∣∣∣+ 8u2 sup
t∈Ik1,k2

(u,n)

|e(t)|
2∑
i=1

bi|ti|βi

≤ 4u2
2∑
i=1

biβi|θi|βi−1vi(u)n+ 8u2 sup
t∈Ik1,k2

(u,n)

|e(t)|
2∑
i=1

bi|ti|βi ,

where e(t) = 1−σ(t)∑2
i=1 bi|ti|βi

− 1, |t| 6= 0 and θi ∈ (kivi(u)n, (ki + 1)vi(u)n). Using the fact that

N ′i(u, n) =

[
(e
−1/4
u ∧ lnu)2/βi

u2/βivi(u)n

]
and lim

u→∞
eu = 0,

we have that

u2 sup
t∈Ik1,k2

(u,n)
|e(t)|

2∑
i=1

bi|ti|βi ≤ 2eu

2∑
i=1

bi(e
−1/4
u ∧ lnu)2 → 0,

as u→∞ uniformly with respect to 0 ≤ |ki| ≤ Ni
′(u, n), i = 1, 2. For βi ≥ 1, i = 1, 2,

u2
2∑
i=1

biβi|θi|βi−1vi(u)n ≤ u2
2∑
i=1

biβi

(
lnu

u

) 2(βi−1)

βi

vi(u)n

≤
2∑
i=1

2a
−1/αi
i biβiu

2/βi−2/αi(lnu)
2(βi−1)

βi n→ 0, u→∞

uniformly with respect to 0 ≤ |ki| ≤ Ni
′(u, n), i = 1, 2, where (θ1, θ2) ∈ Ik1,k2(u, n). For 0 < βi <

1, i = 1, 2,

u2 sup
s,t∈Ik1,k2

(u,n)

∣∣∣∣∣
2∑
i=1

bi|ti|βi −
2∑
i=1

bi|si|βi
∣∣∣∣∣ ≤ u2

2∑
i=1

biβi|θi|βi−1vi(u)n

≤ u2
2∑
i=1

biβi|vi(u)n|βi → 0, u→∞,



Sojourn times of Gaussian and related random fields 287

holds uniformly for 0 ≤ |ki| ≤ Ni
′(u, n), ki 6= −1, 0, i = 1, 2. For 0 < βi < 1, ki = −1, 0, i = 1, 2

u2 sup
s,t∈Ik1,k2

(u,n)

∣∣∣∣∣
2∑
i=1

bi|ti|βi −
2∑
i=1

bi|si|βi
∣∣∣∣∣ ≤ u2 sup

s,t∈Ik1,k2
(u,n)

(
2∑
i=1

bi|ti|βi +
2∑
i=1

bi|si|βi
)

≤ 2u2
2∑
i=1

bi|vi(u)n|βi

= 2
2∑
i=1

a
−βi/αi
i bin

βiu2−2βi/αi → 0, u→∞.

Therefore, we can conclude that (
u+
n,k1,k2

)2
−
(
u−n,k1,k2

)2
→ 0

as u→∞ uniformly with respect to 0 ≤ |ki| ≤ N ′i(u, n), i = 1, 2 establishing the proof. �
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Dȩbicki, K. Ruin probability for Gaussian integrated processes. Stochastic Process. Appl., 98 (1),

151–174 (2002). MR1884928.
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