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Abstract

Absent coordinating signals from an exogenous benevolent agent, can an efficient correlated equilibrium 
emerge? Theoretical work in adaptive dynamics suggests a positive answer, which we test in a laboratory 
experiment. In the well-known Chicken game, we observe time average play that is close to the asymmetric 
pure Nash equilibrium in some treatments, and in other treatments we observe collusive play. In a game 
resembling rock-paper-scissors or matching pennies, we observe time average play close to a correlated 
equilibrium that is more efficient than the unique Nash equilibrium. Estimates and simulations of adaptive 
dynamics capture much of the observed heterogeneity across player pairs as well as dynamic regularities.
© 2022 Elsevier Inc. All rights reserved.

JEL classification: C72; C73; C92
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1. Introduction

A probability distribution ϕ over the set of action profiles in a normal form game is a corre-
lated equilibrium (CE) if no player has an incentive to deviate from any action j in her component 
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of the support of ϕ. As an equilibrium concept, CE has several advantages over Nash equilibrium 
(NE). First, as pointed out by Aumann (1974), the rationality assumptions are much more attrac-
tive – a common prior and common knowledge of rationality suffice for CE but do not suffice 
for NE. Second, CE is more general in that it does not require statistical independence, while ϕ
must be a player-by-player product distribution in mixed NE. Third, the set of all CE is convex 
and much easier to compute than the set of all NE, which may have disconnected components. 
Perhaps for these reasons, CE is the standard game theoretical equilibrium concept for many 
computer scientists.

Nevertheless, correlated equilibrium is of only minor interest to most economists and other 
social scientists. We believe that two obstacles block more widespread interest. First, the standard 
interpretation of CE is that the distribution ϕ is implemented via an exogenous benevolent agent 
who recommends a particular action to each player. Such agents, such as a traffic cop who cannot 
stop to write tickets, exist only in very special circumstances. Second, there are very few well 
known examples of games with distinctive CE, e.g., that achieve greater efficiency and fairness 
than any NE.

The present paper attempts to surmount those obstacles by means of a laboratory experiment 
with no exogenous agents. We investigate two games (one better known than the other) with 
efficient and fair CE. Our project addresses general questions such as: in relevant games, does 
the overall average joint distribution approximate a product distribution? If so, is it close to a NE 
distribution? If not, is it close to an efficient and fair CE distribution? Does the joint distribution 
display dynamic regularities? If so, are they consistent with relevant adaptive models?

There are several levels at which an equilibrium concept such as CE may be empirically 
relevant. At the aggregate level, it might accurately predict the distribution of play averaged 
over time and over player populations. At a finer level, it might predict time average play in a 
particular ongoing game. Finally, it might predict cross-sectional average play in a population 
playing one-shot games. Much of the theoretical work with CE has focused on the last level, as 
have most previous laboratory experiments. It is at that level that the traffic cop interpretation is 
most cogent, but even there it is not required. The definition of CE requires only that, whenever 
player i happens (for any reason) to choose a strategy j that is part of a CE, her beliefs do not 
discourage her from playing j , and those beliefs are not contradicted by her personal experience. 
We will see shortly that such beliefs can arise from certain sorts of adaptive processes, and that 
their long run behavior may converge to CE. Such processes will be central to our experiment.

We study two symmetric bimatrix games. The first is the well known Chicken game (CH), 
which has two pure NE as well as a mixed strategy NE, and an attractive collusive strategy 
profile. Our second game is a variant of Matching Pennies proposed by Moulin and Vial (1978)
(MV) with a mixed strategy NE, and no pure strategy NE nor an attractive collusive profile. The 
two games are quite different, but each has a “target” CE that is more efficient and fair than any 
of the NE.

Our experiment features long sequences of repeated matches for player pairs but, consistent 
with our research questions, we are mainly concerned with time average play and how it com-
pares to the stage game equilibrium. Fortunately, those research questions are best addressed in 
low information environments that are not conducive to well-known repeated game strategies 
such as grim trigger. In our low information environment, players do not know the payoffs of 
other players, but they always know either their own historical average payoff for each action or, 
alternatively, the counterfactual payoff that they would have earned if they had always made a 
different choice. For robustness, we also examine a (relatively) high information treatment where 
players know other players’ previous actions and payoffs.
2



D. Friedman, J.P. Rabanal, O.A. Rud et al. Journal of Economic Theory 205 (2022) 105531
The results show that CE has empirical relevance, but within limits. With more conducive 
treatments (low information, counterfactual regret), time average behavior in both games is 
roughly consistent with CE on the aggregate level and at the player pair level. Behavior is also 
consistent with NE in the Chicken game but not in the MV game. With less conducive treat-
ments, we see widespread collusion in the Chicken game, while in the MV game behavior is still 
roughly consistent with the target CE.

We work with adaptive dynamics models to estimate how players respond to “regret” given 
counterfactual or, alternatively, historical average payoff information. Using a logit model, we 
find that players respond strongly to positive regret where they could have earned a higher pay-
off from an alternative action. When we allow for inertia, data shows heterogeneity in subject 
responses to negative regret.

In the following section we present an overview of the literature, including a handful of ex-
periments studying CE, followed by the theoretical foundations for our experiment. They derive 
largely from Foster and Vohra (1998), and Hart and Mas-Colell (2000, 2001) who propose regret-
based adaptive dynamics that promote convergence of the time average distribution ϕ to the CE 
set. The intuition is that adaptive behavior leads players away from “regrettable” actions that 
strongly violate the inequalities that define CE. We also run simulations that shed new light on 
the behavior produced by such models. Results from our experiments are then presented, first 
at the aggregate level, then at the player-pair level, and finally at the level of period-by-period 
individual player response. A concluding discussion briefly summarizes our findings, and points 
to new avenues for future research. Supplementary appendices offer further data analysis and 
simulation results.

2. Previous literature

Early literature on correlated equilibrium, e.g., Aumann (1974, 1987) and Brandenburger and 
Dekel (1987), focused on epistemic foundations. These papers show that common knowledge 
of rationality (together with a common prior) suffices to achieve CE. By contrast, Aumann and 
Brandenburger (1995) show that to ensure NE a profile of conjectures must arise from a common 
prior, and players must have mutual knowledge of the payoff functions and of rationality, and 
common knowledge of the conjectures.

Forges and Peck (1995) illustrate how the concept of CE covers sunspot equilibrium in 
exchange markets. Moulin and Vial (1978) propose a new equilibrium concept called coarse 
correlated equilibria (CCE): the set of probability distributions over action profiles that can be 
supported if each player either commits to playing according to the recommendation of a device, 
or else plays freely with no access to the device recommendation. They note that the equilibrium 
sets satisfy NE ⊂ CE ⊂ CCE.

The theoretical literature on convergent dynamics is especially relevant. Fudenberg and 
Levine (1999) propose a smooth fictitious play procedure which guarantees almost sure con-
vergence to the set of correlated ε-equilibria. Foster and Vohra (1997) introduce “calibrated” 
strategies with the property that time average counterfactual regret (defined in the next section) 
converges to zero irrespective of what strategies the other players adopt. The authors show that 
time average play will converge to CE if all players adopt calibrated strategies. As explained in 
the next section, Hart and Mas-Colell (2000, 2001) introduce specific regret-responsive strategies 
that, if followed by all players, guarantee convergence to the set of CE. Metzger (2018) models 
evolutionary dynamics given exogenous coordinating signals, and finds that they can lead to CE 
outcomes that are not NE. Arifovic et al. (2019) implement evolutionary learning simulations 
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and obtain outcomes similar to those seen in the experiments mentioned below of Duffy and 
Feltovich (2010) and Duffy et al. (2017).

It may be worth noting that some learning rules which incorporate stochastic choice can also 
converge to a pure NE in two player games, using either sampling and regret computations (Fos-
ter and Young, 2006), or trial and error (Young, 2009). In the absence of a pure NE, Pradelski 
and Young (2012) propose that the long run behavior under a log linear learning rule depends 
on the sum of payoff across all players, and the gain from a unilateral deviation by some player. 
In a low information public goods experiment, Nax et al. (2016) find that inertia, reversion and 
reinforced adjustment are key features of learning dynamics.

Thus far, empirical work on CE has been sparse and has focused mainly on laboratory ex-
periments with exogenous coordinating signals. Chicken (or hawk-dove) games with private 
recommendations have been studied by Cason and Sharma (2007) and Duffy and Feltovich 
(2010). The former study concludes that recommendations are followed when subjects play au-
tomated counterparties who always follow recommendations, while the latter study finds that 
players follow recommendations when they implement a CE that is more efficient than relevant 
NE. Another game that has been studied in the laboratory is Battle of the Sexes (BoS). Duffy et 
al. (2017) find that direct messages improve coordination on a CE, relative to indirect messages; 
Anbarcı et al. (2018) find that subjects are more likely to follow recommendations when payoffs 
are more symmetric; and Bone et al. (2013) find that subjects follow recommendations from a 
public device and coordinate more in a symmetric BoS than in the game of Chicken. Georgalos 
et al. (2020) consider a game proposed by Moulin and Vial (1978) that has a pure NE and a 
Pareto superior CCE. They find that a small and declining fraction of subjects choose the corre-
lation device for that CCE; in key treatments most players prefer free choice, and thus their play 
eventually approximates the pure NE.

In an experiment without an external device but allowing for preplay communication, Moreno 
and Wooders (1998) study a constant sum, three-player matching pennies game, and find that av-
erage play is a noisy version of a non-NE target CE. Palfrey and Pogorelskiy (2019) find support 
for CE in a voter turnout game with communication within parties. Furthermore, without an ex-
ternal correlation device, Cason et al. (2020) show that correlation of beliefs in some prisoner’s 
dilemma games is less frequent than in hawk-dove (a variant of chicken) games and some co-
ordination games. In addition, correlated equilibrium can also be achieved in repeated play with 
turn taking strategies (e.g., Zhao, 2021).

The present empirical paper seems to be the first to focus on whether convergence to CE 
can arise from a regret-based adaptive process that requires no signal nor external devices nor 
communication among players.

3. Theoretical considerations

A probability distribution ϕ over the set S = S1 × ... × SN of action profiles in an N player 
normal form game � is a correlated equilibrium (CE) if, for every player i ∈ N and every two 
actions j, k ∈ Si , we have

∑

s∈S:si=j

ϕ(s)[ui(k, s−i ) − ui(s)] ≤ 0. (1)

That is, no player has an incentive to deviate from any action j in her component of support 
ϕ. Nash equilibrium (NE) is the special case where ϕ is a product distribution, i.e., each play-
er’s realization in the mix is independent of other players’ realizations. By contrast, in (1) the 
4
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Table 1
Chicken (CH) game.

L R
U 100, 100 600, 200
D 200, 600 500, 500

Fig. 1. Payoff space for Chicken game (CH). The blue shaded region represents payoff vectors for all CE profiles, while 
payoffs for all feasible profiles are bounded by the dashed lines. MNE marks the mixed NE payoff vector (350, 350). 
It is Pareto dominated by the target CE payoff ( 1300

3 , 1300
3 ), which is dominated by the collusion payoff (500,500). NE 

denotes the asymmetric pure NE payoffs, e.g., (200,600), whose sum is less than that of the target CE. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

realizations can be correlated. The set of CE consists of all joint distributions that satisfy all the 
linear inequalities of equation (1). That set is convex and can be computed using standard linear 
programming packages; see Appendix A for an example.

3.1. Example games

Table 1 shows a 2 × 2 bimatrix for the well-known Chicken Game (CH) with three pos-
sible NE: two asymmetric pure NE (U, R), (D, L) and the symmetric mixed NE (0.5, 0.5) =
1
4 (U, L) + 1

4 (D, L) + 1
4 (U, R) + 1

4 (D,R). It also has a CE, 1
3 (D, L) + 1

3 (U, R) + 1
3 (D,R), that we 

will refer to as our target CE. The target CE, with expected payoff vector ( 1300
3 , 1300

3 ), has higher 
efficiency (i.e., higher payoff sum) and is at least as fair (i.e., smaller payoff difference) as any 
of the NE. Note that pure collusion (D,R) is the most efficient and fair profile, but it is not a CE 
(nor, a fortiori, a NE).

The set of mixed profiles for CH is a three dimensional subset of four-dimensional space. It 
may be more useful to consider the two-dimensional payoff space shown in Fig. 1, where the 
5
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Table 2
Moulin and Vial (1978) (MV) game.

L C R
T 0, 0 100, 200 200, 100
M 200, 100 0, 0 100, 200
B 100, 200 200, 100 0, 0

Fig. 2. Payoff space for MV game. The blue region represents CE payoff vectors, while the dashed boundary encloses 
all feasible payoff vectors. The MNE payoff (100,100) is Pareto dominated by the target CE payoff (150,150).

payoff vectors associated with CE lie in the blue quadrilateral, which covers 4
15 ≈ 27% of the 

feasible payoff region.1

Table 2 presents a 3x3 game based on Moulin and Vial (1978). This game, denoted MV below, 
resembles the rock-paper-scissors game in that it has a best response cycle.2 It is also reminiscent 
of matching pennies in that the off-diagonal profiles are constant sum, and therefore provide 
little scope for collusion. The MV game has a unique NE: the symmetric uniform independent 
mixture (1/3, 1/3, 1/3) × (1/3, 1/3, 1/3). This mixed NE is Pareto dominated by the target CE, 
which assigns a probability of zero to the main diagonal profiles and a probability of 1

6 to each 
off-diagonal profile. Fig. 2 shows the feasible payoff space, and the CE region which covers 
1/32 ≈ 11% of the feasible space.

1 The ratio of the areas is the fraction of the main diagonal in the blue region. The main diagonal has length 500
√

2
and its blue segment has length ( 1300

3 − 300)
√

2.
2 For later reference, note that the best response cycle in MV tours all six off-diagonal profiles in a particular order: 

...→(T,C)→(B,C)→(B,L)→(M,L)→(M,R)→(T,R)→(T,C)→...
6
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3.2. Regret

We now present adaptive dynamic models, specifying how players compare current action 
j to alternative actions k and how they use these comparisons to choose next period’s action. 
The models closely follow Hart and Mas-Colell (2000), and require only that players know the 
history of realized profiles so far and their own payoff function. They do not require the knowl-
edge of other players’ payoffs, nor an exogenous agent to provide coordinating signals. Instead, 
correlation comes from a common history of play.

To formalize, suppose that the normal form stage game � = (S, u) is played repeatedly in 
discrete time t = 1, 2, . . . , T ≤ ∞. Let si

t ∈ Si denote the (realized) choice of player i at time t , 
and let ui(st ) denote the payoff of player i in period t . For any two distinct actions j 
= k ∈ Si

for any given player i at any time t < T , suppose that player i had replaced action j , every time 
τ ≤ t that it was played so far, by action k, with no other changes in the profiles. Then player 
i’s payoff at time τ becomes ui(k, s−i

τ ) if si
τ = j . Unnormalized counterfactual (UC) regret is 

the resulting difference in i’s per period payoff so far,

r̂ i
t (j, k) = 1

t

∑

τ≤t :si
τ =j

[
ui(k, s−i

τ ) − ui(sτ )
]
. (2)

The intuition is that a player may wish that they had done something different to the extent that it 
would have generated a higher payoff in the past, assuming no impact on other players’ choices.

For the purpose of our experiment, it is useful to define counterfactual (C) regret, a normal-
ization of (2) which looks only at periods where the counterfactual is relevant,

ri
t (j, k) =

∑
τ≤t :si

τ =j ui(k, s−i
τ )

|τ ≤ t : si
τ = j | −

∑
τ≤t :si

τ =j ui(sτ )

|τ ≤ t : si
τ = j | ≡ mi

t (j, k) − Mi
t (j). (3)

The last expression summarizes counterfactual regret as the signed difference between mi
t(j, k), 

which is the per-period mean counterfactual payoff of playing k instead of j whenever j was 
actually played, and Mi

t (j), the mean actual payoff so far from playing j . Such normalization 
(averaging payoffs only for periods when j is played) is useful because, for any strategy j that 
is rarely played, the UC regret (2) will automatically become small as t gets large, regardless of 
whether the alternatives to j have relatively high or low payoffs.

Additionally, we work with average (A) regret, defined as the difference in per period actual 
payoffs between an alternative action and the current action,

Ri
t (j, k) =

∑
τ≤t :si=k ui(sτ )

|τ ≤ t : si = k| −
∑

τ≤t :si=j ui(sτ )

|τ ≤ t : si = j | ≡ Mi
t (k) − Mi

t (j). (4)

Average regret is of interest due to its informational economy: players can use it even when they 
do not know their own payoff function nor other players’ actions, but do know the history of their 
own actions and realized payoffs.

How do the players respond to regret? According to Hart and Mas-Colell (2000), the action 
of player i in period t + 1 is chosen via a linear probability model using an appropriate version 
of regret. Applied to UC regret (2), the HM response rule states that given current action j , a 
player will choose action k next period with probability

pi
t+1(k) = 1

r̂ i
t (j, k)+, k 
= j (5)
μ

7
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pi
t+1(j) = 1 −

∑

k∈Si :k 
=j

pi
t+1(k);where

r̂ i
t (j, k)+ = max{r̂ i

t (j, k),0},
and the parameter μ > 0 is large enough to ensure that pi

t+1(j) is positive, i.e., that the player 
will always continue to play strategy j with a positive probability. A larger μ indicates greater 
inertia. In continuous time, the degree of inertia can be tied to a sampling interval �t < 1 by 
changing the scaling factor from 1

μ
to �t

μ
.

Note that the HM response rule in (5) is applied to r̂+, i.e., after truncating UC regret below 
at zero. That truncation ensures that choice probabilities will be non-negative, but it also has a 
substantive interpretation: insensitivity to the extent of negative regret. Whether r̂(j, k) is very 
negative or only slightly negative doesn’t matter; the player is not at all tempted to switch from 
current action j to any alternative action k with negative regret. Of course, the HM response rule 
can similarly be applied to C or A regret, again after truncating at zero.

An alternative response rule, widely used in empirical literature, is for choices to follow the 
logit model. Applied to C regret, the logit response rule with parameter β > 0 sets

pi
t+1(k) = eβri

t (j,k)

∑
�∈Si eβri

t (j,�)
= eβmi

t (j,k)

∑
�∈Si eβmi

t (j,�)
, for all k ∈ Si. (6)

The last expression uses equation (3) to cancel the common factor e−βMi
t (j) in the numerator and 

the denominator. The parameter β > 0 measures the intensity of response to regret. The rule can 
also be applied to UC or A regret.

Compared to (5), equation (6) assigns no special inertia to the current action, even though 
that might matter in practice. Therefore we also consider the inertial logit response rule with 
parameters β > 0 and � ∈ (0, 1], defined as

pi
t+1(k) = eβri

t (j,k)�∑
�∈Si eβri

t (j,�)
, k 
= j (7)

pi
t+1(j) = 1 −

∑

k∈Si :k 
=j

pi
t+1(k),

where j denotes the action of player i at time t . When � is small, the player is more likely to 
stay with the current strategy j . Of course, when the player does switch, the relative probabilities 
of different alternative actions are governed by logit choice independent of �.

3.3. Hart and Mas-Colell convergence results

Hart and Mas-Colell (2000) Main Theorem: Given any finite normal form game � = (S, u), 
suppose that in the infinitely repeated game with stage game �, every player follows the HM re-
sponse rule (5) applied to UC regret (2). Then the time average profile zt = 1

t

∑
τ≤t sτ converges 

almost surely to the set CE of correlated equilibria as t → ∞.
Recall that counterfactual regret (either C or UC) implicitly assumes that each player i knows 

the complete profile history and her own payoff function. A follow-up paper, Hart and Mas-Colell 
(2001), considers average (A) regret, which requires players to know only their own actions and 
own payoffs so far. The authors prove convergence to CE under A regret, but only after substantial 
modifications to the response rule, e.g., including diminishing trembles.
8
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These conclusions are impressively broad in that they apply to all finite normal form games. 
However, the conclusions concern convergence to the CE set, and not necessarily to some point 
within the set. They offer few hints about when a regret-based adaptive process will converge 
to a particular CE of interest. Nor do they tell us much about what will happen with more eas-
ily implemented forms of regret or with standard response rules such as logit.3 We investigate 
such matters via simulations in the next section, and thereby seek to generate sharper testable 
hypotheses for our experiment.

4. Simulations

We conduct simulations for the CH game and for the MV game introduced in Section 3.1, 
employing three types of regret (UC, C, and A) and three response rules (HM, logit, and 
inertial logit). Baseline parameter values are (μ, β, �) = (600, 1, 0.8), where μ and � > 0
capture the level of inertia respectively for HM and for inertial logit response. The restriction 
μ > maxi,j,k(m

i − 1)|ui(k, s−i ) − ui(j, s−i )|, where mi is player i’s number of actions, ensures 
that the current action is played next period with positive probability. The restriction � ∈ (0, 1]
ensures greater inertia in inertial logit than in plain logit. Baseline parameters easily satisfy these 
restrictions, e.g., that μ > 500 in the CH game and μ > 400 in the MV game. The precision pa-
rameter for logit response is only restricted to β > 0, which again is easily met at baseline. The 
qualitative behavior described below is robust to a substantial range around baseline parameter 
values. For example, adjustment speed varies but long run behavior seems unaffected by varying 
μ ∈ [600, 2000] and � ∈ [0.5, 1]. On the other hand, logit dynamics for β < 0.1 are so noisy that 
behavior approximates the MNE.

For each of the 3 × 3 combinations of regret type and response rule, we run 500 simulation 
trials, with each trial running for 500 periods. To initialize regret, we draw iid actions for the 
first 50 periods4 and then, for the remaining 450 periods, we follow the specified combination of 
dynamics. The analysis below omits the first 50 periods in each trial.

4.1. CH games

Table 3 reports the empirical aggregate joint action distributions for CH game simulations. 
For UC and C regret, most of the mass is in the pure NE profiles (U,R) and (D,L). There is lit-
tle difference between the UC and C data, suggesting that it is safe to normalize. There is not 
much difference across the three response rules either, suggesting some robustness to different 
dynamic processes. However, there is a remarkable difference between A regret and the coun-
terfactual regrets. Average regret supports a much higher frequency of collusion, exceeding the 
0.33 predicted by the target CE.

Next, we consider the less aggregated pair level data. Fig. 3 shows the time average payoff 
for each simulation trial in the CH game. The left and center panels confirm that there is little 
difference between UC and C regret, and that convergence is primarily to the two pure NEs. On 
the other hand, we do see substantial differences across the response rules in that MNE seems 

3 Nor do the authors offer much intuition on the reasons for convergence. Note that replacing the true population 
distribution ϕ in the CE-defining inequalities (1) by a particular sort of historical estimate, e.g. (2), will yield expressions 
that say the corresponding sort of regret is non-positive. So our rough intuition is that convergence to CE arises in the 
long run when all players favor regret-free actions.

4 The dynamics are robust to some other forms of random initialization, e.g., with 100 or more iid random profiles.
9
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Table 3
Profile distributions in simulations of the CH game.

HM response, Eq. (5)

UC C A

L R L R L R

U 0.018 0.497 0.011 0.467 0.073 0.245
D 0.467 0.018 0.509 0.012 0.273 0.408

logit response, Eq. (6)

UC C A

L R L R L R

U 0.128 0.323 0.138 0.393 0.034 0.219
D 0.421 0.128 0.331 0.138 0.212 0.535

inertia logit response, Eq. (7)

UC C A

L R L R L R

U 0.026 0.506 0.032 0.450 0.032 0.209
D 0.443 0.025 0.485 0.032 0.178 0.580

Notes: Regret varieties are unnormalized counterfactual (UC), 
counterfactual (C) and Average (A). Simulations use baseline 
parameters (μ, β, �) = (600, 1, 0.8).

more stable under inertial logit. Under plain logit, a nontrivial fraction of trials appear to converge 
to the symmetric inefficient CE. However, as noted in Appendix D, that fraction shrinks when 
we look at the later periods of the simulations.

With Average regret, a large fraction of simulation trials indeed converge to the collusion 
profile, while smaller fractions converge to the two pure NEs. This confirms that the choice 
between A and C regret is consequential.

4.2. MV games

Table 4 reports the joint action distributions over all 500 trials in the MV game simulations. 
These population level data approximate the target CE fairly well for all nine combinations of 
regret varieties and response rules. On the other hand, Fig. 4 shows that player pairs in those 
simulations often have asymmetric payoffs, which is inconsistent with the target CE. Moreover, 
the time average payoff vector is often outside the CE region for A regret, while it usually near 
the efficient frontier of CE for UC and C regret.

To better understand dynamic patterns in the MV simulations, we calculate S2, which we 
define as the sum of the two largest profile fractions. The value of S2 is 0.22 at MNE and is 0.33 
at the target CE, but approaches 1.0 when player pairs alternate between two profiles or when 
they never switch. Fig. 5 plots the cumulative distribution (CDF) across all trials, and shows that 
S2 is nearly uniformly distributed between 0.6 and 0.8 under logit or inertial logit dynamics using 
UC or C regret. The range shifts out to 0.7 - 0.95 with HM response. For all response rules using 
A regret, S2 is above 0.9. This suggests that, although correlated equilibrium might be a good 
prediction of what happens across a population of trials, it doesn’t fully capture what happens 
10
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Fig. 3. Pair level payoff space data for CH game simulations. Response rules HM, logit and inertial logit follow 
equations (5), (6) and (7), respectively. Regret varieties are unnormalized counterfactual (UC), counterfactual (C) and 
Average (A). Baseline parameters are (μ, β, �) = (600, 1, 0.8).

over the span of 450 periods in a single trial. It seems that play in a single simulation trial is much 
less varied than in the target CE or MNE, and it often is confined to just one or two profiles.

We also ran a few much longer trials with 20,000 periods. For a typical long trial with HM 
response using C regret, Fig. 6 shows the action profiles (upper panel) and regret value of the 
better of the two alternative actions (lower panel). Dynamics are quite similar for long simu-
lations using UC regret and other response rules with parameters near the baseline. The upper 
panel shows that from about period 2000 to 4500, Row (blue lines) plays M and Column (red 
11
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Table 4
Profile distributions in simulations of the MV game.

HM response, Eq. (5)

UC C A

L C R L C R L C R

T 0.003 0.178 0.180 0.003 0.157 0.167 0.008 0.152 0.166
M 0.146 0.004 0.168 0.173 0.002 0.172 0.140 0.007 0.180
D 0.150 0.167 0.003 0.166 0.158 0.003 0.196 0.145 0.007

logit response, Eq. (6)

UC C A

L C R L C R L C R

T 0.020 0.153 0.152 0.014 0.163 0.163 0.002 0.161 0.168
M 0.154 0.020 0.155 0.161 0.015 0.162 0.159 0.002 0.173
D 0.164 0.162 0.020 0.156 0.152 0.014 0.161 0.172 0.002

inertia logit response, Eq. (7)

UC C A

L C R L C R L C R

T 0.006 0.165 0.171 0.005 0.160 0.166 0.002 0.167 0.159
M 0.157 0.006 0.161 0.164 0.005 0.162 0.158 0.002 0.153
D 0.160 0.168 0.006 0.169 0.164 0.005 0.188 0.168 0.002

Notes: Regret varieties are unnormalized counterfactual (UC), counterfac-
tual (C) and Average (A). Simulations use baseline parameters (μ, β, �) =
(600, 1, 0.8).

lines) plays R. According to the lower panel, during this time Column’s regret remains near -100, 
while Row’s regret gradually rises and becomes positive around period 4500. At that point, Row 
switches action several times but settles on T, her best response to R in the bimatrix stage game. 
Then her regret rapidly falls to -100, so she has no incentive to switch. However, over the next 
several thousand periods, Column’s regret rises gradually and becomes positive around period 
10000. After switching a few times, he settles on action C, his best response to T. Then Row’s 
regret increases and by the end of the simulation is not far below zero. Given more time, she 
would evidently switch to B, her best response to C.

These long MV simulations suggest that with counterfactual regret, player pairs will trace 
out the entire six-profile best response cycle. However, the time between switches gets longer 
and longer because when there is a longer history, it takes more periods in the current profile to 
outweigh previous evidence. Thus it seems that, in the very long run, play in a single trial will 
converge to the CE set, and the target CE is the average of its limit points. However, convergence 
is glacial, and a simple time average of an initial segment will skew towards the more recent 
profiles visited.

Long trials using A regret, on the other hand, do not appear to exhibit best response cycles. 
As illustrated in Fig. 7, typical simulation trials eventually fail to produce positive regret, thus 
locking players into one of the off-diagonal profiles, and all six are equally likely a priori. That 
reconciles the aggregate results, which approximate the target CE, with the player pair payoff 
vectors, which are often so asymmetric that they lie outside the CE region. Appendix D provides 
more examples with logit response.
12
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Fig. 4. Pair level payoff space data for MV game simulations. Response rules HM, logit and inertia logit follow 
equations (5), (6) and (7), respectively. Regret varieties are unnormalized counterfactual (UC), counterfactual (C) and 
Average (A). Baseline parameters are (μ, β, �) = (600, 1, 0.8).

5. Experimental design

Do the simulations and theory give insight into strategic interaction among human players? 
To find out, we ran a full factorial laboratory experiment with three treatment variables. The first 
is the game that subjects play — either standard Chicken (CH) as shown in Table 1 or Moulin 
and Vial (1978) (MV) as shown in Table 2. Recall that the NE sets and collusion possibilities 
differ sharply between these two bimatrix games.
13
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Fig. 5. CDFs for the sum of the top two profile frequencies.

Fig. 6. A long MV trial with HM response and C regret. Blue (red) lines refer to row (column) players’ action and regret.

The second treatment variable is the level of information provided by the user interface. In low 
information treatment (L), subjects see very little information besides what is required to verify 
the regret display. High information treatment (H) includes information on payoff functions and 
opponent actions, and thus brings us closer to laboratory environments used in most previous bi-
14
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Fig. 7. A long MV trial with HM response and A regret. Blue (red) lines refer to row (column) players’ action and regret.

Fig. 8. User interface for low information (L) Chicken (CH) game. The horizontal orange bars next to the radio buttons 
A and B (with text 380 and 350) show the current regret components. The upper graph shows the payoffs earned each 
period so far, while the lower graph shows the corresponding actions selected. The green bar in top right corner shows 
time remaining in the current period.

matrix game experiments. The point is to check the robustness of behavior to additional feedback 
beyond the regret information.

The third treatment variable is the type of regret subjects see in the user interface. The com-
ponents of regret are displayed as orange bars next to each radio button, as shown in Fig. 8. In 
15
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Fig. 9. User interface for high information (H) Chicken (CH) game. Horizontal bars next to radio buttons still repre-
sent current regret components (here 433 and 400). Each cell of the 2 × 2 matrix reports own payoff (top number), own 
previous choice (first filled or empty circle), counterparty’s previous choice (second circle), and the frequency of past 
play (bottom number, and shading intensity). The upper graph shows own (blue area) and counterparty payoffs (black 
line) so far. The bottom graph displays own choices (color coded), and counterparty (binary coded red line) so far.

Counterfactual (C) treatments, these bars display the counterfactual per period payoffs mi
t (j, k)

defined in equation (3). (We use normalized regret C because with unnormalized regret UC, the 
difference between orange bars would often shrink towards invisibility in later periods.) In Aver-
age (A) treatments, the orange bar for each action k shows its actual historical per-period payoff 
Mi

t (k) = mi
t (k, k).

Fig. 8 exemplifies the user interface for CH×L treatments. Besides the orange regret bars just 
described, the features include the green bar in the upper right corner. It shows the time remaining 
until the player’s action (here, either A or B, entered by clicking a radio button) becomes final 
for that period. There are two time graphs which show current and past payoffs, and current and 
past actions, for each period so far.

Fig. 9 shows an analogous screen for the high information treatments CH×H. Beyond the 
information conveyed in L treatments, subjects in H treatments can observe (i) current and past 
actions, and payoffs, of the other player (P1 in the Figure), (ii) their own payoff matrix, and (iii) 
the frequency of past profiles. The latter is shown by the intensity of purple shading across profile 
cells — the more intense the purple color, the more frequently this cell has been played. Lastly, 
the filled circles indicate the player’s own current choice and last period’s choice by P1. User 
interfaces for the MV games are analogous.

5.1. Procedures

Treatment variables are held constant within each session and varied across sessions. Each 
session consists of 2 practice supergames with 20 periods each, and 8 salient supergames with 
50 periods each.5 In L treatments, each period within each supergame lasts 4 seconds. In H 

5 The simulations and the experiment operate at very different time scales because they have different objectives. The 
purpose of the long-trial simulations is not to mimic what human subjects might do, but rather to elucidate the relevant 
16
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Table 5
Session information.

Game Information Regret #subjects #sessions

CH L Average 44 4
CH H Average 22 2
MV L Average 50 4
MV H Average 24 2
CH L Counterfactual 44 4
CH H Counterfactual 26 2
MV L Counterfactual 42 4
MV H Counterfactual 22 2

treatments, periods are 8 seconds for the first 4 supergames, and then shorten to 6 seconds for 
the last 4 supergames. The additional time in H treatments allows subjects to absorb the greater 
amount of information in the display. Occasionally a player does not click any radio button during 
a period, in which case their action from the previous period is carried over. Each supergame 
starts with a random choice of actions, and we change the order of actions in the payoff matrices 
every other supergame to encourage subjects to remain attentive. The matching of players was 
random (fixed) between (within) supergames.

Table 5 summarizes the sessions by treatment. We completed 4 low information sessions 
and 2 high information sessions for each type of game and each type of regret. There were 
10 to 14 participants in each session, with a total of 274 subjects in the 24 online sessions. 
Subjects were drawn from the MonLEE (Monash University) subject pool. The experimenter 
read the instructions aloud, and answered questions via private chat. Participants received all 
points earned in the 8 salient supergames, which were converted to Australian Dollars (AUD) 
at the rate of 0.63 per 100 points in CH sessions, and 1.89 per 100 points in MV sessions. On 
average, subjects received 19 AUD (treatment averages ranged from 17.25 to 19.92) on top of 
the 5 AUD show-up fee. All payments were made via bank transfer. Sessions in low information 
treatments lasted less than one hour, and lasted up to 1.5 hours in high information treatments.

5.2. Hypotheses

Hypothesis 1. (a) In later periods, the overall observed (row, column) joint distribution of ac-
tions will be well approximated by a CE distribution. (b) That approximation will be better under 
counterfactual regret than under average regret.

Hypothesis 1 focuses on aggregate time average profile frequencies. H1a will be rejected if 
players’ action profiles systematically deviate from the CE distributions. As for H1b, better con-
vergence to CE with counterfactual than with average regret is suggested by the theoretical results 
of Hart and Mas-Colell (2000) and Hart and Mas-Colell (2001). It is also strongly suggested by 
our CH simulation results: Table 3 shows aggregate frequencies consistent with the pure Nash 
equilibria under C regret, but under A regret the frequencies are much closer to the collusive 
outcome, which is not part of the CE set. On the other hand, the MV simulations reported in 
Table 4 show no major differences in the aggregate behavior for different types of regret; they in-

adaptive models and better understand their implications. The purpose of many laboratory experiments, including ours, 
is to test the predictive power of relevant models on time scales that work for human subjects.
17
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dicate profiles closer to the target CE than to the MNE, as simulated players avoid the inefficient 
diagonal profiles.

Theory and simulations have little to say about the role of information, but we conjecture 
that High information treatments in the CH game will make regret less salient and may lead to 
aggregate behavior that is closer to the collusive profile.

Hypothesis 2. (a) Time average payoff vectors for player pairs will disproportionately lie in or 
near the CE region. (b) The fraction of player pairs with payoff vectors in the CE region will be 
higher under counterfactual regret than under average regret.

Hypothesis 2 focuses on long-run behavior of individual player pairs. The theoretical results 
of Hart and Mas-Colell and others predict that player pairs’ time average play will converge to the 
CE set, but not necessarily to any particular point in the CE set, and H2a is worded accordingly.6

On the other hand, convergence to a Pareto efficient and “fair” (equal payoffs for the two players) 
CE would be especially interesting in our symmetric games. Therefore, we will also look for 
convergence to the target CE payoff vector. H2b is a disaggregated version of H1b that applies 
to player pair payoffs.

The CH game simulations in Fig. 3 suggest that most pairs will converge towards one of the 
two pure Nash equilibria under C regret, and will collude more often under A regret. In the MV 
game, the simulations in Fig. 4 suggest that time average payoff vectors will be closer to the 
target CE under C regret than under A regret. Again we conjecture that low information will 
make counterfactual regret especially salient and so will facilitate convergence to the CE region.

Hypothesis 3. Subjects are more likely switch to an alternative action when its positive regret is 
larger.

Hypothesis 3 focuses on individual players’ period-by-period behavior. The hypothesis is 
the basic premise of all adaptive dynamics models we consider. Logit models are the natural 
specification for testing Hypothesis 3, but we also use linear probability model as a robustness 
check. Lastly, we will also test for the response asymmetry between positive and negative regret 
assumed in the HM response rule.

6. Results

Except when otherwise noted, the data reported below include only the last 60% of observa-
tions (viz., the last 30 of 50 periods) from each supergame. We exclude early periods because 
regret is initially very noisy, and because hypotheses H1 and H2 focus on long-run behavior. 
As noted in Appendix E, results are generally similar with all observations and with the last 20 
periods but noisier when all observations are included.

6.1. Aggregate behavior

Table 6 presents aggregate time average profile frequencies by treatment across CH games. 
The left panel summarizes the frequency of play in low information treatments, for Counterfac-
tual (C) as well as for Average (A) regret, while the right panel does the same for high information 

6 Any sort of weighted average of limit points in the CE set will also lie in the CE set, since that set is convex.
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Table 6
Time average frequency in CH games.

Low information

C A

L R L R

U 0.07 0.40 0.12 0.22
D 0.45 0.07 0.27 0.39

High information

C A

L R L R

U 0.17 0.12 0.23 0.18
D 0.14 0.58 0.16 0.44

Table 7
Time average frequency in MV games.

Low information

C A

L C R L C R

T 0.04 0.14 0.12 0.07 0.14 0.13
M 0.13 0.05 0.12 0.13 0.07 0.13
D 0.18 0.17 0.06 0.12 0.15 0.07

High information

C A

L C R L C R

T 0.04 0.13 0.10 0.06 0.15 0.12
M 0.15 0.06 0.17 0.11 0.08 0.13
D 0.15 0.15 0.06 0.14 0.12 0.08

treatments. Recall that the target CE puts a frequency of zero in the (U,L) cell and 0.33 in the 
other cells. The table shows that this target CE is best approximated with A regret and Low infor-
mation: the lowest frequency of play here is indeed the (U,L) cell (0.12), while the collusion cell 
(D,R) has frequency 0.39, modestly higher than the target 0.33, but a bit closer to it than in any 
of the simulations. With C regret, subjects mostly play the two pure NE cells (U,R) and (D,L) 
with similar frequencies (0.40 and 0.45), and put little weight on the main diagonal (0.07 each 
on (U,L) and (D,R)). This CE distribution is very similar to those in C and UC simulations. In 
the high information treatment, collusive behavior dominates for both A (with frequency 0.44) 
and C (0.58) regret, which is not consistent with CE.

Table 7 presents aggregate frequencies for MV sessions; all treatments yield similar outcomes. 
Roughly consistent with the target CE for this game, and inconsistent with the unique NE, every 
diagonal cell has lower frequency than any of the six off-diagonal cells. This is especially true in 
the C treatments.

Result 1. Consistent with Hypothesis 1a, aggregate time average action profiles in later periods 
of MV games are well approximated by a CE distribution. Consistent with H1b, the approxi-
mation is better under counterfactual regret than under average regret. In CH games with low 
information, aggregate profiles resemble the target CE with A regret, and resemble a roughly 
equal combination of the two pure NE with C regret.

Appendix B offers a more quantitative test confirming Hypotheses 1a and 1b, and further 
investigates the correlation between players’ actions. The test is related to the likelihood ratio 
test of independence featured in Moreno and Wooders (1998) but is less direct due to the lack of 
independent observations within each player pair, and across pairs in a session.

6.2. Player pair average behavior

Fig. 10 shows pair-level results relevant to Hypothesis 2 from Chicken (CH) games. In L×C 
sessions, most pairs generate average payoff vectors at or close to one of the two pure NE. In the 
19



Fig. 10. Payoffs for player pairs in CH games. The four panels separate data by combinations of L vs H information 
and C vs A regret. The CE region is shaded blue.

other treatments, many pairs collude to obtain payoffs near (500, 500) while payoff vectors for 
other pairs are widely scattered. These figures are broadly consistent with the simulation data.

Fig. 10 also suggests that high information destabilizes CE (more specifically, NE) in our 
counterfactual regret treatment for the CH game. With low information, most pairs converge to 
one of the two pure NE, but with high information most pairs seem to seize the opportunity to 
collude on a fairer and more efficient outcome.

Fig. 11 similarly summarizes the pair payoffs for the four MV treatments. The time average 
payoffs are mostly in or near the CE zone, especially in L×C sessions. Payoff vectors tend to be 
closer to the target CE (and are more likely to Pareto dominate the unique NE) in Counterfactual 
than in corresponding Average regret treatments.

Result 2. Consistent with Hypothesis 2a, player pairs in CH games with Low information are 
disproportionately likely to earn average payoffs near or in the CE region. The same is true for 
all treatments in MV games. Consistent with Hypothesis 2b, for each game the fractions of pair 
payoffs in the CE region are largest in L×C treatments.

Table 8 offers a more quantitative test of Hypothesis 2. The first column presents for each 
treatment the observed fractions of pair payoffs that are in the CE region. We perform a propor-
tional test with null hypothesis that the observed fraction of pairs is no greater than the uniform 
random success rate of 0.27 for the CH game and 0.11 for the MV game; recall from Section 3.1
that these rates represent the fractions of feasible payoff space that lie in the CE region. For the 
D. Friedman, J.P. Rabanal, O.A. Rud et al. Journal of Economic Theory 205 (2022) 105531
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Fig. 11. Payoffs for player pairs in MV games. The four panels separate data by combinations of L vs H information 
and C vs A regret. The CE region is shaded blue.

Table 8
Fraction of pairs in CE region; distance to target CE.

Fraction in CE Distance Target CE

CH game 0.27
L×C 0.57 (0.002) 253.3
L×A 0.36 (0.005) 157.1
H×C 0.17 (0.989) 150.1
H×A 0.28 (0.438) 157.0

MV game 0.11
L×C 0.43 (0.000) 45.4
L×A 0.20 (0.000) 58.5
H×C 0.35 (0.000) 48.4
H×A 0.29 (0.000) 58.9

Notes: The entries 0.27 for CH and 0.11 for MV are the frac-
tions of feasible payoff space occupied by CE payoffs; other 
entries in that column are fractions of observed pair payoffs in 
the CE zone. (P-values are shown in parentheses for propor-
tional tests with errors clustered at the session level, for the 
null hypothesis that the observed fraction is no greater than 
0.27[0.11] in CH[MV] games.) Last column reports mean 
Euclidean distance of observed payoff vector from target CE 
payoff vector.
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Fig. 12. CDF of the distance to target CE (pair data).

high information treatments in the CH game, we fail to reject that the observed fraction is equal 
or lower to a random draw. However, as claimed in Result 2, we strongly reject that null hypothe-
sis in both low information treatments. In particular, consistent with Hypothesis 2b, the observed 
fraction 0.57 of CE-consistent play in the CH×L×C treatment is far larger than the 0.27 random 
benchmark. Of course, from Fig. 10 we know that much of that CE play arises from the two pure 
NE.

For all MV game treatments, we strongly reject that the observed fraction is no greater that 
the random proportion 0.11; all p-values are less than 0.001. Again, the largest fraction of payoff 
pairs in the CE region (0.43) is for counterfactual regret and low information. On the other hand, 
under Average regret the fraction of pairs in the CE region is larger in the high information (0.29) 
than in the low information environment (0.20).7

Result 2∗. In the CH game, the distance from the target CE payoff vector is driven mainly by 
collusion in high information treatments, and by pure NE play in the L×C treatment. In the MV 
game, the distance is smaller under counterfactual regret, with no significant differences between 
high and low information environments.

This result is foreshadowed by the mean distances reported in last column of Table 8, but 
it relies mainly on the finer grained analysis displayed in Fig. 12. We calculate the Euclidean 
distance from the target CE payoff for each player pair, and build the cumulative distribution 
functions (CDFs) shown in Fig. 12. The left panel shows that in the CH game, a large fraction of 
pairs in the L×C treatment has distance of 287, which is the distance from either pure NE payoff 
vector to the target CE. In high information treatments, play is closer to the target CE mainly due 
to the mass of play near the collusion profile, which has distance of 95 from the target CE.

7 Table E.5 in Appendix E shows the fraction of pair payoff vectors in the MV game that lie in the disk centered on 
MNE, using the same area as for the CE region. We confirm that for C regret (but not for A regret) the CE region has 
more pairs than the disk centered on MNE.
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Table 9
Maximum Likelihood Estimation.

Treatment Obs logit inertial logit inertial truncated logit

β � β � β1 β2

CH game
L×C 10,020 2.70 0.45 2.95 0.61 0.04 3.00

(0.000) (0.000) (0.000) (0.000) (0.496) (0.000)
L×A 9,870 0.77 0.48 0.44 0.81 0.06 0.88

(0.000) (0.000) (0.000) (0.000) (0.740) (0.000)
H×C 6,104 −1.70 0.28 −1.71 0.59 −2.97 4.77

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
H×A 5,116 0.60 0.57 0.65 0.76 −0.29 1.18

(0.000) (0.000) (0.000) (0.000) (0.036) (0.000)

MV game
L×C 9,737 1.85 0.98 1.91 1.00 1.59 0.61

(0.000) (0.000) (0.000) (0.076) (0.000) (0.000)
L×A 11,896 0.93 0.97 0.88 0.97 0.75 0.04

(0.000) (0.000) (0.000) (0.602) (0.000) (0.000)
H×C 5,228 0.96 0.97 1.21 1.02 0.82 0.78

(0.000) (0.000) (0.000) (0.254) (0.000) (0.000)
H×A 5,760 1.09 0.96 1.13 0.98 1.03 0.19

(0.000) (0.000) (0.000) (0.202) (0.000) (0.231)

Notes: Logit specification refers to equation (6); inertia logit to equation (7); and inertia 
truncated logit uses a multiplicative dummy when the regret is negative. In parentheses 
are p-values given error clustering at the subject level for the null hypotheses that βs are 
zero and that � = 1.

The right panel of Fig. 12 shows that distances from target CE in the MV game are generally 
greater (almost first order stochastic domination) under average than under counterfactual regret. 
Table E.6 in Appendix E confirms this conclusion, which reports linear regressions of distance 
to target CE on treatment dummies. Session level clustered error p-values are 0.018 and 0.001, 
confirming greater distance under A than C regret, for low and high information treatments, 
respectively. Appendix C offers further investigation into the MV game dynamics.

6.3. Individual adjustment behavior

Result 3. Consistent with Hypothesis 3 in all treatments, except CH×H×C where collusive be-
havior abounds, individual players are more likely to switch to an alternative action the larger its 
positive regret. There is significant heterogeneity in the response to negative regret. While most 
subjects respond strongly to negative regret, many subjects are less responsive.

This result is supported by the regressions reported in Table 9. Under logit specification, we 
estimate equation (6) for all treatments, and find that the value of β is strongly positive (p-value 
< 0.001) in all cases except the CH game under treatment H×C, likely due to collusive behavior. 
In specification inertial logit, we estimate equation (7), which includes an additional parameter 
�; inertia is present to the degree that its coefficient is less than 1 (but positive). We see very little 
inertia in the MV games, but see a substantial degree of inertia in CH games. Nevertheless, even 
in CH games, the β estimates (and significance levels) are not greatly altered by the presence of 
the additional parameter.
23



D. Friedman, J.P. Rabanal, O.A. Rud et al. Journal of Economic Theory 205 (2022) 105531
Fig. 13. Inertial truncated logit betas for MV game (ML estimation) The four panels separate data by combinations 
of L vs H information and C vs A regret. β1 is the solid dot and β2 the diamond dot. The data is at the subject level, and 
the plots sort the subjects according to the value estimated of β2.

For the third specification, inertial truncated logit, we replace the expression βri
t (j, k) in 

equation (7) by β1r
i
t (j, k) + β2r

i
t (j, k)D[ri

t (j, k) < 0], where the dummy variable D is 1 when 
regret is negative and otherwise is 0. Thus the response to negative regret is captured by the 
coefficient sum β1 + β2 . For all treatments we find a positive or insignificant value of β2, indi-
cating that overall subjects do respond to negative regret. Further analysis at the subject level in 
Fig. 13 highlights significant heterogeneity for MV games. While very few subjects have a nega-
tive value of β1, about one quarter to one half of subjects in each treatment have negative β2. We 
do not present the individual betas for the CH games due to significant inertia; here the low �’s 
(as reported in Table 9) make even the signs of most individual estimated betas ambiguous.
24



D. Friedman, J.P. Rabanal, O.A. Rud et al. Journal of Economic Theory 205 (2022) 105531
We also estimate μ in HM response following equation (5) using a linear probability regres-
sion. See Table E.7 in Appendix E for details. The results support that subjects strongly respond 
to regret in most treatments; they respond less strongly in the H and A treatments of the CH game 
due to the high collusion rate.

7. Conclusion

In this paper, we investigate empirically the theoretical possibility, implicit in Foster and Vohra 
(1998) and Hart and Mas-Colell (2000), that shared experience might enable players to achieve 
CE even in the absence of exogenous coordinating signals. Our results can be summarized briefly. 
Correlated equilibrium (CE) indeed has empirical relevance, but within narrower limits than 
some researchers might have guessed.

• CE does a decent job of predicting time-average behavior in all treatments of the MV game, 
especially when our human subjects see the more conducive form of regret (counterfactual).

• In the Chicken game featured in most textbook discussions of CE, the predictions of aggre-
gate behavior are less useful. The CE prediction is good in the most conducive treatment 
(counterfactual regret, low information) but so is the more specific prediction of pure Nash 
equilibrium. In the less conducive treatments, we see more collusive behavior than allowed 
in CE.

• These limitations are foreshadowed in our simulations of regret-based adaptive dynamics.
• Fitted models of such dynamics indicate that our human subjects indeed respond systemati-

cally to positive regret.
• However, subjects respond quite heterogeneously to negative regret, and not very many of 

them appear to ignore the magnitude of negative regret.

We do not regard our experiment as definitive, but rather as opening new ways to investi-
gate strategic interaction. The Low (and High, i.e., moderate) information user interfaces and 
other novel design features can be adapted to study other games with interesting CE, including 
trimatrix games with some players having two and others having three possible pure actions. 
Our payoff space analysis makes the number of dimensions manageable, while our simulation 
approach may provide ways to sharpen results on convergence, e.g., when adaptive dynamics 
will converge to an interesting non-Nash CE. Simulations can also help pre-explore vast sets 
of possible games and treatments, and identify especially interesting candidates. Theorists might 
want to explore adaptive models in the tradition of Hart and Mas-Colell that relax the assumption 
that players ignore the magnitude of negative regret, and consider allowing greater heterogeneity 
across players. There is still much to learn about the relevance of correlated equilibrium.
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