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In this paper, we present the Heated Stack Algorithm (HS) which is a population based multi-objective
evolutionary algorithm with temperature based on type-2 fuzzy logic meta-heuristic. Temperature
plays a vital role in HS being used for two distinct procedures; Sorting and Crossover. In sorting,
temperature is combined with the niche distance to determine the rank order of a population front.
In crossover, the temperature of two population members are compared to determine the quantity
of information to take from each parent. HS is a new optimisation algorithm capable of solving
constrained real-world problems. This paper will present the HS application to a real-world capacity
planning problem involving networking infrastructure. To proof the algorithm applicability to wider
set of problems, we will report the HS results over a subset of the constrained multi objective problems
used for optimisation competitions by the IEEE Congress on Evolutionary Computation (CEEC). In these
problems we have compared to the popular NSGA-II and its successor NSGA-III. By use of the hyper-
volume indicator, we find that the HS outperforms NSGA-II in 84% of cases, and outperforms NSGA-III
in 69% of the cases.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The internet, data and interconnectivity have become a pillar
f modern society, being used in every part of people’s lives, be
his as part of their personal or professional lives. People require
reliable and fast internet connection in as many locations as
ossible. In the United Kingdom this connection is provided by
network that is broken down into two divisions; the access
etwork connecting business and residences to an exchange, and
he core network connecting all the exchanges together and to
he wider world. The access network comprises of many different
echnologies such as copper cable, fibre optic cable, 5G, satellites
nd can be expanded to include any new technologies. The core
etwork comprises data exchanges and heavy duty fibre optic ca-
ling providing connections between exchanges and to the rest of
he world. An exchange comprises bandwidth, cooling and power
quipment. Bandwidth equipment is used to route data packets
o their correct locations. The cooling equipment is used in order
o keep the bandwidth equipment running in an optimal envi-
onmental condition. The power equipment is used to provide
he necessary energy for the bandwidth and cooling equipment.
s the ever-present demand for a faster network connection
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increases networking infrastructure in these exchanges must be
upgraded in order to keep up [1], this upgrading of an exchange
is known as capacity planning or capacity management .

Upgrading each of the three parts of the exchange comes
with its own challenges and constraints, but one overarching
constraint applies to all three parts of the exchange where there
must be a minimal loss of service. By far the simplest but most ex-
pensive part of the exchange to upgrade is the power equipment,
as it underpins the other two and cannot be upgraded without
disabling parts or all of the power within the exchange. Increasing
the capacity of cooling equipment is more complicated to upgrade
than the power equipment, but would still require the shut-
down of bandwidth equipment. Hence, power and cooling equip-
ment violate the overarching constraint to varying degrees, which
only leaves the upgrade of bandwidth equipment. Thankfully
newer bandwidth equipment is more power and temperature
efficient than their predecessors, so we can decrease the cool-
ing and power requirement by upgrading the bandwidth equip-
ment whilst simultaneously increasing bandwidth. Unfortunately,
bandwidth equipment is the most complicated and constrained
environment to manipulate and upgrade.

There are varying types and structures of the bandwidth
equipment each of which has its own set of requirements and
constraints. For the basis of the explanation, we shall start with
how the ideal exchange looks and then show how variations
upon an exchange’s structure can increase the complexity of the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ptimisation problem. First that all bandwidth equipment fits
ithin a tree structure. Secondly the digital or software capacity
anagement has been pre-optimised, and finally all equipment
an be moved and is not under some special restrictions. In our
implified environment all bandwidth hardware comes under one
f three categories; racks, cards and ports. Each of the three
ategories has a one to many relationship with the next categories
i.e. a card has many ports and a rack has many cards). A rack is
sed to supply physical mounting points for equipment whilst
lso providing cooling and power. A card directs packets from
orts to their destinations by consuming power and producing
eat. A port is a connection point for a cable be it fibre or copper.
n order to upgrade a card all the ports must be moved to ap-
ropriate locations on other cards, and in order to upgrade a rack
ll cards must be cleared of ports and removed. Each rack, card
nd port has its own set of business and technical requirements
nd constraints including; hardware and software compatibles,
ower and cooling requirements, bandwidth usages/constrains,
nd configuration constraints. Another way of looking at capac-
ty planning in telecommunications can see it as a constrained
ersion of the theoretical computer science problems; the bin-
acking [2] or the knapsack problems [3]. In which both problems
equire the sorting and arrangement of a set of objects into one
r more containers across multiple layers.
In a national network there can be thousands of exchanges

ach built to suit the needs of its local area and upgraded to
uit those needs over time. In this paper, we will be using one
f these exchanges. However, in some locations, the structure
nd layout of a given exchange can be more complex. These
omplex structures of racks, cards and ports can have anywhere
etween three to nine layers and do not always follow the one to
any relationships. Every port that is in use has a digital capacity
rchitecture on it that has a relationship to other ports in the
xchange, which must first be organised and considered when
aking physical decisions. Ports, cards and racks may have many
onstraints put upon each of them, reducing the possible valid
tate the entire exchange could exist in. In some cases, some
orts and cards have special rules that must be interpreted by a
uman as they could be related to government, financial, military
r international assets. In general, each of the exchanges follow
he same trend as laid out, with an exchange being comprised of
set of racks, cards and ports, which need to be moved in order
o make upgrades to the exchange.

The telecommunication data used for this problem has been
upplied by British Telecom (BT) from their databases and is data
rom an exchange and is as such a digital representation of the
eal networking infrastructure within a building. In order to use
his data, the relevant information needs to be extracted from
he data and formatted so that it can be accepted by the HS
nd the other optimisation algorithms. After the extraction and
ormatting, the data is represented in two files one for the ports
nd cables and another for the cards and rack that make up the
tatic infrastructure. In the ports and cables data there is a little
ver 1100 rows of data with each row representing a single port
nd this a single decision variable in the optimisation problem.
ach row of the ports and cable data has 7 data fields including:
he Port ID, its location on a card, its parent card, is the port
ccupied with a cable, the service type on that cable, the cable
roup id (if applicable) and bandwidth utilisation. In the cards
nd rack data file there is roughly 130 rows of data with each
ow representing a card with its associated information. Each
ow of the cards and rack data file has 5 data fields including:
ard ID, its location on the rack, its parent Rack, the compatible
ervice types and the bandwidth capacity. With an understand-
ng of the data fields, the objectives and constraints of capacity

lanning problem used in this paper can be outlined. There are

2

two objectives, first to remove all the ports from a given card,
second to move the minimum number of ports from their original
locations during this process. There are three constraints used in
the telecommunication problem presented in this problem. First,
some groups of cables must be kept together on the same card.
Second is a given cable and its services compatible with the card
it has been place on. Finally does the card breach its bandwidth
capacity with the combined utilisation of the cables. Given that
in this problem, there are a high number of specific edge case
constraints that may only occur once in an exchange, we have
simplified and generalised the constraints for the purpose of this
paper, but the constraints presented are still valid and used as
part of the optimisation process.

The terms capacity management or capacity planning has been
used in many different problems in many different domains each
with their own solutions. In manufacturing an agent based system
has been used in [4], statistical modelling is used within virtual
machine deployment in [5]. Supply chains across many differ-
ent manufacturing processes use capacity management; system
dynamics has been found to be effective in closed loop supply
chains [6], and multi-objective optimisation being used in supply
chain capacity management [7]. Capacity management is a term
widely used for many different problems, but they all have some
similarities; such as requiring the balancing of several systems
or metrics in order to produce the most effective result or re-
sults. This broad idea of balancing several systems or metrics
can also be applied to networking infrastructure including optical
networks [8,9]. In telecommunications there are several different
problems that are all labelled as capacity planning all of which
rightly fit under this umbrella term. In one case the term capacity
planning is being used to describe stock management within an
exchange, allowing for the newest equipment to be brought ready
for installation when it is most needed [10]. In another case
the term capacity management is used when making investment
decisions within a telecommunications network ensuring that
new equipment can be installed in a timely manner [11]. In a final
case the term capacity planning is used to refer to the modelling
and decision making process used to increase the capacity of a
network location, with the installation of new equipment [12].
All of these problems in both telecoms and the wider scope
are in some sense a multi-objective optimisation or a multi-
objective modelling problem and as such could have any number
of solutions, but none of the solutions to these other problems are
appropriate for our network capacity planning. These methods
are all very good at their specific problems and domains, but none
of these methods can adequately represent our problem space let
alone fulfil all of the requirements and constraints of the capacity
planning problem presented within this paper. The solutions to
our capacity planning problem have a lasting real-world effect
on nation’s network infrastructure and incur high monetary costs
to implement. Therefore, for these two reasons the Heated Stack
Algorithm (HS) has been designed with this type of problem in
mind.

The main contribution of this paper is the introduction of a
novel multi objective multi constrained evolutionary algorithm
called the Heated stack, which is capable of addressing short com-
ings of well-known multi objective multi constrained algorithm
including NSGA-II and NSGA-III in its ability to be able to balance
fairly the exploration and exploitation of the algorithm. This has
been realised by a new parameter called temperature which
works by adding priority to newer members of the population
in the selection and population reduction whilst also effecting
the crossover of population members. This added priority reduces
over generations and the extent to which priority is added re-
duces as the number of generations increase, but the effect of this

priority can be increased as it is directly tied to the number of
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ew population member that are created. This algorithm shows
ts own benefit where is has been used for a benchmark com-
etition problems where it has been compared against NSGA-II
nd NSGA-III. When using the hypervolume indicator in the con-
trained multi objective problems (CMOP) HS can deliver a better
olution front 84% of the time when compared to NSGA-II and
9% of the time when compared to NSGA-III. Not to mention that
n the constrained multi objective multi chromosome problem
pace of capacity planning for telecommunications (the subject
f this paper) HS will outperform NSGA-II 100% of the time and
SGA-III 64% of the time. This algorithm is highly needed for real
orld problems such as the telecommunication capacity planning
hich are characterised by a highly complicated decisions space
ith a high number of constraints, which cannot be effectively
olved by NSGA-II and NSGA-III because they lack the ability to
ffectively explore the problem space prior to exploiting it. In this
aper we were able to show that HS was able to solve the given
roblem and achieve results that were not achievable by NSGA-II
nd NSGA-III.
In this paper, we will present a novel constraint handling

ulti-objective evolutionary optimisation algorithm that uses an
nterval type-2 fuzzy logic systems for capacity planning within
elecoms networks, which is also a capable of handling general
ptimisation problems. In Section 2, we will give an overview
n simulated annealing and genetic algorithms. In Section 3 we
ill give a brief overview of fuzzy systems. In Section 4 we will
resent the proposed HS for solving capacity planning in telecoms
nd constrained multi objective problems. In Section 5 we will
resent the experiments and results to the capacity planning
roblem and a sub-set of the constrained multi objective prob-
ems used for optimisation competitions by the IEEE Congress
n Evolutionary Computation (CEEC). Finally in Section 6 we
onclude the paper and outline our future work.

. An overview on simulated annealing and genetic algorithms

Optimisation is a well-developed field of computational intel-
igence with problems being broken down into several categories;
ingle objective, multi-objective, and constrained multi-objective
roblems. In optimisation a set of decision variables {x1. . . xn} are
anipulated in order to satisfy a set of one or more objectives
(O1. . .On). The area a decision variable can be manipulated

cross is known as the decision space. Whereas the areas that an
bjective can exist across is known as the objective space.

.1. Single objective optimisation

A single objective optimisation problem consists of one ob-
ective that usually requires either maximising or minimising.
here are many types of evolutionary single objective optimisa-
ion including; Particle Swarm [13], Big Bang Big Crunch [14] and
nt Colony Optimisation [15]. Genetic Algorithms (GA) [16] and
imulated Annealing (SA) [17] have both had great success in the
ield of optimisation.

.1.1. Genetic algorithm
The GA takes the main principles of Darwinian evolution with

ating, generations and survival of the fittest. A GA is made up
f a population defined as a set of chromosomes, a chromosome
s a collection of genes with each gene representing one of the
ecision variables within a specific problem. The algorithm goes
hrough each of the operations every generation or loop, these
re as follows; selection, crossover, mutations and reduction. The
election operator is used to determine which member of the
opulation should crossover or produce off-spring, there are a
umber of different techniques with the most popular being
3

tournament or roulette wheel. Once the population has been split
and sorted into two groups by the selection operator the chro-
mosomes are picked two at a time for crossover. The crossover
operator is used to add new individuals to the population by
combining two current members together. The original members
of the population are known as parents and the newly created
members are known as children.

Once children have been created there is a random chance
that they can be mutated. Just like in nature, mutation adds
changes to one or more genes, which in-turn injects some genetic
diversity into the population. Once children have had a chance
to be mutated they are then added back into the population.
After all parents have been mated, the population will now be
double the size that it was before crossover began. The reduction
operator (sometimes called elitism) is used to remove half of the
population. Keeping in form with survival of the fittest the lowest
ranked members of the population are removed. Members of the
population are ranked based on how well a chromosome fulfils
some objective criteria.

2.1.2. Simulated annealing
Simulated annealing is based on the idea of statistically mod-

elling the annealing process of solids such as iron in smiting or
silicon in semiconductor production. The roots of the algorithm
come from the metropolis algorithm [18] using similar ideas. The
idea of annealing is to heat or introduce energy into a material so
it can be shaped. When the system has a high heat, it is easy to
make large changes to, but as the system cools it becomes harder
to make larger changes so only smaller changes are made, this
continues until no new changes can be made without the addition
of heat. Simulated annealing takes this principle of changing heat
states and uses it as an optimisation technique. It represents a
single potential solution of decision variables and manipulates it
based upon the temperature within the system.

A solution changes over time with the use of two operators,
the first is used to present potential changes to the original
solution by manipulating the decision variables and storing it as
a new solution. The second is used to determine whether or not
to accept the changes presented and change the original solution.
This acceptance is calculated by evaluating the new solution and
calculating the acceptance metric which incorporates the tem-
perature within the algorithm. This acceptance metric is based
upon the Boltzmann probability factor [19]. If the new solution is
accepted it becomes the original solution and the temperature is
reduced and the stopping criteria is checked. The two operators
are invoked iteratively until the stopping criteria is met. Simu-
lated annealing starts with a high temperature and reduces the
temperature by the cooling rate every cycle, the cooling rate is
a number between but not including 0–1. The stopping criteria
is a small user defined value, typically a value smaller than one,
which stops the algorithm once the temperature is below it.

2.2. Multi objective optimisation

Multi objective optimisation is very similar in principle to
single objective optimisation where a set of decision variables
represent a solution and are manipulated to achieve a desir-
able result. The only difference is that there is now a set of
Objectives f (O1. . .On) instead of a single objective. There are
several successful multi objective optimisation algorithms in-
cluding; cARMOEA [20], AnD [21], CCMO [22], NSGA-II [23] and
NSGA-III [24].

The complexity of a Multi objective optimisation problem
dwarfs that of the single objective problem space. The most
prominent issue is how to determine if one solution is better than
another. This problem is addressed with the use of dominance
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ules, and the use of fronts. Most multi objective evolution-
ry algorithms (MOEA) use both dominance rules and a Pareto
ront [25] in an attempt to sort a set of solutions based upon
onflicting objectives. In NSGA-II and NSGA-III the dominance
ules are used as part of the population sorting process. Given
here are two solutions A and B that both have more than one
bjective. A is dominant over B if all of A’s objectives are no worse
erforming than B’s objectives and at least one of A’s objectives
s better performing than one of B’s objectives, otherwise A is not
ominant over B [25].
In NSGA-II and NSGA-III, once every member of the population

as had its dominance checked the population is sorted into
ts corresponding front. The worst performing members of the
opulation are in the worst or last front, and the best performing
embers are in the zeroth front. For every problem there is theo-

etically a best front known as the Pareto front, which contains a
et of Pareto optimal solutions. The Pareto optimal [26] solution
s one that cannot be dominated over by another solution that
ave been found or will ever be found, allowing it to represent
ne of the best solutions.

.2.1. NSGA-II
NSGA-II or Non-Dominant Sorting Genetic Algorithm [23] is

ildly known in the literature to have high quality results in
ulti objective optimisation problems [27]. It has similar func-

ionality to a single objective GA with; selection, crossover, mu-
ation and reduction all being very similar. The major differ-
nce is whenever the population requires sorting, the popula-
ion goes through a two stage sorting process. In the first stage
he population is sorted into fronts using the domination rules.
he second stage is a density metric named crowding distance
hich calculates how close given solutions neighbours are on a

ront. Crowding distance is measured using Euclidean distance
s shown in Eq. (1), where p1 and q1 are objective values from
ne solution and p2 and q2 are objective values from a second
olution.

(p, q) =

√
(p1 − q1)2 + (p2 + q2)2 (1)

A set of solutions are sorted using this process for one of two
operators; selection and reduction. During selection the popu-
lation is split randomly into two sub sets and sorted to allow
the best solution from one subset to mate with the best from
the other subset. To reduce the overall population size by half
after crossover, the whole population is sorted and then the worst
performing subset are removed from the population as shown in
Fig. 1.
 n

4

2.2.2. NSGA-III
Non-Dominant Sorting Genetic Algorithm III (NSGA-III) is an

updated version of NSGA-II which follows a similar trend of a
GA using the four operators: selection, crossover, mutation and
reduction. In a similar fashion to NSGA-II it uses the domination
rules [25] for sorting, but it no longer uses Crowding Distance,
instead the methodology of Niche-Preservation is applied to sort
our population. The domination rules are used to remove the
worst performing member for the population, in Fig. 1 a portion
of the new population comes from the second front which in
NSGA-II is sorted by crowding distance, in NSGA-III the Niche-
Preservation operation is used. The Niche-Preservation sorting
method can be broken down into three stages; Normalise, As-
sociate, and Niche-Preservation. In order to normalise we must
calculate the min and max values in the objective functions for
each objective. First the ideal point of each objective function is
calculated, this is usually the minimum possible value. Second the
maximum recoded point across all generations is stored for each
objective. The Min value is determined by the smallest number
possible for an objective, whereas the Max value is determined
by the highest number seen across all generations. These two
values are used as our Min and Max values in the Normalisation
operation of the objective values as shown in Eq. (2).

norm(fOi) =
Max − fOi

Max − Min
(2)

Each of the chromosomes in the front now has an N-dimens-
ional coordinate associated with it based upon the normalised
value of its objective function. These points can now be associ-
ated onto a predetermined reference plane. The reference plane
can be created in a systematic manner or one can be supplied
by a user. One suggested method is the Das and Dennis’s [28]
systematic approach that places points on a normalised hyper
plane. Fig. 2 shows an example of a 3-Dimensional reference
plane with 15 reference points, with the apex of these point being
f1(0,0,1), f2(1,0,0) and f3(1,0,0). The association operator takes
he normalised N-dimensional coordinates and places them on
he reference plane. Once placed upon the plane they are asso-
iated with their closest reference point. If a front’s population
s uniformly spread out across the plane, each point will have a
ow number of chromosomes associated with it. Alternatively, if
front’s population is not uniformly spread across the plane a

ew reference points will have the majority of the chromosomes
ssociated with them. Once every member of the front has been
laced upon the reference plane each reference point counts the

umber of associated chromosomes.
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Fig. 2. Example of a three dimensional hyper plane with reference points [29].

For the Niche-Preservation operator two versions of the refer-
nce plane are used at the same time, the first plane P1 has all the
embers of the population that are already in the new population

e.g. Zero front and First front in Fig. 1), the second plane P2
re all the points from the next front (e.g. Third Front in Fig. 1).
he points in P1 and P2 are identical aside from having different

associated chromosomes. All chromosomes on P1 are considered
o be part of the new population, and thus any new chromosomes
dded to P1 are added to the new population. Points are removed

from P1 and P2 when the niche count of points in P2 are equal
o zero. To begin, points in P1 are ordered in ascending order by
he number of chromosomes, then a chromosome from the P2
rom the same point is moved to P1. If the Point on P2 has more
han one associated chromosome then the one with the lowest
erpendicular distance is moved to P1. If two chromosomes have

the same perpendicular distance one is picked at random. If a
point in P2 no longer has any chromosomes associated with it,
then the same point is removed from P1. This process continues
ntil the P2 and thus the new population has the target number of
embers. The idea is that as members of P2 are added to P1 they
re added from across the reference plane, therefore ensuring the
opulation is more equally spaced across the search space.

.3. Constraint handling in NSGA-II & NSGA-III

As the optimisation problems become more complex, they
egin to incorporate constraints alongside objectives. In the pres-
nce of constraints, a solution can either be described as feasible
here it is not in violation of its constraints or infeasible where

t is in violation of its constraints. This means when comparing
wo members of a population there are three possible situations:
irst, both solutions are feasible; second, one solution is feasible
nd the other is infeasible; third, both solutions are infeasible.
solution is infeasible by the degree that it has violated the

onstraints, therefore two solutions can be infeasible to different
egrees.
In order to handle the constraints NSGA-II [23] and NSGA-

II [24,29] use an extended set of domination rules, where a new
et of rules are applied before the original dominance rules. Given
here are two Solutions A and B and given that both solutions
ave a quantifiable objective score and constraint violation value,
hese rules can determine dominance and split a population into
ronts. A solution is feasible if it does not violate any constraints,
hereas a solution is infeasible if it violates one or more con-
traints. Solution A constraint dominates Solution B if A is feasible
nd B is not. Solution A constraint dominates Solution B if A and
are both infeasible but A has a smaller constraint violation than
. Solution A constraint dominates B if both solutions are feasible
onsidering that A dominates B using the domination method

escribed in Section 2.2.1. s

5

Let us consider an example, given that there is a problem that
consists of two real number variables (V1,V2) which is trying to
achieve two objectives (O1, O2):
O1: MINIMISE: V1 + V2
O2: MAXIMISE: V1 * V2

Given that these objectives exist, three constraints (C1, C2, C3)
an be introduced to constrict the problem search:
1: V1 must be a prime number
2: V2 must be a prime number
3: 10 < V1, V2 > 20
Given the set of objectives and constraints the following ex-

mple solutions will either be feasible or infeasible and thus can
e ranked.

Solution 1
V1: 9 O1: 47 C1: Violate
V2: 38 O2: 342 C2: Violate

C3: Violate
Solution 2
V1: 11 O1: 30 C1: Satisfy
V2: 19 O2: 209 C2: Satisfy

C3: Satisfy
Solution 3
V1: 13 O1: 29 C1: Satisfy
V2: 16 O2: 208 C2: Violate

C3: Satisfy

Each of these three solutions can be determined as feasible or
nfeasible and given an infeasibility score. Solution 1 is infeasible
s it violates all the constraints which gives it an infeasibility
core of 3. Solution 2 is feasible as it satisfies all the constraints
nd therefore has an infeasibility score of 0. Solution 3 is in-
easible given that it violates C2 giving it an infeasibility score
f 1. Members of the population can be ranked from best to
orst based upon their infeasibility scores. Solution 2 is the best
anked with an infeasibility score of 0, then solution 3 with an
nfeasibility score of 1 and finally solution 1 with an infeasibility
core of 3.

.4. The multi-arm bandit problem & exploration vs. exploitation

A problem can be tackled from many different approaches,
nd it is important that each problem is solved with the correct
ype of approach. In machine learning there is this idea of the
ulti-Armed Bandit Problem [30,31] where there is only a limited
mount of resources to solve a complex problem. The classic
xample is the gambler in front of a set of slot machines where
hey have a limited amount of money and time to generate the
ost money out of said slot machines. This poses the question of
ow does the gambler maximise the reward from their money
nd time, do they only try with one slot machine, or do they
hange to another after some time interval, or try a different
trategy entirely. By abstracting this idea it can be applied to
ptimisation problems. Where there is a limited amount of time
o solve a problem and there is no one approach that will provide
he best solution, so the question becomes how does an optimi-
ation algorithm best spend its time searching the solution space
o best achieve its goal.

In optimisation there is this idea of Exploration vs. Exploita-
ion. Exploration is the act of looking for new unseen solutions,
hese solutions do not necessarily immediately improve upon the
olution space, but could lead to better unseen solutions. Ex-
loitation is the act of trying to get the most out of the solutions
nd getting a better solution given what already exists within the
olution space. In NSGA-II the domination ranking system is used
o exploit the best solutions and ensure the best in the population

urvive until the next iteration. In order to explore and keep some
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Fig. 3. Type-2 fuzzy logic system [34].
iversity in the population, NSGA-II uses the mutation operator
hilst also using crowding distance indicator in an attempt to
pread solutions across the front [23]. NSGA-III uses the same
ethodology of domination to exploit the population during
rossover and population reduction with some minor differences.
n order to explore and increase population diversity it uses the
utation operator and the niche distance method.

. Brief overview of Type-2 fuzzy logic

Interval Type-2 Fuzzy Logic System (IT2FLS) builds upon a
ype-1 Fuzzy Logic System which takes the idea of traditional
ogic and extends it so there are degrees of logic as opposed to
eing clear cut. In traditional logic something can exist in one of
wo state ‘‘True’’ or ‘‘False’’ but in fuzzy logic something can exist
s both true and false to differing degrees at the same time [32].
his idea can be extended to more than just true and false, but
o also more complex information that is traditionally only un-
erstood in human linguistic languages such as the temperature
eing warm or hot. Other examples include the speed of a vehicle
eing slow or fast and food being tasty or horrible. Fuzzy logic
xcels at capturing the imprecise nature of human language and
pplying it to the precision of a computer [33].
The Interval Type-2 Fuzzy Logic System (IT2FLS) is shown in

ig. 3 is comprised of 5 components: Fuzzifier, Rules, Inference
ngine, Type Reducer and Defuzzifier.
The Fuzzifier takes a crisp or real number and transforms it

nto a Type-2 membership value. A Type-2 membership function
s defined as a 3 dimensional area plotted on a domain axes with
Footprint of Uncertainty (FOU) [35]. In this paper we use an

nterval Type-2 fuzzy set to represent input and outputs as they
re computationally more efficient than general Type-2 fuzzy
ets. Fig. 4 shows an example of an input being fuzzified, the input
f 12.5 has a membership within the shape with a membership
egree of between 0.16 and 0.5.
Once inputs have been fuzzified they are passed onto the

nference engine that activates rules using the input Type-2 fuzzy
ets. The rule base works as a set of instructions to map the
nput sets to the output sets. In the final step the Type-2 output
ets need to be returned into real crisp numbers, which can be
chieved in one of two ways. Either they can be type reduced
nto Type-1 sets and then Defuzzified, or they can be directly
efuzzified from a Type-2 set. There are several methods of type
eduction and direct defuzzification [33].

In this paper we use the centre of sets type reduction as it
as a reasonable computational complexity that lies between the
xpensive centroid type reduction and the simple height and
odified height type reduction, which both have issues with one

ule firing [35,36]. Once the output sets have been type-reduced
hey are then defuzzified by taking the average of their reduced
alues.
6

Fig. 4. Interval Type-2 fuzzy sets (a) primary membership domain.

Type-2 fuzzy logic systems been successfully applied in a large
variety of domains including: unmanned aerial vehicles [37], ex-
plainable segmentation of trees [38], resilient routing in uncertain
environments [39], computing with words [40], strategic tele-
coms network design [41], streaming data regression [42], finan-
cial investments [43] and electric vehicle breaking control [44].

4. The proposed heated stack based Type-2 fuzzy multi-
objective optimisation system

The proposed HS takes its inspiration from evolutionary algo-
rithms, specifically NSAG-II and NSAG-III and employs fuzzy logic
within its sorting processes, using the Genetic Algorithms (GAs)
ideas of selection, crossover, mutation and population control.
Fig. 5 shows the flow of the system, which begins by producing
an initial random population for the specific problem configura-
tion. It proceeds to enter a loop where it goes through selection
and crossover, with some of the children being randomly mu-
tated. Once the selected members of the population have been
crossed over, the entire population then undergoes being evalu-
ated, sorted and reduced back down to a predefined population
limit. Finally, each member of the population has their tempera-
ture reduced by a specific amount and the cycle starts the next
loop, continuing for a set number of iterations. The following
subsections details the proposed system.

4.1. Data structure

HS was originally designed for optimising multi-layer network
representation problems [45]. Due to this original problem the
HS has been designed with a multi-faceted solution able of rep-
resenting a multi-layer solution. These solutions are stored in a



L. Veryard, H. Hagras, A. Conway et al. Knowledge-Based Systems 260 (2023) 110134

S
s
a

S

A
s
m
v
c
a
i
d

4

a
a
b
I

4

s
i
d
h
t
a
f
m

Fig. 5. A flow chart outlining the system flow of the heated stack algorithm.
tack represented by a set of chromosomes C, with each chromo-
ome representing a set of genes G, with each gene representing
decision variable. Eq. (3) shows the solution representation.

tack = {C0{G00 . . .G0n} . . . Cn{Gn0 . . .Gnn}} (3)

Stack can represent a problem that requires multiple chromo-
omes or just one chromosome without impacting the algorith-
ic processes of the proposed HS. A stack has the additional
ariable temperature used within the sorting & crossover pro-
esses. The proposed HS uses a population of solutions to explore
problem space and uses a modified idea of survival of the fittest
n order to sort the population of solutions. Sorting takes place
uring two methods; Population reduction and selection.

.2. Population sorting

The Population is sorted for two reasons; population reduction
nd selection. In these two cases the population is sorted in
lmost the same fashion, with members of the population ranked
ased upon their domination first, then through the use of the
T2FLC for population sorting.

.2.1. Population reduction
In population reduction, this sorting process happens in 2

tages; in the first stage members of the population are sorted
nto their front based upon the constraint domination rules as
escribed in the earlier sections about domination and constraint
andling in Evolutionary Algorithms. Then each front is added
o the new population in turn only if the entire front can be
dded without exceeding the population limit, otherwise the final
ront is sorted and the best ranked members of the final front
ake it into the new population. Evolutionary Algorithms use
7

the overarching idea of survival of the fittest where the best
ranked solutions are kept within the population from generation
to generation. In the proposed HS we take this idea of survival of
the fittest and also consider the temperature of each population
member. In the second stage, the temperature and Niche Dis-
tance of each member of the population is considered as inputs of
an Interval Type-2 Fuzzy Logic System (IT2FLS). The temperature
and score of the entire population is normalised between 0–1,
allowing the fuzzy inputs as shown in Fig. 6, to be used no matter
the problem. The min and maximum values for normalisation are
updated from the population every generation. The min and max
values represent a global min and max, meaning the min and max
throughout every generation thus far.

Fig. 6a shows the input set for temperature, whereas Fig. 6b
shows the niche distance which is calculated in the same manner
as shown in NSGA-III, using an equidistance spread of reference
points across the normalised hyper plane. Table 1 shows the rule
base used for sorting and Fig. 7 shows the sorting Fuzzy sets. The
rule base has been created with the intention of sorting by the
niche distance but with the preference of population members
with a higher temperature. Once all members of the front have
been given a new score by the IT2FLS they are then sorted into
ascending order. If this entire sorted front was added to the new
population, the new population would exceed the population
limit, so the new population count is brought up to the population
limit by adding the best ranked members in turn.

4.2.2. Selection
The Selection process sorts the population for crossover, which

in turn creates 2 new members of the population for every 2
parents, doubling the size of the population. In selection, the
population is randomly divided into two groups, similarly to the
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Fig. 6. (a) Input fuzzy set for temperature, (b) Input fuzzy set for niche distance.

Fig. 7. Fuzzy sorting set.
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Table 1
Rule base for fuzzy sorting.
Temperature Niche distance Sorting

Low VLow High
Low Low Med
Low Medium Low
Low High VLow
Low VHigh VLow
Medium VLow VHigh
Medium Low High
Medium Medium Medium
Medium High Low
Medium VHigh VLow
High VLow VHigh
High Low High
High Medium High
High High Med
High VHigh Low

Table 2
The fuzzy rule base for crossover quantity.
Chromosome one
temperature

Chromosome two
temperature

Crossover
quantity

Low Low VLow
Low Medium Low
Low High Medium
Medium Low Low
Medium Medium Medium
Medium High High
High Low Med
High Medium High
High High VHigh

population reduction process these two groups are first sorted
by their domination count, then their fuzzy score. This allows a
balance of exploration and exploitation, where the best ranked
member of the population does not always crossover with other
best ranked members of the population.

4.3. Crossover

The crossover process also takes into account the tempera-
ure of the 2 parents when creating the children, with parents
ith a higher temperature passing on more information than
arents with a lower temperature. This temperature comparison
or crossover quantity is executed with the second IT2FLS. Fig. 8a
hows the input set, Fig. 8b shows the output set for crossover
uantity, Table 2 shows the rule base. Once again, all inputs
re normalised between 0–1 based upon the entire population’s
lobal min and max values.
When new members of the population are created, they take

ecision variables or genes from both parents, the quantity of
hich is determined by the crossover quantity fuzzy logic sys-
em. Additionally the parents impart their temperature on to
heir children, with the children taking the temperature from
he hottest parent and increasing it by a predefined value. Once
child solution is created there is a random chance that the
utation operation is called, making several small changes to

he new child member before it is added to the population. The
utation operation is a way of encouraging a diverse population
f solutions by inputting random changes into some of the new
olutions.

.4. Temperature

Temperature is an integral part of HS being used for selection,
opulation reduction and crossover. Temperature works almost
s an inverse age metric, with a higher value showing a newer
9

solution and a lower value showing an older solution, albeit not
quite this simple, as temperature is inherited from parents as part
of crossover.

In every generation the temperature of each individual popu-
lation member is reduced by a percentage amount. Fig. 5 shows
when this temperature reduction takes place in the process. New
members of the population are added through the crossover
process, these new members inherit their temperature from their
parent with the highest temperature. This inherited temperature
is then increased by a percentage, meaning new members of
the population will always have a higher temperature than their
parents, thus increasing their priority in the sorting processes.

4.5. Hyper parameters

In optimisation algorithms there are always parameters and
the proposed HS is no different. In total there are six parame-
ters; Mutation Chance, Mutation Quantity, Initial Temperature,
Temperature Modifier, Population Limit and Generation Count.
The Mutation Chance is a value between 0–1 indicating how
likely it is that a child solution will be mutated after crossover,
with 0 representing never mutates and 1 representing it always
mutates. The Mutation Quantity indicates how many genes will
be manipulated across the multiple potential chromosomes in a
stack. As a recommendation temperature should use the value
of 1000 per chromosome within a stack. The Temperature Mod-
ifier is a percentage value that temperature is changed by every
generation, or as part of crossover. For example a value of 10%
would decrease the value by 10% every generation, but increase
the temperature of a new population member from its hottest
parent by 10%. In a population based optimisation algorithm, we
need to set an upper bound for the population to reduce back
down to at the end of each generation. The system must have a
limit on how many generations or iterations it must complete.

There are also parameters that do not require tuning that
would otherwise be expected to be set, including Crossover
Point and the two IT2FLS (sorting and crossover quantity). The
crossover point is set dynamically during execution using the
IT2FLS dictating howmuch information is taken from each parent.
The two IT2FLS could be modified to be problem specific, but the
ones presented in this paper are made to be generic allowing
them to be used in a wide variety of problems.

4.6. Balancing exploration and exploitation

The proposed Heated Stack algorithm is inspired by a genetic
algorithm and more specifically NSGA-III using the ideas of popu-
lation, generation, selection, domination rules and niche distance.
Taking these idea and applying a temperature metric which is
used to guide the system between exploration and exploitation
the Heated Stack algorithm can automatically switch between
exploring the search space and exploiting it. Temperature is used
in two key control mechanisms for exploration and exploration,
the sorting process and the crossover process, both of which
guide the search space towards new front’s solutions.

An Interval Type-2 Fuzzy Logic Controller is used to apply the
effects of temperature in both sorting and crossover. In sorting
be this for selection (deciding which member of the population
mate) or for population reduction (deciding which member of
the population make it through to the next generation) the effect
that temperature has on exploration and exploitation is obvious.
Through the use of the IT2FLC temperature is combined with
the niche distance to rank the population members allowing
traditionally worse performing members of the population to
be higher ranked given that they have a high temperature. This

higher ranking gives these members a chance to survive longer in
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Fig. 8. (a) The input sets for temperature. (b) The output set for Crossover quantity.
he population and to mate with members of the population that
re traditionally higher ranked. Once the temperature of these
opulation members has decreased their ranking is more heavily
ependent on their quality and not a mix of temperature and
heir quality. Therefor members of the population that have a
ow quality and a low temperature have less of a chance to mate
ith the most promising member of the population and are far
ore likely to be removed from the population during population

eduction. As a result of the systems design in some cases more
romising members of the population can sometimes be removed
ue a low temperature during a period of time when the average
emperature within the system is very high. This is extremely
nlikely to cause any significant issues as the IT2FLC primarily
xists to balance the effect of temperature and quality upon the
ntire population.
There is second IT2FLC that uses temperature to balance explo-

ation and exploitation in a slightly less obvious way, and works
est when used in harmony with the first IT2FLC. When crossover
ccurs there is a comparison of temperature within the two
arent solutions to determine the quantity of information to take
rom each parent. The theory is that a parent with a higher tem-
erature is either newer to the population or comes from a chain
10
of new promising solutions and thus should be prioritised to add
more information to the children solutions and thus help explore
a greater extent of the solution space. So the second IT2FLC uses
temperature to determine how much information and thus genes
should make it from each parent to the children. So when there
is a larger difference in the temperature one parent is prioritised
to give more information and the quantity of that information
is based upon the overall temperature. Thus higher temperature
population member are more likely to produce widely different
offspring, whereas lower temperature population members are
more likely to produce more similar offspring with minor change.
In this case we can see that lower temperature crossover is more
accustom to exploitation and higher temperature crossover is
more alike to exploration.

Temperature is at its core used to influence the decision mak-
ing processes of the proposed Heated Stack algorithm allowing
it to cycle back and forth between exploration and exploitation
based upon the state of the population. This population state
is based upon the success of new population members and if
they are better than their predecessors, as new members of the
population will have a higher temperature than their parents.
So with several successive generations of successful population
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Table 3
List of CMOPs used in the experiments.
Name Topic Number of

objectives
Number of
constraints

Number of
decision variables

RCM01 Pressure vessel design 2 2 2
RMC02 Vibrating platform design 2 5 5
RMC03 Two bar truss design 2 3 3
RCM04 Welded beam design 2 4 4
RCM05 Disc brake design 2 4 4
RCM08 Car side impact design 3 10 7
RCM17 Bulk carrier design 3 6 6
RCM18 Front rail design 2 3 3
RCM22 Haverly’s pooling problem 2 6 9
RCM23 Reactor network design 2 5 6
RCM24 Heat exchanger network design 3 8 9
RCM25 Process synthesis problem 2 2 2
RCM26 Process synthesis and design problem 2 2 3
members the system will be able to pass towards a higher aver-
age temperature and start exploring. But after a few generation
the average temperature will decrease and the system will ex-
ploit the solution members. Therefor temperature acts a dynamic
control mechanism guiding the search space towards solutions
throughout the search space.

5. Experiments & results

5.1. Experimental setup

The goal of the HS is to be an effective optimisation tech-
ique within the domain of telecommunication capacity plan-
ing, which has a low number of objectives but a high number
f constraints. Due to the sensitive nature of the telecommunica-
ions domain, we are unable to go into specific detail regarding
he optimisation problem. For this reason a set of problems have
een taken from an open source data sources to validate the sug-
ested systems, but to also show that HS is a capable optimisation
lgorithm outside of the telecoms domain and can be used in
onstrained multi objective problems.
Every year the conferences GECCO (The Genetic and Evo-

utionary Computation Conference) and CEC (Congress on Evo-
utionary Computation) run a wide selection of competitions
ncluding; Real-World Multi Objective Constrained Optimisation,
ingle Objective Bound Constrained Optimisation, Evolutionary
ulti-task Optimisation, Strategy Card Game AI Competition and
any more. In our experiments we have used a sub set of prob-

ems from the Real-World Multi Objective Constrained Optimisa-
ion otherwise known as Constrained Multi Objective Problems
CMOP) [46]. In this paper we have picked 13 CMOPs ranging
rom 2 – 3 objectives, these problems are shown in Table 3 with
heir associated number of objectives, constraints and decision
ariables.
Each of the problems shown in Table 3 is used in the compar-

son between the proposed HS and with NSGA-II and NSGA-III.
n total there are 10 problems with 2 objectives and 3 problems
ith 3 objectives. NSGA-II has been selected as a comparison

or this problem due to its popularity and its ability to produce
igh quality results in a wide variety of problems. NSGA-III has
een selected for comparison, as it is the successor algorithm to
SGA-II and it is one of the two best performing algorithms in
he competition.

The experimental comparison of HS vs. NSGS-II and HS vs.
AGA-III with their differing configurations are shown in Table 4.
hese configurations are used to show how temperature has a
ifferent effect based upon the number of iteration it has to effect
he exploration and exploitation of the search. In order to keep
he comparison fair NSGA-II and NSGA-III are given the same size
opulation and the same number of generations to complete their
earch.
11
Table 4
Algorithm configuration of competition experiments.
Experiment name Population Generation

NSGA-II vs. HS 100 100 100
NSGA-II vs. HS 250 250 250
NSGA-II vs. HS 500 500 500
NSGA-III vs. HS 100 100 100
NSGA-III vs. HS 250 250 250
NSGA-III vs. HS 500 500 500

In the CMOP conference paper [46], they use the hyper volume
indicator to compare 5 differing algorithms. In the CMOPs a
baseline comparison of 7 algorithms is undertaken with NSGA-
III showing it can outperform 5 of these algorithms and equal
the final one. Given that NSGA-III is known to outperform a
selection of high quality optimisation algorithms it was selected
for comparison to HS. In this paper we have elected to use the
hyper volume indicator as our metric as it is the metric used with
the CMOP paper [46] and it is known to function as a high quality
metric in situations with no known pareto front.

5.2. Hyper-volume indicator

As optimisation algorithms have become more successful in
solving more complex problems they have become more com-
plicated and it has become harder to evaluate the quality of
an algorithm. With respect to comparing multi-objective opti-
misation algorithms the use of the hyper-volume indicator has
become a standard measure of overall solution front quality. The
hyper volume indicator also known as the Lebesgue measure [47]
takes an approximated measurement of the entire searched ob-
jective space presented in the output solution front. With a high
value it indicates a well explored search space with members of
the final solution front not just on the far extremes of the front,
but also well-spaced along it. A lower value shows a solution front
that does not accommodate a large proportion of the potential
search space. One way of looking at the hyper volume indicator
is an estimated description of the search density provided by an
optimisation algorithm’s solution front.

5.3. Experimental competition problems and results

In the experiments the hyper volume indicator is used to
determine which algorithm produced a better solution front.
NSGA-II, NSGA-III and HS have all run each of the 13 problems
25 times in each of the three configurations in order to generate
a picture of the overall quality of each algorithm at all of the
presented problems. Figs. 9, 10 and 11 show which of NSGA-II
or HS produced a higher hyper volume indicator on a run by run
comparison and thus a better solution front, in each problem and
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Fig. 9. A comparison of NSGA-II and HS with a configuration of 100 population members and 100 generations, indicating how many times which algorithm has the
better result.
Fig. 10. A comparison of NSGA-II and HS with a configuration of 250 population members and 250 generations, indicating how many times which algorithm has
the better result.
configuration. Whereas Figs. 12, 13, and 14 show the run by run
comparison of NSGA-III and HS. Table 5 summarises the results
shown in Figs. 11 and 14 for the CMOP experiments with a con-
figuration of 500 generations and 500 max population, showing
the median hyper volume indicator values then comparing and
counting the median for HS to NSGA-II and NSGA-III respectively.

In Fig. 9 HS returns a larger hyper volume more often in 11 of
the 13 problems, Fig. 10 shows an improved result for HS with 12
of the 13 problems returning a larger hyper volume more often.
Fig. 11 does not offer as much as an improvement as Fig. 10, but
the results still show a strong tendency for HS to produce a larger
hyper volume than NSGA-II. The results indicated by Figs. 9–11
are not surprising given that HS uses a modified NSGA-III sorting
methodology and NSGA-III is known to produce a better result
than NSGA-II.

In Fig. 12 HS returns a larger hyper volume more often in only
4 problems. In Fig. 13 there is not much of an improvement with
HS returning a larger hyper volume in only 5 problems. There is
a notable improvement in Fig. 14 in how often HS has a larger
hyper volume than NSGA-III with 9 of the 13 problems resulting
in HS having a better result more often.

Looking at the comparisons in Figs. 9–14 alone would not
draw an accurate picture of the results, so Tables 5–7 show
the minimum, median, maximum and standard deviation from

the CMOP experiments to give an alternate visualisation to the

12
experimental results data. Recall that each of the three algorithms
has been run on each of the 13 problems 15 times each, so
there is a vast quality of results data to visualise. Specifically
Table 5 show the values from the 100 population and generations
experiments, Table 6 show the values from the 250 population
and generation experiments and Table 7 shows the values from
the 500 population and generation experiments. With the values
in these Tables, we can look at the progression of the results
through the differing configurations for each of the algorithms.

In the 100 generations and population experiments as seen in
Table 5 when comparing HS and NSGA-II we can see that HS has
a larger minimum value in 9 cases, a larger median value in 9
cases, a larger maximum value in 2 cases and a smaller standard
deviation in 12 cases. What this shows us is that NSGA-II has
the potential to outperform HS albeit unlikely as HS has a larger
minimum and median value whilst also having a lower standard
deviation. When comparing HS and NSGA-III in the 100 genera-
tions and population experiment we can see that HS has a larger
minimum value in 8 cases, a larger median value in 4 cases, a
larger maximum value in 5 cases and a smaller standard deviation
in 8 cases. These values indicate that NSGA-III outperforms HS by
a small amount due to the fact NSGA-III has a larger median and
maximum value in the majority of the problems. Notably HS has
a larger minimum value in more cases. The values from Table 5

match up with the conclusions of Figs. 9 and 12 indicating that
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Fig. 11. A comparison of NSGA-II and HS with a configuration of 500 population members and 500 generations, indicating how many times which algorithm has
the better result.
Fig. 12. A comparison of NSGA-III and HS with a configuration of 100 population members and 100 generations, indicating how many times which algorithm has
he better result.
Fig. 13. A comparison of NSGA-III and HS with a configuration of 250 population members and 250 generations, indicating how many times which algorithm has
he better result.
S is outperforming NSGA-II and NSGA-III is outperforming HS
or the 100 population generation experiments.

In the 250 generation and population experiment as seen in
able 6 when comparing HS and NSGA-II we can see that HS
13
has a larger minimum value in 6 cases, a larger median value
in 8 cases, a larger maximum value in 6 cases and a smaller
standard deviation in 7 cases. HS is still outperforming NSGA-
II but not by as much as before. This is evident due to the fact
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Fig. 14. A comparison of NSGA-II and HS with a configuration of 500 population members and 500 generations, indicating how many times which algorithm has
the better result.
Table 5
Minimum, median, maximum and standard deviation values for HS, NSGA-II and NSGA-III in the 100 population and 100 generations
experiments.
Name Minimum Median Maximum Standard deviation

HS 4.61E+10 1.45E+12 6.03E+12 1.86E+12
RCM01 NSGA-II 1.12E+08 4.39E+09 4.52E+13 1.24E+13

NSGA-III 5.24E+10 2.76E+11 8.04E+11 2.88E+11

HS 2.99E+03 4.15E+04 1.89E+05 4.97E+04
RCM02 NSGA-II 6.34E+03 7.90E+03 3.96E+06 1.68E+06

NSGA-III 3.82E+04 1.35E+06 4.13E+06 9.90E+05

HS 1.89E+03 3.61E+04 7.81E+04 2.61E+04
RCM03 NSGA-II 3.58E+03 1.41E+04 7.89E+06 2.02E+06

NSGA-III 1.07E+03 1.34E+06 4.24E+06 1.13E+06

HS 2.67E+03 3.95E+05 1.06E+07 2.06E+06
RCM04 NSGA-II 2.67E+03 2.67E+03 1.29E+08 5.16E+07

NSGA-III 1.85E+03 1.03E+05 3.06E+05 1.02E+05

HS 3.86E+03 2.19E+04 1.88E+05 3.89E+04
RCM05 NSGA-II 1.91E+04 7.46E+04 1.67E+05 4.18E+04

NSGA-III 1.55E+04 5.54E+04 1.01E+05 2.70E+04

HS 8.23E+10 9.95E+11 4.08E+12 1.29E+12
RCM08 NSGA-II 3.04E+06 3.13E+10 4.42E+12 1.40E+12

NSGA-III 2.27E+09 5.32E+11 6.85E+11 2.50E+11

HS 5.87E+09 1.88E+11 8.17E+12 1.76E+12
RCM17 NSGA-II 4.63E+08 1.38E+11 9.76E+13 1.91E+13

NSGA-III 4.13E+10 9.59E+11 5.26E+13 1.18E+13

HS 7.96E+03 8.20E+03 8.90E+03 1.67E+02
RCM18 NSGA-II 7.58E+03 8.28E+03 8.97E+03 2.57E+02

NSGA-III 7.87E+03 8.36E+03 9.01E+03 2.43E+02

HS 2.06E+04 1.56E+05 3.02E+05 8.20E+04
RCM22 NSGA-II 1.35E+04 1.56E+05 4.68E+05 1.25E+05

NSGA-III 1.94E+03 1.33E+05 6.31E+05 1.88E+05

HS 1.09E+04 2.87E+04 4.75E+04 8.76E+03
RCM23 NSGA-II 1.48E+04 2.96E+04 4.24E+04 5.34E+03

NSGA-III 1.15E+04 2.97E+04 4.35E+04 8.12E+03

HS 6.81E+06 6.81E+06 1.96E+07 3.14E+06
RCM24 NSGA-II 8.77E+03 6.49E+06 1.12E+10 2.54E+09

NSGA-III 3.11E+06 6.54E+07 2.01E+10 4.20E+09

HS 8.44E+04 5.54E+05 1.10E+06 2.60E+05
RCM25 NSGA-II 4.84E+04 9.70E+05 2.96E+06 1.05E+06

NSGA-III 4.14E+04 1.56E+06 2.43E+06 6.04E+05

HS 2.81E+05 8.42E+05 1.75E+06 3.56E+05
RCM26 NSAG-II 2.81E+04 4.93E+05 1.91E+06 4.81E+05

NSGA-III 7.88E+04 9.50E+05 2.93E+06 6.43E+05
the HS has a larger minimum value in fewer cases than in the
100 generation/population experiment. In this configuration by
comparing the values we can see that NSGA-II appears to start
performing much better, outperforming its results from the 100
14
generation/population experiments whereas HS does not improve
much upon its 100 generation/population experiments. This lack
of improvement in the HS results is how NSGA-II appears to start
performing better. This lack of improvement is due to the way
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Table 6
Minimum, median, maximum and standard deviation values for HS, NSGA-II and NSGA-III in the 250 population and 250 generations
experiments.
Name Minimum Median Maximum Standard deviation

HS 1.13E+09 1.43E+12 2.73E+13 5.95E+12
RCM01 NSGA-II 3.09E+08 4.25E+09 1.11E+13 2.58E+12

NSGA-III 6.83E+10 1.91E+11 7.68E+11 2.82E+11

HS 2.55E+03 2.87E+04 1.90E+05 4.79E+04
RCM02 NSGA-II 6.29E+03 7.90E+03 3.94E+06 7.71E+05

NSGA-III 2.51E+03 1.60E+06 2.01E+06 6.81E+05

HS 1.88E+03 4.26E+04 1.90E+05 4.73E+04
RCM03 NSGA-II 2.06E+03 7.90E+03 4.20E+05 1.02E+05

NSGA-III 2.67E+03 5.68E+05 2.03E+06 7.69E+05

HS 2.67E+03 1.45E+04 7.91E+06 1.67E+06
RCM04 NSGA-II 2.67E+03 2.67E+03 1.29E+08 5.13E+07

NSGA-III 1.74E+03 2.77E+05 2.84E+05 9.96E+04

HS 7.12E+03 4.37E+04 9.16E+05 2.89E+05
RCM05 NSGA-II 1.36E+04 5.94E+04 9.58E+04 2.58E+04

NSGA-III 1.12E+04 3.74E+04 9.50E+04 2.45E+04

HS 1.16E+09 1.43E+12 4.41E+12 1.26E+12
RCM08 NSGA-II 4.04E+08 1.56E+11 4.41E+12 8.57E+11

NSGA-III 3.35E+09 5.21E+11 1.22E+12 3.15E+11

HS 7.77E+09 5.07E+11 2.50E+13 5.03E+12
RCM17 NSGA-II 8.68E+09 8.43E+10 3.92E+12 7.90E+11

NSGA-III 6.04E+08 2.09E+10 4.54E+11 1.08E+11

HS 8.08E+03 8.26E+03 8.43E+03 1.09E+02
RCM18 NSGA-II 8.14E+03 8.37E+03 9.04E+03 1.96E+02

NSGA-III 7.55E+03 7.91E+03 8.94E+03 2.65E+02

HS 3.84E+03 7.38E+04 2.49E+05 7.03E+04
RCM22 NSGA-II 5.34E+03 1.13E+05 5.64E+05 1.22E+05

NSGA-III 2.72E+04 1.84E+05 5.77E+05 1.43E+05

HS 1.09E+04 2.48E+04 4.36E+04 8.50E+03
RCM23 NSGA-II 2.03E+04 2.91E+04 3.53E+04 2.83E+03

NSGA-III 1.68E+04 2.74E+04 4.23E+04 6.00E+03

HS 6.81E+06 6.81E+06 3.81E+07 8.31E+06
RCM24 NSGA-II 1.95E+06 3.46E+06 2.65E+11 5.25E+10

NSGA-III 6.03E+05 2.72E+08 1.63E+11 3.45E+10

HS 2.16E+05 6.38E+05 1.42E+06 3.61E+05
RCM25 NSGA-II 4.95E+04 9.70E+05 2.95E+06 8.11E+05

NSGA-III 2.93E+04 1.24E+06 2.22E+06 6.00E+05

HS 2.01E+05 1.12E+06 1.69E+06 3.85E+05
RCM26 NSGA-II 1.04E+05 7.11E+05 1.39E+06 3.72E+05

NSGA-III 1.01E+05 1.12E+06 2.12E+06 5.31E+05
that temperature interacts with exploration and exploitation, but
more on this later. When comparing HS and NSGA-III we can see
that HS has a larger minimum value in 7 cases, a larger median
value in 6 cases, a larger maximum value in 6 cases and a smaller
standard deviation in 7 cases. These values show us that NSGA-
III and HS are comparable at this configuration with neither of
the algorithms showing a clear advantage over the other. The
values show a similar result to that of Fig. 10 although Table 6
shows in more detail that the gap between NSGA-II and HS is
closer than before, with NSGA-II having a vast improvement upon
its 100 generation/population results, whereas the improvement
logged by HS is less prominent and even regressing in some cases.
We can also see the values from Table 6 show similar results
to Fig. 13 with NSGA-III having the slightest advantage over HS
although the values are so close there is no clear cut winner.
Interestingly by comparing the NSGA-III values for the 100 gener-
ation/population experiment to the corresponding values in the
250 generation/population experiment we can see that there is
little to no improvement and in some cases the 100 generation
population experiment appears to perform better.

In the 500 generation and population experiment as seen in
able 7 when comparing HS and NSGA-II we can see that HS
as a larger minimum value in 10 cases, a larger median value
n 11 cases, a larger maximum value in 8 cases and a smaller
tandard deviation in 12 cases. These values show that HS is more
15
likely to get a higher value in the 500 generation/population ex-
periments and present a better solution front than NSGA-II more
often. This is due to HS having larger median value more often
along with its smaller standard deviation and its higher minimum
and maximum values. There are still some cases where NSGA-II
performs exceptionally well and beats HS and NSGA-III such as
the maximum value for problem RCM23. When comparing HS
and NSGA-III we can see that HS gets a larger minimum value
in 8 cases, a larger median value in 9 cases, a larger maximum
and a smaller standard deviation in 12 cases. By looking at these
values together it can be seen that HS is more likely to get a
higher value more often with its higher minimum and median
values and its lower standard deviation. The values from Table 7
show a corresponding result to that presented in Fig. 11 with HS
outperforming NSGA-II the majority of the time additionally we
can see the same results as that displayed in Fig. 14 with HS being
more likely to produce a better result than NSGA-III but NSGA-II
can still outperform HS on occasion.

The idea of the results presented in Figs. 9–14 and Tables 5–
7 is to indicate which of the three algorithms can produce the
best solution front across all of the experiments the most con-
sistently. In order to produce these Tables and figures a set of
experiments was run for each of the algorithms. There are 13
problems selected from the CMOP competitions run by GECCO
and CEC [46]. Each of these problems is run a total of 25 times. So
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Table 7
Minimum, median, maximum and standard deviation values for HS, NSGA-II and NSGA-III in the 500 population and 500 generations
experiment.
Name Minimum Median Maximum Standard deviation

HS 2.83E+09 2.15E+11 7.38E+12 2.33E+12
RCM01 NSGA-II 4.18E+08 4.25E+08 1.84E+10 1.07E+13

NSGA-III 4.84E+09 1.32E+11 8.10E+11 1.06E+13

HS 4.43E+03 2.00E+05 1.03E+05 2.71E+04
RCM02 NSGA-II 3.43E+03 7.90E+03 1.12E+05 1.39E+06

NSGA-III 2.76E+03 1.41E+06 1.97E+06 1.37E+06

HS 5.91E+02 7.06E+05 2.08E+05 5.49E+04
RCM03 NSGA-II 5.43E+02 7.90E+03 1.68E+06 1.83E+06

NSGA-III 5.83E+03 4.32E+04 2.58E+06 1.80E+06

HS 2.99E+03 6.84E+04 7.93E+07 1.55E+07
RCM04 NSGA-II 9.26E+02 2.60E+03 5.90E+04 3.91E+07

NSGA-III 2.18E+03 2.53E+05 2.99E+05 3.87E+07

HS 5.14E+03 4.98E+04 1.80E+06 4.48E+05
RCM05 NSGA-II 1.18E+04 5.81E+04 1.57E+05 4.01E+05

NSGA-III 1.18E+04 3.70E+04 1.46E+05 3.94E+05

HS 1.23E+10 4.35E+11 5.68E+12 1.70E+12
RCM08 NSGA-II 5.87E+08 5.88E+10 4.42E+12 1.81E+12

NSGA-III 1.10E+06 5.44E+11 9.92E+11 1.82E+12

HS 8.61E+09 1.82E+13 1.06E+13 2.76E+12
RCM17 NSGA-II 6.06E+06 5.16E+11 1.29E+11 2.26E+13

NSGA-III 8.22E+10 3.13E+12 7.29E+14 2.23E+13

HS 8.08E+03 8.46E+03 9.42E+03 2.44E+02
RCM18 NSGA-II 8.08E+03 8.39E+03 9.07E+03 1.78E+03

NSGA-III 7.59E+03 8.35E+03 1.01E+04 2.16E+03

HS 1.53E+05 2.23E+05 2.66E+05 2.61E+04
RCM22 NSGA-II 4.40E+03 8.47E+04 4.44E+05 1.94E+05

NSGA-III 2.30E+04 1.70E+05 4.09E+05 1.96E+05

HS 1.22E+04 2.98E+04 5.31E+04 1.21E+04
RCM23 NSGA-II 1.95E+04 8.41E+04 4.20E+04 1.30E+04

NSGA-III 1.11E+04 2.97E+04 4.07E+04 1.24E+04

HS 7.63E+06 3.57E+07 7.63E+07 1.86E+07
RCM24 NSGA-II 5.96E+05 2.02E+04 1.87E+11 6.32E+10

NSGA-III 3.17E+06 5.66E+08 9.51E+09 7.06E+10

HS 2.37E+05 1.50E+06 1.54E+06 3.35E+05
RCM25 NSGA-II 4.95E+04 9.70E+05 4.91E+06 9.18E+05

NSGA-III 5.66E+05 1.13E+06 4.44E+06 1.19E+06

HS 1.19E+05 1.41E+06 6.93E+06 1.29E+06
RCM26 NSGA-II 1.60E+05 8.96E+05 3.68E+06 1.46E+06

NSGA-III 5.31E+04 1.28E+06 2.46E+06 1.51E+06
in total 975 experiments were run to produce the results for the
CMOP experiments. To summarise the idea of a consistent result
we shall just look at the median values of the 500 generations
and 500 population experiment. In 11 out of the 13 cases or 84.6%
HS results in a better median hyper-volume indicator value than
NSGA-II. Whereas comparing HS and NSGA-III the median results
show that HS gives a better value in 9 out of the 13 experiments
or 69.2% of the time. Interestingly in 3 cases NSGA-II has a better
result than NSGA-III when we look at the median values.

5.4. Capacity planning results

The HS algorithm was created to solve a specific capacity
lanning problem within the telecoms exchange. The problem
s comprised of two objectives, with four constraints using 1200
ecision variables in a multi-chromosomal solution representa-
ion. Figs. 15 and 16 show a comparison of which algorithm
t which configuration gave the better hyper volume indicator
ore often. Fig. 15 shows a comparison of NSGA-II and HS with

he HS showing that it clearly provides a solution front with a
igh hyper volume more often. The number of experiments that
S outperformed NSGA-II increases as the maximum population
nd number of generation increases. This increase is to ensure
he intended effect that temperature has on the search space
16
over time, as temperature increases and decreases it guides HS
between being explorative to exploitative.

Fig. 16 shows the comparison between NSGA-III and HS at
different parameter configurations, in the first case (100, 100)
NSGA-III outperforms HS drastically. In the second case (250, 250)
HS begins to outperform NSGA-III giving a larger hyper volume
more often. Finally HS further outperforms NSGA-III in the last
configuration (500, 500) by a larger margin. Once again this
margin is due to HS having more iterations to allow temperature
to guide the search.

Looking at Table 8, we can see it reinforces the results shown
by Fig. 15 with HS performing better than NSGA-II in all configu-
rations, with a larger minimum, median and maximum values.
Table 8. also reinforces the results shown in Fig. 16 with HS
performing worse the NSGA-III in the first configuration with
a lower minimum and median values, although HS does have
a higher maximum value. In the 250 generation/population &
500 generation/population configurations HS still has a worse
minimum value than NSGA-III but its median and maximum
values are considerably higher, showing that HS has improved
upon NSGA-III as it has more iterations.

The CMOP and Telecoms experiments show a similar out-
come, that as the number of iterations increase the proposed HS
performs better. This increase is an expected behaviour as the
HS uses temperature as a search heuristic allowing for worse
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Fig. 15. Comparison of NSGA-II and HS at the telecoms problem, with differing population and generation parameters.
Fig. 16. Comparison of NSGA-III and HS at the telecoms problem, with differing population and generation parameters.
Table 8
Comparison of minimum, median maximum and standard deviation values of different configurations for the telecoms problem.
Configuration Algorithm Minimum Median Maximum Standard deviation

100, 100
HS 3.26E+12 3.43E+12 7.03E+12 1.27E+12
NSGA-II 3.16E+12 3.31E+12 3.37E+12 5.06E+10
NSGA-III 3.74E+12 3.89E+12 3.97E+12 5.13E+10

250, 250
HS 3.08E+12 6.25E+12 6.97E+12 1.59E+12
NSGA-II 3.02E+12 3.11E+12 3.20E+12 5.02E+10
NSGA-III 3.70E+12 3.84E+12 3.91E+12 5.11E+10

500, 500
HS 3.10E+12 6.29E+12 7.08E+12 1.68E+12
NSGA-II 2.86E+12 2.99E+12 3.06E+12 5.67E+10
NSGA-III 3.72E+12 3.78E+12 3.85E+12 4.03E+10
performing members of the population to contribute to the search
before being removed from the population. Temperature requires
iterations to go through the difference stages of the IT2FLS al-
lowing it to use the full range of the rule base. The interaction
between the addition of newmembers of the population and their
temperature allows the HS to propagate temperature increase
throughout the population whilst also reducing the tempera-
ture of population members over a number of generations. This
interaction of temperature allows the system to transfer back
and forth between explorative to exploitative phases. With the
system being explorative when the members of the population
have a high temperature and exploitative when they have a low
temperature.
17
6. Conclusions & future work

The capacity planning problem within the telecoms industry is
not a simple problem to solve, it consists of optimising a multi-
layered structure with interconnected objectives and constraints.
The multilayer structure is made up of bandwidth hardware
including: switches, cards and ports. The solutions presented by
the Heated Stack (HS) for the capacity planning problem has
a lasting real-world effect on national infrastructure, therefore
it is important to get a high quality solution which meets the
objectives and constraints. There have been previous attempts
to solve this sort of problem across multiple domains which
have been successful within their domains but are not capable

of solving the telecoms version of the capacity planning problem.
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S is capable of solving this problem to a high standard when
ompared to two of the best general optimisation algorithms
SGA-II and NSGA-III. When HS is used for the telecoms capacity
lanning problem it outperforms NSGA-II 100% of the time over
he course of 25 experiments, and outperforms NSGA-III 68% of
he time over the course of 25 experiments.

To proof HS capability as a powerful optimisation systems, we
lso ran a sub-set of the constrained multi-objective problems
rom the competitions presented by the IEEE Congress on Evo-
utionary Computation in order to give more transparency to the
xperiments, as well as showing the general optimisation capa-
ilities of HS. These problems involved between two and three
bjectives, and between two and seven constraints. Looking at the
edian hyper volume indicator values across 13 problems each

un for 25 experiments HS provides a better resulting solution
ront in 84.6% of cases when compared to NSGA-II whereas when
ompared to NSGA-III using same metric, HS provides a better
esulting solution front in 69.2% of cases.

These results are due to the core idea of HS — temperature,
here the system can change between an explorative state and
xploitive state based upon the rate at which new member of
he population are created. In our previous work we indicated
hat there is an improvement by using a Type-2 Fuzzy Logic
ystem (FLS) over a Type-1 FLS or a Crips numbering system
ithin the HS to interact with the temperature metric [45]. In this
aper we have expanded upon this previous work allowing for a
ider exploration of open source problems, whilst also providing
new more complex capacity planning problem from within the
elecommunication Industry. In these problems we have seen
n improvement over NSGA-II and NSGA-III. In the future we
re intending to create explainable optimisation solutions using
ackwards induction propagated through the use of Monte-Carlo
ree Search from the optimisation results provided from HS.
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