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Abstract We explore the performance of three popular model-selection cri-
teria for generalised linear mixed-effects models (GLMMs) for longitudinal
count data (LCD). We focus on evaluating the conditional criteria (given the
random effects) versus the marginal criteria (averaging over the random ef-
fects) in selecting the appropriate data-generating model. We advocate the
use of marginal criteria, since Bayesian statisticians often use the conditional
criteria despite previous warnings. We discuss how to compute the marginal
criteria for LCD by a replication method and importance sampling algorithm.
Besides, we show via simulations to what extent we err when using the con-
ditional criteria instead of the marginal criteria. To promote the usage of the
marginal criteria, we developed an R function that computes the marginal cri-
teria for longitudinal models based on samples from the posterior distribution.
Finally, we illustrate the advantages of the marginal criteria on a well-known
data set of patients who have epilepsy.
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1 Introduction

In a longitudinal study, subjects are monitored over time. Such a study type
allows us to discover baseline or time-varying characteristics that have an im-
pact on the outcome of interest. Generalised linear mixed models (GLMMs)
are one of the most popular tools to analyze various types of outcomes repeat-
edly measured over time. The GLMM (McCullagh, 1989) is a generalisation
of the linear mixed model including both fixed and random effects with a
response having a distribution in the exponential family. In the frequentist
approach, the model parameters are estimated by integrating out the random
effects from the likelihood. Most often, this is done under the assumption of
Gaussian random effects. The integral is then evaluated using non-adaptive
or adaptive Gaussian quadrature methods. In contrast, in the Bayesian ap-
proach, the random effects are most often estimated together with the fixed
effects. This implies that Bayesian computations are based on the conditional
likelihood, which is the likelihood of the data given the random effects.

To find an appropriate GLMM for a (longitudinal) data set, one makes
in the frequentist approach use of the likelihood ratio test for nested models
or information criteria, such as AIC and BIC, for non-nested models. In the
Bayesian approach, the same model selection criteria are used for both nested
and non-nested models. One of such criteria to select between two models is
the Bayes’ factor (Kass and Raftery, 1995), defined as the ratio of the marginal
likelihoods (marginalised over the prior of the model parameters) of the two
competing models. While the Bayes’ factor is an elegant Bayesian tool, there
are serious issues with its computation in practice. Namely, it turns out that
computing the Bayes’ factor has proved to be at least as difficult as computing
the posterior distribution, it cannot be computed with improper priors and is
quite sensitive to the choice of the prior distribution. To overcome this problem,
the pseudo-Bayes factor (PSBF) (Gelfand and Dey, 1994) has been suggested.
To compute the PSBF one updates an (improper) prior to a proper posterior
and calculates the Bayes’ factor using the generated posterior as prior.

The most popular Bayesian model selection criterion is the Deviance Infor-
mation criterion (DIC) (Spiegelhalter et al., 2002). The DIC aims to estimate
the predictive ability of the fitted model to future samples from the same pop-
ulation, and like AIC and BIC, it represents a trade-off between the model fit
and model complexity. However, the theoretical basis of DIC is not clear and
several objections and alternatives have been formulated by the discussants
of Spiegelhalter et al. (2002), see also Celeux et al. (2006) and Spiegelhalter
et al. (2014). Recently, Watanabe’s Widely Applicable Information Criterion
(WAIC) (Watanabe, 2013) has been proposed. WAIC has been singled out
as a worthy successor of DIC (Spiegelhalter et al., 2014). We consider PSBF,
DIC and WAIC in this paper since there is little agreement in the statistical
literature on the choice of these criteria for model selection.

Model selection criteria may be based on the conditional likelihood (given
the random-effects) resulting in conditional criteria or on the marginal likeli-
hood (integrating out the random effects) resulting in the marginal criteria.
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The conditional criteria measure the predictiveness of the model for the sub-
jects included in the current study, whereas the marginal criteria measure the
predictiveness of the model for all subjects from the same population in a
future study. Vaida and Blanchard (2005) pointed out that the choice of the
criteria should be motivated by the research question. This implies that most
often the marginal criteria should be used in practice. However, irrespective of
that research question, the conditional criteria are most often used in practice
because of convenience and their easy availability in most software. This usage
has been questioned for LMMs (Ariyo et al., 2020, 2019) as well as for GLMMs
(Millar, 2009; Christensen, 2017; Quintero and Lesaffre, 2018; Merkle et al.,
2018). Ariyo et al. (2020) and Ariyo et al. (2019) explored the performance of
the marginal model selection criteria for the LMM (based on the closed form
of the marginal likelihood) and concluded their superior performance over the
corresponding conditional criteria. An R program has been written that com-
putes the marginal and conditional versions of PSBF, DIC and WAIC for any
LMM based on MCMC output from a fitted model in our previous papers.
However, for a GLMM there is no closed form for the likelihood. Hence, there
is the need for an approach to compute the marginal model selection criteria
for non-closed-form likelihoods such as for GLMMs.

Numerical methods have been developed that compute the marginal crite-
ria for non-closed form likelihoods. For example, Chan and Grant (2014) pro-
posed fast algorithms for computing the marginal DIC (mDIC) for a variety of
high dimensional latent variable models and show that mDIC has much smaller
numerical standard errors compared to the DIC based on the conditional likeli-
hood (cDIC). Likewise, Chan and Grant (2016) proposed importance-sampling
algorithms for computing mDIC under a variety of stochastic volatility mod-
els. In the INLA package, developed by Rue et al. (2009) for latent Gaussian
models, the marginal posterior is computed by integrated nested Laplace ap-
proximations. Up to now, all these methods make use of a Gaussian assumption
for the random effects. We will do that also in this paper; however, in principle,
every method here can be easily adapted to a non-Gaussian distribution.

In this paper, we used a computational technique that computes the marginal
criteria that involve specifying the marginalised likelihood components as an
expectation of the conditional distribution. As such, the likelihood can be
marginalised by generating replicate samples from the density of the random
effects, which ought to be integrated out to estimate such expectation. This
computational procedure can be carried out from the MCMC output of any
Bayesian software; hence, it is widely applicable and easy to use. However,
the major setback of this procedure is its computational complexity. When
the number of observations and/or subjects increases, a large number of the
replications may be required to obtain accurate results, hence the replica-
tion method can become impractical. As such, we give some recommendations
for a trade-off between computational complexity and accuracy of the infor-
mation criteria when usage of replication method is inevitable. To overcome
the computational setback in the replication method, we have also used the
importance sampling method and show via simulations and a real data set
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of epilepsy patients that importance sampling is advantageous for computing
marginal criteria in cases with a large number of observations as this method
reduces the computation time by half. Nevertheless, the replication method is
recommended for a smaller number of subjects.

Another contribution of this paper is to highlight the importance of the
conditional/marginal criteria distinction for Bayesian model selection for gen-
eralised linear mixed-effects models (GLMMs) especially for overdispersed ver-
sions of such GLMMs and to recommend the need to utilise marginal criteria.
Others have shown that the marginal criteria outperform the conditional coun-
terparts for the classical (Gaussian) and less classical (non-Gaussian) LMM
(Ariyo et al., 2020, 2019), in volatility models (Chan and Grant, 2016), for
item response models (Merkle et al., 2018; Li et al., 2012) and for GLMMs
in general (Quintero and Lesaffre, 2018; Millar, 2018). However, some settings
have not been considered yet. Namely, we considered here settings that have
been shown to affect the performance of the (frequentist) selection criteria
(see for example Fitzmaurice, 1997; Howe et al., 2019; Chen et al., 2016; van
Smeden et al., 2016, 2019) in Poisson mixed-effects models. Namely, we show
the advantage of using the marginal criteria for longitudinal count data: (i)
in the presence/absence of overdispersion, too many zeros, or both and (ii)
when the number of repeated measurements is relatively small compared to
the number of independent variables. Finally, to promote the usage of the
marginal criteria, we developed an R function that computes the marginal cri-
teria for a battery of longitudinal count models and this function is available
in https://github.com/OludareAriyo/BayesselectGLMM.

The structure of the paper is as follows. Section 2 presents the general
GLMM and introduces the Poisson mixed-effects model. In Section 3, we dis-
cuss the conditional and marginal selection criteria in generality. Section 4
presents and evaluates the sampling methods for the computation of marginal
criteria of a GLMM. In Section 5, we discuss extensions of the Poisson mixed-
effects model that deal with overdispersion in the repeated counts. In Section
6, our approach is illustrated on the well-known longitudinal epilepsy data set.
Different simulation settings and scenarios are presented in Section 7. In the
same section, we compare the performance of the conditional and marginal
model selection criteria and evaluate the performance of the sampling tech-
niques in computing the marginal criteria. The article concludes with a general
discussion in Section 8.

2 Generalised linear models with cluster-specific effects

2.1 The generalised linear model

A random variable Y follows a distribution from the exponential family if its
density is of the form

f(y) ≡ f(y |λ, φ) = exp
{
φ−1[yλ− ζ(λ)] + c(y, φ)

}
, (1)
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where λ and φ are termed “natural (canonical) parameter” and “dispersion
parameter”, respectively for unknown functions ζ(·) and c(·, ·). As shown in
Molenberghs and Verbeke (2005), the first two moments are functions of ζ(·)
as:

E(Y ) = µ = ζ
′
(λ), (2)

and

V ar(Y ) = σ2 = φζ
′′
(λ). (3)

This implies that the mean and variance are related through σ2 = φζ ′′[ζ
′−1(µ)] =

φν(µ), with variance function ν(·) describing the mean-variance relationship.
Suppose that for the ith subject (i = 1, . . . , n) a p-dimensional covariate vector
xi is available and that given xi, the response Yi of that subject has the above
exponential distribution with mean µi and that η(µi) = xT

i β, where β is an
unknown p-dimensional vector of regression coefficients. The first component
of xi, xi1, is usually equal to 1, representing the intercept. This defines a gen-
eralised linear model for the response, denoted as GLM. For some GLMs such
as the binomial, Poisson and exponential distributions, the mean and variance
parameters are forced to depend on a single parameter. However, in some appli-
cations, this assumption may be overly restrictive. A number of extensions to
the Poisson model have been proposed by Hinde and Demétrio (1998); Breslow
(1984); Lawless (1987) and Molenberghs and Verbeke (2005) that accommo-
date overdispersion, i.e. when the variance of the counts (much) exceeds their
mean. Note that one way to deal with overdispersion is to allocate an overdis-
persion parameter φ 6= 1 so that (3) produces V ar(Y ) = φν(µ). This leads to
a quasi-likelihood approach, see Molenberghs et al. (2007). Here, we consider
parametric generalisations of the Poisson model such as the Poisson mixed-
model, Poisson-gamma mixed-model and their zero-inflated alternatives.

2.2 The generalised linear mixed model

The generalised linear mixed model extends the GLM by adding random ef-
fects, and thereby becomes a tool to analyse non-Gaussian repeated measure-
ments, see e.g. Verbeke and Molenberghs (2000). Let yij be the jth outcome
(j = 1, . . . ,mi) measured on the ith subject (i = 1, . . . , n), then a GLMM for
yij is defined as a GLM conditional on random effects. More specifically, we
assume that, in analogy with Section 2.1, conditional upon a q−dimensional
random-effect bi ∼ Nq(0,D), where Nq(·) is a q-variate variate normal distri-

bution with mean vector 0 = (0, . . . , 0)
′
, of dimension q × 1, and D is a q × q

positive-definite covariance matrix. The outcomes yij are distributed indepen-
dently with densities of the form

fi(yij |bi,β, φ) = exp
{
φ−1[yijλij − ζ(λij)] + c(yij , φ)

}
,

with

η[ζ
′
(λij)] = η(µij) = η[E(yij |bi,λ)] = xT

ij β + zTij bi,
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where xij and zij are p−dimensional and q−dimensional vectors of known
covariates, respectively. As before, β is an unknown p−dimensional vector
of fixed effects parameters, φ is a dispersion parameter and η(·) is a known
link function. The distribution for the random effects f(bi |D) is most often
specified as Nq(0,D). Often, usually the Poisson distribution is taken as dis-
tribution for counts. With repeated measures, the Poisson mixed-effects model
(PMM) in the context of a longitudinal study becomes

yij |bi ∼ Poi(λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi),

log (λij) = xT
ij β + zTij bi,

bi ∼ Nq(0,D).

Here, we consider the GLMM for count data but also extensions in the longi-
tudinal settings. These extensions will be discussed in Section 5.

3 Bayesian model selection criteria

The conditional version of these selection criteria is based on the conditional
likelihood incorporating the random effects, i.e. they are based on the con-
ditional likelihood p(y |Θ,b) ≡ L(Θ,b |y) =

∏
i L(Θ,bi |yi), with y =

{y1, . . . ,yn} the total set of responses, Θ the model parameters (fixed ef-
fects β and the variance parameters of the random effects, i.e. the elements
of D) and b = {b1, . . . ,bn} the total set of random effects. In contrast, the
marginal criteria are based on the marginal likelihood, which is simply the
conditional likelihood integrated over the distribution of the random effects,
i.e. the marginal likelihood is given by

L(Θ |y) =

n∏
i=1

L(Θ |yi) =

n∏
i=1

∫
L(Θ,bi |yi) p(bi |Θ) dbi.

In many instances, integration over the distribution of the random effects
requires numerical procedures, such as (non)-adaptive Gaussian quadrature
methods.

Let D(ψ) represent the deviance of the model evaluated in ψ, i.e. D(ψ) =
−2 log p(y |ψ) + 2 log f(y), where f(y) represents the likelihood of a satu-
rated model. The deviance information criterion is then defined as DIC =
D(ψ) + 2pDIC , where D(ψ) is the deviance (often) evaluated at the poste-
rior mean. pDIC is called the effective number of parameters of the model
and is a contrast of the posterior mean of the deviance D(ψ) with the de-
viance at the posterior mean D(ψ) and is equal to pDIC = D(ψ) − D(ψ).
Both DIC and pDIC can be approximated from an MCMC run with a con-
verged chain ψ1, . . . ,ψK . Namely, the deviance components are approximated
as D(ψ) ≈ 1

K

∑K
k=1D(ψk) and D(ψ) ≈ D( 1

K

∑K
k=1ψ

k).
The conditional version of DIC (cDIC) is obtained by plugging the condi-

tional deviance into the expression of DIC, and by taking the posterior mean of
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(Θ,b). The associated effective degrees of freedom is denoted then as pcDIC .
The marginal version of DIC (mDIC) is obtained by plugging in the marginal
deviance into the expression of DIC together with the posterior mean of Θ
(which is the same as for the conditional likelihood). We denote the effec-
tive degrees of freedom now as pmDIC . Note that the marginal deviance is
the posterior mean of the log of the conditional likelihoods averaged over the
distribution of the random effects, i.e.

EΘ |y

[
− 2 log p (yi |Θ)

]
=

n∑
i=1

EΘ |y

[
− 2 log Ebi |Θ

[
p(yi |Θ,bi)

]]
.

Despite its popularity, DIC has suffered from some practical problems; see
(Spiegelhalter et al., 2014) for more details. To accommodate DIC’s setback,
Watanabe (2010) has suggested the Widely Applicable Information Criterion
abbreviated as WAIC. WAIC is an approximation to minus twice the expected
log pointwise predictive density (elppd)

Hence, the elppd is given as

elppd = −2

n∑
i=1

Eỹi
log
[
EΘ,b |yp (ỹi |Θ)

]
.

Note that in practice we evaluate the criterion on the current data. An alter-
native would be to use a validation and test set, but that one would imply
loosing an important part of the data to base the scientific conclusions on.
When the responses yij are independent given the random effects (e.g. when
there is no serial correlation), then the above expression can be written as:

elppd = −2

n∑
i=1

mi∑
j=1

Eỹij
log
[
EΘ,b |yp (ỹij |Θ,bi)

]
. (4)

Based on a converged chain
{
Θ1, . . . ,ΘK ,b1

1, . . . ,b
K
1 , . . . ,b

1
n, . . . ,b

K
n

}
the

conditional WAIC can be approximated as

cWAIC = −2

n∑
i=1

log

[
1

K

K∑
k=1

p(yi |Θk,bk
i )

]
+ 2pcWAIC, (5)

with pcWAIC = 2

(∑n
i=1 log

[
1

K

∑K
k=1 p(yi |Θk,bk

i )

]
− 1

K

∑K
k=1 log p(yi |Θk,bk

i )

)
.

The WAIC of the marginal model, i.e. the marginal WAIC, is then approxi-
mated by

mWAIC = −2

n∑
i=1

log

[
1

K

K∑
k=1

p(yi |Θk)

]
+ 2pmWAIC, (6)

with pmWAIC = 2

(∑n
i=1 log

[
1

K

∑K
k=1 p(yi |Θk)

]
− 1

K

∑K
k=1 log p(yi |Θk)

)
.
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Another criterion considered here is the pseudo-Bayes factor which is a
version of the Bayes factor. Since the Bayes factor is based on the prior distri-
bution of the model parameters, its computation becomes complicated with a
vague prior parameter. Several “solutions” were proposed to solve this prob-
lem and some proposals imply applying the vague prior to a part of the data,
and then use the resulting posterior as a prior for the calculation of the Bayes
factor on the remaining data. The pseudo-Bayes factor deviates from this prin-
ciple a bit by also involving cross-validation. Suppose we have two modelsM1

andM2 with model parameters ψ1 and ψ2, respectively and data {y1, . . . ,yn}.
The Bayes factor is based on the marginal likelihood, in the sense that the like-
lihood is marginalised over the model parameters’ prior uncertainty. Namely,
this marginal likelihood is given for model M and parameters ψ (leaving out
the model subscript) by:

p(y |M) =

∫ n∏
i=1

p(yi |ψ,M) p(ψ) dψ. (7)

However, (7) is not analytically available in general. Therefore, Geisser and
Eddy (1979) suggested replacing (7) by the pseudo marginal likelihood (PML)

p̂(y |M) =

n∏
i=1

p(yi |y−i,M), (8)

where p(yi |y−i,M) is called the ith conditional predictive ordinate (CPOi)
and is the predictive density calculated at the observed yi given y−i, which is
the set of all data except the ith observation. The pseudo-Bayes factor is then
obtained by taking the ratio p̂(y |M1)/p̂(y |M2) to evaluate the preference of
modelM1 over modelM2. Low values of this ratio reflect preference of model
M2 based on the current data. The conditional pseudo-Bayes factor (cPSBF)
(given random effects) and the marginal pseudo-Bayes factor (mPSBF) (av-
eraged over random effects) are based on (8) with corresponding conditional
and the marginal likelihood plugged-in. In practice, one often evaluates the
logarithm of expression (8), leading to the log pseudo marginal likelihood for
model M` equal to LPML` =

∑n
i=1 log(CPOi,`) where

CPOi,` ≈

[
1

K

K∑
k=1

1

p(yi | Θk
` , M`)

]−1
,

whereΘ1
` , . . . ,Θ

k
` are the K draws from the posterior distribution of the model

parameters for model M`.

We refer to Ariyo et al. (2020, 2019) for the detailed descriptions of the
three considered model selection criteria.
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4 Sampling methods for computing the marginal model selection
criteria

The expression of the model selection criteria reveals that expected values over
the distribution of the random effects need to be taken. In the simpler case of a
linear mixed model, the computations are easy since the marginal LMM can be
determined analytically, but this is not the case for a GLMM. For this reason,
we explored the use of sampling methods to compute the model selection
criteria for a GLMM. Here we combined the replication method, which is
sampling from the prior of the random effects, with importance sampling to
compute the marginal criteria. The former replaces the integral in p(yi |Θ) =∫
p(yi |Θ,bi) p(bi |Θ) dbi = Ebi |Θ[p(yi |Θ,bi)] by sampling from the prior

distribution of bi. We used vague priors throughout the document and assessed
reliability of the MCMC samples based on the Monte Carlo errors. A large
Monte Carlo error (larger than 5% of the posterior standard deviation for each
parameter, see Koehler et al. (2009); Quintero and Lesaffre (2018) suggests
the need of sampling for more iterations. With non-informative priors for the
hyper-parameters of bi, the Monte Carlo errors reduced drastically (see also
Merkle et al., 2018). This in turns ensures reliability of the information criteria.
In this paper, we computed the marginal version of DIC, WAIC and PSBF
based on these sampling techniques. An R function has been written and is
available in https://github.com/OludareAriyo/BayesselectGLMM.

4.1 The replication method

The joint posterior p(Θ,b |y) can be approximated by making use of a MCMC

sample (Θk, b̃k), for k = 1, . . . ,K. Θ1, . . . ,ΘK are the K draws from the pos-
terior distribution p(Θ,b1:n |y1:n) as discussed in Section 3 (see supplemen-
tary documents for details). Since p(yi |Θ) =

∫
p(yi |Θ,bi) p(bi |Θ) dbi =

Ebi |Θ[p(yi |Θ,bi)], the marginal criteria such as mDIC can be based on in-

dependent replicates b̃i

k,l
, (l = 1, . . . , L) from p(bi |Θk) at each iteration k.

To compute the plug-in deviance, we take replicates b̃m
i from p(bi |Θ) (m =

1, . . . ,M) in order to approximate
∑n

i=1 log[p(yi |Θ)] =
∑n

i=1 log Ebi |Θ[p(yi |Θ,bi)].
Thus, the components necessary to compute the marginal criterion mDIC are

D(Θ) ≈ −2

n∑
i=1

(
1

K

K∑
k=1

log

[
1

L

L∑
l=1

p(yi |Θk, b̃k,l
i )

])
,

D(Θ) ≈ −2

n∑
i=1

log

[
1

M

M∑
m=1

p(yi |Θ, b̃m
i )

]
.

(9)

The variability of (9) due to the replication method depends on several factors
which include: (i) the number of observations in the sample, (ii) the variance
of the latent variables induced by p(b |Θ), and (iii) the posterior variance of
the parameters. In Quintero and Lesaffre (2018), an expression of the variance
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of mDIC is given. For a small value of Var(mDIC), the proposed estimator (9)
provides a good approximation to mDIC. However, as pointed out in Quintero
and Lesaffre (2018), this variance can be high for large sized clusters and
when there are many clusters, which corresponds here to subjects with many
repeated observations per subject or many subjects.

In the same spirit, the components necessary to compute marginal criterion
mWAIC are

mlppd =
1

K

n∑
i=1

K∑
k=1

log

{
1

L

L∑
l=1

p
(
yi |Θk, b̃k,l

)}
,

pmWAIC = 2

n∑
i=1

[
log

{
1

M

M∑
m=1

p
(
yi |Θm, b̃m

)}
− 1

K

K∑
k=1

{
1

L

L∑
l=1

log p
(
yi |Θk, b̃k,l

)}]
,

(10)

where mlppd is the log pointwise predictive density for the marginal model
and pmWAIC is the corresponding effective number of parameters to adjust
for overfitting. The mPSBF consists of comparing the (marginal) log-pseudo
likelihood (mLPML) for models M1 and M2, whereby mLPML is equal to∑n

i=1 log(mCPOi,`) for model M` where

mCPOi,` ≈

 1

K

K∑
k=1

1

1
L

∑L
l=1 p

(
yi |Θk, b̃k,l,M`

)
−1 . (11)

The replication method can be based on simple random sampling, but there is
gain using instead importance sampling, see e.g. Tran et al. (2016) and Tokdar
and Kass (2010) for an overview of the advantages of importance sampling over
simple random sampling.

4.2 Importance sampling

Importance sampling consists of replacing an original integral over a distribu-
tion by an integral averaging of another easier-to-sample distribution, called
the proposal density, and then replace the integral by sampling. Given that
p(yi |Θ) =

∫
gi(bi) dbi with gi(bi) = p(yi |Θ,bi) p(bi |Θ) is replaced by

p(yi |Θ) =
∫

[gi(bi)/qi(bi)] qi(bi)dbi, with qi(b) an appropriate proposal den-
sity. Then p(yi |Θ,bi) p(bi |Θ) is proportional to p(bi |yi,Θ), the mean and
the variance of gi(bi) can be estimated from an additional MCMC run fixing
the parameters to Θ = Θ.

We used this approach to evaluate p(yi |Θ) for each observation unit to
compute the plug-in deviance D(Θ) and the mean deviance D(Θ) as well as
other components needed for the marginal criteria. As pointed out by Quin-
tero and Lesaffre (2018), this posterior distribution is approximately normal
for large sized observation units under regularity conditions, so it is adequate
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to select a normal density for qi(bi) with the above mean and variance. This
approach is based on independent draws from the proposal density qi(bi) which
is easy to sample from. For small sized observation units, the function gi(bi) re-
sembles the latent prior density, so it is appropriate to select qi(bi) = p(bi |Θ)
(Quintero and Lesaffre, 2018).

Then, after sampling b̃m
i from qi(b) for m = 1, . . . ,M , different compo-

nents for the marginal criteria are computed based on the plug-in deviance
given by

p̂(yi |Θ) =
1

M

M∑
m=1

[p(yi |Θ, b̃m
i )p(b̃m

i |Θ)/qi(b̃
m
i )],

and the mean deviance where Θm is substituted with deviance for each itera-
tion. Hence, the mean deviance is given by

p̂(yi |Θm) =
1

M

M∑
m=1

[
1

L

L∑
l=1

[p(yi |Θm, b̃m,l
i )p(b̃m,l

i |Θm)/qi(b̃
m,l
i )]

]
.

Thus, to compute the marginal criteria components we use importance sam-
pling based on MCMC for large-sized observation units, but for small-sized
observation units, an independent sampling method can be used. This strat-
egy for importance sampling simplifies and generalises the replication method
in Chan and Grant (2016).

5 Extensions of the Poisson-mixed effects model

In this section, we illustrate the performance of the marginal and conditional
model selection criteria on selecting the appropriate fixed effects. However,
with count data there is always the possibility of overdispersion and occasion-
ally of underdispersion. Overdispersion occurs when the data display more
variability than is predicted by the assumed model. For counts, we usually
start with a Poisson model that assumes that the mean and variance of the
counts are equal. When the variance is larger (smaller) than the mean, we
speak of overdispersion (underdispersion) compared to the Poisson model.
Most often, counts encountered in medical data do not satisfy the Poisson
assumption. However, ignoring over/underdispersion may influence the model
estimates and therefore the (statistical) conclusions. Indeed, it is well-known
that when overdispersion in the data is ignored, many of the regressors will in-
dicate a wrong ‘significance’. On the other hand, Fitzmaurice (1997) evaluated
the performance of the classical frequentist model selection criteria AIC and
BIC, but also of his proposed modified likelihood ratio statistics. The author
observed that the considered selection criteria often prefer overdispersion mod-
els even when there is no overdispersion in the data set. Obviously, this can
lead to a wrong interpretation of the model parameters. We refer to Lambert
(1992) for more background on the issues of overdispersion and its impact on
the conclusions of a statistical analysis. Therefore, we wished to evaluate the
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performance of the above three model selection criteria when overdispersion is
present or absent in the data set. We ignore here the case of underdispersion,
since this occurs less frequently in practice, and thus focus on overdispersion.
In order to detect such deviation from the Poisson model, we need to have sta-
tistical models for repeated count data that allow for overdispersion. Without
clustering, some models have been suggested to model overdispersion. A pop-
ular choice is the negative binomial distribution, which arises as a continuous
mixture of Poisson distributions with means that have a gamma distribution.
If overdispersion is due to an excess of zeros, one could model the data with
a zero-inflated Poisson distribution or a zero-inflated negative binomial distri-
bution. Although, both are mixtures of the basic (Poisson/negative binomial)
distribution with a degenerate distribution at zero. Also for longitudinal count
data, models have been suggested that deal with overdispersion, see e.g. Booth
et al. (2003); Aregay et al. (2013, 2015); Molenberghs et al. (2007). Here, we
focus on the extensions suggested by Molenberghs et al. (2007, 2010), which
we briefly describe in the sections below.

5.1 The Poisson-type models for count data with overdispersion

A natural extension of the random effects Poisson model is to make use of the
generalisations suggested for a Poisson model (see Molenberghs et al. (2007)).
That is, to allow for overdispersion by assuming a Poisson-gamma model or a
zero-inflated Poisson/negative binomial model given the random effects. The
first proposal was suggested in Molenberghs et al. (2007, 2010). More specifi-
cally, these authors suggest

yij |bi , θij ∼ Poi(λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi),

λij = θij exp
(
xT
ij β + zTij bi

)
,

bi ∼ Nq(0,D),

E(θi) = E[(θi1, . . . , θimi
)T ],

V ar(θi) = Σi,

(12)

whereby θij measures the overdispersion in the outcome for the ith subject
at the jth occasion. When θij has a Gamma(α1, α2) distribution, we call it a
Poisson-gamma mixed effects model (PGMM). Alternatively, one could assume
that the θij has a lognormal distribution. In that case, it becomes the Poisson-
lognormal mixed effects model (PLMM). Molenberghs et al. (2007) provide the
expressions for the mean vector, the variance-covariance matrix and the joint
marginal probability. Here we focus on the PGMM model.

5.2 Zero-inflated GLMM

Using the technique described in Sections 5.1, one could suggest a zero-inflated
Poisson mixed effects model (ZIPMM) or a zero-inflated negative binomial
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mixed-effects model (ZINBM). That is, given the random effects one could as-
sume a zero-inflated Poisson/negative binomial. More specifically, the ZIPMM
model for yij is given by:

yij |bi ∼ ZIP (p0,ij , λij |bi), (i = 1, . . . , n; j = 1, . . . ,mi)

with

yij |bi ∼

{
0, with probability p0,ij

Poi(λij), with probability (1− p0,ij),

(13)

where λij = exp(xT
ij β + zTij bi). A ZIPMM will reflect the data accurately

when overdispersion is caused by an excess of zeros (Adrion and Mansmann,
2012). The use of the ZIPMM is necessary when the nature of the source of
zeros is not certain. However, overdispersion is attributed to factors beyond
the inflation of zeros, a ZINBM is more appropriate (Yau et al., 2003). It is
important to note that the rate of zero-inflation and the nature of the source
of zeros may change over time, but such considerations will be ignored here.

5.3 Sampling methods for extended GLMM

With an extra random effect θij in the model, the application of the desired
sampling techniques remains the greatest priority. One approach is to apply
the sampling techniques of Section 4 on both the θij ’s and bi’s jointly. Al-
ternatively, one could first integrate θij ’s from the likelihood, and then apply
the sampling techniques on bi. Given bi, the Poisson-gamma distribution av-
eraged over θij yields a conditional (on bi) negative binomial distribution. In
Molenberghs et al. (2007) it is shown that

yij | bi ∼ NB(α1, γij),

with γij = 1/(1 + λijα2), where α1 and α2 are the parameters of the gamma
distribution and λij = exp(xT

ij β+zTij bi). Using this marginalised model (over
θij ’s) allows us to compute the marginal model selection criteria with the above
considered strategies since the only latent variables are the random effects.

However, in general, it is not possible to integrate out θij ’s from the likeli-
hood analytically, as it is the case for the Poisson-gamma mixed effects model.
Therefore, the θij ’s need to be integrated out simultaneously together with
the random effects bi. This can be done by augmenting the set of latent vari-
ables which need to be integrated out (bi’s and θij ’s) and using the replication
method or importance sampling as previously discussed in Section 4.

6 Application section

In this section, we evaluate the performance of the marginal criteria in lon-
gitudinal data with overdispersion. First, we illustrate how many replications
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are needed to achieve convergence and reliability of the results. To achieve
this, we performed a simple simulation study and give practical advice on the
adequacy of the number of replications needed. Thereafter, we applied the
methods in the analysis of the epilepsy data set.

6.1 Adequacy of the number of replications

From expressions (9), (10) and (11), it is clear that the number of subjects n
in the data set impacts the variability of the estimators. A larger sample size
leads to greater variability of D(Θ), D(Θ), lppd, pWAIC and LPML since these
estimators are the sums of the log-likelihoods pertaining to the observation
units. In order to approximate well the true marginal model selection criteria, it
is important to select L and M appropriately (not too small nor too high). For
DIC, Quintero and Lesaffre (2018) suggested to take L = 2M/

√
KEff , where

KEff = K/(1+2
∑

t=1 ρt) and ρt = Corr(
∑

i log p̂(yi |Θk),
∑

i log p̂(yi |Θk +
t)). Among others, these authors suggested to determine L and M such that
the standard error for mDIC is smaller 0.5, such that the variability (measured
by 95% CI) of mDIC can be expected to be smaller than 1. Here, we checked
the adequacy of the choice of L and M for these selection criteria in a numerical
exercise, see below. From this exercise, we tentatively conclude that when L
and M are appropriate for DIC, they are likely to be appropriate for WAIC
and LPML.

To illustrate the required number of replications, we performed a small
simulation exercise. This is part of the simulation exercise described in more
detail in Section 7.2. To this end, we have taken a Poisson mixed model.
Namely, let yij be a count for the ith subject (i = 1, . . . , n = 300) at the jth

time point (j = 1, . . . , 5) and b0i the ith random intercept with b0i ∼ N(0, σ2
b0

).

We allowed for time independent covariates for the ith subject: age at baseline
(agei), baseline count (basei), treatment (treati), interaction baseline count
and treatment (basetreati) and the obvious time dependent covariate time
(timeij). That is, we assumed

yij | b0i ∼ Poisson(λij | b0i), (14)

where λij = β1 + β2trti + β3 log(basei) + β4timeij + β5 log(agei) + β6trti ×
log(basei)+b0i. The estimates of the model parameters are given in Section 7. It
is suggested by Mason et al. (2012) to monitor the stability of the components
of (9), (10) and (11) when increasing the number of replications. Figure 1
displays the marginal criteria components for the above Poisson model for
increasing number of replications M . From this figure we can see that mDIC
and mWAIC, and their components stabilise for M = 8000. Recall, that for
mDIC we have also another basis to decide about its desired value, namely
that the standard error of the estimated mDIC should be smaller than 0.5
(Quintero and Lesaffre, 2018). This is achieved for M = 8000 as then the
standard error is 0.2. For mWAIC and mLMPL we judged the adequacy of M
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purely graphically. Note that for mLMPL stability is already achieved with M
around 7000.

Furthermore, we evaluated the dependence of the required M on the num-
ber of subjects and the number of observations/subject. For this, we have con-
sidered data sets with 10, 50 and 200 subjects combined with 4, 6 and 10 obser-
vations per subject. Each data set was generated according to the above Pois-
son mixed effects model. From basic principles, Quintero and Lesaffre (2018)
concluded that the required M likely increases with increasing number of sub-
jects and/or observations/subject. Note that, as before, L = 2M/

√
KEff . In

Table 3, we show the model selection criteria when varying M from 5000 to
10 000. In contrast to the above conclusion, the suspected dependence does
not show.

Fig. 1: Poisson model (14): Dependence of marginal model selection criteria on
the number of replications M for: (a) mDIC, Devk=D(Θ) and Devp=D(Θ̄)
as given in (9); (b) mWAIC and mlppd as given in (10): (c) pmWAIC as given
in (10): (d) mLMPL as given in (11)



16 Oludare Ariyo et al.

6.2 Description of the epilepsy data set

We consider the analysis of data obtained from 89 epileptic patients that were
randomised to a novel anti-epileptic drug (AED) in combination with one or
two other AEDs (44 patients) or to placebo (45 patients) (Faught et al., 1996).
A 12 weeks baseline period served as a stabilisation period. They were then
measured on a weekly basis for 16 weeks, after which they were entered into
a long-term open extension study. Some patients were followed for up to 27
weeks. The outcome of interest is the number of epileptic seizures experienced
during the last week. Booth et al. (2003) used this data set as an illustrating
example when modelling longitudinal counts data with overdispersion. Oth-
ers have also used this data set to illustrate their proposed statistical models,
see e.g. Aregay et al. (2013); Rakhmawati et al. (2016); Faught et al. (1996);
Molenberghs et al. (2007).
Figure 2 shows the individual curves and mean curves for both the treatment
groups and this figure reveals substantial variability in counts between sub-
jects. The graph also reveals the presence of extreme values. The presence of
overdispersion in counts is seen in Table 1 where the sample mean, variance
of the counts and the number of observations at each week for the treatment
and placebo groups are shown. However, it is difficult to judge the presence
of overdispersion towards the end of the study as there are fewer data. It is
important to note here that overdispersion can be attributed to measured and
unmeasured covariates. As such, overdispersion can also be checked by evalu-
ating the Poisson residuals. However, in this paper, we checked overdispersion
via model selection rather than through residuals.

Breslow and Clayton (1993) analysed the epilepsy data by considering the
following covariates: logarithm of baseline seizure (base) count, treatment (trt),
logarithm of age, visit, and the treatment by log(base) interaction. We fitted
the model

yij | b0i ∼ Poisson(λij | b0i),
ηij = log(λij) = β1 + β2trti + β3 log(basei) + β4visitij + β5 log(agei) + β6trti × log(basei) + b0i,

(15)

with b0i ∼ N(0, σ2
b0

).

6.3 Analysis of the epilepsy data set

We fitted the Poisson mixed-effects model and extensions discussed in Section
5 to the data using rjags. An MCMC sample was drawn using Gibbs sampling
in JAGS (Plummer, 2003). In this procedure, we sample from the conditional
posterior for each parameter. For this case, JAGS used slice sampler for all
parameters. Here, 60,000 iterations were sampled after discarding the initial
20,000 iterations as a burn-in. The thinning factor was set as 10. For all models
considered, convergence was assessed using traceplots, the estimated potential
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Fig. 2: Epilepsy data: Individual profiles for both treatment groups and mean
curves (in bold).

scale reduction factor R̂ and the Brooks, Gelman and Rubin’s (BGR) diag-
nostic (Gelman and Rubin, 1992). Moreover, the estimated potential scale
reduction factor R̂ values for all the parameters were smaller than 1.1, which
indicates convergence for all model parameters. The traceplots in Figure S1
show a good mixing of the parameters. Additionally, the BGR plot (Figure
S2) indicates convergence for all model parameters. Figure S3 shows the run-
ning (ergodic) mean plots for β1 and β5, this indicates a stable behaviour for
the parameters. The following vague priors were chosen, for the fixed effect
parameters: βk ∼ N(0, 100) (k = 0, . . . , 6). For models with a random inter-
cept and slope, we considered a separation prior for their covariance matrix
i.e we have taken a half standard-Cauchy prior (Gelman, 2006) for the stan-
dard deviation of the random effects and Unif(−1, 1) for correlation parame-
ter. For the overdispersion parameter, we assumed θij ∼ Gamma(α, 1/α) (i =
1, . . . , n; j = 1, . . . ,mi) where α ∼ Unif(0, 100). Finally, the zero-inflated prob-
ability p0,ij ∼ Beta(0.5, 0.5) (i = 1, . . . , n; j = 1, . . . ,mi).
The time required to fit the models on a quad-core processor 3.0-GHz lap-
top was about 61 minutes. This shows that a quicker method is needed, we
will explore this in future research. The results in Table 2 illustrates that
all marginal criteria prefer the zero-inflated PGMM (ZIPGMM), which is in
agreement with what was obtained by Warton (2005). For the conditional cri-
teria the best two models (PGMM and ZIPGMM) are the same as for the
marginal criteria, but they rank models PMM and ZIPMM in the opposite
way compared to the marginal criteria. So, it seems that there is not much
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difference between the solution offered by the conditional and the marginal
criteria. The simulations in Section 7 check whether this is a general finding.

Table 1: Epilepsy data set: Sample mean (sample variance) and number of
observations at selected time-points for each of the two treatment groups

Week Mean (variance) No of obs Mean (variance) No of obs
Placebo Treatment

2 4.35(58.00) 45 4.09(45.24) 44
4 3.95(34.53) 42 3.72(46.24) 44
8 3.78(30.22) 41 2.55(17.43) 40

10 2.44(8.30) 41 4.63(109.37) 40
12 3.90(97.84) 40 2.95(27.49) 39
14 2.55(11.64) 40 3.71(43.31) 39
16 1.90(6.55) 40 2.39(22.63) 37
18 3.00(56.33) 7 0.18(0.16) 11
20 3.00(4.50) 2 1.13(2.41) 8
27 - - 2.33(16.33) 3

Table 2: Epilepsy study: The value of both versions of the Bayesian selection
criteria for each of the considered models for the epilepsy data sets: Poisson
mixed effects model (PMM), Poisson-gamma mixed effects model (PGMM),
Zero-inflated Poisson mixed-effects model (ZIPMM) and Zero-inflated -gamma
mixed effects model (ZIPMM)

Criteria PMM PGMM ZIPMM ZIPGMM
cDIC 6045.68 4840.36 5331.78 4764.96
cWAIC 5966.37 4291.05 5215.23 4264.97
cLPML -2132.48 -2607.61 -2145.52 -2983.19
mDIC 6203.09 6047.12 6383.50 6013.77
mWAIC 6213.70 6025.52 6472.96 6006.03
mLPML -3016.79 -3049.28 -3085.34 -3087.93

7 Simulation study

Three simulation studies illustrate the conditional and marginal selection cri-
teria’ performance in identifying the true data-generating model. These sim-
ulations are based on equation (15) discussed above under varying conditions
and settings. The simulation studies mimic some aspect of the data set de-
scribed in Section 6.2 . Using the R procedure glmer, we obtained the max-
imum likelihood estimates : β̂1 = −3.96715, β̂2 = −2.12053, β̂3 = 0.94952,
β̂4 = −0.05872, β̂5 = 0.89705, β̂6 = 0.56223, and σ̂2

b0
= 2.36045. Unless spec-

ified, these values will be used as true parameters in the simulation studies
described below. The same options in JAGS, but also the priors and so forth
as described in Section 6.3 were used here. The simulation studies aim to con-
firm the superiority of the marginal criteria over the conditional criteria for
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repeated count data as shown in the past for LMMs (Ariyo et al., 2020, 2019).
Here, we also checked the performance of these criteria when overdispersion is
of concern. More specifically, we were interested in exploring the performance
of the conditional and marginal versions of the three model selection criteria:

– to select the correct data-generating model when: (i) the random effects
structure is known and correctly specified, but the fixed effects part is
unknown, (ii) the fixed effects structure is known and correctly specified,
but the random effects structure is unknown;

– in the absence and presence of overdispersion;
– when the number of covariates is more than the number of subjects.

Also, we aimed to:

– evaluate the performance of the two sampling methods: replication method
& importance sampling in calculating the marginal criteria;

– measure the impact of the number of subjects and number of observations
per subject on the performance of the conditional and marginal criteria
and the two sampling methods.

7.1 Simulation study 1

Here, we generated 300 data sets using the settings described above. We illus-
trate the performances of both versions of DIC, PSBF and WAIC by fitting
three alternative models: (i) the true model (M1) give by equation (15), (ii)
an under-specified model (M0) and (iii) over-specified model (M2). For the
random effect scenario, M0 is given by (15) without trti × log(basei) inter-
actions and M2 is given by (15) with additional covariate trti × log(agei).
Likewise, for fixed effect scenario, M0 is given by (15) without the random
intercept whileM2 is given by (15) with the random intercept and slope. For
these two scenarios, M1 is the true model.
Here, we illustrate the performance of the conditional and the marginal se-
lection criteria in identifying the true model. Additionally, the effects of the
number of subjects in the data were also evaluated in this simulation study
under these two scenarios. Since the number of observations per subject may
influence the performance of the replication method, we evaluated the perfor-
mance of the Bayesian model selection criteria for a moderately large number
of subjects (n = 50) and a varying number of observations per subject.
Table 4 presents the number of times the conditional and marginal criteria se-
lect the data-generating model for different number of observation per subject
when n = 50. As seen in this table, the cluster size significantly influences the
performance of both criteria regardless of the scenario. However, for the fixed
effects scenario, the effect of the cluster on the performance of the marginal cri-
teria is less pronounced. Additionally, the marginal criteria often select model
M1 while the conditional criteria often select the wrong model regardless of
the scenario used. Overall, the marginal criteria outperform the conditional
criteria.
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We also evaluated the performance of the Bayesian selection criteria under the
scenarios discussed above with the assumption that the overdispersion in the
data set is ignored. Here, we introduced an extra parameter θij to simulate
data with overdispersion. For the extra parameter, θij ∼ Gamma(α, 1/α) was
assumed. High, moderate and low overdispersion level was induced by setting
α to be 0.25, 1, 5 respectively. We evaluated the model selection procedures
when overdispersion is ignored in the data set. Here we used three wrong
models: (ignoring overdispersion), models A, B and C which are the same
with M0,M1 and M2 described above. Where model B is the closest to the
data-generating model without overdispersion, the number of times each model
gave the smaller value for model selection criteria is presented in Table 5. As
expected, both criteria performed poorly when overdispersion was ignored. As
the overdispersion increases in the data set, the conditional criteria selected
the model with extra fixed and random effects parameters while the marginal
criteria selected the model without an extra parameter (model B), the closest
model to the data-generating model that ignores overdispersion. These results
are similar to the conclusion in Fitzmaurice (1997) that when overdispersion
is ignored, model selection tends to select a model with too many parameters
and can thus lead to over-interpretation of the parameters. In the Bayesian
context, Millar (2009) advocated the use of the marginalized version of DIC
and Bayes’ factors as the use of the conditional DIC was misleading in the
hierarchical modelling for overdispersed count data.
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Table 4: Simulation 1: The number of times the selection criteria selects the
data-generating model when varying the number of observations per subject
for n = 50.

Number of observations/subject
2 4 8

Scenario Criteria M0 M1 M2 M0 M1 M2 M0 M1 M2

Fixed-Effects cDIC 43 204 53 45 210 45 54 209 37
cWAIC 41 203 56 78 168 54 81 170 49
cLPML 50 202 48 57 204 39 39 217 44
mDIC 49 248 3 42 253 5 39 252 9
mWAIC 52 243 5 47 240 3 40 259 1
mLPML 53 240 7 46 248 6 39 259 2

Random Effects
cDIC 41 52 207 38 47 215 27 49 224
cWAIC 40 54 206 38 16 146 1 12 187
cLPML 21 66 215 21 27 252 21 31 248
mDIC 45 198 51 32 210 58 25 215 60
mWAIC 46 196 58 34 208 53 26 217 57
mLPML 45 198 57 37 211 52 36 214 50

Table 5: Simulation 1: The number of times three model specifications have
the least value when overdispersion in the data set is ignored. For Low (L),
Medium (M) and High (H) overdispersion.

L M H
Scenario Criteria A B C A B C A B C
Fixed-Effects cDIC 33 82 185 31 72 197 29 70 205

cWAIC 37 83 180 38 70 192 31 69 200
cLPML 36 83 181 41 69 190 32 67 201
mDIC 46 229 25 79 190 31 89 186 25
mWAIC 49 221 30 73 199 28 87 180 33
mLPML 40 230 30 77 192 31 84 183 33

Random Effects
cDIC 111 37 152 70 25 195 55 35 210
cWAIC 109 39 152 67 37 196 67 35 198
cLPML 114 46 140 58 42 200 67 36 197
mDIC 54 167 79 91 141 68 114 133 53
mWAIC 90 149 61 97 142 61 103 136 61
mLPML 41 137 122 73 137 90 110 130 60

7.2 Simulation study 2

From each of the PMM, PGMM and ZIPMM described in Section 7.1 we gen-
erated 300 data sets. Data were simulated based on equation (15) together with
parameter estimates and the extra parameters for PGMM are based on yij ∼
Poi(λijθij), with yij and λij as defined above and θij ∼ Gamma(αj , 1/αj),
where αj takes the values 0.25 and n = 50. To ensure balanced data sets, we
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simulated data sets with an equal number of observations per subject which is
equal to 4. Using an appropriate number of replications as discussed in Section
6.1, we computed both the marginal and conditional criteria for all the three
models via a self-written R code.

Different data settings were considered where data were generated from a
particular model (true fit) and the model is evaluated with other alternative
models. For instance, we generated data from the PMM (true fit) and consid-
ered PGMM, and ZIPMM as alternative models. Likewise, we generated data
from the PGMM (true fit) and estimated with PMM and ZIPMM as alterna-
tive models and so on. The number of times when the selection criteria have a
lower value for an alternative model against the true model was recorded and
the percentage of misselection was calculated.
Figure 3 shows the histogram of the differences in selection criteria between
the true model (PMM) and the alternative model fit (PGMM). The figure
shows that the conditional criteria have a wider range of values as compared
with the marginal criteria. Additionally, the marginal criteria have lower val-
ues for the PGMM model than the data-generating Poisson model in only
about 2% of the times. This reflects the small penalty for the inclusion of an
extra parameter in the PGMM model. Conversely, the fit of PGMM to PMM
data has smaller values of the conditional criteria in 34.2%, 28.0% and 26.6%
times respectively. That is, the conditional criteria select PGMM (model with
extra parameter) which is the wrong model about 65.8%, 72.0% and 73.4 %
respectively. This reflects the tendency of the conditional criteria to select a
model with an extra parameter.

Similarly, Figure 4 shows that the conditional criteria prefer the ZIPMM
model (model with extra parameter) often as against the Poisson data-generating
model. In fact, the percentage of times the wrong model was selected increases
from 34.2% to 52.0% for cDIC. Notwithstanding the narrow differences as
shown in Figure 4. The marginal criteria, on the other hand, showed superior
performance, preferring the ZIPMM model to the data-generating Poisson
model less often.

When the PMM and ZIPMM models were fitted to the data generated
from PGMM, the marginal criteria preferred more often the PGMM (the data-
generating model) while the conditional criteria selected the PMM (see Figures
3 and 4). These results show the superior performance of marginal criteria in
identifying the true data-generating model in count data sets. This is similar
to the results earlier obtained for LMM (Ariyo et al., 2020, 2019; Ariyo and
Adeleke, 2021), and for GLMM (Millar, 2009; Quintero and Lesaffre, 2018).

7.3 Simulation study 3

Here, we evaluated the performance of the two sampling techniques: replication
and importance sampling. Following the simulation study described in Section
7.1, we generated 300 data sets from equation (15) under different number of
subjects and observations/subject with α = 0.25. The performance (in %) of
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Fig. 3: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the PGMM (fitted model) minus the selection criteria under
the true model from 300 simulated PMM data sets. That is the percentages
of times each criteria select wrong model.

the marginal criteria for both sampling methods in selecting the correct data-
generating model is recorded in Table 6. It can been seem in the table that
the performance of the importance sampling techniques fluctuate for a large
subject ( i.e n ≥ 200 ) and a larger number of observations/subjects. This
obviously shows that this sampling method needs improvement for n ≥ 200.
However, the advantage of importance sampling is shown when the number
of subjects and/or observations/subject is large (n < 200) as the replication
method becomes impracticable (i.e analysis taking too long time; i.e running
several days) for a large number of subjects and/or observations/subject. This
affirmed the results in Quintero and Lesaffre (2018).
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Fig. 4: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the ZIPMM (fitted model) minus the selection criteria under
the true model from 300 simulated PMM data sets.That is the percentages of
times each criteria select wrong model.

Table 6: Simulation 3: The performance (in % ) of the marginal criteria in
selecting the data-generating model (M1) when varying the number of sub-
jects and the number of observations/subject using two sampling methods:
the replication method (Rep) and importance sampling (IS).

5 10 30 60
Criteria # of subjects Rep IS Rep IS Rep IS Rep IS
mDIC 50 78.0 76.7 78.7 79.0 36.7 76.7 28.3 76.0

100 80.7 82.0 80.0 80.0 31.7 78.7 24.7 74.7
200 49.0 49.0 47.7 47.0 20.3 20.3 - 24.7
500 14.3 45.0 1.0 45.3 - 45.7 - 46.3

mWAIC 50 77.7 77.7 78.0 80.7 35.3 75.3 26.7 71.0
100 81.3 81.7 81.7 80.3 31.0 78.3 24.0 71.3
200 50.7 50.3 46.3 48.3 19.7 20.7 - 29.7
500 14.7 44.7 2.7 46.7 - 45.3 - 50.3

mLMPL 50 77.3 77.0 79.0 81.7 34.0 77.0 21.3 75.0
100 80.0 81.7 82.3 79.0 36.3 78.7 20.7 70.7
200 42.7 51.3 47.0 48.7 19.0 23.7 - 23.7
500 15.0 45.7 2.3 46.3 - 45.0 - 42.3
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Fig. 5: Simulation 2: Bayesian selection criteria (top: conditional, bottom:
marginal) under the Poisson model minus the selection criteria under the true
model from 300 simulated PGMM data sets.That is the percentages of times
each criteria select wrong model.

8 Conclusion

In this paper, we aimed to promote the usage of the marginal criteria for model
selection. As such, we showed the suboptimal performance of the conditional
criteria when using Poisson mixed-effects models in case of overdispersion,
too many zeros or both in longitudinal count data and when the number of
repeated measurements is less than number of independent variables. It is
shown here that these cases affect the performance of the information criteria.
By evaluating the advantages/disadvantages of the two sampling techniques
(i.e., replication and importance sampling), we showed that importance sam-
pling is advantageous for calculating marginal criteria in cases with a large
number of observations/subjects. An R function has been developed and is
available that computes the marginal criteria for both the replication method
and importance sampling.

The measures considered in this paper evaluated the selection of the best
model among a number of proposed models. The best model is not neces-
sarily a good model and needs to be examined for its goodness-of-fit to the
data.Traditional steps in evaluating the goodness-of-fit of the model to the
data is a residual analysis and the discovery of influential observations. But
influential observations can affect the choice of the model when based on the
considered model selection criteria. In De Oliveira et al. (2021) a new cross-
validated Bayesian influence measure based on Bregman Divergence has been
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suggested. The authors have applied their measure on a binary random-effects
meta-analysis of 14 studies, aiming to find the influential study (result) based
on the conditional version of the GLMM. This is the appropriate way to mea-
sure the impact of clusters on the estimated fixed effects. Likely, influential
clusters on the conditional version of the GLMM will also have a high effect
on the marginal version of the GLMM.
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