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POLARIZATION OF NEURAL RINGS

SEMA GÜNTÜRKÜN, JACK JEFFRIES*, AND JEFFREY SUN**

Abstract. The “neural code” is the way the brain characterizes, stores,
and processes information. Unraveling the neural code is a key goal
of mathematical neuroscience. Topology, coding theory, and, recently,
commutative algebra are some the mathematical areas that are involved
in analyzing these codes. Neural rings and ideals are algebraic objects
that create a bridge between mathematical neuroscience and commu-
tative algebra. A neural ideal is an ideal in a polynomial ring that
encodes the combinatorial firing data of a neural code. Using some al-
gebraic techniques one hopes to understand more about the structure
of a neural code via neural rings and ideals. In this paper, we introduce
an operation, called “polarization,” that allows us to relate neural ideals
with squarefree monomial ideals, which are very well studied and known
for their nice behavior in commutative algebra.

1. Introduction

The well-known Stanley-Reisner correspondence relates simplicial com-
plexes to squarefree monomial ideals. Many combinatorial properties of
simplicial complexes are encoded in algebraic data related to the associ-
ated ideal. For example, Hochster’s formula gives a relation between Betti
numbers of the ideal and the dimensions of the homologies of the simplicial
complex. Recently, an extension of this correspondence has been studied.
Instead of simplicial complexes, which are particular collections of subsets of
a set, one studies combinatorial codes, also known as neural codes, which are
arbitrary collections of subsets of a set. One associates to each neural code
a pseudomonomial ideal, an ideal generated by products of distinct elements
of the form xi and 1− xj , called the neural ideal of the code. Roughly, the
neural ideal of a neural code is the ideal of a variety over F2 whose points are
in bijection with elements of the code, with the boolean relations removed.
Combinatorial data from the code relate to algebraic data of the ideal. In
particular, the primary decomposition and a distinguished generating set
each relate to important combinatorial data about the code. However, neu-
ral ideals lack many of the desirable algebraic properties of Stanley-Reisner
ideals. In particular, they are not graded nor realizable in a local setting.
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In this paper, we provide a technique to relate neural ideals to square-
free monomial ideals, a process that we call polarization. We show that
our notion of polarization behaves in a similar way to polarization of mono-
mial ideals; in particular, “depolarization” is given by quotienting out by
a regular sequence. We apply our notion of polarization to show that the
näıve analogue of the Taylor resolution gives a free resolution of the neural
ideal. We also apply this to define a meaningful substitute for the notion of
minimal resolutions in this context. Minimal primes persist through polar-
ization, but extra minimal primes may appear in the primary decomposition
of the polarized ideal. We provide a description of the minimal primary de-
composition of the polarized neural ideal in terms of basic data about the
neural code.

We conclude this introduction by describing the original motivation for
neural ideals. The experimental work of O’Keefe [11] on freely moving rats
yielded deep insights into how the brain encodes stimuli via neural activity.
His experiments showed that individual neurons, the place cells, would fire
when the rat entered a specific area, the place field of the neuron. Different
place cells correspond to different place fields, and these place fields may
overlap or cover other place fields. Thus, at any given point, some place
cells will fire and some will not. Moreover, place fields are generally convex
regions. Other experiments have shown that neurons detecting various other
stimuli roughly fit into a similar framework [1, 9, 12].

An important question is to determine how much information about the
ambient space is encoded in neural firing data. A key first step in this
direction is [3], where it is shown that, under mild assumptions, the topology
of the ambient space can be recovered from the simplicial complex consisting
of sets S of place cells such that there is a point where each neuron in S fires.
Later, in [4] the authors consider a finer combinatorial object—the collection
of sets S of place cells such that there is a point where each neuron and S and
no neuron not in S fires. Nerual ideals and their connection to combinatorial
codes are first studied there as a tool to understand the relationships between
place fields.

2. Background

In this section we briefly introduce the study of neural rings and ideals,
some basic properties of them. Then we describe the polarization operation
of monomial ideals.

2.1. Neural Rings. Set [n] = {1, . . . , n}. A combinatorial code C on

[n] is an arbitrary subset of {0, 1}[n] = F
[n]
2 . An element of a combinatorial

code is a codeword. We identify a code with a subset of the powerset
2[n] by identifying a codeword ω = (ω1, . . . , ωn) ∈ {0, 1}

[n] with the subset
{i ∈ [n] | ωi = 1} ⊆ [n]. We define a combinatorial code on a subset
on [n] in the same way. In keeping with the neuroscience motivation and
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previous literature, we refer to elements of [n] as neurons, and we call a
combinatorial code a neural code.

Given a finite collection of subsets U = {U1, . . . , Un} of an ambient space
X, the code associated to the cover U is the collection of subsets S ⊆ [n]
such that there is some p ∈ X with p ∈ Ui for i ∈ S and p /∈ Uj for j /∈ S. In
the Nobel Prize-winning work of O’Keefe [11], experiments showed that in
animals, individual hippocampus neurons would fire when the animal would
pass through a fixed convex region in space, called the place field of that
neuron. Then, the set of possible firing patterns—sets of neurons that can
fire simultaneously—is the neural code associated to the collection of place
fields in the space.

There has been much recent work on determining which neural codes can
arise in this way, and figuring out how to reconstruct data about the ambient
space from this information; see [3, 4, 5, 2, 10, 8]. To this end, the following
tool was introduced.

Definition 2.1. [4] The neural ring RC associated to the neural code C ,
is defined to be the quotient ring

RC = F2[x1, . . . , xn]/IC

where

IC = 〈f ∈ F2[x1, . . . , xn] | f(c) = 0 for all c ∈ C 〉

is an ideal in F2[x1, . . . , xn].

Notice that the neural code C can be realized as the variety V(IC ) ⊆

F
[n]
2 = {0, 1}[n], and IC as the vanishing ideal of C . For any neural code C ,

the ideal IC contains the ideal B = 〈x21 − x1, . . . , x
2
n − xn〉 generated by the

Boolean relations, which are verified by any point in F
[n]
2 . Then the ideal IC

can be decomposed as IC = B + JC where

JC =
〈

∏

{i|ci=1}

xi ·
∏

{i|ci=0}

(1− xj)
∣

∣

∣
c 6∈ C

〉

The ideal JC is said to be the neural ideal associated to the neural code C .

Example 2.2. Consider the following configuration of three place fields in
the plane, taken from [13]:

1 2

3

Any subset of the regions intersect, but because region 3 is contained in
region 1, there is no point where neuron 3 can fire without neuron 1. The
neural code of the above configuration is

C = {∅, {1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}} = {000, 100, 010, 110, 101, 111},
3



so 001, 011 6∈ C . Thus the corresponding neural ideal is

JC = 〈(1 − x1)(1− x2)x3, (1 − x1)x2x3〉 = 〈(1− x1)x3〉.

A pseudomonomial in a polynomial ring is a product
∏

i∈σ

xi
∏

j∈τ

(1− xj) ∈ R

where σ, τ ⊆ [n] and σ ∩ τ = ∅. A pseudomonomial ideal is an ideal
generated by a finite set of pseudomonomials; evidently, a neural ideal is
a pseudonomial ideal. We say a pseudomonomial f is minimal in I if no
proper divisor of f is contained in I. Furthermore, if {f1, . . . , fℓ} is the set
of all minimal pseudomonomials in I, and we write I in the following form,

I = 〈f1, . . . , fℓ〉

we say that I is in canonical form.
The canonical form of an ideal encodes all of the intersection and covering

information of a collection of sets. To wit:

Theorem 2.3. [4] Let C be the neural code associated to a collection of
subsets U = {U1, . . . , Un} of a space X. Let JC = 〈f1, . . . , ft〉 be the neural
ideal of C in canonical form. Then

∏

i∈σ xi
∏

j∈τ (1− xj) occurs as some fk
if and only if

⋂

i∈σ

Ui ⊆
⋃

j∈τ

Uj

and if this containment fails if σ or τ is replaced by a proper subset. Here,
we interpret the union over the empty set to be the empty set, and the in-
tersection over the empty set to be the ambient space X.

To return to the example 2.2, the ideal JC has canonical form

CF (JC ) = 〈(1 − x1)x3〉.

This relation is showing that region 1 contains region 3.
For any α ∈ {0, 1, ∗}[n], we define the interval associated to α as

Vα = {c ∈ {0, 1}[n] | ci = αi for αi 6= ∗},

and the pseudomonomial prime associated to α as

pα = 〈{xi | αi = 0}, {1 − xi | αi = 1}〉.

The interval associated to α is the Boolean interval in {0, 1}[n] consisting
of codewords that agree with α in the non-∗ coordinates. One may think
of ∗ as a “wildcard” coordinate in this construction. The pseudomonomial
prime associated to α is the prime of R that defines the variety of Vα in F

n
2

after adding the Boolean relations.

Theorem 2.4 (CIVY [4]).

JC =
⋂

{α |Vα⊆C }

pα.
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is the unique irredundant primary decomposition of JC . In particular, a
pseudomonomial ideal has a pseudomonomial primary decomposition.

In above example 2.2, the primary decomposition of JC is

JC = 〈x3〉 ∩ 〈1− x1〉.

2.2. Polarization Of Monomial Ideals. In study of monomial ideals, an
operation called “polarization” is used to reduce the monomial ideals to
the squarefree monomial ideals. The advantage of reducing the squarefree
monomials is that one can use the Stanley-Reisner correspondence which
provides a very nice correlation between squarefree monomial ideals and
simplicial complexes.

Let m = xa11 · · · x
an
n be a monomial in R = K[x1, . . . , xn] where ai ≥ 0 for

all i = 1, . . . , n. The polarization of a monomial m is defined as

P(m) =

n
∏

i=1

xiyi2 · · · yiai

which is a squarefree monomial in an extended polynomial ring

K[x1, y12, . . . , y1a1 , x2, y22, . . . , y2a2 , . . . , xn, yn2, . . . , ynan ].

Note that if ai ≤ 1 for any 1 ≤ i ≤ n, so that m is already squarefree then
P(m) = m.

The polarization of a monomial ideal I = (m1, . . . ,mr) is

P(I) = 〈P(m1), . . . ,P(mr)〉,

and clearly P(I) lives in a larger ring S = R[yij] where the number of
variables yij, for i = 1, . . . , n, depends on the maximum degrees of xi in all
minimal generators ml.

Example 2.5. Let I = 〈x21x
2
2, x

4
2x3〉 be a monomial ideal inR = K[x1, x2, x3].

Then its polarization is the ideal P(I) = 〈x1y12x2y22, x2y22y23y24x3〉 inside
the larger polynomial ring

S = R[y12, y22, y23, y24] = K[x1, y12, x2, y22, y23, y24, x3].

The reason that polarization of a monomial ideal I = 〈m1, . . . ,mr〉 pre-
serves algebraic properties is based on the following fact. The monomial
ring R/I is the quotient of S/P(I) by the ideal D generated by the regular
sequence {yjl − xj | 1 ≤ j ≤ n, 2 ≤ l ≤ aj} where aj is the maximum
power of xj dividing some minimal generator mi. We recall that a sequence
f1, . . . , ft of elements in a ring R is a regular sequence if fi is a nonzero-
divisor on R/〈f1, . . . , fi−1〉 for 1 ≤ i ≤ t. This passage from S/P(I) to R/I
is called depolarization. Quotienting out by an ideal generated by a reg-
ular sequence, especially one generated by homogeneous forms, and hence
depolarizing, preserves many algebraic properties. Note that if x2j does not
divide any minimal generator, there will be no corresponding yjl for l ≥ 2.
Then one gets

R/I ∼= S/(P(I) +D).
5



Many properties of squarefree polarized ideal P(I) transfer to the original
ideal I. For example,

• The minimal free resolution of R/I is obtained from the minimal
free S-resolution of S/(P(I) +D) by depolarization;

For given monomial ideals I and J in R,

• P(I + J) = P(I) + P(J);
• P(I) and I are the same height;

For the proofs and more properties of polarization of monomial ideals see [6].
The next theorem shows that we can verify the Cohen-Macaulayness of the
monomial ideal using the squarefree monomial ideals via the polarization
operation.

Theorem 2.6 (Fröberg [7] ). For a given monomial ideal I = 〈m1, . . . ,mr〉
in R = K[x1, . . . , xn], R/I is Cohen-Macaulay (Gorenstein) if and only if
S/P(I) is Cohen-Macaulay (Gorenstein) where S = P(R) as defined above.

3. The Polarization Operation

Let R = F[x1, . . . , xn] and S = F[x1, . . . , xn, y1, . . . , yn]. We want each yi
to act as an alias for 1 − xi, and we encode this by defining the depolar-
ization ideal,

D = 〈{xi + yi − 1 | i ∈ [n]}〉,

so that S/D = R. We denote the corresponding quotient map by π : S →
S/D = R, so that π identifies yi and 1− xi for each i.

For a pseudomonomial f =
∏

i∈σ xi
∏

j∈τ (1 − xj) ∈ R, we define its
polarization to be the squarefree monomial

P(f) =
∏

i∈σ

xi
∏

j∈τ

yj ∈ S.

Lemma 3.1. The polarization operation on pseudomonomials, P has the
property that if f, g ∈ R are pseudomonomials then f |g ⇔ P(f)|P(g) in
S.

Proof. Let

f =
∏

i∈σf

xi
∏

j∈τf

(1− xj), g =
∏

i∈σg

xi
∏

j∈τg

(1− xj).

The condition that f |g, is equivalent to the condition that σf ⊂ σg and
τf ⊂ τg. The condition that P(f)|P(g), that is, that

∏

i∈σf

xi
∏

j∈τf

yj divides
∏

i∈σg

xi
∏

j∈τg

yj

is the same. Thus, f |g if and only if P(f)|P(g).
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Let I ⊂ R be a pseudomonomial ideal. As above, I can be generated by
the set of minimal pseudomonomials in I, or by the set of all pseudomono-
mials contained in I.

We define the polarization of I by showing that these two characteriza-
tions of I are compatible with polarization in the following way.

Theorem 3.2. For a pseudomonomial ideal I = 〈f1, . . . , fℓ〉 ⊂ R in canon-
ical form, and a squarefree monomial ideal J ⊂ S, the following are equiva-
lent:

(1) J is the smallest ideal in S such that, for any pseudomonomial f in
R, f ∈ I if and only if P(f) ∈ J .

(2) J = 〈P(f1), . . . ,P(fℓ)〉 ⊂ S.

Proof. (1)⇒(2): Suppose that J0 ⊂ S is the smallest ideal in S such that
for every pseudomonomial f ∈ R, f ∈ I ⇔P(f) ∈ J0. Then

J0 = 〈{P(f) | f ∈ I, f is a pseudomonomial}〉.

Let J = 〈P(f1), . . . ,P(fℓ)〉 ⊂ S, where the fi are the set of all minimal
pseudomonomials in I. Then it suffices to show that J0 = J .

Obviously J ⊆ J0 because the generators of J are a subset of the genera-
tors of J0.

Recall from Lemma 3.1 that P preserves divisibility. Let f ∈ I a pseu-
domonomial. Since f is a pseudomonomial in I, some factor of f is a minimal
pseudomonomial in I. Denote it by fi so that fi|f . Then P(fi)|P(f), so
P(fi)|P(f), and P(f) ∈ J . Since f was an arbitrary pseudomonomial
in I, this shows that every generator of J0 is contained in J and J0 ⊆ J .
Therefore, J = J0.

(2)⇒(1): Let J = 〈P(f1), . . . ,P(fℓ)〉 ⊂ S, where the fi are the set of
all minimal pseudomonomials in I. We need to show that J is the smallest
ideal in S such that for every pseudomonomial f ∈ R, f ∈ I ⇔P(f) ∈ J .

First we show that indeed, for every pseudomonomial f ∈ R, f ∈ I ⇔
P(f) ∈ J . From the above, if a pseudomonomial f ∈ I, then P(f) ∈
J . Suppose f is a pseudomonomial not in I. Suppose, for the sake of
contradiction, that P(f) ∈ J . Then, since J is a monomial ideal P(f) is a
monomial, some generator P(fi) of J divides P(f). But by Lemma 3.1, if
P(fi)|P(f), then fi|f , so f ∈ I, a contradiction. This concludes the proof.

Now that we have shown that these two definitions produce the same
ideal, we can use them equivalently to refer to a well-defined polarization
P(I) of any pseudomonomial ideal I ⊂ R.

Definition 3.3. For a psuedomonomial ideal I, we define the polariza-
tion of I to be the squarefree monomial ideal specified by the equivalent
conditions of Theorem 3.2.

Proposition 3.4. Let I be a pseudomonomial ideal in canonical form, and
p a pseudomonomial prime.

7



(i) I ⊆ p if and only if P(I) ⊆ P(p). Moreover, P(p) is a prime
generated by a subset of the variables.

(ii) I ⊆ p if and only if every member of the canonical form is divisible
by a generator of the pseudomonomial prime p.

Proof. Let I = 〈f1, . . . , fr〉 be in canonical form. By Theorem 3.2, P(I) =
〈P(f1), . . . ,P(fr)〉. On the other hand, I ⊂ p so fi ∈ p. Then similarly
fi ∈ p if and only if P(fi) ∈P(p). Furthermore, by definition p is gener-
ated by xi or 1−xj for some i, j ∈ [n], i 6= j , so polarization simply replaces
1 − xj by yj so P(p) is a prime generated by the corresponding variables
xi and yj for i, j ∈ [n], i 6= j. This concludes part (i).

Part (ii) follows by part (i), Lemma 3.1 and the fact that a monomial
ideal is contained in a monomial prime if and only if every generator of the
monomial ideal is divisible by a generator of the monomial prime.

To show that the operation of polarization preserves algebraic properties,
we will use the following theorem.

Theorem 3.5. Let JC ⊆ R be a neural ideal. The sequence

x1 + y1 − 1, . . . , xn + yn − 1

is a regular sequence on S/P(JC ).

Proof. The statement is equivalent to the claim that for all 1 ≤ t ≤ n, the
image of the xt + yt − 1 is a nonzerodivisor on S/Jt, where

Jt = Dt + P(JC ), and Dt = (xt+1 + yt+1 − 1, . . . , xn + yn − 1).

We observe first that under the map Dt ⊆ S, the image J ′
t of Jt is a pseu-

domonomial ideal, namely the ideal obtained from P(JC ) by replacing the
yi variables by 1− xi for i > t. By Theorem 2.4, each minimal prime of the
ideal J ′

t in S′ = R[y1, . . . , yt] is generated by irreducible pseudomonomial
elements; that is x’s, y’s, (1− x)’s, and (1− y)’s.

We claim that each minimal pseudomonomial prime of J ′
t is generated by

elements of the form xi with 1 ≤ i ≤ n, 1−xj with j > t, or yk with k ≤ t. By
Proposition 3.4, if a pseudomonomial prime over a pseudomonomial ideal
has a generator that does not divide any element, that generator can be
removed and the resulting prime still contains the specified ideal. Now,
since J ′

t is generated by pseudomonomials that are multiples of xi, 1 − xj
with j > t, and yk with k ≤ t, the claim follows.

As a consequence of the claim, xt + yt − 1 is a nonzerodivisor on S′/J ′
t ,

since it cannot be contained in a prime generated by elements of the form
xi, 1 − xj with j > t, and yk with k ≤ t. Then the theorem follows by the
isomorphism S/Jt ∼= S′/J ′

t .

4. Free Resolutions and Cohen-Macaulayness

In this section, we apply Theorem 3.5 to determine some algebraic prop-
erties of neural ideals. We first consider free resolutions.

8



Let A be a ring, I an ideal, and f1, . . . , ft is a sequence of elements of A
whose images form a regular sequence on A/I. Let P• be a free resolution
of A/I as an A-module. The homology of P• ⊗A A/〈f1, . . . , ft〉 can be
computed by TorA• (A/I,A/〈f1, . . . , ft〉), which vanishes by the assumption
that the images of the f ’s form a regular sequence on A/I. Thus, P• ⊗A

A/〈f1, . . . , ft〉 gives a free resolution of A/(I+〈f1, . . . , ft〉) as an A/I-module.
The following corollary then follows immediately from Theorem 3.5.

Corollary 4.1. Let C be a code, JC ⊆ R its neural ideal, and P(JC ) ⊆ S
its polarization. Given a free resolution P• of the squarefree monomial ideal
P(JC ), the complex P• ⊗S S/D is a free resolution of JC .

Concretely, the complex P• ⊗S S/D is the complex of free R-modules
obtained from P• by replacing yi by 1− xi in each of the matrices.

We single out two special types of free resolutions P• of the squarefree
monomial ideals P(JC ). First, one has the Taylor complex, which is easy
to construct, but rarely minimal. Corollary 4.1 indicates that an analogue
of the Taylor complex provides a free resolution for JC .

Definition 4.2. We define the Taylor resolution of the neural ideal JC

as follows. Let CF (JC ) = 〈a1, . . . , at〉. For a subset H ⊆ {1, . . . , t}, let
MH = lcm{ai | i ∈ H}. For 0 ≤ i ≤ t, let Fi = ⊕|H|=iR · eH be the free
module generated by the symbols eH for all H ⊆ {1, . . . , t} of cardinality i.
Let di : Fi → Fi−1 be the R-linear map such that

di(eH) =
∑

h∈H

ε(H,h)
MH

MH−{h}
eH−{h}, where ε(H,h) = (−1)#{j∈H | j<h}.

Proposition 4.3. The Taylor resolution of a neural ideal JC ⊂ R is a free
resolution of R/JC as an R-module.

Proof. This is an immediate consequence of Corollary 4.1, because the Tay-
lor resolution of R/JC is the result of taking the Taylor resolution of P(JC )
and tensoring with the quotient by the depolarization ideal.

Example 4.4. Let C = {000, 100, 111}; this is the code A18 in [4]. The neu-
ral ideal JC is 〈x2(1−x1), x2(1−x3), x3(1−x1), x3(1−x2)〉 inR = F2[x1, x2, x3],
thus its polarization P(JC ) = 〈x2y1, x2y3, x3y1, x3y2〉 in S = F2[x1, x2, x3, y1, y2, y3].
The following is the Taylor resolution of S/P(JC );

S
[x2y1 x2y3 x3y1 x3y2]
←−−−−−−−−−−−−−−−− S4 d2←−−− S6 d3←−−− S4







y3

y2

−1

−1







←−−− S ←−−− 0

where d2 =







−y3 −x3 −x3y2 0 0 0

y1 0 0 −x3y1 −x3y2 0

0 x2 0 x2y3 0 −y2

0 0 x2y1 0 x2y3 y1






and d3 =















0 x3 x3y2 0

y2 −y3 0 0

−1 0 −y3 0

0 1 0 y2

0 0 y1 −y1

x2 0 0 x2y3















.
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Then replacing each yi by 1−xi in the entries of matrices gives the Taylor
resolution for the neural ideal JC over R.

The other free resolution of P(JC ) that we concern ourselves with is its
minimal resolution. Neural ideals are not homogeneous, so there is no notion
of minimal resolution for these ideals. However, Corollary 4.1 allows us to
define a natural substitute.

Definition 4.5. We define the canonical resolution of the neural ideal
JC as the complex P•⊗S S/D, where P• is the minimal resolution of P(JC ).

Example 4.6. Consider the same neural ideal JC and its polarization
P(JC ) in Example 4.4. The minimal free resolution of S/P(JC ) is

S
[x2y1 x2y3 x3y1 x3y2]
←−−−−−−−−−−−−−− S4







−y3 −x3 0 0

y1 0 x3y2 0

0 x2 0 y2

0 0 x2y3 y1







←−−−−−−−−−−−−−−− S4













x3y2

−y2y3

y1

−x2y3













←−−−−−− S ←− 0

Then tensoring the above minimal resolution with the quotient by the de-
polarization ideal gives the canonical resolution of the neural ideal JC over
R;

0 ←− R/JC ←− R
d1←− R4 d2←− R4 d3←− R ←− 0

where

d1 = [x2(1 − x1) x2(1 − x3) x3(1 − x1) x3(1 − x2)] ,

d2 =







−(1 − x3) −x3 0 0

1 − x1 0 −x3(1 − x2) 0

0 x2 0 −(1 − x2)

0 0 x2y3 (1 − x1)






,

and

d3 =







x3(1 − x2)

−(1 − x2)(1 − x3)

(1 − x1)

−x2(1 − x3)






.

We now turn our attention to the Cohen-Macaulay property of R/JC .
Recall that a local or graded ring A is Cohen-Macaulay if there is a regular
sequence f1, . . . , fn on A with n = dim(A). If A is not local or graded,
then A is Cohen-Macaulay if its localizations at each of its maximal ideals
is Cohen-Macaulay. In particular, every zero-dimensional ring is Cohen-
Macaulay.

If A is Cohen-Macaulay and f1, . . . , fn is a regular sequence on A, then
A/〈f1, . . . , fn〉 is also Cohen-Macaulay. Thus, we have the following.

Corollary 4.7. Let C be a code, JC ⊆ R its neural ideal, and P(JC ) ⊆ S
its polarization. If S/P(JC ) is Cohen-Macaulay, then so is R/JC .

10



The advantage of this corollary is that P(JC ) is a squarefree monomial
ideal, so one can determine whether it is Cohen-Macaulay via the topology
of its Stanley-Reisner complex. Unfortunately, the converse of Corollary 4.7
fails.

Example 4.8. Let C be the code {000, 110, 011, 101}; this is the code E4 in
[4]. For this code, R/JC is zero-dimensional, hence Cohen-Macaulay. The
polarization S/P(JC ) has some components of dimension three, and some
of dimension four. Since S/P(JC ) is graded and not equidimensional, it is
not Cohen-Macaulay.

5. The Polar Complex

In this section we consider the primary decomposition the polarization of
a pseudomonomial ideal. As the polar neural ideal is a squarefree monomial
ideal, there is a simplicial complex associated to it via the Stanley-Reisner
correspondence. We define the polar complex of a code C to be the
Stanley-Reisner complex of the polar ideal P(IC ). By the Stanley-Reisner
correspondence, to describe the minimal primes of the polar ideal is equiva-
lent to describing the facets of the polar complex. To these equivalent ends,
we start by introducing some notation and definitions. For a subset W of
the set of 2n variables {x1, . . . , xn, y1, . . . , yn} we define the following index
sets

x(W ) := {i | xi ∈W, yi /∈W}, and y(W ) := {i | yi ∈W, xi /∈W},
b(W ) := {i | xi ∈W, yi ∈W}, and n(W ) := {i | xi /∈W, yi /∈W}.

Notice that these index sets are disjoint by definition.
For a code C and a subset S ⊆ [n], the quotient code C /S denotes the

set of codewords c̄ ∈ {0, 1}[n]\S such that there is a codeword c ∈ C with
cj = c̄j for all j /∈ S. The quotient code of C by S is the same as the code
obtained from C by deleting the neurons S in the terminology of [5].

Let qW denote the prime ideal that is generated by the variables in the
subset W . By the definition of qW , it is evident that W ′ ⊆ W if and only
if qW ′ ⊆ qW .

To a subset W of the set of 2n variables {x1, . . . , xn, y1, . . . , yn} we de-
fine the interval associated to W to be the boolean interval VW ⊆
{0, 1}[n]\b(W ) given by

VW = {c ∈ {0, 1}[n]\b(W ) | ci = 0 for all i ∈ x(W ), cj = 1 for all j ∈ y(W )}.

Given this notation, we can characterize the monomial primes containing
the polar ideal.

Theorem 5.1. The monomial prime qW contains the polar ideal P(JC ) if
and only if VW is an interval of C /b(W ).

Proof. First we consider the case when the given subset W has b(W ) = ∅,
so C /b(W ) = C . Therefore, VW is the same interval as Vα corresponding to
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α ∈ {0, 1, ∗}n with

αi =











0 if i ∈ x(W )

1 if i ∈ y(W )

∗ if i ∈ n(W )

as in Section 2. By Theorem 2.4 the pseudomonomial neural ideal JC is
contained in the pseudomonomial prime pα if and only if the interval Vα =
VW is contained in C . By the assumption b(W ) = ∅, we are in the setting of
Proposition 3.4(i), so pα contains JC if and only if qW = P(pα) contains
P(JC ), which verifies this case.

Now let W be an arbitrary subset of {x1, . . . , xn, y1, . . . , yn}. Write qW =
mb(W ) + qW ′ , where mb(W ) = 〈{xi, yi | i ∈ b(W )}〉 and qW ′ is generated

by the remaining variables in W . Note that W ′ is a subset of the variables
{xi, yi | i ∈ [n] \ b(W )} and b(W ′) = ∅. Now, qW ⊇ P(JC ) if and only if
(mb(W )+qW ′)/mb(W ) ⊇ (mb(W )+P(JC ))/mb(W ). Identifying F2[xi, yi | i ∈
[n] ]/(mb(W )) with S′ = F2[xi, yi | i ∈ [n] \ b(W )], and the ideals with their
images in S′, the previous containment is equivalent to qW ′ ⊇ J , where J
is the monomial ideal generated by the monomial generators of P(JC ) that
are not divisible by any variable with index in b(W ).

We claim that J = P(JC /b(W )). Indeed, by [5, 1.7.3], given a code C ,
the canonical form of C /{i} consists of the elements of the canonical form of
C that are not divisible by either xi or yi; the analgous statement for a set
of neurons follows immediately. The claim then follows from the description
of the polarization via canonical forms.

We conclude the proof. We have that qW ⊇P(JC ) if and only if qW ′ ⊇
P(JC /b(W )) in S′. Since b(W ′) = ∅, by the case established in the first
paragraph, qW ′ ⊇ P(JC /b(W )) if and only if W ′ is an interval of C /b(W ),
as required.

Then the Stanley-Reisner correspondence says the following

Corollary 5.2 (Stanley-Reisner correspondence-Polar complex). W is a
face of the complex if and only if the interval “anything” in b(W ) indices,
1’s in x(W ) indices, 0’s in y(W ) indices is an interval of C /n(W ).

Proof. This follows from the fact that faces of the Stanley-Reisner complex
are complements of sets of variables that form monomial primes containing
the Stanley-Reisner ideal.

We may also characterize the minimal primes of P(JC ).

Corollary 5.3. The minimal primes of P(JC ) are the primes qW such that

• VW is a maximal interval of the quotient code C /b(W ), and

• the boolean interval in {0, 1}[n]\b(W )∪{j} consisting of elements of VW

in the [n]\b(W ) positions and a fixed constant value in the j position
does not belong to C /(b(W ) \ {j}) for any j ∈ b(W ).
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Proof. If W corresponds to a nonminimal prime qW , then it is possible to
remove a variable from W to get W ′ and still have that qW ′ contains the
polar ideal. If the variable is an xi or yi such that the other is not in W ,
then VW ′ is an interval of C /b(W ) properly containing VW . If the variable
is an xi or yi such that the other is in W , then VW ′ consists of elements of
VW plus a fixed value in the j position does not belong to C /(b(W ) \ {j})
for any j ∈ b(W ).

In particular, maximal intervals of C correspond to minimal primes of
P(JC ), but not every minimal prime arises in this way.

We illustrate this primary decomposition in an example.

Example 5.4. Consider the neural ideal

JC = 〈x1x3, x3(1− x2), x2(1− x1)(1− x3)〉

in canonical form, corresponding to the code C = {000, 100, 110, 011}; this
is neural code B5 in [4]. Its polar ideal is P(JC ) = 〈x1x3, y2x3, y1x2y3〉. We
depict the code as a subset of the Boolean lattice, with codewords in black
and noncodewords in red:

100

101

111

110

000

001

011

010

The isolated codeword 011 ∈ C corresponds to the subsetW1 = {x1, y2, y3}
gives the minimal prime qW1 = 〈x1, y2, y3〉. We also have intervals [∗ 0 0] and
[1 ∗ 0] contained in C , yielding minimal primes qW2 = 〈x2, x3〉 and qW3 =
〈y1, x3〉. The subsets W1,W2,W3 of the variable set {x1, x2, x3, y1, y2, y3}
are the only subsets with b(Wi) = ∅ that correspond to primes containing
P(JC ).

Now we examine the minimal subsets W whose index set b(W ) = {i} for
each i = 1, 2, 3. We use the symbol “−” as a placeholder for an omitted
coordinate for intervals in the quotient codes.

-00

-01

-11

-10

Clearly [− 1 ∗] and [− ∗ 0] are the maximal intervals in
C /{1}, therefore we get primes qW4 = 〈x1, y1, y2〉, and
qW5 = 〈x1, y1, x3〉 containing JC . As neither of these inter-
vals give intervals in C with “−” replaced by either 0 or 1,
these correspond to minimal primes of JC .
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0-0

0-1

1-1

1-0

Similarly, C /{2} contains the intervals [0 − ∗] and [∗ − 0]
so we get primes qW6 = 〈x2, y2, x1〉 and qW7 = 〈x2, y2, x3〉
containing JC . Again, these do not give intervals in C

with “−” replaced by 0 or 1, so these are minimal primes
of JC .

10-

11-

01-

00-

Finally C /{3} has the whole interval [∗ ∗ −], so we have
a prime qW8 = 〈x3, y3〉; it corresponds to a minimal prime
for the same reasoning as the cases above.

Put together, we get the minimal primary decomposition

P(JC ) = 〈x1, y2, y3〉 ∩ 〈x2, x3〉 ∩ 〈y1, x3〉∩

〈x1, y1, y2〉 ∩ 〈x2, y2, x1〉 ∩ 〈x2, y2, x3〉 ∩ 〈x3, y3〉.

Notice that depolarization of the primes qW1 ,qW2 , and qW3 , simply the
ones with no pair xi, yi included, are the pseudomonomial primes in the
decomposition of the polar ideal JC .
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