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ABSTRACT
We explore the performance of three popular Bayesian model-selection criteria when
vague priors are used for the covariance parameters of the random effects in a linear
mixed effects model (LMM) using an extensive simulation study. In a previous pa-
per, we have shown that the conditional selection criteria perform worse than their
marginal counterparts. It is known that for some ‘vague’ priors, their impact on the
estimated model parameters can be non-negligible e.g for the priors of the covariance
matrix of the random effects in a longitudinal LMM. We evaluate here the impact of
vague priors for the covariance matrix of the random effects on selecting the correct
LMM using classical Bayesian selection criteria. We consider marginal and condi-
tional criteria. For the random intercept case, we assign different vague priors to the
variance parameters. With two or more random effects, we considered five different
specifications of Inverse-Wishart (IW) prior, five different separation priors and a
joint prior. The results show again the better performance of the marginal over the
conditional criteria and the superiority of joint and separation priors over IW in all
settings. We also illustrate the performance of the selection criteria on a practical
data set.

KEYWORDS
Linear mixed effects models, model selection criteria, vague priors, covariance
matrices

1. Introduction

The linear mixed-effects model (LMM) is a popular model to analyse longitudinal
data with a Gaussian response, especially when the outcomes have been recorded at
irregular time points. The model consists of fixed effects and random effects. The
fixed effects represent the effect of covariates on the population average, while the
random effects represent individual-specific deviations in profiles and account for the
correlation among responses from the same individual. Selecting the appropriate LMM
implies determining the appropriate fixed effects part and random effects part such
that the model fits the current and future data well.
In a Bayesian framework, there is little agreement on the appropriate model selection
criteria. Three criteria are currently popular in practice. The deviance information
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criterion (DIC) is by far the most popular criterion because it can be easily obtained
with the popular Bayesian software packages WinBUGS and OpenBUGS. The pseudo-
Bayes factor (PSBF) and the widely applicable information criterion (WAIC) are in-
creasingly in use but are not automatically obtained in the classical Bayesian packages,
except for WAIC which is provided by Stan (Carpenter et al. 2017). These three model
selection criteria may be computed on the hierarchical specification of the LMM, i.e.
given the random effects. This then leads to the conditional version of the selection
criteria. However, the marginal version of the LMM, i.e. the model averaged over the
distribution of the random effects, can be analytically determined. Selection criteria
based on this marginal likelihood are then referred to as marginal selection criteria. It
is most popular, but also in general easier, to fit the hierarchical version of the LMM
in Bayesian software thereby making use of the data augmentation algorithm. Indeed,
the conditional version of DIC is provided by most Bayesian statistical packages, but
also for the other selection criteria the conditional version is easy to compute from
the generated Markov Chain Monte Carlo (MCMC) samples. Consequently, marginal
versions of the selection criteria are basically never reported. The conditional criteria
have, however, been criticized in the literature (Chan and Grant 2016; Ariyo et al.
2019; Merkle et al. 2018). Theoretical arguments and simulation results point out that
model selection based on conditional criteria is inferior to model selection based on
marginal criteria. This was for instance shown in Ariyo et al. (2019) for the LMM.
Here, we examine the impact of vague priors on the model parameters on the per-
formance of the model selection criteria. Given the inferior results of the conditional
selection criteria, we are particularly interested to see whether the marginal selection
criteria highly depend on the chosen vague priors for the model parameters. However,
since we realize that the conditional selection criteria will remain popular despite the
theoretical and empirical evidence, we also checked the impact of the vague priors on
the conditional selection criteria.
While for the fixed effects most often normal priors with a large variance are chosen,
there is no standard choice for the vague prior of the variance terms of the random
effects in LMMs (Kass et al. 2006). The impact of a vague prior on the posterior distri-
butions can also be more pronounced when the data set is small and/or the number of
units contributing to the estimation of the between-unit variation is small (Lambert
et al. 2005). In this situation, Lambert et al. (2005) argued that informative prior
distributions are required.
When the LMM involves two or more random effects, a prior on their covariance matrix
is required. The Inverse Wishart (IW) distribution is the natural choice for a covari-
ance matrix due to its conditional conjugacy. However, problems have been reported
with the use of the IW prior as it assumes the same amount of prior information for
every variance parameter. More importantly, it assumes a prior relationship between
the variances and correlations (Alvarez et al. 2014). These issues have a larger im-
pact when the dimension of the covariance matrix increases. Several alternative priors
for the covariance matrix have been suggested in the literature. Firstly, the IW prior
has been given an hierarchical structure. Secondly, various priors have been suggested
separating the priors on the variance and correlation parameters. Such separation pri-
ors has been shown in the literature to be more efficient than the classical IW prior
(Alvarez et al. 2014; Huang et al. 2013). Among the merits of separation priors is
their flexibility in incorporating informative prior information. However, things be-
come somewhat more complicated with three or more random effects because certain
restrictions must be imposed in order to ensure positive definiteness of the covari-
ance matrix (Hurtado Rúa et al. 2015; Barnard et al. 2000; Wei and Higgins 2013;
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Huang et al. 2013). Other priors in which the variance terms of both the measurement
errors and the variance-covariance of random effects are modelled jointly have been
suggested.These priors have been shown to reduce bias and improve efficiency in the
posterior inference (Demirhan and Kalaylioglu 2015; Kalaylioglu and Demirhan 2017).
Just like for separation priors, certain restrictions are needed to ensure the positive-
definite of the covariance matrix.
The aim of this study is to ascertain if the choice of the vague prior, especially on vari-
ance and covariance parameters, is important for model selection. More specifically,
we wish to measure how much different vague priors impact the marginal selection cri-
teria, but given their popularity we also checked this for the conditional criteria. The
remainder of this article is organized as follow. In Section 2 we introduce the Bayesian
linear mixed model for longitudinal data. We present the model selection criteria in
Section 3. In Section 4 previous findings are discussed while in Section 5 we explore
the vague prior for the covariance matrix of the random parameters. In Section 6,
we assess the sensitivity of different vague covariance priors on random effects on the
performance of the above-mentioned model selection criteria using a simulation study.
An illustration on a practical data set is shown in Section 7. Main conclusions and a
discussion are given in Section 8.

2. The linear mixed-effects model (LMM)

Let Yi = (ymii . . . , ymi,i)
T be an mi-dimensional response vector of (longitudinal)

measurements for the i-th (independent) individual, Xi and Zi are (mi × p) and
(mi × q)-dimensional covariate matrices, respectively and β a p-dimensional vector of
fixed effects. The classical LMM is then given as (Laird and Ware 1982)

Yi = Xiβ + Zibi + εi, (i = 1, . . . , n), (1)

with the residual component vector εi ∼ Nmi
(0,Σi), where Σi is an (mi×mi) positive-

definite covariance matrix with Σi = σ2
ε Imi

where Imi
denotes the identity matrix of

dimension mi. The q×1 random effects vectors are also assumed normally distributed,
i.e. bi ∼ Nq(0,D), where D is a (q× q) positive-definite covariance matrix. Model (1)
is called the linear mixed-effects model because it combines the fixed-effects structure
β with the subject-specific random effects b1, . . . ,bn. Inference may be focused on
the regression coefficients β, the unit-specific coefficients bi or the variance compo-
nents (Σi = σ2Imi

and D). Model (1) is the hierarchical version of the LMM, which
provides the conditional LMM likelihood. The marginal version of the LMM is ob-
tained as follows. Let f(Yi|bi) and f(bi) be the (Gaussian) density functions of Yi

and random effects respectively, then the marginal density function of Yi is given
by f(Yi|β, σ2,D) =

∫
f(Yi|bi,β, σ2)f(bi|D)dbi. It can easily be shown that, with

Gaussian densities, the marginal version of (1), is a multivariate normal distribution
given by

Yi ∼ Nmi
(Xiβ,ZiDZTi + Σi), (i = 1, . . . , n). (2)

The Bayesian LMM is obtained when prior distributions are given for all model pa-
rameters. Hence, additional to model (1) or equivalently model (2) we specify priors
for β,D and σ2. Classical choices for these priors are: β ∼ Np(β0,B0),D ∼ IW (k,V)
and σ−2 ∼ Gamma(v0, δ0).
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Typically, one needs MCMC methods to estimate the model parameters, such as Gibbs
sampling or Metropolis-Hastings algorithm (Geman and Geman 1993; Lesaffre and
Lawson 2012).

3. Bayesian model selection

Model selection is an important step in a statistical modelling exercise. In a frequentist
context one distinguishes model selection for nested models versus model selection
with non-nested models. In the first case formal tests, most often likelihood ratio
tests, are used, while in the second case typically information criteria such as Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC) are in use. In
a Bayesian context, the same model selection criteria apply for nested and non-nested
models.
The Deviance Information Criterion (DIC) is an adaptation of AIC to the Bayesian
context. DIC is the most popular Bayesian model selection criterion, because it has
been implemented in the popular software WinBUGS, and later also in other popular
Bayesian software such as OpenBUGS. However, the literature has been critical about
its theoretical foundations. This is sometimes reflected in practice when the associated
degrees of freedom, pDIC , is estimated negative thereby making the criterion useless
(Spiegelhalter et al. 2014). As a result, there has been increasing interest to use other
criteria, such as the pseudo-Bayes factor (PSBF) and the Widely Available Information
Criterion (WAIC). WAIC has been recently advocated as having a similar flavor as
DIC but with better properties (Watanabe 2010; Millar 2018). There is, however, still
no consensus about the best criteria for model selection in a Bayesian context.
For reasons of completeness, we will discuss the three most popular Bayesian model
selection criteria in more detail.

3.1. The deviance information criterion

The deviance information criterion (Spiegelhalter et al. 2002) was developed for
Bayesian model selection and is derived from AIC by replacing frequentist concepts
by their Bayesian counterparts. As such, DIC expresses the predictive accuracy of the
model in a Bayesian way. The frequentist mean is replaced by the posterior mean
of the model parameter, i.e. θ̄ = E(θ|y), and frequentist integration is replaced by
Bayesian integration. DIC is then defined as

DIC = −2 log p(y|θ̄) + 2pDIC , (3)

where pDIC corresponds to the effective number of parameters, given by

pDIC = −2 Eθ|y[log p(y|θ)] + 2 log[p(y|θ̄)],

which quantifies the number of parameters to be estimated after incorporating the
prior information into the model. From (3) it is clear that low values of DIC indicate a
better fit of the model to the data. DIC is popular in practice because it is a by-product
of the MCMC calculations and implemented in popular Bayesian software. Namely,
with the deviance given by D(θ) = −2 log p(y|θ), pDIC and DIC can be approximated
by making use of θ1, . . . ,θK , which are the sampled values of θ from a converged
MCMC chain. We then have pDIC = D(θ) −D(θ̄) and DIC = D(θ̄) + 2pDIC , where
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D(θ) ≈ 1
K

∑K
k=1D(θk) and D(θ̄) ≈ D( 1

K

∑K
k=1 θ

k). We note that there are different
versions of DIC implemented in the popular Bayesian packages, where the difference
is primarily due to a different definition of pDIC .
DIC (and pDIC) have received considerable criticism in the statistical literature. First
of all, DIC is not invariant to monotonic parameter transformations, i.e. DIC changes
value when based on ψ = h(θ) rather than on θ. Furthermore, it has been shown that
the asymptotic properties upon which DIC is based, are not fulfilled in hierarchical
models (Li et al. 2012), see also Section 4. Note also that it is not clear how to compute
DIC when there are missing responses. For this reason, different versions of DIC have
been explored in Celeux et al. (2006).

3.2. The pseudo Bayes factor

A natural Bayesian selection mechanism is to choose the model with the largest
posterior probability. Suppose that there are L models M1, . . . ,ML to choose from,
with prior probabilities p(M1), . . . , p(ML), respectively. The posterior probability
of model M` is determined by computing the marginal likelihoods p(y|M`) =∫
p(y|θ`,M`) p(θ`|M`) dθ` (` = 1, . . . , L) and is given by

p(M`|y) =
p(M`)p(y|M`)∑
k p(Mk)p(y|Mk)

=
p(M`)BF1,2[M` : Mb]∑
k p(Mk)BF1,2[Mk : Mb]

, (4)

where BF1,2[M` : Mb] is the Bayes factor, which compares model M` to a reference
model Mb and is given by

BF1,2[M` : Mb] =
p(y|M`)

p(y|Mb)
.

The classical Bayes factor is difficult to use in practice because: (1) the marginal like-
lihood is not defined for improper priors, (2) priors must be well chosen otherwise
the classical Lindley-Bartlett paradox (Bernardo 1980) comes into play and (3) its
computation can be very demanding, sometimes even worse than computing the pos-
terior distribution (Lesaffre and Lawson 2012)[p. 273]. Several versions of the original
Bayes factor have been suggested to make the computations feasible and practical. A
popular version is the pseudo-Bayes factor (PSBF), where the numerator and denom-
inator in (4) are replaced by the product of the marginal likelihoods over all subjects,
whereby the marginal likelihood for the ith subject is evaluated in yi and is based
on the posterior of the model parameters obtained from all other subjects, i.e. from
y(i). This yields a ratio of two pseudo-likelihoods, each being the product of n con-
ditional predictive ordinates (CPOs)(Gelfand and Dey 1994). The CPO for subject
i under model M` is the probability of observing yi given model M` fitted with all
observations in the sample except for yi i.e CPOi,` = p(yi|y(i),M`). The conditional
predictive ordinate can be approximated making use of the converged MCMC sample
θ1, . . . ,θK as follows:

CPOi,` ≈

[
1

K

K∑
k=1

1

p(yi|θk` ,M`)

]−1

.

To compute the PSBF, the log-pseudo likelihood (LPML) for each model is com-
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puted by summing up CPOi,` across the n subjects, i.e, LPML` =
∑n

i=1 log(CPOi,`).
Then to compare two models M1 and M2, the pseudo-Bayes factor PSBF1,2 favors
model M1 to model M2 when PSBF1,2 = exp(LPML2 − LPML1) < 1. Note, that we
have adapted the original definition of PSBF in order that small values imply better
models. In contrast to DIC, the PSBF is invariant to monotonic parameter transfor-
mations.

3.3. The widely applicable information criterion

The widely applicable information criteria (WAIC)(Watanabe 2010) measures the
predictive accuracy of the model based on the log-posterior predictive distribution
log pθ|y(ỹi) of the parameter vector θ for a future observation ỹi. The predictive ac-
curacy for a future unknown ỹi is expressed by the log-predictive distribution (elpd)
as elpdi = Ef [log pθ|y(ỹi)] =

∫
log pθ|y(ỹi)f(ỹi)dỹi, and f is the unknown distribu-

tion under the true model. The measure of predictive accuracy can also be described
with a point estimate θ̄, often taken equal to E(θ|y), as the expected log predic-
tive distribution given the point estimator elpdθ̄ = Ef (log p(ỹ|θ̄)). The log pointwise
predictive distribution (lppd) based on the observed data y1,y2, ...,yn, is calculated
as follows lppd = log

∏n
i=1 pθ|y(yi) =

∑n
i=1 log

∫
θ p(yi|θ)p(θ|y)dθ. In practice, lppd

can be estimated with the converged MCMC sample θ1, . . . ,θK from the posterior

distribution as ̂lppd =
∑n

i=1 log

[
1

K

∑K
k=1 p(yi|θ

k)

]
. The expected log pointwise pre-

dictive density elppd is estimated as the log pointwise predictive distribution lppd

with a bias correction using the WAIC criterion êlppdWAIC = ̂lppd − pWAIC . The
measure pWAIC corresponds to the estimate of the effective number of parameters

given by pWAIC = 2
∑n

i=1

[
log

(
1

K

∑K
k=1 p(yi|θ

k)

)
− 1

K

∑K
k=1 log p(yi|θk)

]
. WAIC

can be alternatively expressed as ̂lppd =
∑n

i=1 log

[
1

K

∑K
k=1 p(yi|θ

k)

]
. WAIC =

−2̂lppd + 2pWAIC . As for PSBF, WAIC does not change when θ is replaced by
ψ = h(θ), with h a strictly monotone function. As for DIC, smaller values of WAIC
indicate a better model.

4. Previous findings

In this paper, we evaluate the dependence of vague priors on the performance of
Bayesian selection criteria for the linear mixed model. As seen in, e.g. Quintero and
Lesaffre (2018), the selection criteria can be based on the hierarchical or conditional
version of the LMM given by model (1) or on the marginal version of the LMM based
on model (2). In the first case, one speaks of a conditional selection criterion. We
have for the above three popular criteria the conditional DIC (cDIC), the conditional
PSBF (cPSBF) and the conditional WAIC (cWAIC). In the second case, we have
the marginal versions of the criteria denoted here as: mDIC, mPSBF and mWAIC.
It has been argued that the choice of likelihood (conditional or marginal) should be
motivated by the aim of the study (Vaida and Blanchard 2005). For example, in a
clinical trial that evaluates a new drug on patients enrolled within an hospital, cDIC
may be used to conduct model selection if the interest lies on the efficacy of the
new drug at the hospitals of the study. However, mDIC is the appropriate model
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selection criterion when one wishes to evaluate the efficacy of the new drug in all
hospitals. In the statistical literature, there is evidence of the better performance of the
marginal model selection criteria. In a slightly different setting, Chan and Grant (2016)
observed in a simulation study that cDIC usually selects an overfitted model but that
mDIC performs better. In general hierarchical models, Quintero and Lesaffre (2018)
concluded via a simulation study that mDIC selects (much) more often the correct
model than cDIC. They also provided R software to compute the marginal criteria via
a dedicated sampling algorithm. The same result was obtained for cWAIC by Millar
(2018) and therefore he recommended to use mWAIC. There is also evidence that the
same is true for an item response model (Li et al. 2016; Millar 2018; Merkle et al. 2018).
Furthermore, Ariyo et al. (2019) compared the conditional and marginal versions of
DIC, PSBF and WAIC for the Gaussian LMM, the skew-normal LMM (SNLMM) and
the skew-t linear mixed model (STLMM) via an extensive simulation study. Both the
balanced as well as the unbalanced case was studied for longitudinal data. Both the
random intercept case as well as the 2- and 3-dimensional case for the random effects
part were considered. The simulation results showed a strong advantage of the marginal
criteria in selecting the true data-generating model. Since the marginal likelihood for
the LMM, SNLMM and STLMM have a closed form it is relatively easy to compute
these marginal criteria. In addition, the model selection performance of the conditional
criteria decreases with increasing sample size (increasing number of random effects),
while the performance of the marginal criteria improves with increase in sample size.
Furthermore, to facilitate the computations of the marginal criteria in practice, R
functions were developed, which can be downloaded from https://ibiostat.be/online-
resources/bayesian. In the course of this study, it was observed that the choice of the
prior may affect the ability of the criteria to select the appropriate data-generating
model, especially for small sample sizes. The appropriateness of vague priors is most
often checked by evaluating their effect on estimation, but here we check their impact
on the performance of DIC, PSBF and WAIC in selecting the correct model. More
specifically, we wish to check for the conditional and marginal criteria: (1) the impact
of vague priors on selecting the best model and (2) whether there is a best vague prior
in this context. In principle, we could have limited ourselves to the marginal version
of the criteria since the conditional criteria showed repeatedly not to perform well.
But, since many will continue to use the conditional criteria because of their practical
advantage, the above aims are of practical interest.

5. Vague prior distributions for the LMM

An essential step in statistical modelling is the choice of the appropriate statistical
model for the data at hand. This is not only an essential step, but also a notoriously
complex part of statistical modelling involving statistical tools and substantive knowl-
edge. In this paper we look at model selection in a Bayesian context. That is, we
assume that we have a rather limited number of models to choose from. In the model
selection step it is customary to choose vague priors for the model parameters. In
contrast, informative priors are typically chosen when an appropriate model is already
available. For a LMM (vague) priors must be specified for the fixed effects and the
variance components. For the fixed effects we have taken vague normal priors. Here we
focus on the vague priors for the covariance matrix of the random effects. We consider
the univariate case of a random intercept and the multivariate case of several random
effects.
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5.1. Vague priors for the random intercept

Various vague priors have been suggested for the level-2 variance of the Gaussian
hierarchical model. This model is a special case of the LMM with only a random
intercept. In that case, (1) can be written as

Y i ∼ N(Xiβ + 1mi
bi, σ

2
ε ) i = 1, . . . , n. (5)

with 1mi
is a mi × 1 vector of ones, and where the random intercept bi ∼ N(0, σ2

b ).
The improper prior p(σ2) ∝ 1/σ2, suggested by Jeffreys for the simple case of N(µ, σ2)
yields an improper posterior for model (5) if applied to σ2

b . This was recognized long
time ago, see e.g Lesaffre and Lawson (2012). In the early days of the development and
use of WinBUGS, this improper prior was replaced by σ2

b ∼ IG(0.001, 0.001), where
IG(ε, ε) refers to an inverse gamma distribution with two parameters equal to ε. Later
on, it was realised that the posterior on σ2

b depends much on the choice of the value
of ε. This was a trigger to suggest alternative vague but proper priors for σ2

b . We note
that, in contrast to above Jeffreys prior, the proper vague priors depend on the scale
of the data. Hence, the vague prior distributions for σb listed below are not invariant
to change of scale in the data. The following vague but proper priors for σ2

b have been
considered in the literature:

(1) 1
σ2
b
∼ Gamma(0.001, 0.001). This was a popular prior distribution for variance

terms used initially in the WinBUGS Examples I and II documents (Lunn et al.
2000);

(2) log(σ2
b ) ∼ Uniform(−10, 10). This prior distribution was suggested in the analysis

of cluster randomized trials (Spiegelhalter 2001);
(3) 1

σ2
b
∼ Pareto(1, 0.001). This prior was suggested in genetic epidemiology models

(Burton et al. 1999; Scurrah et al. 2000) and is equivalent to Uniform(0, 1000)
on the variance scale;

(4) σb ∼ Uniform(0, 100). This prior was recommended by Spiegelhalter et al. (2004);
(5) σb ∼ half−t(0, 1, 1). Gelman (2006) suggested the use of half-t prior with df=1

(half-Cauchy) on the standard deviation when the number of groups is small.
Since a half-t prior appear to be completely harder to work with Huang et al.
(2013), we give the precision parameter a scaled gamma distribution which is
equivalent to a half-Cauchy prior (with mean zero) on the standard deviation
(Wand et al. 2011).

Note that the above priors are appropriate for the scale of the simulated data, but
also for the scale of the data in the analysis of the chicken data set in Section 7.
Furthermore, the prior for the variance of the measurement error, σ2

ε is given an
IG(0.001, 0.001) prior, which is a classical choice.

5.2. Vague priors for the covariance matrix of the random effects

Specifying an appropriate prior for a covariance matrix has been the topic of intensive
research in the last two decades. The mathematically convenient prior for a covariance
matrix is given by the Inverse Wishart (IW) distribution. This prior is often used in
Bayesian modelling for an unknown covariance matrix due to its conditional conju-
gacy and its implementation in most of the Bayesian statistical software, but there
are practical problems with this prior. In next subsections we review the problems
involved with the Inverse Wishart prior, then we discuss some generalizations of this
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prior to improve convergence properties and its ability to represent (absence of) prior
knowledge in an appropriate manner. Note that the same inverse gamma prior for σ2

ε

will be taken as in Section 5.1.

5.2.1. The Inverse Wishart prior and variations

The conditional conjugate prior for the covariance matrix D in the linear mixed model
(1) is the IW distribution (Lesaffre and Lawson 2012; Schervish 2012)

D ∼ IW (k,V ),

where V is a q×q positive semi-definite scale matrix and k(≥ q) is the df. V is used to
position the IW distribution in the parameter space, and k sets the certainty about the
prior information in the scale matrix (Hurtado Rúa et al. 2015). For instance, to obtain
a minimally informative prior, k ≈ q appears appropriate (Gelman et al. 2014; Gelman
and Hill 2007). When k = q+1, the marginal distribution of the correlations is uniform,
but their joint distribution is not (Tokuda et al. 2011). Further, the larger k, the more
informative is the IW distribution (Gelman et al. 2014; Gelman and Hill 2007). In
JAGS, the standard choice is to take small values for the diagonal elements of V with
the degrees of freedom set equal to the dimension of the matrix. However, setting the
diagonal elements to larger values also influences the position of the IW (Schnell et al.
2016). In other words, specifying an IW prior distribution requires balancing the size
of V and the value of k, but it is not clear how to choose the diagonal elements in V .
In addition, varies studies have shown that the IW prior is problematic, namely: (1)
there is over-dependence in the posterior distribution of the covariance matrix when
data is sparse (i.e small number of clusters), (Quintero and Lesaffre 2017; Gelman
2006); (2) the uncertainty for all variances is controlled by a single degree of freedom
parameter (Gelman et al. 2004); (3) there is a priori dependence between the standard
deviations and the correlation (Tokuda et al. 2011) and (4) the marginal distribution
for the variances has low density in a region near zero (Gelman 2006). In addition,
convergence may be difficult with the IW prior. This triggered Gelman et al. (2008)
to suggest parameter expansion techniques, which primarily improve the convergence
of the MCMC algorithm. Variations of the classical IW prior have been suggested to
improve convergence of the MCMC computations, and to better express (absence of)
prior information. OMalley and Zaslavsky (2008) suggested the scaled Inverse Wishart
prior, which is based on the IW prior but with additional parameters to better specify
the prior information on the variances. Another variation is suggested by Huang et al.
(2013), who suggested an hierarchical Inverse Wishart prior for D:

D | d1, . . . , dq ∼ IW(v + q − 1, 2vdiag(1/d1, . . . , 1/dq)),

dk ∼ IG(1/2, 1/A2
k), k = 1, . . . , q,

(6)

where diag(1/d1, . . . , 1/dq) denotes a diagonal matrix with 1/d1, . . . , 1/dq on the di-
agonal and v, A1, . . . , Aq are positive scalars. The authors showed that (6) produces
half-t(v,Ak) distributions for each standard deviation of D and that it is a matrix
generalisation of the half-t prior of Gelman (Gelman 2006). Large values of Ak im-
ply a weakly informative prior on standard deviations as in Gelman (2006). Huang
et al. (2013) also showed that the choice of v = 2 leads to marginal uniform distribu-
tions for correlation terms ρj,k, j 6= k. This prior will be evaluated in our simulated
study and will be referred to as HIW prior, more specifically as HIW(v,A), with
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A = {A1, . . . , Aq}. The performance of both variations on the IW prior has been eval-
uated in a simulation study (Alvarez et al. 2014), who concluded that these priors
show good performance and are definitely much better than the classical IW when the
true variance is small relative to the prior mean, which holds for larger sample sizes.

5.2.2. Separation strategies for modelling covariance matrices

Another class of priors are based on the separation strategy, first suggested by Barnard
et al. (2000). The idea is to decompose the variance covariance matrix D as D =

S
1

2RS
1

2 , where S
1

2 is a diagonal matrix with standard deviations as elements and R
is a q×q matrix of correlations. The next two vague priors are based on this separation
technique. The two correlation priors will be combined with uniform priors on [0,100]
for the elements of S, i.e. the variances. In the first proposal, the correlation matrix R
is factorised as R = LTL, where L is a q× q upper-triangular matrix. A prior is then
placed on the q(q+1)/2 elements in L, i.e. the Cholesky factors Lij (i = 1, . . . , q, i ≤ j).
The following prior ensures unconstrained estimation of variance-covariance matrix
and that the positive semi-definite condition is satisfied (Wei and Higgins 2013):

L1j ∼ U(−1, 1),

Ljj =

√√√√1−
j−1∑
i=1

L2
ij ,

Lij = U

−
√√√√1−

j−1∑
i=1

L2
kj ,

√√√√1−
j−1∑
i=1

L2
ij

 , i < j

(7)

for j = 2, . . . , q, with L11 = 1 to ensure uniqueness. This prior will be referred to as
the Chol prior.
Another approach is to use the spherical decomposition of the correlation matrix first
suggested by Pinheiro and Bates (1996). In this approach, the Cholesky decomposition
is parametrized by sine and cosine functions as follows. Setting L11 = 1 and let k =
2, . . . , q, we have

Lk1 = cos(φk2),

Lk2 = sin(φk2)cos(φk3),

...

Lk,k−1 = sin(φk2)sin(φk3) . . . cos(φkk),

Lk,k = sin(φk2)sin(φk3) . . . sin(φkk).

Uniform (0, π) priors, with π = 3.1415, are given to the φkm parameters in-order to
ensure the uniqueness of the spherical parametrization. Note that the (i, j)th element
of R is the inner product LTi Lj and LTkLk = 1, where Lk is the kth column of L.
This prior is referred to as Spherical prior.
Daniels and Kass (1999) proposed a separation prior that puts a distribution on the
correlations so that they will end up shrinking toward 0. To this end, they proposed a
normal distribution for the Fisher’s z -transform on each of the q(q− 1)/2 correlations
ρ: z(ρ) = 1

2 log(1+ρ
1−ρ). To guarantee a positive define matrix D, the foregoing normal
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distributions on the z -transformed correlations needs to be truncated over the
relevant values of the correlations (Daniels and Kass 1999). For a single ρ, assumed
here and representing compound symmetry, a half-normal distribution for z(ρ) is
assumed. When the correlations are allowed to differ, the constraints to satisfy
positive definiteness are more complicated. Further, the authors assigned a prior on
the unknown variance σ2

ρ and flat priors on the diagonal elements of D. Christiansen

and Morris (1997) considered a hyper-prior on σ2
ρb , with π(σ2

ρb) ∝ (c + σ2
ρb)
−2 and

c is a constant that represents a variance. For instance, c can be set to be 1
n−3 , the

variance of the Fisher-z transformation Hurtado Rúa et al. (2015). Similar to the
approach of Hurtado Rúa et al. (2015), we assigned IG(0.1,0.1) prior for variance
parameters and a truncated normal distribution prior for z(ρ). We refer this prior as
the Fisher-z prior.
Barnard et al. (2000) proposed the separation strategy whereby the q × q correlation
matrix R has a joint uniform distribution on [-1,1]q. However, the effective algorithm
to draw R uniformly is computationally demanding for q ≥ 3 due to the positive
definite constraint. We used here the approach of Tokuda et al. (2011), which is based
on the results shown by Joe (2006). He proved that a q-dimensional positive definite
correlation matrix R = (ρij)i,j=1,...,q can be written in terms of the correlations ρi,i+1

and the partial correlations ρij;i+1,...,j−1 for (j − 1) ≥ 2. These parameters can take
independently values in the [−1, 1]. Therefore, he concluded that one can generate a
random positive definite correlation matrix by choosing independent distributions F ij ,
1 ≤ j ≤ q for these parameters (correlations and partial correlations). An appropriate
choice for F ij leads to a joint density for ρij:1≤i<j≤q that is proportional to det(R)η−1,
where η > 0. When η = 1, Lewandowski et al. (2009) proved that the marginal
distribution of each correlation is a symmetric translated Beta(q/2,q/2)-distribution
on the interval [-1,1]. Consequently, the marginal distribution of each correlation
becomes more concentrated around zero as q increases in order to satisfy the positive
definite constraint. Note also that Joe proved that his algorithm is able to sample
from a joint uniform distribution on [-1,1]q. Tokuda et al. (2011) visualized the
implied distribution of D and they observed that for this prior the correlations are a
priori independent of the standard deviations. There are several options for the prior
distribution on the diagonal elements of D (OMalley and Zaslavsky 2008). Here, we
assigned Gelman’s folded half-t (Gelman et al. 2008) priors for elements of D. In our
simulations we considered q = 1, 2, 3, then in each case we sampled (each) partial
correlation from a translated Beta(q/2, q/2) on [-1,1]. We refer to this prior as the
Partial prior.

5.2.3. A joint prior for error variance and random effects variance-covariance
matrix

Often, priors for error variance and variance-covariance matrix of the random effect
are independently modelled. However, it has been shown by Demirhan and Kalaylioglu
(2015) and by Kalaylioglu and Demirhan (2017) that a joint prior for these variance
terms is more appropriate. Hence, we compare the performance of the conditional and
marginal version of the criteria when variance terms are given a joint prior. Kalayli-
oglu and Demirhan (2017) utilized Cholesky decomposition to separate the random
effects variance-covariance D = LLT , where L is a q× q lower-triangular matrix. Fur-
ther, the authors vectorized the diagonal and non-zero off-diagonal matrix L and the
resulting column vectors are denoted by L1 and L2, respectively. Additionally, they
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considered a joint prior distribution for (LT1 , L
T
2 , σ

2
ε , σ

2
b )
T if the response variable is

continuous and (LT1 , L
T
2 , σ

2
b )
T for a dichotomous /polychotomous response. Further-

more, a multivariate distribution prior was assigned to the vector of log-transformed
error variances, log-transformed L1 and untransformed L2. For theoretical details of
this approach, the reader should consult Demirhan and Kalaylioglu (2015); Kalayli-
oglu and Demirhan (2017). To ensure positive-definite of D, priors on L1 need to be
positive while L2 is left unconstrained. The authors’ multivariate priors on D and σ2

ε

are as follows: (
log(L1), L2, log(σ2

ε ) ∼ F (δ, v, λ, ξ)
)T
,

and represent the generalized multivariate log gamma (G-MVLG) (Demirhan and
Hamurkaroglu 2011). We refer to this prior as the G-MVLG prior.

6. Simulation study

We carried out simulation studies anchored on two longitudinal data sets. Two sim-
ulation studies were considered. In the first study, the guiding data set is based on
the well-known balanced dental growth study of Potthoff & Roy (Potthoff and Roy
1964). Measurements were taken on the jaw bi-annually from children between 8 and
14 years of age. The second study is based on the Jimma Infant Survival study, which
was designed to evaluate the risk factors affecting infant survival in the Jimma town
located in Ethiopia (Lesaffre et al. 1999). This data set is unbalanced due to missing
responses, babies that dropped out of the study or died during the study.
In these simulation studies, we used two selection strategies based on (1) minimum
value and (2) absolute difference. For the minimum value strategy, we selected the
model having the lowest selection criterion. For the absolute difference strategy, the
simplest model was selected when the absolute difference between these models is less
than five. This has been suggested in the literature for AIC and BIC, but also for
DIC (Lesaffre and Lawson 2012). We used the same threshold for WAIC and PSBF,
however, our previous work (Ariyo et al. 2019) did not show justification for absolute
difference outside DIC. Therefore, we report for WAIC and PSBF only the results us-
ing minimum value. For both simulation substudies, convergence was evaluated using
the Brooks-Gelman-Rubin (BGR) statistic Brooks and Gelman (1998); Gelman and
Rubin (1992). All model parameters in the simulation study were estimated based on
three chains of 15,000 iterations after discarding the first 7,000 iterations as burn-in.
The thinning factor was set at 10. When BGR was larger than 1.1, further sampling
was performed until BGR < 1.1. The JAGS code used in this study is provided in the
Supporting Materials. Further details on the simulation settings are given below.
The aims of the simulation studies are ultimately to provide practical guidelines. More
specifically, we are interested in:

• The impact of the particular choice of the vague prior on the conditional and
marginal version of the selection criteria. This is the main aim of this paper;
• Which of the criteria to choose in practice, taking also into account that DIC

has some undesirable properties, such as non-invariance to parameter transfor-
mations and that sometimes pDIC < 0 so that we cannot use DIC in that case;
• The difference in performance of the conditional and marginal version of the

criteria. Previously, it has been shown that model selection should be done on
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the marginal criteria, but it is not immediately clear whether the priors affect
the two versions of the criteria equally;
• If the conditional criteria are to be used, whether certain vague priors can still

induce good performance of the conditional criteria;
• The impact of the sample size on the above conclusions.

6.1. The balanced case: the Potthoff and Roy data set

In the Potthoff & Roy study, changes in pituitary-pterygomaxillary distances during
growth of a child were examined at years 8, 10, 12 and 14 on 11 girls and 16 boys
who underwent orthodontic treatment. The following LMM was fitted to the data as
a function of age and sex (0= girls, 1=boys):

Yij = β0 + β1sexi + β2ageij + b0i + εij , (i = 1, . . . , 27; j = 1, . . . , 4), (8)

where Yij is the distance (mm) measure of the ith child at time j, b0i is a random
intercept with b0i ∼ N(0, σ2

b ) and εij ∼ N(0, σ2
ε ). The following restricted maximum

likelihood estimates: β̂0 = 24.97, β̂1 = 1.48, β̂2 = −2.32, σ̂2
b = 2.05 and σ̂2

ε = 3.27 were
obtained and used as true parameters in the simulation study. We then considered two
scenarios.

• Scenario I: We assumed that the random effects structure is known and consid-
ered models that differ in the fixed effects part. Besides the true data-generating
model (8), we considered an overspecified model, which includes an interaction
term age*sex and an underspecified model, which omits sex from the model.
• Scenario II: We assumed that the fixed structure is known and considered

models that differ in the random effects. The overspecified model includes an
additional random slope whereas the underspecified alternative ignores the ran-
dom intercept in the data.

6.1.1. Data generation and prior specifications

Twenty simulation settings were considered for each of the four different sample sizes
n = (5, 10, 25, 100) and five signal-to-noise ratios (1

4 ,
1
2 ,1,2 and 4 times the residual

variance). Each time 500 data sets were generated from model (8). For each of the
simulation settings, the regression coefficients were given a vague normal prior. Namely,
βj ∼ N(0, 106) (j = 0, 1, 2). Further, seven prior distributions for variance terms were
assigned. Each time, three models (correct, over-and-under specified models) were
fitted to evaluate the performance of both the marginal and conditional versions of
the Bayesian model selection. We have taken the following vague priors for σb:

(1) 1
σ2
b
∼ Gamma(a, a), (a = 0.001 and a = 0.1);

(2) log(σ2
b ) ∼ Uniform(a, b), (a, b) = (−10, 10);

(3) 1
σ2
b
∼ Pareto(a, b), (a, b) = (1, 0.001);

(4) σb ∼ Uniform(a, b), (a, b) = (0, 100);
(5) σb ∼ half-t(0, s, 1), s = (1, 0.75).

The motivation of the choices of a, b and s is given in Section 5.1
We focused on the independent prior distributions in which the variance terms of the
random intercept and measurement errors are modelled independently to evaluate the
performance of both versions of the criteria. As these priors are commonly used in the
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literature. The impact of joint prior will be examined in the subsequent section.

6.1.2. Simulation results

Table 1 shows the percentage of correct selection for different sample sizes under
Scenario I . The results show that the impact of the vague priors on the marginal
criteria is minimal, but their impact on the conditional criteria is considerable. This
conclusion holds irrespective of the sample size. However, the performance for the
conditional criteria improves with increasing sample size. In addition, among the three
conditional criteria, DIC is best for higher sample sizes (25 and 100), competing even
with the marginal criteria for sample size 100. This in an inconsistent manner. For
smaller sample sizes, the half-t prior performed best for the marginal version of all
criteria. However, it is not clear which prior outperforms across the different settings
and sample sizes.
In Table 2 the percentages of correct selection for different sample sizes under Scenario
II are shown. We observed that a uniform prior for log(variance) performs well for
both versions of DIC and PSBF, but the conditional WAIC performs poorly. The
poor performance of the conditional WAIC is also seen with the other priors. Again,
regardless of the scenario, the marginal criteria outperform the conditional criteria.
Their performance increases with sample size while the conditional criteria often select
over-specified models (not shown here). However, there is no clear winner among the
marginal criteria in this scenario.

6.2. The unbalanced case: the Jimma Infant Growth study

The second dataset is obtained from an Ethiopian study designed to evaluate risk
factors affecting infant survival.(Lesaffre et al. 1999) The growth characteristics of
the babies were examined approximately every 60 days, but there were occasional
deviations from the planned visits. For the purpose of this analysis, we have taken
weight as response with covariates age and sex (0=girls, 1=boys) of the child, and
age of the mother at delivery (agem). The details of the original analysis can be
found in Lesaffre et al. (1999, 2000) where a sample of 495 children was selected to fit
the model. This subset will also be the basis for this simulation study. As suggested,
Lesaffre et al. (2000) the time variable age was transformed into newageij =

√
ageij −

(ageij + 1)− 0.02× ageij in model to fit a LMM to the weight profiles. We select our
model generating data to be

Yij = β1 + β2sexi + β3newageij + β4agemi + b0i + b1i × newageij + εij , (9)

assuming (b0i, b1i) ∼ N2(0,D) and εij ∼ N(0, σ2
ε ). The following parameter values were

obtained by analysis Jimma data: β̂1 = 2.8581, β̂2 = 0.1518, β̂3 = 0.8865, σ̂ε = 0.3465

and D =

(
0.6813 −0.0414
−0.0414 0.0450

)
where these parameters are used as population

parameters for the simulated data set. 500 data sets were generated from model (9)
with the covariate sex was generated from a Bernoulli distribution with probability
of success equal to 0.51, which is the proportion of boys in the data set. The age of
the mother was generated from a normal distribution agemi ∼ N(24.49, 6.29) and we
have taken 0, 60, 120, . . . , 360 days as the moments of measurements. The alternative
models considered for each scenario are described below.
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• Scenario I: We assumed that the random effects structure is known and con-
sidered the following models that differ in the fixed part parameters, namely
◦ Model (9) and including an additional interaction (newage×sex) (overspec-

ified),
◦ Model (9) but ignoring the sex covariate (underspecified).

• Scenario II: We assumed that the covariates in the fixed part are known and
considered the following models that differ in the random effects structure, i.e.
◦ Model (9) and including an additional random slope for newage2 (overspec-

ified),
◦ Model (9) but ignoring the random slope for newage (underspecified).

6.2.1. Data generation and prior specifications

With the above specifications for generating data, we considered twenty-four (24)
simulation settings for five sample sizes. These settings correspond to twelve different
prior choices for the covariance matrix for the two scenarios described above. For each
of the settings and sample sizes, we generated 500 datasets from model (9). Model (9)
is then fit using each of the following prior specifications:

• Prior (1): Six specifications of the IW conditional conjugate prior described
in Section 5.2.1 of the form IW (df,V) using df = q, q + 1, q + 2, and V = cIq
for c ∈ {0.001, 1}, where Iq denotes q × q identity matrix. This is a relatively
commonly used informative IW (Schnell et al. 2016)
• Prior (2): Five separation strategies (Section 5.2.2) for covariance matrix D.
• Prior (3): (G-MVLG) For joint variance prior (log(L1), L2, log(σ2

ε )) ∼
GMVLG(0.7, 1.42, λ, ξ) with λ = (0.3, 0.3, 0.3, 0.4)T and ξ =
(0.25, 0.35, 0.25, 0.1)T . This is a non-informative prior and the hyper-parameter
values were selected to impose uncertainty on the variance parameters
(Kalaylioglu and Demirhan 2017).

6.2.2. Simulation results

Table 3 shows the performance of different specifications of the IW prior to Jimma
Infant Survival dataset. Regardless the scenario and sample size, the performance of
the conditional and marginal criteria varies with changing df and V. We observed
that both criteria perform better with a larger value of c = 1 regardless of the value
of df. The IW prior df=q and c = 1 performed relatively better in both scenarios.
The performance of the IW prior deteriorates with increasing dimension of the ran-
dom effects covariance matrix, see also Ariyo et al. (2019). Additionally, to choose
an appropriate scale matrix and degrees of freedom is not straightforward, since in-
consistent performance is seen. Other disadvantages of the IW prior distribution have
been discussed and alternatives proposed (Wei and Higgins 2013; Barnard et al. 2000;
Schuurman et al. 2016; Daniels and Pourahmadi 2002; Pourahmadi 1999; Lu and Ades
2009). Therefore, we considered the effect of some separation priors for the conditional
and marginal versions of PSBF, DIC and WAIC.
Table 4 shows the performance of both versions of selection criteria using a commonly
used IW prior compared with the separation priors and a joint prior for different sample
sizes. Since the Cholesky and spherical decomposition performed similarly, the results
of the spherical decomposition are omitted here. For both scenarios, and especially
for small sample sizes, the joint prior and separation priors outperformed the classical
IW prior. In addition, for both versions of the criteria the impact of the sample size
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is less pronounced with a joint prior and the separation priors than for the IW prior.
This result agrees with the conclusion in Alvarez et al. (2014), i.e. that the classical
IW prior is less effective when compared with a separation prior.
Further, in Scenario I, the approach based on the Fisher-z transformation performed
best for both the conditional and marginal versions of the criteria. For scenario II,
there is no significant difference between the HIW prior based on the approach pro-
posed by Huang et al. (2013) and G-MVLG prior. For both scenarios, the G-MVLG
prior and separation priors gave better performance for the conditional criteria when
compared with IW prior. Additionally, the impact of sample sizes is less in both G-
MVLG and separation prior compared with IW prior. While there is no best vague
prior in both scenarios, we conclude that if the conditional version of the criteria is to
be used, then the G-MVLG prior, hierarchical or separation priors are to be used. In
fact, the use of IW prior to conditional criteria is strongly discouraged especially for
smaller sample sizes. But, again the marginal version of the criteria outperformed the
conditional criteria in all scenarios and sample sizes.

7. Analysis of the longitudinal evolution of Nigerian chickens

We analysed of the Nigerian indigenous chicken (NIC) data set and evaluated the
sensitivity of separation priors and classical IW prior on the covariance matrix. These
data concern the longitudinal evolution of body weight (BW) of chickens of different
breeds raised in a university experimental farm. Four hundred and sixteen chickens
were measured every week (age) from hatching up to twenty weeks to evaluate the
growth of two progenies (breeds) of chicken. A first analysis can be found in Ariyo
et al. (2019). We refer to Adeleke et al. (2011) for the rationale for the study and the
experimental design. Figure 1a shows the evaluation of weight of the chicken and the
average profile over time. The deviations between the observed chickens body weight
and the mean structure are presented in Figure 1b. It will be assumed that

Yij = β0 + β1breedi + β2ageij + b0i + b2iageij + εij , (10)

where Yij is the chicken body weight (kg); breedi is the breed indicator (1=pure breed,
2=cross breed), ageij represents the age (standardised). We limit the chicken’s age to
13 weeks since a considerable amount of chicken died after this age.
We fitted the following alternative models:

• Model 1: Linear model in fixed effects and linear in random effects
• Model 2: Quadratic model in fixed effects and linear in random effects
• Model 3: Linear model in fixed effects and quadratic in random effects
• Model 4: Quadratic in fixed effects and quadratic in random effects
• Model 5 : Cubic in fixed effects and cubic in random effects.

The classical IW prior together with two separation (Fisher-z and Chol) priors and
a Hierarchical prior (HIW ) discussed in Section 5.2.2 were used for the covariance
matrix.
Table 5 shows that there is some discrepancy in both the marginal and conditional
criteria using different priors. The conditional DIC and WAIC select Model 2 using the
IW prior. Contrary, the conditional PSBF as well as the marginal version of the criteria
selection Model 3. This shows inconsistency in model selection among the conditional
criteria when IW prior is used. However, both the models selected by these criteria
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seem to be incorrect as the average growth curve of the chicken seems quadratic and
the individual growth curves differ from the average curve in a quadratic manner (see
Figure 1). In contrast, all the separation priors as well as joint prior support Model 4
(i.e the presence of quadratic terms in both fixed and random effects) which appears
to be the appropriate model here based on Figure 1. This confirmed the results of the
simulation that separation priors are more efficient than the IW prior.

8. Conclusion

We have performed simulation studies to determine if the choice of the vague prior
for the variance or covariance matrix of the random effects in a longitudinal study
is of great importance in model selection. In addition, we assessed whether different
vague prior distributions have a different effect on the conditional and marginal
version of DIC, PSBF and WAIC. We made use of vague priors that were proposed
in the literature. While the considered scenarios are still somewhat limited in scope,
the performance of the criteria in our simulation study allows already for some clear
conclusions.
The results can be broadly summarized as follows for the variance of the random
intercept. The choice of the vague prior impacted both versions of the criteria but
the impact is much less for the marginal version than for the conditional version
of the criteria. In addition, the conditional criteria performed in an inconsistent
manner often selecting over-specified models while the marginal version of the
criteria showed much less dependence to the choice of parameter values of the
prior and often selected the correct model. For longitudinal mixed models that
involve two or more random effects, the joint prior, the hierarchical prior and the
separation priors all outperformed the classical IW prior. These priors are also the
choice when the conditional version of the criteria are to be taken. We noted, to our
surprise, that cWAIC was significantly poorer in some cases than the two other criteria.

Finally, we believe that a sensitivity analysis is necessary when using prior distri-
butions that are intended to be vague for the level 2 variance parameters. This is
especially important for small sample sizes. For models with more than one random
effect, the joint prior, the hierarchical prior and separation priors are to be chosen for
both the conditional and marginal versions of the criteria. For large sample sizes, the
classical IW prior can still be used for model selection for computational convenience.
Finally, the marginal version of the criteria outperformed the conditional version of
the criteria, as was earlier recommended in the literature, see (Chan and Grant 2016;
Li et al. 2016; Ariyo et al. 2019; Merkle et al. 2018; Millar 2018; Quintero and Lesaffre
2018). We have added evidence to this recommendation in the context of longitudinal
mixed models, which constitutes an important class of models in biomedical research.
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Table 1. Potthoff & Roy dataset (Scenario I): Sensitivity of the performance of the conditional and the
marginal selection criteria to choose the correct LMM by varying the prior distribution on variance terms for

different sample sizes

Sample sizes
Prior criteria 5 10 25 100

cDIC 26.8 27.2 64.0 79.4
cPSBF 35.0 38.8 39.2 50.6

1
σ2
b
∼ Gamma(0.0001, 0.0001) cWAIC 21.4 24.8 62.6 72.4

mDIC 55.2 60.8 77.4 83.2
mPSBF 41.4 53.6 75.4 84.2
mWAIC 46.8 59.4 75.2 83.2
cDIC 55.4 56.2 64.6 79.8
cPSBF 55.0 44.8 43.2 43.0

1
σ2
b
∼ Gamma(0.1, 0.1) cWAIC 53.8 55.6 56.8 65.4

mDIC 56.0 63.6 78.0 83.2
mPSBF 44.0 56.2 76.6 84.0
mWAIC 46.8 61.2 75.6 83.2
cDIC 25.0 27.4 67.2 70.0
cPSBF 36.6 38.4 45.8 46.8
cWAIC 33.2 38.4 62.0 68.8

log(σ2
b ) ∼ Uniform(−10, 10) mDIC 58.8 61.6 78.0 82.8

mPSBF 40.0 54.6 76.4 83.8
mWAIC 48.8 57.6 75.8 82.6
cDIC 46.2 53.0 68.0 78.8
cPSBF 43.8 45.0 46.8 48.0
cWAIC 53.4 48.0 66.6 70.2

log(σ2
b ) ∼ Uniform(0.001, 100) mDIC 57.8 60.8 77.8 83.6

mPSBF 40.0 58.0 75.6 84.6
mWAIC 49.0 58.2 75.6 83.8
cDIC 32.8 52.4 69.2 78.8
cPSBF 33.4 44.4 43.6 42.4
cWAIC 42.2 50.0 64.4 73.4

1
σ2
b
∼ Pareto(1, 0.0001) mDIC 51.2 54.0 75.6 83.0

mPSBF 40.8 51.2 76.0 83.0
mWAIC 46.4 51.4 74.0 82.6
cDIC 31.6 46.6 69.4 79.4
cPSBF 43.0 42.6 43.4 42.8
cWAIC 41.4 45.6 61.6 71.8

σb ∼ Uniform(0, 100) mDIC 55.0 56.4 77.6 83.2
mPSBF 28.2 53.8 76.8 84.8
mWAIC 33.8 55.6 75.8 83.8

σb ∼ t(0, 0.75, 1) cDIC 41.2 63.0 64.0 71.0
cPSBF 31.8 43.7 52.0 64.8
cWAIC 40.0 67.4 69.0 70.2
mDIC 68.5 76.8 79.6 84.2
mPSBF 61.4 74.8 75.2 80.6
mWAIC 66.2 74.0 76.2 81.0
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Table 2. Potthoff & Roy dataset (Scenario II): Sensitivity of prior distribution on variance terms on selecting

the correct model (%) for different sample sizes and criteria DIC,PSBF,WAIC evaluated on conditional and
marginal version of LMM

Sample sizes
Prior criteria 5 10 25 100
1
σ2
b
∼ Gamma(0.0001, 0.0001) cDIC 27.8 42.6 50.8 44.2

cPSBF 32.8 39.2 46.8 57.8
cWAIC 22.6 37.6 46.6 43.0
mDIC 41.0 54.0 82.4 82.6
mPSBF 37.2 51.2 80.2 80.2
mWAIC 42.6 57.4 76.8 81.2

1
σ2
b
∼ Gamma(0.1, 0.1) cDIC 54.6 50.6 52.2 49.2

cPSBF 54.2 59.4 56.6 51.2
cWAIC 46.4 40.0 46.0 28.4
mDIC 52.0 72.8 81.4 84.6
mPSBF 64.6 79.0 80.8 84.4
mWAIC 59.8 76.6 77.8 82.6

log(σ2
b ) ∼ Uniform(−10, 10) cDIC 53.2 55.2 46.6 41.0

cPSBF 45.4 46.4 44.6 46.2
cWAIC 48.8 45.0 51.4 48.8
mDIC 40.8 66.6 82.4 82.8
mPSBF 51.0 63.4 80.2 81.6
mWAIC 52.6 68.0 79.0 80.6

log(σ2
b ) ∼ Uniform(0.001, 100) cDIC 67.0 77.2 83.8 97.4

cPSBF 66.8 80.6 77.0 94.4
cWAIC 54.8 53.6 39.8 37.4
mDIC 65.6 89.0 100.0 100.0
mPSBF 75.0 92.6 100.0 100.0
mWAIC 67.4 90.8 100.0 100.0

1
σ2
b
∼ Pareto(1, 0.0001) cDIC 59.2 68.2 56.8 40.6

cPSBF 61.4 66.4 52.6 47.0
cWAIC 53.4 41.6 29.0 19.0
mDIC 45.0 76.6 86.0 85.8
mPSBF 40.0 87.4 86.0 85.2
mWAIC 48.8 84.4 84.4 83.8

σb ∼ Uniform(0, 100) cDIC 61.4 62.2 53.8 42.2
cPSBF 59.2 53.0 46.8 44.0
cWAIC 51.4 42.0 36.6 35.0
mDIC 48.8 76.4 84.8 85.6
mPSBF 61.0 82.4 85.2 84.0
mWAIC 50.4 80.4 81.6 83.4

σb ∼ t(0, 0.75, 1) cDIC 40.2 56.0 55.8 61.4
cPSBF 41.2 43.7 47.4 50.0
cWAIC 41.2 43.8 57.4 60.4
mDIC 71.2 85.8 87.4 92.6
mPSBF 70.6 84.4 86.4 86.9
mWAIC 70.4 81.4 86.2 91.8
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Table 3. Jimma Infant Survival dataset (Scenario I (q = 2) and Scenario II (q = 3, 2 and 1 ): Performance

of Bayesian model selection with six specifications of Inverse Wishart conjugate prior for over-specified, correct
and under-specified respectively.

Criteria
Sample size Scenario cDIC cPSBF cWAIC mDIC mPSBF mWAIC
10 I df = q,V = 0.001 49.0 47.8 41.8 59.0 59.0 56.8

df = q,V = 1 62.8 44.6 58.0 82.8 81.8 89.8
df = q + 1,V = 0.001 46.6 37.4 37.6 58.4 59.4 54.8
df = q + 1,V = 1 60.4 47.8 55.0 80.0 77.4 76.8
df = q + 2,V = 0.001 51.8 42.2 41.6 58.2 63.2 55.8
df = q + 2,V = 1 57.6 43.4 57.5 79.0 76.0 53.3

II df = q,V = 0.001 61.0 52.6 63.2 63.2 69.4 68.2
df = q,V = 1 62.4 65.6 45.8 86.0 88.6 97.0
df = q + 1,V = 0.001 58.0 44.4 58.2 57.4 52.8 61.0
df = q + 1,V = 1 59.2 67.8 45.6 86.6 88.4 87.2
df = q + 2,V = 0.001 60.4 53.0 57.8 58.0 55.3 62.4
df = q + 2,V = 1 60.2 62.4 46.8 87.2 88.8 86.2

50 I df = q,V = 0.001 54.0 50.0 52.0 68.0 70.0 68.0
df = q,V = 1 68.8 72.4 67.8 90.0 90.0 90.0
df = q + 1,V = 0.001 64.4 72.4 67.8 76.4 77.6 76.0
df = q + 1,V = 1 69.4 70.6 68.4 90.0 90.0 90.0
df = q + 2,V = 0.001 77.0 71.4 77.8 79.0 86.6 79.0
df = q + 2,V = 1 68.8 73.0 77.8 90.0 90.0 90.0

II df = q,V = 0.001 52.0 49.0 53.0 66.0 68.0 62.0
df = q,V = 1 53.6 47.8 56.0 80.4 76.4 79.6
df = q + 1,V = 0.001 60.0 44.2 55.4 66.4 71.0 65.4
df = q + 1,V = 1 64.2 42.4 57.4 82.0 75.8 79.0
df = q + 2,V = 0.001 57.8 49.0 78.2 65.2 69.6 64.6
df = q + 2,V = 1 62.0 40.8 51.6 79.6 74.6 75.8
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Table 4. Jimma Infant survival dataset: Sensitivity of the performance of the conditional and marginal
selection criteria to choose the correct LMM by using separation priors, a joint prior with an IW prior for

different sample sizes.

Scenario I II
Prior 10 25 50 100 200 10 25 50 100 200
IW cDIC 31 44 48 66 63 44 52 58 53 55

cPSBF 36 40 46 68 69 42 39 37 42 46
cWAIC 35 42 41 65 69 42 53 58 51 53

mDIC 52 52 66 72 75 54 63 67 70 72
mPSBF 52 50 67 72 75 54 54 68 73 73
mWAIC 53 54 66 73 75 56 62 67 71 72

Chol cDIC 60 61 61 56 52 70 72 79 78 78
cPSBF 55 58 59 61 59 69 67 67 70 70
cWAIC 59 61 60 52 50 66 68 72 76 78

mDIC 89 89 88 92 96 100 100 100 100 100
mPSBF 70 71 76 84 87 98 100 100 100 100
mWAIC 79 79 80 83 87 98 100 100 100 100

HIW cDIC 60 62 63 64 67 82 84 81 88 88
cPSBF 60 60 66 66 67 72 76 71 78 77
cWAIC 61 62 62 63 66 82 83 82 85 88

mDIC 76 80 82 82 100 98 100 100 100 100
mPSBF 74 81 85 84 100 96 100 100 100 100
mWAIC 75 81 85 86 100 99 100 100 100 100

Partial cDIC 66 61 64 62 61 54 72 62 68 66
cPSBF 59 61 62 61 64 59 66 63 60 60
cWAIC 64 64 64 66 67 51 69 63 67 69

mDIC 76 84 82 86 84 73 84 86 87 80
mPSBF 75 85 83 86 85 71 80 84 87 81
mWAIC 83 83 79 86 85 69 80 85 86 80

Fisher-z cDIC 74 75 80 79 82 71 69 71 80 87
cPSBF 70 70 73 77 83 61 70 74 77 80
cWAIC 67 70 74 76 78 67 66 68 77 83

mDIC 74 79 83 100 100 70 82 98 100 100
mPSBF 66 71 79 100 100 73 84 94 100 100
mWAIC 75 74 81 100 100 67 80 96 100 100

G-MVLG cDIC 62 69 64 66 67 71 86 79 89 89
cPSBF 64 65 62 67 68 70 79 73 86 97
cWAIC 61 68 63 68 67 69 85 69 86 87

mDIC 69 73 80 88 100 100 100 100 100 100
mPSBF 70 70 81 89 99 100 100 99 100 100
mWAIC 71 72 83 89 100 99 100 100 100 100
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Table 5. Nigeria indigenous chicken data set: Sensitivity of the performance of the conditional and marginal

selection criteria using separation priors and joint prior with an IW prior.

Criteria IW HIW Fisher-z Chol G-MVLG
Model 1 cDIC -15129.8 -14791.2 -15191.6 -15189.5 -14901.8

cWAIC -15497.7 -15334.3 -15478.1 -15470.4 -15014.2
clpml -13938.7 -12995.1 -14058.4 -14073.7 -14913.1

mDIC -13648.5 -12768.9 -13695.0 -12376.1 -13012.0
mWAIC -13639.5 -12759.1 -13685.7 -12358.9 -13085.8
mlpml -13609.6 -12727.2 -13653.9 -12333.5 -13043.4

Model 2 cDIC -16726.7 -16855.0 -16755.0 -16755.0 -16045.7
cWAIC -17110.1 -17089.3 -17049.3 -17049.3 -16042.3
clpml -15401.3 -15576.0 -15516.0 -15516.0 -16519.1

mDIC -15093.9 -15131.8 -15121.8 -15121.8 -15501.8
mWAIC -15079.7 -15117.1 -15107.1 -15107.1 -15410.9
mlpml -15036.7 -15090.6 -15060.6 -15060.6 -15462.2

Model 3 cDIC -16095.7 -19095.7 -18709.6 -18702.6 -18612.3
cWAIC -16776.4 -19776.4 -19485.6 -19482.6 -19810.8
clpml -17114.1 -17914.1 -16117.7 -16111.7 -16132.0

mDIC -16509.1 -16579.1 -15365.3 -15365.3 -15369.0
mWAIC -16505.7 -16565.7 -15351.6 -15351.6 -15350.9
mlplm -16504.3 -16524.3 -15310.2 -15310.2 -15320.7

Model 4 cDIC -16186.8 -19476.8 -18796.3 -19492.1 -20047.4
cWAIC -16851.8 -20034.2 -19533.5 -20026.3 -20126.8
clplm -16777.5 -17609.5 -16193.5 -17593.9 -17784.0

mDIC -16104.2 -16788.4 -16632.9 -16878.2 -16897.4
mWAIC -16314.9 -16770.5 -16618.3 -16663.6 -16709.3
mlpml -16466.7 -16719.0 -16572.4 -16601.3 -16700.4

Model 5 cDIC -16176.8 -16676.8 -16476.8 -16476.8 -16421.0
cWAIC -16034.2 -17434.2 -17034.2 -17034.2 -17114.6
clppd -16609.5 -17609.5 -17609.5 -17609.5 -17709.1

mDIC -16108.4 -16208.4 -16498.4 -16738.4 -16715.0
mWAIC -16400.5 -16200.5 -16470.5 -16620.5 -16631.3
mlpml -16509.0 -16309.0 -16469.0 -16710.0 -16731.8
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Figure 1. Nigerian indigenous chicken data set: (a) individual and average profiles of 10 randomly selected

chickens body weight obtained by locally weighted regression using ggplot2: (b) the deviation of the 10 randomly
selected chickens body weight from the mean structure.

University of Agriculture, Abeokuta, Nigeria for the NIC dataset.
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