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ABSTRACT
Linear mixed models (LMMs) are popular to analyze repeated measurements with
a Gaussian response. For longitudinal studies, the LMMs consist of a fixed part
expressing the effect of covariates on the mean evolution in time and a random part
expressing the variation of the individual curves around the mean curve. Selecting
the appropriate fixed and random effect parts is an important modeling exercise. In
a Bayesian framework, there is little agreement on the appropriate selection criteria.
This paper compares the performance of the deviance information criterion (DIC),
the pseudo-Bayes factor and the widely applicable information criterion (WAIC)
in LMMs, with an extension to LMMs with skew-normal distributions. We focus
on the comparison between the conditional criteria (given random effects) versus
the marginal criteria (averaged over random effects). In spite of theoretical argu-
ments, there is not much enthusiasm among applied statisticians to make use of the
marginal criteria. We show in an extensive simulation study that the three marginal
criteria are superior in choosing the appropriate longitudinal model. In addition,
the marginal criteria selected most appropriate model for growth curves of Nigerian
chicken. A self-written R function can be combined with standard Bayesian software
packages to obtain the marginal selection criteria.

KEYWORDS
Deviance information criterion; Linear mixed models; Marginalized likelihood;
Pseudo Bayes factor, Widely applicable information criterion.

1. Introduction

Longitudinal studies have become central in a great variety of research areas. The
longitudinal study design is the only study design that allows to relate determi-
nants measured at the start of the study to changes in the subjects’ condition over
time. Numerous books have recently appeared on longitudinal study designs, see e.g.
(2; 12; 13; 21; 35). When the response is Gaussian, linear mixed-effects models (LMMs)
are one of the most popular tools to analyze longitudinal data. Since its introduction
by Laird and Ware (27), the LMM has been applied in a great variety of research
areas and extended in many ways, e.g. to generalized linear mixed-effects models and
non-linear mixed-effects models. Its popularity has much to do with its ability to de-
scribe both the impact of covariates on the mean longitudinal evolution as well as
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how individual profiles differ over time from the mean curve. The impact on the mean
longitudinal curve is evaluated by their regression coefficients, which are referred to as
the fixed effects. The subject-specific profiles are expressed as latent variables, called
random effects. In this way, the LMM fits subject-specific profiles and accounts for
correlation among responses from the same subject. Another important feature is that
the LMM allows for unbalanced data, i.e., when the number and timing of the obser-
vations per subject differ between subjects. The LMM parameters may be estimated
using a frequentist approach. The properties of the estimated model parameters are
then based on (restricted) maximum likelihood theory (54). Alternatively, one could
use the Bayesian framework. In the Bayesian approach prior information on the model
parameters is combined with information coming from the data. Using Bayes’ theorem,
an updated idea on the model parameters is obtained from the posterior distribution.
The posterior distribution provides all information that is needed, and hence there
is no need to refer to asymptotic normality properties for inference on the model
parameters. This is especially useful in longitudinal studies with a small number of
subjects and when the data are unbalanced (45). Since most posterior distributions
are analytically intractable, they need to be determined in a numerical way. Most pop-
ular numerical techniques are based on sampling from the posterior distribution. The
Markov chain Monte Carlo (MCMC) techniques provide an important class of such
methods. In this paper we focus on fitting Bayesian LMMs to longitudinal data and
compare the performance of different selection criteria. While in a Bayesian model all
parameters are stochastic (and thus random), we will (as many others) still use the
standard terminology of fixed and random effects.
A variety of LMMs can be fitted to the data at hand depending on several aspects
such as: (i) the covariates that are considered in the fixed part of the model, (ii) the
random effects structure to be included, e.g., random intercepts and/or random slopes,
and (iii) possible transformations of the response. When considering several LMMs, it
is important to select a parsimonious model that fits adequately the current and also
future data. Unfortunately, there is little agreement on what criterion to choose for
Bayesian model selection.
One of the first model selection criteria suggested in the literature is the Bayes factor
(24), which is defined as the ratio of the marginal likelihood of two competing models.
Although this criterion has a natural interpretation, its computation remains difficult
in practice and the results can be sensitive to the choice of the prior distributions, pre-
senting difficulties especially with improper priors. Gelfand and Dey (15) proposed the
pseudo-Bayes factor (PSBF), which updates the (improper) prior to a proper posterior
and calculates the Bayes factor using the generated posterior as prior. This alternative
criterion, although relatively easy to compute, is not yet commonly used. The most
popular Bayesian model selection criterion is the deviance information criterion (DIC)
(48). The DIC is similar to the AIC often used in the frequentist framework, i.e., it
represents a trade-off between model fit and model complexity. The aim of DIC is to
estimate the predictive ability of the fitted model to future samples from the same
population. More recently, the widely applicable information criterion (WAIC) was
proposed (55) for model selection in the Bayesian framework. This criterion estimates
the predictive accuracy of the model and includes a bias correction for using the data
twice, i.e., to estimate the model and to evaluate model’s accuracy. It has also been
argued that WAIC is a more fully Bayesian approach (compared to DIC) and is suit-
able for singular models, such as LMMs for longitudinal data when the random effects
are considered as parameters in the model (18).
Apart from the above three model selection criteria, a wide variety of (Bayesian) sta-
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tistical approaches have been suggested to select the most appropriate LMM. While
it is not the aim of this paper to give a comprehensive overview, the reader should be
aware of the large number of alternative approaches proposed in the literature. For
instance, a popular alternative approach is to use Bayesian variable selection tech-
niques, often based on the SSVS approach of George & McCulloch (19). Examples of
this approach can be found in Chen & Dunson (7),Cai & Dunson (5) and Gong et al
(20).
Bayesian software for hierarchical models most often makes use of the data augmenta-
tion (DA) algorithm. For the LMM, this implies that the random effects are estimated
jointly with the other parameters. Hereby, the DA algorithm avoids to take the inte-
gral over the distribution of the random effects, which is the classical approach in the
frequentist framework. Thus, in the frequentist approach classically the marginal ver-
sion of the LMM is fitted to the data, while in the Bayesian approach the hierarchical
or conditional version of the LMM is usually fitted.
Whether the marginal or the conditional version of the LMM is fitted to the data,
it has an impact on the performance of the model selection criteria even when the
conditional and marginal LMM essentially lead to the same model. The model se-
lection criteria applied to the hierarchical specification of the LMM is referred to as
the conditional criterion. Hence, one has the conditional DIC (cDIC), and similarly
the conditional PSBF (cPSBF) and the conditional WAIC (cWAIC). On the other
hand when the model selection criterion is applied to the marginal specification of
the LMM, one speaks of the marginal DIC (mDIC), marginal PSBF (mPSFB) and
marginal WAIC (mWAIC). As will be shown in Section 5, these two versions of the
model selection criteria are associated with different aims: cDIC (and similarly for
cPSBF and cWAIC) considers the random effects as parameters of focus in the model
whereas for mDIC (also mPSBF and mWAIC) the population of random effects repre-
sents the focus. In practice, this implies for mixed effects models that the conditional
selection criteria evaluate the performance of the model when the population consists
of all (future) measurements of the subjects included in the current study, while the
marginal version of the criteria measures the performance of the model for all (future
measurements of all) future subjects from the same population.
The problem is that in practice, model selection is most often based on cDIC (cPSBF,
cWAIC) because of computational convenience. Indeed, cDIC can be immediately cal-
culated using the conditional likelihood and it is automatically reported by WinBUGS
(50) and other Bayesian software. However, most researchers are interested in knowing
how well the model performs in the future. That is why one argues that conditional
model selection criteria have the wrong focus, see e.g (52). Apart from not having the
correct focus, model selection based on cDIC is questionable because the properties
of DIC are based on the log-concavity of the likelihood, a condition that is violated
in hierarchical models when the latent variables are considered as parameters in the
model (33). The implication of using cDIC as model selection has been documented
via simulations for financial volatility models (6). The authors concluded that in con-
trast to mDIC, cDIC tends to select overly complex models. For overdispersed count
data, Millar (37) pointed out that the conditional-level DIC is an unreliable tool for
model selection, while the same is true for the conditional WAIC (38). Merkle et al
(36) advocated the use of marginal information criteria for item response models, and
show that mWAIC corresponds to leave-one-cluster-out, whereas cWAIC corresponds
to leave-one-unit-out.
While we focus in this paper on Bayesian model selection, we note that also in the fre-
quentist paradigm the performance of the conditional versus marginal model selection
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criteria has been compared extensively. A broad overview of a wide range of model
selection criteria for the LMM is discussed in Mũller, Scealy and Welsh (39) for model
selection in a frequentist content, including conditional and marginal information cri-
teria. A short section in that paper is devoted to the Bayesian paradigm. Further, Fang
(11) showed that the marginal AIC (mAIC) is asymptotically equivalent to the leave-
one-cluster-out cross-validation while the conditional AIC (cAIC) is asymptotically
equivalent to the leave-one-observation-out cross-validation. Srivastava & Kubokawa
(51) derived three conditional AICs and showed theoretically and by simulations that
their proposals outperform cAIC and mAIC of Vaida and Blanchard (52). Finally,
Sefken et al (46) introduce the R-package cAIC4 for the calculation of the cAIC for
LMMs estimated with lme4. To determine the marginal criteria extra computations
are needed, which renders them less popular.
In practice, researchers are often not aware of the difference between the marginal and
conditional version of the information criteria, therefore, rely on default software (36).
That is why we have set up a simulation study that compares the performance of the
two versions of the selection criteria for LMMs with longitudinal data. The first set of
simulations makes use of the classical model LMM assumptions, i.e. when the random
effects and measurement errors have a normal distribution. In the second set of sim-
ulations, we have simulated from LMMs with a skewed-normal and t-distribution for
the random effects and measurement errors. Finally, we considered settings were we
select both fixed and random effect jointly. All these sets of simulations clearly show
the superiority of the marginal selection criteria. Moreover, in the analysis of a real
data set, we again illustrate that the conditional criteria choose the least appropriate
LMM. In order to promote the use of the marginal criteria for LMMs, we have writ-
ten R software for the LMMs considered in our simulation study that can easily be
combined with classical Bayesian software to compute the criteria mDIC, mPSBF and
mWAIC for LMMs.

The rest of the article is organized as follows. In Section 2 we present the classi-
cal linear mixed model for longitudinal data. In Section 3 we treat the skew-normal
LMM. The model selection criteria are introduced in Section 4 and the difference be-
tween conditional and marginalized versions is discussed in Section 5. In Section 6 we
compare the criteria in an extensive simulation study, in order to give some practical
recommendations. We also compared alternative versions of DIC and WAIC as sug-
gested in the literature. In the same section we discuss the simulation results when
the normality assumption in the LMM is relaxed. A comparison of the conditional and
marginal criteria on a real data set is done in Section 7. We give concluding remarks
in Section 8.

2. The linear mixed-effects model

The classical LMM (27) for longitudinal data can be expressed as

Yi = Xiβ + Zibi + εi, (1)

where Yi is an mi-dimensional response vector of measurements for the i-th subject,
(i = 1, . . . , n). Xi and Zi are mi×p and mi×q-dimensional covariate matrices, respec-
tively, and β is a p-dimensional vector of fixed effects. The residual component vector
εi is distributed as Nmi

(0,Σi), where Σi is an mi × mi positive-definite covariance
matrix. It is usually assumed that Σi = σ2

ε Imi
, where Imi

denotes the identity matrix
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of dimension mi.
The q-dimensional random-effects vectors bi are assumed independent from the

residuals and distributed as Nq(0,D), where D is a q × q positive-definite covariance
matrix. Model (1) is called a mixed-effects model because it combines the fixed-effects
structure β with the subject-specific random effects b1, . . . ,bn. The LMM is advanta-
geous because the data are not required to be balanced, and additionally, the within-
and between-individual variations can be explicitly modeled through Σi and D, re-
spectively.

In the frequentist setting, the model parameters are estimated from the marginalized
model for the response, after integrating out the random effects (54). The marginalized
distribution has a closed form for model (1), namely

p(yi|β,D,Σi) = Nmi
(Xiβ,ZiDZ′i + Σi). (2)

In the Bayesian framework, inference is usually based on the hierarchical formulation
of the model. In the first hierarchical stage, the response follows the conditional dis-
tribution p(yi|β,Σi,bi) = Nmi

(µi,Σi) = Nmi
(Xiβ + Zibi,Σi), whilst in the second

stage, the subject-specific effects are specified with distribution p(bi|D) = Nq(0,D).

3. The skew-normal linear mixed model

A m−dimensional random vector Y follows a m-variate skew-normal (SN) distribution
with location vector µ0 ∈ IRm, m × m positive definite scale matrix H and m × q
skewness matrix ∆, if its density function is given by

f (y|µ0,H,∆) =2qφm
(
y|µ0,H + ∆∆′)

×Φq

(
∆′
(
H + ∆∆′)−1

(y − µ0)|0,
(
Iq + ∆′H−1∆

)−1
)
,

(3)

where φm and Φq are the density function and the cumulative distribution functions
of the m-dimensional and q-dimensional normal distribution, respectively. If we sub-
stitute ∆ = 0, equation (3) reduces to the usual symmetric multivariate distribution
Nm(µ0,H). Arellano et al. (3) denote Y ∼ SNm,q(µ,H,∆) and Y ∼ SNm(µ,H,∆)
when m = q. Also, when m = q, ∆ = diag (δ1, . . . , δm) and H diagonal, equation (3)
reduces to the multivariate skew-normal distribution, see e.g. (47). In practical set-
tings, when the response and the covariate are highly skewed distributed, it might be
more realistic to assume a multivariate SN for both random effects and measurement
error (22).
The classical LMM (1) can be extended by assuming that

bi ∼ SNq (0,D,∆b) and εi ∼ SNmi
(0,Ψi,∆εi) , i = 1, . . . , n,

all independent. This results in the following skew-normal linear mixed model
(SNLMM):

yi|bi,β,Ψi,∆εi ∼ SNmi
(Xiβ +Zibi,Ψi,∆εi)

bi|D,∆b ∼ SNq (0,D,∆b) ,

where D = D(α) is a dispersion matrix, usually associated with the between-units
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variances, with α unknown parameters in D. In addition, ∆εi and ∆b are diagonal ma-
trices with unknown elements δεi1 , . . . , δεimi and δb1 , . . . , δbq , respectively. These com-
ponents correspond to the skewness parameters. The marginal version of the SNLMM
was shown by Arellano et al (4) to be equal to

fYi(yi|Θ,ϑ) = 2mi+qφni(yi|Xiβ,Ψi)Φmi+q
(µ2i − Γiµ1i|0,Ri + ΓiΛiΓ

′
i),

where for i = 1, . . . , n:

Ψi = (δ2
ε + σ2

ε )Imi
+ Zi(∆

2
b + G)Z′i, µ1i =

ΛiZ
′
i(yi −Xiβ)

δ2
ε + σ2

ε

,

µ2i =

(
δε√

σ2
ε (δ

2
ε + σ2

ε )
(yi −Xiβ)

)
, Γi =

(
δε√

σ2
ε (δ2ε+σ2

ε )
Zi

−∆b(∆
2
b + G)−1

)
,

Ri =

(
Imi 0
0 (Iq + ∆bG

−1∆b)
−1

)
, Λi =

(
(∆2

b + G)−1 +
Z′iZi
δ2
ε + σ2

ε

)
.

Note that Arellano et al (4) also suggested a skew-t distribution whereby the basic
Gaussian distribution is replaced by the t-distribution.

4. Bayesian criteria for model selection

Let θ represent all model parameters of the LMM. For the marginal LMM, this includes
the fixed effects and the parameters making up the covariance matrix of the random
effects augmented with skewness parameters for the SNLMM. With the conditional
LMM the random effects are part of θ. Further, we denote the collected (longitudinal)
responses by y and the obtained covariate values by the matrix X. The posterior
distribution is p(θ | y,X) = p(y | θ,X)p(θ)/p(y | X). Since the posterior distribution
does not have a closed form for the LMM, it is approximated using MCMC methods.
Namely, K (dependent) values θ1, . . . ,θK are sampled from the posterior distribution.
The true posterior summary measures can then be approximated by their sampled
versions.

When describing longitudinal data, a set of well-justified models can be established
with different specifications for the fixed effects, random effects, covariance structure
of the random effects and measurement error. Therefore, a model selection procedure
is necessary to find an adequate model that explains current and future data. A variety
of model selection procedures has been proposed in the Bayesian framework, but there
is no consensus about the best criterion. Here we discuss the most popular criteria;
they are also relatively easy to compute in practice.

4.1. The pseudo-Bayes factor

The Bayes factor (BF) could be viewed as the Bayesian equivalent of the likelihood
ratio test. The Bayes factor can be used for testing the hypothesis that y is generated
by model M1 with parameters θ1 versus the alternative model M2 with parameters
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θ2. Hereby BF measures the change from prior to posterior odds in favor of the null
model, namely

BF1,2 =
p(M1 | y)

1− p(M1 | y)
=
p(M1 | y)

p(M2 | y)
=
p(y | M1) p(M1)

p(y | M2) p(M2)
,

where p(M1) and p(M2) are the prior model probabilities, commonly set as p(M1) =
p(M2) = 0.5. In that case, the Bayes factor in favor of model M1 is given by BF1,2 =
p(y | M1)/p(y | M2) where p(y | Mr) =

∫
p(y | θr,Mr) p(θr | Mr) dθr for r = {1, 2}.

The use of the Bayes factor is, however, limited in practice since it has been shown to
be quite sensitive to the choice of the prior distributions p(θr | Mr) and is not defined
for improper priors, see e.g. (15).

Several alternatives for BF have been suggested to reduce the impact of p(θr | Mr).
One proposal is PSBF, which is based on the partitions of the data set as follows. For
the ith subject, one partitions the data set into a learning set yL = {yi : i ∈ L} and a
testing set yT = {yi : i ∈ T} (14), whereby the testing and learning parts are defined
respectively as T = {i} and L = {1, ..., i− 1, i+ 1, ..., n}. The pseudo-Bayes factor in
favor of model M1 with respect to model M2 is then obtained as

PSBF1,2 =

∏n
i=1 p(yi | y(i),M1)∏n
i=1 p(yi | y(i),M2)

,

where y(i) is the total sample without yi. The component p(yi | y(i),Mr) is the prob-
ability of observing yi given the model Mr fitted with all observations in the sample
except yi. Thus, the PSBF makes use of pseudo-marginal likelihoods in the numerator
and denominator instead of the classical marginal likelihoods. The product terms are
called conditional predictive ordinates (CPOs) (15). For the ith subject under model
Mr, CPOr,i is defined as CPOr,i = p(yi | y(i),Mr). CPOr,i is computed from the

sampled values θ1
r , . . . ,θ

K
r under model Mr as follows:

CPOr,i ≈

[
1

K

K∑
k=1

1

p(yi | θkr ,Mr)

]−1

.

This statistic can be highly unstable for a very small value of the likelihood (44). To en-
sure stability, different approaches have been prescribed in the literature (9; 10; 15; 44).
However, there is no perfect approach due to computational issues (25).
The log-pseudo marginal likelihood is then for each model equal to LPMLr =∑n

i=1 log(CPOr,i). Therefore, the PSBF1,2 in favor of model M1 respect to model
M2 can be computed as

PSBF1,2 = exp(LPML1 − LPML2).

4.2. The deviance information criterion

The DIC suggested by Spiegelhalter et al. (48) is based on the predictive accuracy of
the estimated model defined as

DIC = −2 log p(y|θ̄) + 2pDIC , (4)
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where pDIC corresponds to the effective number of parameters, given by

pDIC = −2 Eθ|y[log p(y|θ)] + 2 log[p(y|θ̄)],

which quantifies the number of parameters to be estimated after incorporating the
prior information into the model. As seen above, the point estimator is the poste-
rior mean of the parameters, but other estimates such as the median have also been
suggested.

Defining the deviance as D(θ) = −2 log{p(y|θ)}+2 log{f(y)}, the effective number

of parameters can alternatively be written as pD = D(θ) − D(θ̄) where D(θ) is the
posterior mean of the deviance.

For practical purposes, we can ignore f(y). The mean deviance D(θ) can be ap-

proximated by 1
K

∑K
k=1D(θk) and the plug-in deviance D(θ̄) by D( 1

K

∑K
k=1 θ

k). This
criterion is popular because it is easy to compute once we have an MCMC sample and
can be directly obtained in several Bayesian packages such as WinBUGS. However,
DIC has been criticized, see (49) for details. For instance, DIC is not invariant to
non-linear transformations of θ and negative values for pDIC can occur in some cases.

4.3. The widely applicable information criterion

The widely applicable information criterion (WAIC) (55) is a fully Bayesian estimator
that averages over the posterior distribution of θ instead of conditioning on a point
estimator θ̂(y) as done for DIC. For a future observation ỹi, this criterion measures
the predictive accuracy of the model based on the log-posterior predictive distribution
log pθ|y(ỹi) of the parameter vector θ. Since ỹi is unknown, predictive accuracy is
defined by the expected log-predictive distribution (elpd) as

elpdi = Ef [log pθ|y(ỹi)] =

∫
log pθ|y(ỹi)f(ỹi)dỹi,

where f is the unknown distribution under the true model. For each observation of
a new data set, elpd is computed to establish the predictive accuracy of that data
set. This is called the expected log-pointwise predictive density (elppd) defined as
elppd =

∑n
i=1Ef [log pθ|y(ỹi)].

Predictive accuracy can also be defined with a point estimate θ̂(y), often θ̂(y) =
E(θ|y), as the expected log predictive distribution given the point estimator elpdθ̂(y) =

Ef (log p(ỹ|θ̂(y)) =
∫

log pθ|y(ỹi)f(ỹi)dỹi. The log pointwise predictive distribution
(lppd) based on the observed data is calculated as follows

lppd = log

n∏
i=1

pθ|y(yi) =

n∑
i=1

log

∫
θ
p(yi|θ)p(θ|y)dθ.

In practice, lppd can be estimated using an MCMC sample from the posterior distri-
bution as

̂lppd =

n∑
i=1

log

[
1

K

K∑
k=1

p(yi|θk)

]
.
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With the WAIC criterion, the expected log pointwise predictive density elppd is
estimated as the log pointwise predictive distribution lppd with a bias correction

êlppdWAIC = ̂lppd − pWAIC . The measure pWAIC corresponds to an estimate of the
effective number of parameters given by

pWAIC = 2

n∑
i=1

[
log

(
1

K

K∑
k=1

p(yi|θk)

)
− 1

K

K∑
k=1

log p(yi|θk)

]
.

Note that, WAIC can be alternatively expressed as

WAIC = −2̂lppd + 2pWAIC ,

similar to DIC in (4).
One of the strengths of WAIC is its invariability to the scale of the model parameters,
which implies that WAIC does not change when θ is replaced by ψ = h(θ), with h a
strictly monotone function.

5. Marginal and conditional criteria

In practice, the choice between conditional and marginal information criteria should be
motivated by the aim of the study (52). Most often, this means that the marginal model
selection criteria should be used since they estimate the predictiveness of the model
when new clusters (in longitudinal studies, this implies new subjects) are involved,
whereas the conditional criteria estimate the predictiveness of the model when new
elements in the cluster (in longitudinal studies, new observations from the existing
subjects) are involved. Nevertheless, when it comes to selecting the correct LMM it
might still be that conditional criteria do a good job. In other words, it might be
that the relative ordering of preference models is basically the same for both the
conditional and marginal criteria. All of these comments apply to all three considered
model selection criteria, but since cDIC is obtained automatically in most Bayesian
software, it is the standard criterion in practice. Therefore, the literature shows some
focus on DIC when examining the performance of conditional and marginal criteria.
Despite the popularity of DIC, many have shown that the asymptotic justification of
DIC (48) does not hold for hierarchical models, see e.g. Li et al (31).

6. Simulation studies

We have carried out three simulation studies. In the first two studies we based the
simulated data on two classical data sets: the Potthoff and Roy data set (41) and the
Jimma Infant Growth study (28). They were chosen because the first is representative
for a balanced longitudinal study, while for the second study the time points are
(somewhat) irregular and subjects drop out from the study. Using the fitted LMMs as
population models, the performance of the conditional and marginal versions of DIC,
PSBF and WAIC are contrasted using simulations. mDIC can be obtained from a
WinBUGS run by working with the marginal model instead of the hierarchical model.
To avoid specifying the marginal model in the estimation process, an R function was
implemented, which computes the marginalized version of DIC, PSBF and WAIC for a
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Gaussian, skew-normal and skew-t distribution of the random effects and measurement
error. This R function takes the parameters sampled in the MCMC procedure from
any Bayesian package and calculates the marginalized version using the closed form
(2) and its extensions allowing for skew-normal and skew-t distributions. In addition,
the conditional version of the three criteria is also computed by this function.

The main objective of the simulation study is to assess how well PSBF, DIC and
WAIC select the correct model. According to the minimum value strategy, the model
with the minimum value for the criterion is selected. Several simulation studies ex-
amining the performance of AIC and BIC, see e.g. (29), suggest to select the more
complex model only if they differ in the criterion value with more than 5. This will
be referred to as the absolute difference strategy. We will apply this strategy to all
criteria. However, there is no evidence that this criterion is justified outside DIC.

6.1. The data sets and population models

In the dental study analyzed by Potthoff and Roy (41), the distance in (mm) from the
pituitary to the pterygomaxillary fissure was measured at years 8, 10, 12, and 14 on
11 girls and 16 boys. We fitted the following linear mixed model as a function of age
and sex (0= Female, 1=Male):

yij = β0 + β1sexi + β2ageij + b0i + εij , (i = 1, . . . , 27; j = 1, . . . , 4), (5)

where yij is the distance (mm) measure of child i at time j and b0i is a random
intercept assumed to follow b0i ∼ N(0, σ2

b ). Using the SAS procedure MIXED (34),

we obtained the following maximum likelihood estimates: β̂0 = 24.9688, β̂1 = 1.4831,
β̂2 = −2.3210, σ̂2

b = 2.0495 and σ̂2
ε = 3.2668. These values were used as true parameters

in this simulation study. The Jimma Infant Growth data set is based on the growth
characteristics of about 8000 live births from South-West Ethiopia examined between
September 1992 and September 1993. The growth characteristics height, weight and
arm circumference of the babies were examined approximately every 60 days, but there
were occasional deviations from the planned visits. Also, some children dropped out
from the study for a variety of reasons such as relocation of their parents during the
study or death of the child. This creates an unbalanced structure for the data. For the
purpose of this simulation study, we have taken weight as response with covariates age
and sex (0=Girls, 1=Boys) of the child, and age of the mother at delivery (agem). The
details of the original analysis can be found in (28; 30) where a sample of 495 children
was selected to fit the model. This subset will also be the basis for this simulation
study. The weight evolves in a non-linear way. To make use of an LMM, the time
variable age was transformed into newageij =

√
ageij − (ageij + 1)− 0.02× ageij using

fractional polynomials (30). Initially, our population model is based on the following
random intercept and slope model:

yij = β0 + β1sexi + β2newageij + β3agemi + b0i + b1i × newageij + εij , (6)

assuming (b0i, b1i)
′ ∼ N(0,D). Again, the estimates from this model (see Appendix)

are used as the true values for the parameters in the simulation.
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6.2. Simulation study 1

In the first simulation study, we consider the most popular setting of assuming nor-
mality for the random effects and measurement error. We believe that it is essential
to show the performance of the selection criteria in this most popular setting. The
performance of the model selection criteria may depend on whether the models differ
in the fixed components or the random effects structure. Therefore, we examined the
performance of the conditional and marginal criteria under two scenarios. For each
of the two data sets we considered two scenarios. In Scenario I we assumed that the
random effects structure is known but that the considered models differ from the true
model in the fixed part. For Scenario II we assumed that the fixed part is known but
the random effects part is unknown.

Regarding the prior distributions, we assigned independent vague normal priors,
N(0, 10002) for the regression coefficients and a vague inverse gamma prior for the
residual variance, i.e. σ2 ∼ IG(0.001, 0.001). The conditionally conjugate prior for the
random-effects covariance matrix is the inverse Wishart distribution, but this choice
has been shown to be problematic when the number of clusters (here subjects) is small
(16; 42). Therefore, we have taken uniform priors U(0, 100) for the standard deviation
of the random effects, see (16). For the models with at least random intercept and
slope, we assigned a uniform prior distribution U(−0.5, 0.5) for all pairwise correlations
between random effects to ensure positive definiteness of the covariance matrix D (40)
following a proof in (8).

6.2.1. The balanced case: the Potthoff and Roy data set

As indicated above, we have considered two scenarios:

Scenario I: We assumed that the random effects structure is correct and considered
models that differ in the fixed part. Besides the true data-generating model (5), we
considered an overspecified model, which includes the interaction of age with sex and
an underspecified model, which ignores the effect of sex. Hence, the alternative models
are

• yij = β0 + β1ageij + β2sexi + β3ageij × sexi + b0i + εij (overspecified),
• yij = β0 + β1ageij + b0i + εij (underspecified).

Scenario II: We assumed that the fixed structure is correct and considered mod-
els that differ in the random effects. The overspecified model includes an additional
random slope whereas the underspecified alternative ignores the random intercept in
the data, more specifically

• yij = β0 + β1ageij + β2sexi + b0i + b1i × ageij + εij (overspecified),
• yij = β0 + β1ageij + β2sexi + εij (underspecified).

We simulated 500 data sets based on model (5). The covariate age was taken as
in the original data set and sex was generated from a Bernoulli distribution with
probability of success equal to 0.6, where 0.6 is the proportion of boys in the original
data set. All the models in this simulation study were estimated based on three chains
of 15, 000 iterations (discarding the first 5, 000 as a burn-in) and thinning equal to
10. Convergence of the MCMC samples was assessed with the Brooks-Gelman-Rubin
(BGR) diagnostic. In cases where BGR was larger than 1.1, a new MCMC sample was
selected with 10, 000 extra iterations until obtaining convergence.
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In Table 1, we present for each criterion and for the two selection strategies, the
percentage of times the correct, the overspecified or the underspecified model was cho-
sen. The performance of the marginalized criteria is clearly better than the conditional
counterparts in all cases. For instance, when using the minimum value selection rule,
in most cases the percentage of correct selection for the marginalized version is almost
twice that of the conditional counterpart. In addition, note that for the absolute differ-
ence rule in Scenario I, the percentage of correct model selections for the conditional
version of DIC and of WAIC is basically zero. This strategy seems to work well also for
PSBF and WAIC in Scenario II, but not in Scenario I. In Scenario II, the conditional
versions of DIC, PSBF and WAIC favor overspecified models with additional random
effects as also observed in (6) for financial volatility models.

[Table 1 appear here ]

6.2.2. The unbalanced case: the Jimma Infant growth study

Again we considered two scenarios:

Scenario I: We assumed that the random effects structure is correct and considered
the following models that differ in the fixed part parameters, namely

• Model (6) and including the interaction newage× sex (overspecified),
• Model (6) but ignoring the covariate sex (underspecified).

Scenario II: We assumed that the covariates in the fixed part are correct and con-
sidered the following models that differ in the random effects structure, i.e.

• Model (6) and including an additional random slope for newage2 (overspecified),
• Model (6) but ignoring the random slope for newage (underspecified).

We generated 500 data sets from model (6). The covariate age was taken as in the
original data set (i.e 8,10,12,14) and sex was generated from a Bernoulli distribution
with probability of success equal to 0.6, where 0.6 is the proportion of boys in the
original data set. The age of the mother was generated from a normal distribution
agemi ∼ N(24.49, 6.29) and we have taken 0, 60, 120, . . . , 360 days as the moments of
measurements. We created an unbalanced data set by allowing subjects to drop out
randomly at days 240, 300 or 360.

As shown in Table 2, the marginalized criteria strongly outperform their conditional
counterparts in both scenarios and selection strategies. We see again for Scenario II
that all conditional criteria support the overspecified alternative with an additional
random slope and that in this scenario the absolute difference strategy also works for
PSBF and WAIC. With the minimum value rule, the probability of correctly selecting
the data-generating model is about 1/3 with the conditional criteria. Hence, carrying
out model selection based on the conditional criteria performs worse than selecting
the models at random.

[Table 2 appear here ]
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6.3. Simulation study 2: additional simulations for the balanced case

We first evaluated the sensitivity of the results to some changes in the population
model based on the Potthoff and Roy data. First, we varied the signal-to-noise ratio in
model (5) by setting the value of σ2

ε to be 1
4 , 1

2 , 1, 2 and 4 times of the estimated residual
variance as specified in Section 6.1. Table 3 displays the results on model selection.
Again, the marginal criteria outperform their conditional counterparts irrespective of
the scenario and selection strategy. Note that the performance of mDIC decreases with
increasing residual variance and using the absolute difference strategy.

[Table 3 appear here ]

Second, we varied the number of subjects in the study as 25, 50, 75 and 100. As
shown in Table 4, the marginal criteria perform best regardless of the sample size. Note
also that the performance of the marginal criteria increases with increasing sample
size in both scenarios and selection strategies, which is not the case for the conditional
criteria. For instance, the percentage of correct model selection for cDIC decreases
with sample size for Scenario II with both selection rules.

Our results are in line with the findings in (33), who pointed out asymptotic prob-
lems with cDIC. Our simulation study also indicates that cWAIC is not better in this
sense.

[Table 4 appear here ]

We additionally evaluated the model selection performance for alternative versions
of DIC and WAIC. We denote as DIC1 the criterion advocated in (48) where the
complexity (pDIC1) is defined in Section 4.2. The alternative version DIC2 is the
approximation to DIC1 (17). The complexity penalty (pDIC2) is a function of the
variance of the deviance calculated as

pDIC2 = 2varθ|y(log{p(y|θ)}). (7)

Further, we modified DIC by letting the penalty term depend on the sample size. It has
been suggested in (23) that the penalization should be defined based on the effective
sample size ne, which depends on the within-subjects error structure. In the context of
the LMM, statistical software like SAS defines ne as the total number of (independent)
subjects, i.e. ne = n. Otherwise, ne is defined as the number of total data points,
ne = nT . We defined the following DIC criteria as DIC3 and DIC4 with effective
degrees of freedom defined as pDIC3 = log(n) pDIC1 and pDIC4 = log(nT ) pDIC1,
respectively. These modifications are more a BIC-type as pointed out by a referee,
however, we believe that it will be a useful exercise to evaluate their performance in
this context.
The effective number of parameters of WAIC can be estimated in two ways (18);
pWAIC1 as defined in Section 4.3 and the alternative version pWAIC2 given as the
variance of the log posterior distribution as

pWAIC2 =

n∑
i=1

varθ|y(log p(yi|θ)).

We notice from Table 5 that Spiegelhalter’s DIC (DIC1) outperforms DIC2 for
the conditional versions. This may be expected since the alternative definition (7) is
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explicitly based on approximate posterior normality, which is likely not satisfied in the
hierarchical version of the model. The marginal versions of DIC1 and DIC2 perform
similarly.

As expected, DIC4 penalizes model complexity more heavily than DIC3. Regardless
of the selection strategy, we observed that by increasing the penalization, the per-
centage of correct model selection decreases under the marginal versions and increases
under the conditional versions.

As for the different versions of WAIC, we observed that the percentage of correct
selection for WAIC2 is slightly higher in the conditional version whereas the perfor-
mance of the marginal versions is similar irrespective of the scenario. Absolute differ-
ence, however, is not a good alternative to the conditional version of DIC and WAIC
alternatives.

[Table 5 appear here ]

6.4. Simulation study 3: extra simulation for possible extensions of LMM

6.4.1. Simulation study: jointly selection of both fixed and random effects

Depending on the data at hand, researchers are usually faced with the challenge of
choosing the correct model. It is therefore important to select a parsimonious model
that fits the data accurately. Since there is minimal agreement on which criteria to
choose for Bayesian model selection, we evaluated the performance of the marginal and
conditional criteria in choosing the correct model among other alternative models.
Based on Potthoff & Roy data, we generated 500 data sets from Equation (5) and
considered five possible alternative models for the data. We considered, namely, (i)
different scale of the covariates (ii) distributional assumptions not satisfied for either
or both random-effects and measurement error (iii) the nature of measurement error
(heteroscedastic or heteroscedastic) (iv) wrong random effects structure. The following
models were considered jointly with the model given by Equation (5).

• C1: The model generating data specified in Equation (5).
• C2: Equation (5) with age replaced by age2 and including an additional random

slope for age.
• C3: Equation (5) age replaced by age2.
• C4: Equation (5) age replaced by log(age).
• C5: Equation (5) with the normality assumption for random effects replaced by

the skew-normal assumption.
• C6: Equation (5) with the normality assumption for random effects replaced by

the skew-normal assumption and heteroscedastic measurement error is assumed.

As seen in Table 6, the marginal criteria select the data-generating model (C1) in about
70% of the times contrary to the conditional criteria which select the true model in
about 10% of the time. It is interesting to note that the conditional criteria select
C5 (the model that assumes a skew-normal distribution for the random effects) in
about 65% while the marginal criteria choose C5 in about 2%. The results show the
superiority of the marginal criteria in selecting the true data-generating model.

[Table 6 appear here ]
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6.4.2. Simulation study: normality assumption for the random effects and
measurement errors are relaxed

We also assessed the performance of the model selection criteria when the normal-
ity assumption for the random effects and measurement errors are relaxed. For this
simulation study, we generated 500 data sets from the model

yij = β0 + xiβ1 + tijβ2 + b0i + εij , i = 1, . . . , n = 200, j = 1, . . . , 6 (8)

where tij = j, β1 = 2, β2 = 1 and εij ∼ SN1(0, 0.52, 4).
First, we assumed that β0 +b0i ∼ N(4, 4), i.e, β0 = 4 and b0i ∼ N(0, 4). In addition,

to show the advantages of the skew-normal distribution for the random effect it is
penchant to accommodate skewness. Second, we have taken the previous one except
now we generated the β0 + b0i according to Gamma(2, 1) distribution (as done also
in (4) and (26)) with probability density f(x) = x exp(−x) yielding a highly skewed
distribution. The subject-specific covariate xi is binary with xi = 1 if i ≤ n/2 and is
zero otherwise, while tij represents a covariate with values varying within individuals
and the same for all individuals. For each of the 500 simulated data sets, model (8) was
fit under alternative models as described in Section 6.2.1. We sampled 7000 iterations
after discarding the initial 3000 iterations. The thinning factor was at 7 to avoid
correlation problems in the generated chains

The following vague priors were assigned: β ∼ N(0, 102), σ2
ε ∼ IG(0.001, 0.001),

σ2
b ∼ IG(0.001, 0.001), δε ∼ N(0, 102)IIδε > 0, δb ∼ N(0, 102)IIδb > 0. The marginal

distribution corresponding to Equation (8) is expressed in the closed form, as seen in
Section 3. The simulation results shown in Table 7 confirm the results obtained above
under the Gaussian distribution.

Finally, we repeated the above simulation when (i) both random effects and random
error have a skew-normal distribution and when (ii) the random error follows a t(3)
distribution. The results (not shown) confirm the above simulation results.

7. Application

The Nigerian indigenous chicken (NIC) data set describes the longitudinal evolution of
the body weight (BW) of chickens of different breeds raised in a university experimental
farm. Four hundred and sixteen chickens were measured every week from hatching up
to 20 weeks. The study aimed to evaluate the growth of different chicken breeds.
Here we considered two classes of progenies. Two hundred and seventy chickens were
produced from the same parent stock (pure breed), while 146 chickens have different
parents (cross breed). The rational for the study and the experimental design can
be found in (1). See Figure 1 for the evolution of weights of the chickens over time.
Assuming a quadratic growth model with subject-specific random intercept and slopes,
we fitted an LMM model to the weight at the jth measurement time of the ith chicken
as

yij = β0 + β1breedi + β2ageij + β3age
2
ij + b0i + b1iageij + b2iage

2
ij + εij , (9)

where yij is the chicken body weight (kg); breedi is the breed indicator (1=pure breed,
2=cross breed), the ageij represents the age (standardized). For the purpose of this
study, we limited the chicken’s age to 13 weeks since after that age a considerable
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amount of chicken died. Thus, xij = (1,breedi, ageij , age2
ij)
′, bi = (b0i, b1i, b2i)

′ and

Zij = (1, ageij , age2
ij), i = 1, . . . , 416, j = 1, . . . , 13.

We first used model (9) together with the classical Gaussian assumptions as model
to fit the weights of the chickens over time, and we refer to this as Model 9(a). Based
on the model fit, Figure 2 shows histograms and the corresponding Q-Q plots of
the standardization posterior means of bi and εij , whereby the posterior means were
divided by their corresponding posterior standard deviations. The plots show that
there is apparently a non-normal pattern for subject-specific intercepts and slopes.
Also, the residual plot suggests deviation from normality. We note that such plots
may be difficult to interpret because the shrinkage effect depends on the number of
measurements per subject, see e.g. (53). But here there were no missing responses up
to week 13 and standardisation was applied. Nevertheless, these plots triggered us to
consider three additional models with the same fixed effects structure but differing in
the error and random effects distribution:

• Model 9(b): LMM with a univariate skew-normal distribution for measurement
error and a trivariate Gaussian distribution for the random effects.
• Model 9(c): LMM with model with a trivariate skew normal random effects

with Gaussian measurement error.
• Model 9(d): LMM with a univariate skew-normal distribution for measurement

error and a trivariate skew-normal distribution for the random effects.

The vague priors used are the same as those described in Section 6.4.1. We used 25,000
iterations after discarding the first 10,000 and thinning was set to 10. Convergence of
the MCMC samples was assessed with the BGR criteria. Resulting parameter estimates
are shown in Table 8.

It can be observed from Table 8 that the conditional criteria support Model 9(b),
which seems to be an incorrect model based on Figure 2. In contrast, the marginal
criteria favor Model 9(d), which appears to be also the most appropriate model here.
We further evaluated the effect of the quadratic term in the fixed and random effects.
The results (results not shown) of both versions of the criteria show that age2 is more
important in the random effects part than in the fixed part and there is an agreement
between the conditional and the marginal criteria on this.

[Figure 1 appear here ]
[Figure 2 appear here ]

8. Discussion

We have compared three Bayesian selection criteria in the context of LMM for lon-
gitudinal data. In addition, we extended these settings to the skew-normal and t(3)
distribution for random effects and measurement error. The simulation studies show
that the marginal criteria outperform their conditional counterparts. Our results con-
firm the results of (6) for volatility models, (32; 36; 38) for item response models and
(43) in hierarchical models.
It is important to remark that calculating the marginalized criteria does not repre-
sent an additional computational effort for LMM since the marginalized likelihood can
be written in a closed form at least for a number of important distributions for the
random effects and measurement errors. However, for generalized linear mixed mod-
els computing the marginalized likelihood is more involved and numerical integration
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methods are needed (43). The performance of the conditional criteria will be examined
in a subsequent paper.
We examined two selection rules: minimum value and absolute difference for all cri-
teria. However, our results did not show justification for absolute difference outside
DIC.
In our simulation study, the performance for the marginalized versions of DIC, WAIC
and PSBF is similar. However, in contrast to DIC, WAIC and PSBF have the advan-
tage of being non-invariant to non-linear transformations of the parameters in focus.
For this reason, our advice is to base model selection on the marginal versions of WAIC
or PSBF. Nevertheless, our R function computes both the marginal and conditional
versions of all three selection criteria with no additional computational efforts. The
function can be downloaded from https://ibiostat.be/online-resources/bayesian.

Another useful exercise is to evaluate the performance of the selection criteria when
varying the vague prior for the covariance matrix of the random effects. This is under
current examination.
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Figure 1. Nigerian indigenous chicken data set: Longitudinal profiles of body weight for 416 chickens high-

lighting 10 randomly chosen chickens

Table 1. Simulation study 1: Performance of the Bayesian model selection criteria for the Potthoff & Roy
data set.

Minimum value Absolute difference
Scenario criteria Over Correct Under Over Correct Under
I cDIC 18.6 67.6 13.8 2.4 1.0 96.6

mDIC 16.8 76.4 6.8 1.4 55.2 43.4
cPSBF 27.0 43.0 30.0 18.6 29.8 51.6
mPSBF 17.6 75.2 7.2 2.8 65.2 32.0
cWAIC 19.8 31.0 49.2 2.6 0.0 97.4
mWAIC 18.8 75.0 6.2 1.4 58.4 40.2

II cDIC 46.2 53.8 0.0 10.4 89.6 0.0
mDIC 15.0 85.0 0.0 0.6 99.4 0.0
cPSBF 52.4 47.6 0.0 32.0 68.0 0.0
mPSBF 14.4 85.6 0.0 1.2 98.8 0.0
cWAIC 63.2 36.8 0.0 16.0 84.0 0.0
mWAIC 18.0 82.0 0.0 0.8 99.2 0.0



Table 2. Simulation study 1: Performance of the Bayesian model selection criteria for the Jimma Infant

Growth data set.

Minimum value Absolute difference
Scenario Over Correct Under Over Correct Under
I cDIC 34.4 34.0 31.6 15.2 29.0 55.8

mDIC 21.2 58.0 20.8 0.8 32.4 66.8
cPSBF 33.0 32.8 34.2 47.0 31.8 21.2
mPSBF 21.0 57.8 21.2 3.0 44.0 53.0
cWAIC 36.2 31.2 32.6 14.4 26.4 59.2
mWAIC 21.2 58.2 20.6 0.8 32.6 66.6

II cDIC 63.2 36.8 0.0 43.2 56.8 0.0
mDIC 26.4 73.6 0.0 0.2 99.8 0.0
cPSBF 55.2 44.8 0.0 51.8 48.2 0.0
mPSBF 28.0 72.0 0.0 2.8 97.2 0.0
cWAIC 66.0 34.0 0.0 49.2 50.8 0.0
mWAIC 27.4 72.6 0.0 0.2 99.8 0.0

Table 3. Simulation study 2: Percentage correct selection when changing the residual variance in the Potthoff

& Roy data set.

Scenario Minimum value Absolute difference
Criteria 0.25 0.5 1 2 4 0.25 0.5 1 2 4

I cDIC 64.6 70.2 77.0 77.8 79.2 0.6 1.2 3.2 10.8 24.6
mDIC 81.6 83.0 83.0 82.8 82.0 93.0 92.8 92.6 88.6 78.6
cPSBF 31.8 36.6 40.8 58.4 68.0 30.3 38.2 39.0 39.6 39.4
mPSBF 91.2 94.0 83.2 90.8 87.8 95.4 97.8 93.0 97.8 94.0
cWAIC 41.4 36.6 39.4 38.4 39.0 0.4 0.2 0.2 0.4 0.2
mWAIC 81.2 81.6 82.4 82.0 81.6 92.2 93.0 92.8 89.0 79.0

II cDIC 44.4 47.4 50.8 51.6 55.4 86.2 86.2 87.2 88.4 89.0
mDIC 80.4 82.4 83.6 85.4 86.4 99.2 99.4 99.6 99.6 90.2
cPSBF 60.4 58.4 44.8 62.2 73.4 52.0 55.8 65.8 67.5 69.6
mPSBF 83.8 86.8 84.2 84.0 83.8 98.7 97.9 97.6 91.2 86.4
cWAIC 34.4 32.8 34.2 36.6 36.2 81.4 81.8 83.4 81.0 82.6
mWAIC 77.6 81.0 82.6 82.0 82.4 97.6 99.2 99.2 99.0 92.2



Table 4. Simulation study 2: Percentage correct selection when changing the sample size in the Potthoff &

Roy data set.

Scenario Minimum value Absolute difference
Criteria 25 50 75 100 25 50 75 100

I cDIC 67.6 77.0 79.0 80.6 1.0 3.2 7.2 19.0
mDIC 76.4 83.0 84.2 82.8 52.2 92.6 98.4 99.0
cPSBF 43.0 40.8 49.4 45.4 0.0 0.4 0.8 0.0
mPSBF 75.2 83.0 84.4 83.0 83.1 93.0 93.2 96.1
cWAIC 31.0 39.4 41.4 43.8 0.0 44.8 44.6 40.6
mWAIC 75.0 82.4 83.8 82.0 56.2 92.8 98.8 98.8

II cDIC 53.8 50.8 47.4 41.0 89.6 87.2 87.2 84.8
mDIC 85.0 83.6 86.2 83.8 99.2 99.6 99.2 99.4
cPSBF 47.6 44.8 47.8 53.0 65.2 65.8 66.2 65.8
mPSBF 85.6 84.2 86.0 83.0 90.2 97.6 97.6 97.9
cWAIC 36.8 34.2 34.2 31.8 83.8 83.4 83.2 82.6
mWAIC 82.0 82.6 84.6 80.2 99.4 99.2 99.2 99.3

Table 5. Simulation study 2: Performance of alternative criteria for the Potthoff & Roy data set.

Minimum value Absolute difference
Scenario Criteria Over Correct Under Over Correct Under
I cDIC1 18.6 67.6 13.8 2.4 1.0 96.6

cDIC2 11.8 36.0 52.2 1.6 0.0 98.4
cDIC3 3.2 85.0 11.8 0.6 22.8 76.6
cDIC4 4.2 40.4 55.4 1.4 19.6 79.0
cWAIC1 19.8 31.0 49.2 2.6 0.0 97.4
cWAIC2 16.8 41.2 42.0 2.6 0.0 97.4
mDIC1 16.8 76.4 6.8 1.4 55.2 43.4
mDIC2 16.8 73.8 9.4 1.4 52.2 46.4
mDIC3 1.8 65.4 32.8 0.2 34.0 65.8
mDIC4 2.8 53.2 44.0 0.2 24.0 75.8
mWAIC1 18.8 75.0 6.2 1.4 58.4 40.2
mWAIC2 17.8 75.2 7.0 1.4 56.2 42.4

II cDIC1 46.2 53.8 0 .0 10.4 89.6 0.0
cDIC2 0.6 99.2 0.2 0 .0 99.4 0.6
cDIC3 0.0 47.8 52.2 0.0 36.8 63.2
cDIC4 0.0 0.8 99.2 0 .0 0.6 99.4
cWAIC1 63.2 36.8 0.0 16.0 84.0 0.0
cWAIC2 55.8 44.2 0.0 10.4 89.6 0.0
mDIC1 15.0 85.0 0.0 0.6 99.4 0.0
mDIC2 8.0 92.0 0.0 0.2 99.8 0.0
mDIC3 2.4 97.6 0.0 0.2 99.6 0.2
mDIC4 0.4 99.6 0.0 0.0 99.2 0.8
mWAIC1 18.0 82.0 0.0 0.8 99.2 0.0
mWAIC2 15.4 84.6 0.0 0.8 99.2 0.0



Table 6. Simulation study 3: Percentage of times the criteria selection select the required model described in

Section 6.4.1 in the Potthoff &Roy data set.

Model
Criteria C1 C2 C3 C4 C5 C6
cDIC 12.8 7.0 3.6 4.0 70.6 2.0
cWAIC 13.2 8.4 8.0 4.6 64.2 1.6
cPSBF 10.8 10.6 6.0 5.8 66.8 0.0
mDIC 76.2 18.4 1.2 2.8 1.4 0.0
mWAIC 67.4 20.4 2.2 3.0 4.2 2.8
mPSBF 74.8 8.6 11.4 3.4 1.8 0.0

Table 7. Simulation study 3: Performance of the Bayesian model selection criteria for Gamma(2,1) for random

error and N(0,4) for random effect.

Minimum Value Absolute difference
Scenario Criteria Over Correct Under Over Correct Under
I cDIC 29.6 43.2 27.2 39.8 60.2 0.0

mDIC 13.0 60.8 26.2 22.4 77.6 0.0
cPSBF 59.0 28.2 12.8 46.6 52.4 1.0
mPSBF 11.0 67.4 21.6 44.2 55.8 0.0
cWAIC 25.4 51.4 23.2 32.6 67.4 0.0
mWAIC 11.0 62.4 26.6 20.2 79.8 0.0

II cDIC 18.2 26.4 55.4 38.2 61.8 0.0
mDIC 18.2 64.4 17.4 15.6 84.4 0.0
cPSBF 19.2 56.4 37.2 47.2 51.4 1.4
mPSBF 14.6 70.2 15.2 19.2 78.8 2.0
cWAIC 15.6 20.4 64.0 32.2 67.8 0.0
mWAIC 18.2 66.0 15.8 14.4 85.6 0.0



Emperical Bayes estimate of subject−specific intercepts

F
re

qu
en

cy

−20 −10 0 10 20 30 40

0
10

20
30

40

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

−2 −1 0 1 2

−
10

0
10

20
30

40

Theoretical Quantiles

Emperical Bayes estimate of subject−specific slopes
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Emperical Bayes estimate of subject−specific slope age^2
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Figure 2. Nigerian indigenous chicken data set: Histogram and normal Q-Q plots for standardised posterior

means of random effects based on Model 9(a): Subject-specific intercepts in the first row, subject-specific slope

of age in the second row, subject-specific slope for the age2 in the third row and residual in the fourth row.



Table 8. Nigeria indigenous chicken data set: Posterior mean (regression coefficients) & median (variance parts), 95% probability intervals and the conditional and marginal

criteria under the four fitted models, see Section 7

Model 9 a Model 9 b Model 9 c Model 9 d
Estimate 2.50% 97.50% Estimate 2.50% 97.50% Estimate 2.50% 97.50% Estimate 2.50% 97.50%

β0 0.335 0.321 0.349 0.369 0.284 0.848 0.359 0.353 0.374 0.315 0.299 0.329
β1 -0.008 -0.014 -0.001 -0.009 -0.018 0.000 -0.028 -0.030 -0.021 -0.029 -0.035 -0.023
β2 0.239 0.229 0.249 0.308 0.227 0.853 0.235 0.231 0.245 0.232 0.221 0.242
β3 0.031 0.027 0.034 0.046 0.028 0.223 0.031 0.030 0.032 0.030 0.028 0.031
δb1 - - - - - - 0.003 0.001 0.009 0.003 0.000 0.009
δb2 - - - - - - 0.002 0.001 0.007 0.002 0.000 0.007
δb3 - - - - - - 0.002 0.001 0.007 0.002 0.000 0.007
δε - - - 0.051 0.048 0.054 0.060 0.055 0.064
d11 0.013 0.011 0.015 0.013 0.011 0.319 0.015 0.014 0.017 0.014 0.012 0.016
d12 0.010 0.009 0.012 0.010 0.008 0.318 0.007 0.001 0.040 0.008 -0.012 0.031
d13 0.001 0.000 0.001 0.000 0.000 0.098 0.005 -0.002 0.023 0.004 -0.019 0.024
d22 0.010 0.008 0.011 0.010 0.008 0.383 0.008 0.003 0.122 0.009 0.001 0.085
d23 0.002 0.001 0.002 0.002 0.001 0.123 -0.003 -0.011 0.002 -0.003 -0.069 0.002
d33 0.001 0.001 0.001 0.001 0.001 0.039 0.008 0.004 0.081 0.006 0.001 0.068
σε 0.001 0.001 0.001 0.000 0.000 0.001 0.002 0.002 0.002 0.001 0.001 0.001

cDIC -19117.4 -19809.10 -19710.85 -18574.70
cWAIC -19782.2 -20361.42 -19117.48 -20128.30
cplppd -15242.3 -15945.86 -15414.23 -16113.33

mDIC -16821.6 -15673.10 -17269.46 -17362.04
mWAIC -16808.5 -15472.20 -17488.41 -17511.63
mlppd -16665.4 -16965.43 -16765.43 -17165.43
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