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Functional linear regression for partially
observed functional data

Yafei Wanga,b , Tingyu Laia, Bei Jiangb , Linglong Kongb†, Zhongzhan Zhanga∗

Abstract In functional linear regression model, many methods have been proposed
and studied to estimate the slope functionwhile the functional predictor was observed
in the entire domain. However, works on functional linear regression model with
partially observed trajectories have received less attention. In this paper, to fill the
literature gap we consider the scenario where individual functional predictor may
be observed only on part of the domain. Depending on whether measurement error
is presented in functional predictors, two methods are developed, one is based on
linear functionals of the observed part of the trajectory and the other one uses
conditional principal component scores. We establish the asymptotic properties
of the two proposed methods. Finite sample simulations are conducted to verify
their performance. Diffusion tensor imaging (DTI) data from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) study is analyzed.
Keywords: Functional linear model; Partially observed functional data; Principal
components; Measurement error; ADNI.

1 Introduction

With the advance in technology, it is increasingly common to encounter data that
are functions or curves in nature (see Ramsay (2005)). Functional linear regression
models provide a framework formodeling the dynamic relationship between response
and functional predictors, which was first introduced by Ramsay and Dalzell (1991).
One of the primary goals for functional linear model (FLM) is to get an estimator
of functional coefficient. And many procedures have been proposed to approximate
functional coefficient, for example, functional principal component analysis (FPCA)
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based approaches (Cardot et al. (1999),Hall andHorowitz (2007),Yao et al. (2005b)),
spline-based approaches (Crambes et al. (2009), Marx and Eilers (1999)), wavelet-
based approaches (Zhao et al. (2012), Wang et al. (2019)), and others. We refer to
Morris (2015) and Reiss et al. (2017) for more informative and extensive reviews on
such functional linear models.

Among the different based methods in functional data analysis, FPCA based
approaches for capturing the information of covariates are popular (Hall et al. (2006),
Che et al. (2017)). In the setting where trajectories are observed on dense and regular
grid on the entire domain, the existing works can be found in Besse and Ramsay
(1986), Rice and Silverman (1991), Cardot et al. (1999), Shin (2009), Horváth and
Kokoszka (2012), to name a few. Yao et al. (2005a) emphasizes the case where the
functional predictors are observed with irregularly sparse measurements which is
often referred to as sparse functional data, and proposes a nonparametric method to
perform FPCA. For general review on FPCA, see Shang (2014). In this paper, we
prefer to use FPCA method to get an estimator of the functional coefficient.

Sparse functional data addresses the case where each trajectory is observed at a
small number of points that are distributed randomly on the domainwhich is different
from the partially observed functional data (or incomplete or fragmentary functional
data) which was first introduced in Liebl (2013). Partially observed functional data
addresses each trajectory is observed at points that cover a subset of the domain in
such away that trajectories can be reasonably treated as fragments of curves (Delaigle
and Hall (2016)) that has great implication in applications, such as in biomedicine,
economics (see Kraus (2015), Kneip and Liebl (2020)). Considering the partially
observed functional data can be treated as missing data for functional curves over
the domain, two missing mechanisms are introduced in the existing works: one is
missing completely at random (MCAR), that is, the missing data mechanism is
independent from other stochastic components (Delaigle and Hall (2016), Goldberg
et al. (2014)); the other one is themissingmechanism inwhich depends on systematic
strategies, such as missing parts of the trajectories only occur at the upper interval
of the domain (see Liebl and Rameseder (2019)). In the setting of MCAR, Delaigle
and Hall (2016), Goldberg et al. (2014) and Kraus (2015) address the problem
for recovering the missing parts of trajectories. Kraus (2015) and Kneip and Liebl
(2020)model the functional principal (FPC) scores of an incomplete trajectory. In the
scenario where missing data mechanism depends on systematic strategies, Liebl and
Rameseder (2019) establishes estimators for the mean and the covariance function
of the incomplete functional data via the fundamental theorem of calculus. To the
best of our knowledge, no work exists focusing on estimating functional coefficient
of FLM with partially observed trajectories.

In this paper, we address the problem of getting an estimator of functional coeffi-
cient for the case of partially observed functional data without and with measurement
error. In the scenario that trajectories observed without measurement error, instead
of deleting the incomplete trajectories, we get estimators of FPC scores for each
incomplete trajectory by modeling it as linear functionals of the observed parts of
that trajectory. In the setting where trajectories observed with measurement error,
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we use local linear smoother methods to estimate mean and covariance function of
the functional predictor, followed by getting FPC scores via conditional expectation.

The contributions of this paper are as follows. First, we extend FLM approach
to partially observed functional data without measurement error, which leads to
an improved estimator for functional coefficient comparing with the one obtained
through deleting the incomplete trajectories for given dataset. Second, we develop
an estimate method for functional coefficient in FLM for incomplete trajectories
with measurement error. We illustrate its usefulness by comparing with another two
methods: one is based on integration method to get the FPC scores of the functional
predictor instead of using conditional expectations; the other estimator is obtained
by ignoring the measurement error of the trajectories in the dataset. Third, in both
scenarios, we obtain the rate of convergence for the proposed estimators. Overall, the
methodological and numerical developments in this paper can provide a practically
useful way in analyzing FLM with partially observed functional data.

The rest of this paper is organized as follows. In Section 2, we introduce functional
linear models. In Section 3.1, we develop an estimator for functional coefficient with
incomplete trajectories observed without measurement error, and establish theoret-
ical properties for the proposed estimator. An estimator and theoretical properties
in the scenario that incomplete trajectories observed with measurement error is in-
troduced in Section 3.2. Section 4 illustrates the finite sample performance of our
proposed estimators through simulation studies, followed by a real data analysis in
Section 5. Discussion is presented in Section 6. Proofs of theorems are given in the
Appendix.

2 Functional Linear Model

Consider a functional linear model, in which the scalar responseYi is linearly related
to the functional covariate Xi ,

Yi = α +
∫
T

γ(t)Xi(t)dt + εi, (1)

where α is the intercept, {Xi(t) : t ∈ T , i = 1, . . . , n} are the functional predictors,
sampled from the stochastic process {X(t) : t ∈ T } with mean function µ, domain T
is bounded and closed, γ is the slope function to be estimated, εi are random errors
satisfying E[εi] = 0, E[ε2

i ] = σ
2 < ∞. We can easily get an estimator of intercept

once we get an estimator of γ. So we focus on estimating γ in the following (Hall and
Horowitz (2007)). Let 〈·, ·〉, | | · | | be the inner product and norm on L2(T ), the set of
all square integrable functions on T , with 〈 f , g〉 =

∫
T

f (t)g(t)dt, ‖ f ‖ = 〈 f , f 〉1/2

for any f , g ∈ L2(T ).
We first recall the method FPCA in estimating the slope function for model (1)

with the functional predictor Xi observed on the entire domain T . For the stochastic
process X ∈ L2(T ), denote its mean function as µ: µ = E(X), and its covariance
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function as cX (s, t): cX (s, t) = cov(X(s), X(t)). Assume cX is continuous on T × T .
The expression cX (s, t) =

∑∞
j=1 λjφ j(s)φ j(t) exists by the Mercer Lemma (Riesz and

Nagy (1955)), where λ1 > λ2 > · · · > 0; φ1, φ2, · · · are the eigenvalue sequence
and the continuous orthonormal eigenfunction sequence of the linear operator CX :
(CXφ)(·) =

∫
T

cX (·, t)φ(t)dt, φ ∈ L2(T ), with the kernel cX . On the other hand,
by the Karhunen-Loève (K-L) expansion, one has Xi(t) =

∑∞
j=1 Ui jφ j(t), where the

random variables Ui j = 〈Xi − µ, φ j〉 are uncorrelated with E[Ui j] = 0, E[U2
i j] = λj ,

and γ(t) =
∑∞

j=1 γjφ j(t) with γj = 〈γ, φ j〉.
The full model (1) is then equivalent to Yi − EYi =

∑∞
j=1 γjUi j + εi based on

K-L expansion, which can be approximated by
∑m

j=1 γjUi j + εi by using the first
m terms. To simplify notations, we assume that {Yi, i = 1, · · · , n} are centered. Let
Y = (Y1, · · · ,Yn)T , γ = (γ1, · · · , γm)

T , µ̂ be an estimator of µ, {λ̂j} and {φ̂ j} be
estimators of the sequence {λj} and {φ j} with λ̂1 > λ̂2 > · · · > 0. The least square
estimator γ̂ is then given as

γ̂ = (ÛT
mÛm)

−1ÛmY, (2)

provided that (ÛT
mÛm)

−1 exists with Ûi j = 〈Xi − µ̂, φ̂ j〉, Ûm = (Ûi j)i=1, · · · ,n;
j=1, · · · ,m

. More-

over, for the estimator γ̂j, j = 1, · · · ,m, it has the equivalent form as

γ̂j = λ̂
−1
j

〈
n−1

n∑
i=1
(Yi − Ȳ0)(Xi − µ̂), φ̂ j

〉
.

Consequently, an estimator of γ is given by

γ̂(t) =
m∑
j=1

γ̂j φ̂ j(t). (3)

The number m of included eigenfunctions is chosen by fraction of variance
explained criterion in practice (James et al. (2000)): m = min{k :

∑k
l=1 λ̂l/

∑n
l=1 λ̂i ≥

R}, with a given threshold R. For the asymptotic analysis, we assume m depends on
sample size n such that m→∞ as n→∞.

3 Estimation Methods

The above analysis is based on the assumption the functional predictor is observed
on the entire domain.We now consider the scenario that the predictor Xi, i = 1, · · · , n
may be available only on parts of T . We first give some notations and then make fur-
ther analysis. Let X1, · · · , Xn be an independent and identically distributed samples
from the random function X . We denote the observed and missing parts of Xi by Oi

and Mi with Oi ∪ Mi = T . Let Oi = [Li, Ri] ⊆ T , and assume that it is a random
subinterval independent of Xi with Ri − Li > 0 almost surely. The observed data for



Functional linear regression for partially observed functional data 5

ith functional predictor is then given as Xi(t), t ∈ Oi, i = 1, · · · , n, denoted by XiOi .
In this section, our objective interest is to develop an estimation method for model
(1) with partially observed functional observations without and with measurement
error respectively. And in these scenarios, our objective is to get estimators of the
functional principal component scores {Ui j} and the eigenfunctions {φ j} as indi-
cated in formulas (2), (3). Depending on whether measurement error is presented in
partially observed functional curves, two methods are developed: one is established
by applying linear functionals of the observed parts of that trajectory, while the other
one is based on principal component analysis through conditional expectation.

3.1 Partially Observed Functional Data without Measurement Error

In the scenario that functional curves are partially observed on the domain without
measurement error, to get an estimator of γ in model (1), we need to get estimators
of Ui j and φ j pertaining to this case. An estimator of Ui j is obtained based on the
linear functional of the observed part XiOi , and an estimator of φ j is obtained by
giving estimators of mean and covariance function of X . The steps are given here.

Step 1: Estimate the mean µ and the covariance function cX by sample mean and
sample covariance.

Step 2: Estimate eigenvalues {λj} and eigenfunctions {φ j} by
∫
T

ĉX (s, t)φ̂ j(s)ds =
λ̂j φ̂ j(t).

Step 3: Estimate principal component scores Ui j = Ui jOi + Ui jMi with Ûi jOi =

〈XiOi − µ̂Oi , φ̂ jOi 〉, and estimate Ui jMi by modeling it as linear functionals of XiOi

given as Ûi jMi = 〈ξ̂i jMi , XiOi − µ̂Oi 〉.
Step 4: Estimate γ based on formulas (2) and (3) for XiOi observed without

measurement error.
We first address the problem of getting estimators of µ and cX , denoted as µ̂NME

and ĉNME
X respectively, followed by establishing estimators ofUi j and eigenfunctions

φ j which are denoted as ÛNME
i j and φ̂NME

j . For simplicity of presentation, we suppress
the notation on “NME" in this subsection unless otherwise stated.

Let Oi(t) = IOi (t) with indicator function IOi (t) being 1 if t ∈ Oi , and 0 other-
wise, and let Wi(s, t) = Oi(s)Oi(t). The estimators of the mean function µ and the
covariance function cX of X obtained from the observed points s, t of Xi , are given
by,

µ̂(t) =
1∑n

i=1 Oi(t)

n∑
i=1

Oi(t)Xi(t), (4)

ĉX (s, t) =
1∑n

i=1 Wi(s, t)

n∑
i=1

Wi(s, t)(Xi(s) − µ̂(s))(Xi(t) − µ̂(t)). (5)
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Therefore, we get the estimators {λ̂j}, {φ̂ j} related to {λj} and {φ j} from ĉX
associated with the covariance operator ĈX .

We could not get estimators Ûi j of FPC scores {Ui j} of Xi directly from its
definition if Oi , T . To bridge the gap, Ui j is decomposed into two parts:

Ui j = 〈XiOi − µOi , φ jOi 〉 + 〈XiMi − µMi , φ jMi 〉 = Ui jOi +Ui jMi , (6)

where µOi and φ jOi denote the restriction of µ and the eigenfunction φ j on Oi

respectively, and the definitions of µMi , φ jMi are similar. The estimator Ûi jOi of
Ui jOi can be estimated directly from the observed part XiOi and the estimator φ̂ j ,
given as Ûi jOi = 〈XiOi − µ̂iOi , φ̂ jOi 〉. For the term Ui jMi , we consider using the
linear functional form 〈ξi jMi , XiOi − µOi 〉 of the observed part XiOi to estimate it
which is also considered in Kraus (2015), that is,

ξ̂i jMi = argmin
ξi jMi

∈L2
n−1

n∑
i=1
(Ûi jMi − 〈ξi jMi , XiOi − µ̂iOi 〉)

2

with Ûi jMi = 〈XiMi − µ̂Mi , φ̂ jMi 〉. The estimator ξ̂i jMi has the explicit form: ξ̂i jMi =

Ĉ−1
OiOi

ĈOiMi φ̂ jMi , where ĈOiOi , ĈOiMi are the empirical covariance operator for
COiOi , COiMi with the kernel being the covariance function ĉX of Xi restricted
to Oi × Oi and Oi × Mi respectively. To obtain a stable solution, we adopt ridge
regularization, given by

ξ̂
(ρ)
i jMi
= (Ĉ(ρ)

OiOi
)
−1

ĈOiMi φ̂ jMi ,

Û(ρ)i jMi
= 〈ξ̂

(ρ)
i jMi

, XiOi − µ̂iOi 〉, i = 1, · · · , n, j = 1, · · · ,m, (7)

where Ĉ(ρ)
OiOi

= ĈOiOi + ρFOi , FOi is an identity operator defined on L2(Oi), ρ is
a ridge parameter; see Kraus (2015) for further details. Let ÛNME

i j = Ûi jOi + Û(ρ)i jMi
.

The estimator γ̂NME of γ using all of the information of the dataset is then obtained
through replacing Ûi j in (2) with ÛNME

i j ,

γ̂NME(t) =
m∑
j=1

γ̂j φ̂ j(t). (8)

To facilitate our theoretical analysis, we first impose some assumptions on ob-
servation points for partially observed functional curves, indicating the observa-
tion points asymptotically provide enough information in individual or pairwise
crossover.

(A1) There exists δ1 > 0 s.t. sup
t∈[0,1]

P{n−1 ∑n
i=1 IOi (t) ≤ δ1} = O(n−2).

(A2) There exists δ2 > 0 s.t. sup
s,t∈[0,1]2

P{n−1 ∑n
i=1 Wi(s, t) ≤ δ2} = O(n−2).

Moreover, we also introduce some regularity conditions necessary to derive the-
oretical properties for the estimate γ̂NME.
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(A3) E| |X − µ| |4 < ∞.
(A4) nm−1 →∞, n/(

∑m
j=1 δ

−2
j ) → ∞ with δj = minj≥1{λj −λj+1, λj−1 −λj} and

nλ2
m →∞ as m→∞.
(A5) The ridge parameter ρ satisfies ρ→ 0, nρ3 → 0, nm−1ρ2 →∞.
(A6)

∑∞
k=1[E[YUk]]

2/λ2
k
< ∞.

(A7)
∑∞

j=1
∑∞

k=1
r2
MiOi jk

λ2
OiOi k

< ∞, with rMiOi jk = cov(〈XMi − µMi , φMiMi j〉, 〈XMi −

µMi , φOiOik〉).
Assumption (A3) is a common condition in the analysis of functional model

by using the method of FPCA to guarantee the random functions have finite fourth
moment (see Cardot et al. (1999)). Note that if the eigenvalues {λj} are exponentially
or geometrically decreasing, the assumption (A4) holds. The same kind of conditions
are also introduced in Cardot et al. (1999). Assumption (A5) is used to control the
size of ridge effect. To define the convergence of the right hand of the formula
γ(s) =

∑∞
k=1(E[YUk]/λk)φk(s), in the L2 sense, assumption (A6) is required that is

similar to the condition (A1) in Yao et al. (2005b). Assumption (A7) is used to make
the solution ξ̂i jMi valid which is commonplace in the theory of inverse problems as
Picard condition (see Hansen (1990)).

Let θn =
∑∞

k=m[E[YUk]]
2/λ2

k
. Then assumption (A6) indicates that θn → 0.

Denote υ =
∑m

j=1 Vi j with Vi j = 〈φ jMi , (CMiMi − CMiOiC
−1
OiOi

COiMi )φ jMi 〉. Based
on the above assumptions, Theorem 1 gives the converge rate for the estimator γ̂NME

in the L2 sense.

Theorem 1 Suppose that (A1)-(A7) are satisfied. Then

‖γ̂NME − γ‖2 = Op(n−1mρ−2 + ιn + θn + υ).

with ιn = n−1 ∑m
j=1 δ

−2
j .

Theorem 1 indicates that the approximation error rate of γ̂NME for γ is controlled
by four terms. The first term depends on sample size n, tuning parameter m, ridge
parameter ρ, which is of the higher order than the one given in Hall and Horowitz
(2007) that is mainly due to functional curves observed on the part of the domain.
The second term is related to the spacings between adjacent eigenvalues, and its
effect on convergence rate of γ is also emphasized in Hall and Horowitz (2007). The
third term is related to the convergence of γ in L2 sense, which is also show in Yao
et al. (2005b) to get approximation error rate for functional coefficient. The fourth
term is introduced by approximating Ui jMi with Ũi jMi .

Note that in practice, the ridge parameter ρ included in the regularized estimation
of the jth score of the ith functional observation is chosen by generalized cross-
validation based on the set of samples observed on the entire domain (see Kraus
(2015)).
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3.2 Partially Observed Functional Data with Measurement Error

In this subsection, we construct an estimator for the slope function γ for partially ob-
served trajectories with measurement error. We suppose the functional observations
are:

Zil = Xi(til) + εil, til ∈ Oi, i = 1, · · · , n, l = 1, · · · Ni, (9)

where εil is independent from all the other variables Xj, j , i, with E(εil) = 0,
var(εil) = σ2

X .
To get an estimator of γ in (1) in the scenario that trajectories may be observed

on parts of the domain with measurement error (WME), we need give estimators of
FPC scores and eigenstructure pertaining to this case. Estimator of eigenstructure
is established after using local linear smoothers to get estimators of mean and
covariance function of X . We obtain estimators of FPC scores by using approach of
principal component analysis via conditional expectation. The steps are given here.

Step 1: Estimate the mean and covariance functions by local linear smoothers.
Step 2: Estimate eigenvalues {λj} and eigenfunctions {φ j} by∫
T

ĉWME
X (s, t)φ̂WME

j (s)ds = λ̂WME
j φ̂WME

j (t).
Step 3: Estimate FPC scores {Ui j} by principal component analysis via conditional

expectation (PACE): Ũi j = E[Ui j |Zi].
Step 4: Based on obtained estimators ˆ̃Ui j and φ̂WME

j , we get estimator γWME for
XiOi observed with measurement error.

We first calculate estimators for the mean and the covariance function of X in
the scenario (9), denoted as µ̂WME and ĉWME

X , that are required to derive estimators
for the FPC scores Ui j =

∫
(Xi(t) − µ(t))φ j(t)dt. For simplicity of presentation, we

suppress notation on “WME" unless otherwise stated in this subsection.
Let K(·) be a nonnegative univariate kernel function that is assumed to be a sym-

metric probability density function (pdf) with compact support supp(K) = [−1, 1],
and hµ, hc be the bandwidths for obtaining estimators of µ, cX . Assume that the sec-
ond derivatives of µ, cX on T , T 2 respectively exist. We use local linear smoothers
for the mean function µ (Yao et al. (2005a), Yao et al. (2005b), Kneip and Liebl
(2020)) defined as µ̂(t) = β̂0, where

(β̂0, β̂1) = argmin
β0,β1

n∑
i=1

Ni∑
l=1

K
(

til − t
hµ

)
[Zil − β0 − β1(t − til)]2. (10)

Let Ĝilk = (Zil − µ̂(til))(Zik − µ̂(tik)) be the raw covariance points. The local linear
smoother for the covariance function cX is defined as ĉX = ˆ̃β0, where

( ˆ̃β0,
ˆ̃β1,

ˆ̃β2) = argmin
β̃0,β̃1,β̃2

n∑
i=1

∑
1≤l,k≤Ni

K
(

til − t
hc

)
K

(
tik − s

hc

)
× [Ĝilk − β̃0 − β̃1(til − t) − β̃2(tik − s)]2. (11)
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Similar to the technique introduced in Yao et al. (2005a), the points Ĝill, l = 1 · · · , Ni

are not included in (11). LetT1 = [inf{Li ∈ T , i = 1, · · · , n}+ |T |/4, sup{Ri ∈ T , i =
1, · · · , n} − |T |/4] with |T | being the length of T . The estimator of σ2

X is defined
as σ̂2

X if σ̂2
X > 0, otherwise σ̂2

X = 0 with

σ̂2
X = 2

∫
T1

(V̂X (t) − G̃(t))dt/|T |

where V̂X (t) is the local linear estimator using the points {Ĝill}, G̃(t) is the estimate
ĉX (s, t) restricted to s = t (Staniswalis and Lee (1998), Yao et al. (2005a)). The
estimators of {λj, φ j}j≥1 are the corresponding solutions of the eigen-equations∫

T

ĉX (s, t)φ̂ j(s)ds = λ̂j φ̂ j(t).

Based on the K-L expansion of Xi , model (9) can be rewritten as

Zil = µ(til) +
∞∑
j=1

Ui jφ j(til) + εil, til ∈ Oi, i = 1 · · · , n, l = 1 · · · , Ni .

Let Xi = (Xi(ti1), · · · , Xi(tiNi ))
T , Zi = (Zi1, · · · , ZiNi )

T , µi = (µ(ti1), · · · , µ(tiNi ))
T ,

φi j = (φ j(ti1), · · · , φ j(tiNi ))
T . Assume that Ui j and εil are jointly Gaussian. Fol-

lowing Yao et al. (2005a), the best prediction of Ui j of the ith subject given the
observations (Zil, til), l = 1, · · · , Ni is obtained as

Ũi j = λjφ
T
ijΣ
−1
Zi
(Zi − µi),

where ΣZi = cov(Zi,Zi) = cov(Xi,Xi) + σ
2
XINi with identity matrix INi . That is,

the (u, v)th element of ΣZi is (ΣZi )u,v = cX (tiu, tiv) + σ2
X Iuv with Iuv = 1 if u = v,

and 0 otherwise. Then the estimator of Ui j is given through substituting µ, λj, φ j

with µ̂, λ̂j, φ̂ j as

ÛWME
i j = λ̂j φ̂

T
ijΣ̂
−1
Zi
(Zi − µ̂i), (12)

where the (u, v)th entry of Σ̂Zi is (Σ̂Zi )u,v = ĉX (tiu, tiv) + σ̂2
X Iuv . Replacing Ûi j in

(2) with ÛWME
i j , we then get the estimator γ̂WME of γ from (3)

γ̂WME(t) =
m∑
j=1

γ̂j φ̂ j,

where γ̂j is the jth entry of γ̂ with ÛWME
i j in (2).

Next, we give some theoretical results for γ̂WME(t). We assume the following
regularity conditions which are similar to the assumptions in Kneip and Liebl (2020),
Yao et al. (2005b).
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(B1) The observational points {til, l = 1, · · · , Ni} given Oi for the ith subject, are
i.i.d. random variables with pdf ft |Oi

(u) > 0 for all u ∈ Oi ⊆ T and zero else. For
the marginal pdf ft of observation times ti j , ft (u) > 0 for all u ∈ T .

(B2) Let N = min{Ni, i = 1, · · · , n}. N � nr with 0 < r < ∞, where an � bn
means that there exists a constant 0 < L < ∞ such that an/bn → L as n→∞.

(B3) hµ → 0, hc → 0, nNhµ →∞, nMhc →∞ as n→∞ with M = N2 − N .
(B4) K is a second order kernel with compact support [−1, 1].
(B5) Let Gilk = (Zil − µ(til))(Zik − µ(tik)). Define fZt , ftt , fGtt as the joint pdf

of (Zil, til) on R × T , (til1, til2 ) on T 2, (Gilk, til, tik) on R × T 2, respectively. All
of the second derivatives of fZt , ftt , fGtt are uniformly continuous and bounded.
Moreover, ft is uniformly continuous and bounded on T .

(B6) Let Λ = diag{λ1, · · · , λm}, Ξ = (λ1φi1, · · · , λmφim)
T ,Υ = Λ−ΞΣ−1

Zi
ΞT and

ςn ≡ trace(Υ). Denote rµ = h2
µ + 1/

√
nNhµ + 1/

√
n, rc = h2

c + 1/
√

nMh2
c + 1/

√
n.

υn ≡ mrµ → 0, τn ≡ rc(
∑m

j=1 δ
−1
j ) → 0.

Theorem 2 Under the regularity conditions (A3), (A6), (B1)-(B6), we have that

‖γ̂WME − γ‖2 = Op(υn + τn + ςn + θn).

Theorem 2 gives the rate of convergence of the estimator γ̂WME in the L2 sense.
The rate of convergence of γ̂WME depends on the sample size and bandwidths which
is common for estimating curves or surface by local linear smoothers for functional
data analysis (see Li and Hsing (2010)). Related results of Theorem 2 can also be
found in Yao et al. (2005b). The terms υn, τn are related to rates of convergence
of estimators for the mean and covariance function by using local linear smoothers.
The term ςn are introduced by approximating Ui j with Ũi j .

4 Simulation Studies

In this section,we use the simulated datasets to evaluate the finite sample properties of
our proposedmethods in Section 3. This studies are based on n ∈ {50, 100, 200} i.i.d.
samples {Xi,Yi}ni=1 and equally spaced grid {t1, · · · , t30} on [0, 1]with t1 = 0, t30 = 1.
For the ith functional observation Xi(t), the missing interval Mi takes the form
[Ri−Ei, Ri+Ei], with Ri = a1T1/2

i1 ,Ei = a2Ti2, whereTi1, Ti2 are independent random
variables uniformly distributed on [0, 1], a1, a2 ∈ R.We consider (a1, a2) = (1.5, 0.2),
(a1, a2) = (1.5, 0.4) with the expected missing length over the domain being 0.4 and
0.8, respectively. We set the intercept α = 0. To evaluate the performance of an
estimator γ̂ of γ, mean integrated square error (MISE) is used below as an evaluation
criterion, given by,

MISE =
1
N

N∑
l=1

∫ 1

0
(γ̂l(t) − γ(t))2dt,
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where N is the number of Monte Carlo replications.
For functional predictors {Xi} without measurement error, the trajectories are

generated as follows. The simulated random function Xi has zero mean, the co-
variance function is generated from two eigenfunctions, φ1(t) =

√
2sin(πt/2),

φ2(t) =
√

2sin(3πt/2). For the eigenvalues, we take λ1 = (π/2)−2, λ2 = (3π/2)−2,
λk = 0, for k ≥ 3. The error εi in (1) is assumed to be standard normal. For the
slope function γ in (1), we take the form γ(t) = φ1(t)+3φ2(t). We compare the finite
sample performance of our proposed method with the method that gives an estimator
for γ through formula (2), (3) with deleting the incomplete functional observations
in the datasets denoted as “SUB". Moreover, the estimator of γ based on the original
complete dataset is also considered in this scenario, and denote it as “ORI". We
conduct 1000 simulation runs in each setup. Table 1 reports the results.

Table 1 MISEs of the estimators of γ under different methods with 1000 Monte Carlo replications
for functional predictors without measurement error

method (a1, a2) n = 50 n = 100 n = 200

ORIa 2.0295 1.0767 0.3670
NMEb (1.5, 0.2) 2.8653 1.6650 0.7343

(1.5, 0.4) 3.5650 2.4412 1.3497
SUBc (1.5, 0.2) 3.5632 1.8844 0.8322

(1.5, 0.4) 4.600 2.6664 1.4401
a The estimator is obtained with the original dataset {Xi,Yi } with functional predictors observed
in entire domain [0, 1] (ORI)
b The estimator γ̂NME introduced in Section 3.1 (NME)
c The estimator is obtained by deleting the functional predictors with missing parts (SUB)

As shown in Table 1, in the scenario where incomplete functional predictors are
observed without measurement error, the estimation method in Section 3.1 performs
better than “SUB" method. This is because some useful information the dataset has
will be lost if we delete them directly, while the “NME"method can take advantage of
the whole information about the dataset. Specially, in each setting for (a1, a2), MISEs
from the “NME" method have smaller values relative to the “SUB" method. These
simulation results also demonstrate that MISEs decrease with increasing sample
size n for these three methods. And MISEs increase with longer missing length on
[0, 1] at fixed n indicating that a large error is introduced for the “NME" method in
imputing missing scores of incomplete functional predictors through little available
information from functional samples. In further, the difference ofMISEs among these
three methods are reduced with increasing sample size n, and the “NME" method
still performs better than the “SUB" method, those imply the “NME" method is
promising.

For functional predictors Xi withmeasurement error, they are generated according
to Zi(til) = Xi(til)+εil, l = 1, · · · , 30, as follows.We take Xi(t) =

∑50
j=1 Ui jφ j(t)with

Ui j = (−1)j+1 j−1.1/2Wi j , whereWi j is uniformly distributed on [−
√

3,
√

3], φ1(t) = 1,
φ j(t) =

√
2cos( jπt) for j ≥ 2. The additional random error εil, l = 1 · · · , 30 and

the error εi in (1) are assumed to be normal with mean zero, variance 0.25. For
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the slope function γ, we take γ =
∑50

j=1 γjφ j(t) with γ1 = 0.3, γj = 4(−1)j+1 j−2

for j ≥ 2 (Hall and Horowitz (2007)). We conduct 100 simulation runs in each
setup. To demonstrate the superior performance of our proposed method in Section
3.2, we compare it with the other two methods after we get estimators of µ(t) and
cX (s, t) by solving the optimization problems (10), (11) respectively: one is that an
estimator of γ is established by applying integration method to get the FPC scores
Ûi j in (2) instead of using formula (12), denoted as “IN"; the other one is that an
estimator of γ is obtained by using the method in Section 3.1 with dataset {Zi,Yi}
with measurement error being ignored. The results are summarized in Table 2.

Table 2 MISEs of the estimators of γ under different methods with 100 Monte Carlo replications
for functional predictors with measurement error

method (a1, a2) n = 50 n = 100 n = 200

WMEa (1.5, 0.2) 0.1535 0.1176 0.0753
(1.5, 0.4) 0.2033 0.1607 0.1057

INb (1.5, 0.2) 0.1702 0.1560 0.1024
(1.5, 0.4) 0.2671 0.2374 0.1974

NMEc (1.5, 0.2) 0.6312 0.4517 0.3320
(1.5, 0.4) 0.7249 0.5086 0.3808

a The estimator is obtained by using the method in Section 3.2 (WME)
b The estimator is obtained by using integration method to get estimators of the principal
component scoresUi j (IN)
c The estimator is obtained by using the method in Section 3.1 (NME)

We find from Table 2 that the “WME" method has the best performance relative
to the other two methods in each setup, and the gains are dramatic when switching
from the “NME" method to the “WME" method with the “NME" method ignoring
observation errors for functional predictors. Specifically, for the case of n = 100,
comparing with the “NME" method, the MISEs are reduced by 74%, 68% using the
“WME" method with (a1, a2) = (1.5, 0.2) and (a1, a2) = (1.5, 0.4) respectively. For
the “IN"method, it provides an reasonable estimator for γ and has better performance
than the “NME" method, but nevertheless the “WME" method still performs better
than “IN"methodwith improvement of 25%, 32%with respect to (a1, a2) = (1.5, 0.2)
and (a1, a2) = (1.5, 0.4). In addition, these simulation results show that the MISEs
decrease with increasing sample size n that is consistent with the derived theoretical
results.

To sum up, in the scenario that incomplete functional predictors observed without
measurement error, the “NME" method taking advantage of the whole information
of the dataset produces a better estimator compared with the “SUB" method; in the
scenario that incomplete functional predictors observed with measurement error,
the “WME" method is preferred for giving the smallest MISE relative to the “IN"
and “NME" methods. Both MISEs of the estimators of γ decrease with increasing
sample size n, that is consistent with the derived theoretical properties.
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5 Real Data Analysis

A real diffusion tensor imaging (DTI) dataset considered here is from NIH
Alzheimer’s Disease Neuroimaging Initiative (ADNI) studywith 212 subjects, and is
obtained through http://adni.loni.usc.edu/. The primary goal of ADNI study is to test
whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), biological markers, and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). DTI obtained using mathematical method to represent the anisotropic
diffusion of the water molecule in brain organization, can be used to learn MCI and
AD. The concrete measure of anisotropy include fractional anisotropy (FA), relative
anisotropy (RA), Volume ratio (VR), and FA is commonly adopted for its advantage
in contrast ratio of grey-white matter. More details about preprocessing and methods
of this study can be found in Zhu et al. (2012), Yu et al. (2016).

Our main interest is characterizing the dynamic relationship between FA and
mini-mental state examination (MMSE) score which is seen as a reliable and valid
clinical measure in quantitatively assessing the severity of cognitive impairment. FA
is measured at 83 equally spaced grid along the corpus callosum (CC) fiber tract
that is the largest fiber tract in human brain, and is responsible for much of the
communication between two hemispheres, and connects homologous areas in two
cerebral hemispheres.

0.2
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0 20 40 60 80
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Fig. 1 A part of complete (left) and incomplete (right) FA curves with mean function (purple line)

To demonstrate the usefulness of the proposed method in Section 3.1, we artifi-
cially delete some observed points of FA, and then compare the estimator of γ ob-
tained by using these incomplete functional observations with the estimator obtained
by applying original complete dataset. For the ith FA curve, the missing domain has
the same form with the interval given in Section 4 with (a1, a2) = (1.5, 0.2) and
(a1, a2) = (1.5, 0.4). A part of complete and incomplete individual trajectories are
displayed in Figure 1.

Estimators of functional coefficient obtained by both complete and incomplete FA
dataset are illustrated in Figure 2. It shows that estimators obtained by incomplete
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dataset with different missing domain (red line and green line) are similar to the
estimator obtained from original complete dataset (blue line). This reveals that the
proposed framework is useful in getting an estimator for the model with incomplete
functional predictors.
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Fig. 2 Estimators of γ with different expected missing length on [0, 1]. Blue line: the estimator
using original complete dataset; Red line: the estimator with (a1, a2) = (1.5, 0.2); Green line: the
estimator with (a1, a2) = (1.5, 0.4)

Next, we focus on the problem of recovering themissing parts XiMi of Xi . Assume
that the infinite-dimensional process Xi is well approximated by the projection onto
the function space L2(T ) via the first m eigenfunctions (Yao et al. (2005a)). In
practice, the prediction for the trajectory Xi(t) of the ith subject using the first m
eigenfunctions given in Section 3.1 can be approached by

X̂i(t) = µ̂NME(t) +
m∑
k=1

Û(ρ)i j φ̂
NME
j (t).

We randomly select four FA curves with different missing parts. The predicted
profiles for these four curves are presented in Figure 3, showing that the predicted
profiles are close to the real part. This demonstrate the “NME"method by recovering
the missing parts of incomplete trajectories encourages a better estimator comparing
with the “SUB" method with deleting them directly.

6 Discussion

In this paper, we address the problem for getting estimators of γ in (1) with par-
tially observed trajectories without and with measurement error. Basic elements of
our approach are estimators of FPC scores for each partially observed trajectory.
Specially, in the scenario that incomplete functional predictors observed without
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Fig. 3 Predicted profiles for four randomly chosen FA curves with different missing parts with
(a1, a2) = (1.5, 0.2). Missing parts of trajectories from left to right and top to down: missing in left
side, middle side, right side, both left and right side. Blue point: real data point; Red line: predicted
profile

measurement error, we achieve it by modeling FPC scores of the missing part as
linear functionals of the observed part of that trajectory. In the scenario where in-
complete functional data is observed with measurement error, we obtain estimators
of FPC scores via conditional expectation. Rates of convergence of the proposed
estimators γ̂NME, γ̂WME under different scenarios are established. We also compare
the proposedmethods with the “SUB" or “IN"method.We conclude from simulation
studies that both the “NME" and “WME" methods borrowing strength from entire
samples to get estimators of γ in model (1) perform well in practice.

The methods proposed here can be extended to other models in terms of func-
tional regression with partially observed trajectories, such as partial functional linear
regression (see Shin (2009)). The framework established in this paper is based on
the assumption that missing parts of trajectories are missing completely at random.
In a number of applications, it is common to encounter that the underlying miss-
ing mechanism for dataset depends on systematic strategies (Liebl and Rameseder
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(2019)) that clearly violate MCAR assumption. Extension to this scenario is also of
interest and significance in practice.

Appendix

Lemma 1 (Kraus (2015), Proposition 1.)
a) Let E‖X ‖2 < ∞ and assumption (A1) be satisfied. Then E(| | µ̂NME − µ| |2) =

O(n−1) for n→∞.
b) LetE‖X ‖4 < ∞ and observation pattern (A2) holds. ThenE(| |ĈNME

X −CX | |
2
S) =

O(n−1) for n→∞ (here | | · | |S denotes the Hilbert-Schmidt norm).
Lemma 2 (Kneip and Liebl (2020), Theorem 4.1.)

Under the assumptions (B1)-(B5), we have that
(a) supt∈T | µ̂WME(t) − µ(t)| = Op(rµ) with rµ = h2

µ + 1/
√

nNhµ + 1/
√

n.
(b) sup(s,t)∈T2 |ĉWME(s, t)− cX (s, t)| = Op(rµ + rc) with rc = h2

c +1/
√

nMh2
c +1/

√
n.

Proof of Theorem 1. The following results can be derived from the theory
developed by Bhatia et al. (1983):

supj≥1 |λ̂
NME
j − λj | ≤ ‖ĈNME

X − CX ‖, supj≥1δj ‖φ̂ j
NME
− φ j ‖ ≤ 81/2‖ĈNME

X − CX ‖.

(13)

Therefore, we obtain from Lemma 1,

supj≥1 |λ̂
NME
j − λj | = Op(n−1/2),

supj≥1δj ‖φ̂
NME
j − φ j ‖ = Op(n−1/2). (14)

Note that,∫
T

(γ̂NME(s) − γ(s))2ds

=

∫
T


m−1∑
j=1

[
n−1 ∑n

i=1[YiÛ
NME
i j ]

λ̂NME
j

φ̂NME
j (s) −

E[YUj]

λj
φ j(s)

]
2

ds

+

∫
T

{
∞∑
j=m

E[YUj]

λj
φ j(s)

}2

ds

+ 2
∫
T


m−1∑
j=1

[
n−1 ∑n

i=1[YiÛ
NME
i j ]

λ̂NME
j

φ̂NME
j (s) −

E[YUj]

λj
φ j(s)

]
{
∞∑
j=m

E[YUj]

λj
φ j(s)

}
ds

:=A1(n) + A2(n) + A3(n). (15)

For simplicity, we suppress the notation on “NME". Assumption (A6) implies
that A2(n) → 0 as m → ∞. For A3(n), Cauchy-Schwarz inequality implies that
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A2
3(n) ≤ A2

1(n) × A2
2(n)

p
→ 0. Combing the result (14), and the formula (15), we see

that the result of the theorem follows if we can get the convergence rate of Ûi j of the
trajectories per subject with Ûi j = Ûi jOi + Û(α)i jMi

.
Denote the estimates of Ui jMi , COiOi , COiMi , φ jMi as Ûi jMi (−i), ĈOiOi (−i),

ĈOiMi (−i), φ̂ jMi (−i)with deleting the ith curves Xi(t). Let ξ̃(ρ)i jMi
= (C(ρ)

OiOi
)−1COiMiφ jMi

with C(ρ)
OiOi

= COiOi + ρFOi , Ũ(ρ)i jMi
= 〈ξ̃

(ρ)
i jMi

, XiOi 〉, and the notation ξ̃i jMi Ũi jMi

are corresponded to the symbols ξ̃(ρ)i jMi
,Ũ(ρ)i jMi

with ρ = 0. Since

E‖Û(ρ)i jMi
− Ũi jMi ‖

2 = E‖Û(ρ)i jMi
− Ũ(ρ)i jMi

+ Ũ(ρ)i jMi
− Ũi jMi ‖

2

= 2E‖Û(ρ)i jMi
− Ũ(ρ)i jMi

‖2 + 2‖Ũ(ρ)i jMi
− Ũi jMi ‖

2

≤ 4E‖Û(ρ)i jMi
− Û(ρ)

i jMi (−i)
‖2 + 4E‖Û(ρ)

i jMi (−i)
− Ũ(ρ)i jMi

‖2

+ 2‖Ũ(ρ)i jMi
− Ũi jMi ‖

2, (16)

we then analyze the terms E‖Û(ρ)i jMi
− Û(ρ)

i jMi (−i)
‖2, E‖Û(ρ)

i jMi (−i)
− Ũ(ρ)i jMi

‖2, ‖Ũ(ρ)i jMi
−

Ũi jMi ‖
2 in turn. Let ξ̂(ρ)

i jMi (−i)
= (Ĉ(ρ)

OiOi (−i)
)−1ĈOiMi (−i)φ̂ jMi (−i). Then

E‖Û(ρ)
i jMi (−i)

− Ũ(ρ)i jMi
‖2 = E〈ξ̂(ρ)

i jMi (−i)
− ξ̃
(ρ)
i jMi

, XiOi 〉
2

= E{E[〈ξ̂(ρ)
i jMi (−i)

− ξ̃
(ρ)
i jMi

, XiOi 〉
2 |{XkOi , k , i}]}

= E| |C1/2
OiOi
((Ĉ(ρ)

OiOi (−i)
)−1ĈOiMi (−i)φ̂ jMi (−i) − (C

(ρ)
OiOi
)−1COiMiφ jMi )| |

2

≤ 4
{
E| |C1/2

OiOi
(Ĉ(ρ)

OiOi (−i)
)−1(ĈOiMi (−i) − COiMi )(φ̂ jMi (−i) − φ jMi )| |

2

+ E| |C1/2
OiOi
(Ĉ(ρ)

OiOi (−i)
)−1COiMi (φ̂ jMi (−i) − φ jMi )| |

2

+ E| |C1/2
OiOi
(Ĉ(ρ)

OiOi (−i)
)−1(ĈOiMi (−i) − COiMi )φ jMi | |

2

+E| |C1/2
OiOi
((Ĉ(ρ)

OiOi (−i)
)−1 − (C(ρ)

OiOi
)−1)COiMiφ jMi | |

2
}

:=B1 + B2 + B3 + B4. (17)

Let Fm = { λm2 < λ̂m < 3
2λm}. Suppose the event Fm holds. Otherwise, we have

P(|λ̂m − λm | ≥ λm
2 ) ≤ P(‖ĈNME

X −CX ‖ ≥
λm
2 ) → 0 from assumption (A4). We have

the following results for terms B1 to B4 with the equality(
Ĉ(ρ)
OiOi (−i)

)−1
−

(
C(ρ)
OiOi

)−1
= (ĈOiOi (−i) − COiOi )

(
C(ρ)
OiOi

)−1 (
Ĉ(ρ)
OiOi (−i)

)−1
.

For the term B1,

B1 ≤ E[‖C1/2
OiOi
‖22 · ‖(Ĉ

(ρ)

OiOi (−i)
)−1‖2∞ · ‖ĈOiMi (−i) − COiMi ‖

2
2 · ‖φ̂ jMi (−i) − φ jMi ‖

2]

= O(n−2δ−2
j ) · O(ρ

−2).
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Denote ‖ · ‖∞ as the operator norm. For the term B2, under the assumption (A7),
E‖C1/2

OiOi
‖2∞ < ∞ and the result (14), it is clear that

B2 ≤ E[‖C1/2
OiOi
‖2∞ · ‖(Ĉ

(ρ)

OiOi (−i)
)−1COiMi ‖

2
2 · ‖φ̂ jMi (−i) − φ jMi ‖

2]

≤
∑
j

∑
k

r2
MiOi jk

(λOiOik + ρ)
2 · O(n

−1δ−2
j ) = O(n−1δ−2

j ).

For the term B3,

B3 ≤ E[‖C1/2
OiOi
‖22 · ‖(Ĉ

(ρ)

OiOi (−i)
)−1‖2∞ · ‖ĈOiMi (−i) − COiMi ‖

2
2 · ‖φ jMi ‖

2]

= O(n−1ρ−2).

Note that ρλOiOi k

(λOiOi k
+ρ)2

< 1. Under the assumption (A7), we have that

B4 ≤ E
[
‖C1/2

OiOi
· (C(ρ)

OiOi
)−1 · (Ĉ(ρ)

OiOi (−i)
)−1 · COiMi ‖

2
2 · ‖ĈOiOi (−i) − COiOi ‖

2
2 · ‖φ jMi ‖

2
]

≤

{∑
j

∑
k

ρλOiOik

(λOiOik + ρ)
2 ·

rOiMi jk
2

(λOiOik + ρ)
2 · ρ

−1

}
· O(n−1)

= O(n−1) · O(ρ−1).

These results combined with (17) indicate

E‖Û(ρ)
i jMi (−i)

− Ũ(ρ)i jMi
‖2 = O(n−1ρ−2 + n−1δ−2

j ). (18)

We then analyze E‖Û(ρ)i jMi
− Û(ρ)

i jMi (−i)
‖2,

E‖Û(ρ)i jMi
− Û(ρ)

i jMi (−i)
‖ = E〈ξ̂(ρ)i jMi

− ξ̂
(ρ)

i jMi (−i)
, XiOi 〉

≤ {E‖ξ̂(ρ)i jMi
− ξ̂
(ρ)

i jMi (−i)
‖2}1/2{E‖XiOi ‖

2}1/2

≤ L{E‖ξ̂(ρ)i jMi
− ξ̂
(ρ)

i jMi (−i)
‖2}1/2 (19)

where the last inequality holds from the finite second moment of X that is bounded
by constant L. We also have,
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E‖ξ̂(ρ)i jMi
− ξ̂
(ρ)

i jMi (−i)
‖2 = E‖

(
(Ĉ(ρ)

OiOi
)−1ĈOiMi − (Ĉ

(ρ)

OiOi (−i)
)−1ĈOiMi (−i)

)
φ̂ jMi (−i)‖

2

= E‖
[(
(Ĉ(ρ)

OiOi
)−1 − (Ĉ(ρ)

OiOi (−i)
)−1

)
ĈOiMi

+ (Ĉ(ρ)
OiOi (−i)

)−1(ĈOiMi − ĈOiMi (−i))

]
φ̂ jMi (−i)‖

2

≤ 2
{
E‖

(
(Ĉ(ρ)

OiOi
)−1 − (Ĉ(ρ)

OiOi (−i)
)−1

)
ĈOiMi ‖

2

+ E‖(Ĉ(ρ)
OiOi (−i)

)−1(ĈOiMi − ĈOiMi (−i))‖
2 }. (20)

Note that
E‖ĈOiMi − ĈOiMi (−i)‖

2 = O(n−2),

E‖
(
(Ĉ(ρ)

OiOi
)−1 − (Ĉ(ρ)

OiOi (−i)
)−1

)
ĈOiMi ‖

2 = O(n−2),

E‖(Ĉ(ρ)
OiOi (−i)

)−1(ĈOiMi − ĈOiMi (−i))‖
2 = O(n−2ρ−2).

Combining formulas (19) and (20), we deduce that

E‖Û(ρ)i jMi
− Û(ρ)

i jMi (−i)
‖2 = O(n−2ρ−2). (21)

On the other hand,
E ‖ Ũ(ρ)i jMi

− Ũi jMi ‖
2= O(ρ), (22)

var(Ũi jMi −Ui jMi ) = 〈φ jMi ,CMiMiφ jMi 〉 − 〈φ jMi ,CMiOiC
−1
OiOi

COiMiφ jMi 〉

:= Vi j . (23)

Therefore, with nρ3 → 0 and the formulas (16), (18), (21)-(23), we have that

E‖Û(ρ)i jMi
−Ui jMi ‖

2 = O(n−1ρ−2 + n−1δ−2
j + Vi j).

Then the results is proved with nρ3 → 0.
Proof of Theorem 2. Let Ũi = (Ũi1, · · · , Ũim)

T , Ui = (Ui1, · · · ,Uim)
T .

The covariance matrix of Ũi is var(Ui) = ΞΣ−1
Zi
ΞT with Ξ = cov(Ũi,Zi) =

(λ1φi1, · · · , λmφim)
T . Moreover, var(Ũi − Ui) = Λ − ΞΣZiΞ

T . Combining these
results with formulas (14), (12) and the results of Lemma 2, the result of Theorem 3
is obtained by replacing ÛNME

i j with ÛWME
i j in (15) with assumptions (B1)-(B6).
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