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EQUIVARIANT HILBERT SERIES OF MONOMIAL ORBITS

SEMA GÜNTÜRKÜN, UWE NAGEL

Abstract. The equivariant Hilbert series of an ideal generated by an orbit of a monomial under
the action of the monoid Inc(N) of strictly increasing functions is determined. This is used to find
the dimension and degree of such an ideal. The result also suggests that the description of the
denominator of an equivariant Hilbert series of an arbitrary Inc(N)-invariant ideal as given by Nagel
and Römer is rather efficient.

1. Introduction

For a polynomial ring over a fieldK in finitely many variables, Hilbert showed that its ideals
are finitely generated and the vector space dimensions of graded components of its homogeneous
ideals eventually grow polynomially. Equivalently, theirHilbert series are rational. Recently,
analogs of these results have been established for certain ideals in polynomials rings in infinitely
many variables.

To describe this more precisely, fix a positive integerc ≥ 1 and consider a polynomial ring
K[X] = K[X[c]×N] = K[xi, j | 1 ≤ i ≤ c, 1 ≤ j]. Let Inc(N) be the monoid of strictly increasing
functions on the setN of positive integers

Inc(N) = {π : N→ N | π(i) < π(i + 1) for all i ≥ 1}.

Settingπ · xj,k = xj,π(k) induces an action of Inc(N) on K[X]. In [1] and [4] it is shown that any
Inc(N)-invariant idealI of K[X] is generated by finitely many orbits. This and related results are of
great interest, for example, in algebraic statistics, the study of tensors, or in representation theory
(see, e.g., [2, 3, 4, 8, 9]).

If I is a homogeneous ideal, in [7] an equivariant Hilbert series ofK[X]/I has been defined as a
formal power series in two variables

HK[X]/I (s, t) =
∑

n≥0, j≥0

dimK[K[Xn]/In] j · s
nt j,

whereK[Xn] = K[X[c]×[n] ] = K[xi, j | 1 ≤ i ≤ c, 1 ≤ j ≤ n] and In = I ∩ K[Xn]. Note that any
ideal ofK[X] that is invariant under the action of Sym(∞) (induced by moving the column indices
of the variables) is also Inc(N)-invariant. For any homogeneous Inc(N)-invariant ideal ofK[X], it
has been shown in [7] that its equivariant Hilbert series is rational of the form

(1) HK[X]/I (s, t) =
g(s, t)

(1− t)a ·
∏b

j=1

[
(1− t)cj − s · f j(t)

] ,

wherea, b, cj are non-negative integers withcj ≤ c, g(s, t) ∈ Z[s, t], and eachf j(t) is a polynomial
in Z[t] satisfying f j(1) > 0.
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This form has been used in [7] to show in particular that the dimension ofK[Xn]/In eventually
grows linearly inn and that the limit lim

n→∞

n
√

degIn exists and is a positive integer. However, the

equivariant Hilbert series is explicitly known for only a few ideals. Furthermore, a different ar-
gument for the rationality of the Hilbert seriesHK[X]/I (s, t) has been given more recently in [6],
but without a more precise description of the rational function. The authors wonder about a good
description of its denominator. In order to begin addressing these issues we consider any ideal
I that is generated by the Inc(N) orbit of some monomial ofK[X]. For ease of notation, let us
focus on the casec = 1 in this introduction and writexj for x1, j. Let I be the ideal generated by
the orbit of a monomialxa1

µ1x
a2
µ2 · · · x

ar
µr , whereµ1 < ... < µr andr, a1, .., ar ∈ N, which we write as

I = 〈Inc(N) ·xa1
µ1x

a2
µ2 · · · x

ar
µr 〉. For example, ifI = 〈Inc(N) ·x2

3x4
5x8〉, then one gets

In =


〈x2

i1
x4

i2
xi3 | 3 ≤ i1, i2 − i1 ≥ 2, i3 − i2 ≥ 3, i3 ≤ n〉 if n ≥ 8

0 if 0 ≤ n < 8.

As a special case of our main result (see Theorem3.3), one gets for such ideals:

Theorem 1.1. If I = 〈Inc(N) ·xa1
µ1x

a2
µ2 · · · x

ar
µr 〉, then

HK[X]/I (s, t) =
g(s, t)

(1− t)µr−1
r∏

j=1

[
1− s · (1+ t + ... + taj−1)

] ,

where g(s, t) ∈ Z[s, t] is a polynomial that is not divisible by any of the indicated irreducible factors
of the denominator.

We also determine the numerator polynomialg(s, t) (see Theorem2.4). For instance, ifI =
〈Inc(N) ·x2

3x4
5〉 one gets (see, e.g., Example2.5)

HK[X]/I (s, t) =
(1− t)4

+ s(1− t)3(−1+ t2
+ t4) + s2t6(1− t)2

+ s3t6(1− t) + s4t6

(1− t)4 · [1 − s(1+ t)] · [1 − s(1+ t + t2 + t3)]
.(2)

The Hilbert series in the case of an arbitrary mononomial when c ≥ 1 is qualitatively of the same
form as in the case wherec = 1 (see Theorem3.3).

Let us compare the above result with the form of the equivariant Hilbert series of an arbitrary
Inc(N)-invariant ideal as given in Equation (1). Example 7.3 in [7] shows that there is no a priori
bound on the degree of the polynomialsf j appearing in the denominator and that they can have
negative coefficients. Theorem1.1establishes that the number of irreducible factors in the denom-
inator can be arbitrarily large. Thus, the description of the denominator in Equation (1) seems
rather efficient.

It is instructive to compare our results with the case of a noetherian graded hypersurface ringA =
K[y1, . . . , ym]/〈 f 〉. It is a Cohen-Macaulay ring of dimensionm− 1, and its multiplicity (degree) is
deg f . This information can be read off from its Hilbert series, which isHA(t) = 1+t+···+tdeg f−1

(1−t)m−1 . If I
is generated by the Inc(N)-orbit of a monomial, then dimK[Xn]/In = n(c− 1)+ µr − 1, and so the
growth is dominated byc− 1. However, the degrees of the idealsIn eventually grow exponentially
in n, and ifc = 1 (soI = 〈Inc(N) ·xa1

µ1x
a2
µ2 · · · x

ar
µr 〉) the growth rate is dominated by

lim
n→∞

n
√

degIn = max{a1, ..., ar},
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which is not the degree of the orbit generator ifr ≥ 2. Again, there is a similar formula in
the general casec ≥ 1 (see Corollary3.8). Notice that even though eachK[Xn]/In is Cohen-
Macaulay the numerator polynomial of the Hilbert series ofK[X]/I in reduced form can have
negative coefficients, as it is the case in Formula (2). However, the polynomialsf j appearing in the
irreducible factors of the denominator have only non-negative coefficients (see also Remark3.9).

The proofs of rationality of an equivariant Hilbert series in [7] and [6] both lead to an algorithm
for computing it. However, here we develop a different method that makes the computations
efficient. This is first carried out in Section2 if c = 1. We discuss this simpler case separately in
order to stress the ideas and to simplify notation. The general case is treated in Section3. In some
sense we are able to reduce it to the case wherec = 1.

2. A Special Case

In this section we consider the special case wherec = 1, that is, the ringK[X] has only one row
of variables. Thus, we simplify notation and letK[X] = K[xj | j ∈ N]. Any monomial inK[X] can
be written asxa1

µ1x
a2
µ2 · · · x

ar
µr , whereµ1 < ... < µr andr, a1, .., ar ∈ N. The Inc(N)-invariant idealI of

K[X] generated by the orbit of this monomial is

I = 〈Inc(N) ·xa1
µ1

xa2
µ2
· · · xar

µr
〉.

Setµ = (µ1, . . . , µr).
Denote the set of non-negative integers byN0. So, forn ∈ N0, one hasK[Xn] = K[xj | 1 ≤ j ≤

n]. In particular,K[X0] = K. Since Inc(N) acts onK[X] by π · xj = xπ( j), we get the following
explicit description of the idealIn = I ∩ K[Xn]:

In =


〈xa1

i1
xa2

i2
· · · xar

ir
| µ1 ≤ i1, ir ≤ n, andi j+1 − i j ≥ µ j+1 − µ j for eachj〉 if n < µr

0, if 0 ≤ µr < n,

Similarly, if r ≥ 2, we also consider the ideal

J = 〈Inc · xa1
µ1

xa2
µ2
· · · xar−1

µr−1
〉 ⊂ K[X]

and Jn = J ∩ K[Xn] for n ∈ N0. The above description of the idealsIn immediately gives the
following simple, but very useful observation.

Lemma 2.1. If n ≥ 1, then
In = 〈In−1〉K[Xn] + xar

n 〈Jn−δr 〉K[Xn] ,

whereδr := µr − µr−1 ≥ 1 and Jn is defined as the zero ideal if n< 0.

Recall that theHilbert seriesof a proper homogeneous ideala of K[Xn] is defined as the formal
power series

HK[Xn]/a(t) =
∑

j≥0

dimK[K[Xn]/a] j · t
j .

Hilbert showed that it is a rational function of the formHK[Xn]/a(t) =
f (t)

(1−t)d , where f (t) ∈ Z[t] and
d ∈ N0. We say thatHK[Xn]/a(t) is in reducedform if the numerator and denominator are relatively
prime or, equivalently, iff (1) , 0. In this cased is the Krull dimension ofK[Xn]/a and f (1) ≥ 1
is thedegreeof a or multiplicity of K[Xn]/a. In particular, the zero ideal has degree one.

Corollary 2.2. (a) If n ≥ µr , then An := K[Xn]/In is a Cohen-Macaulay ring of dimension
µr − 1.

3



(b) Setting Bn := K[Xn]/Jn, one gets for the Hilbert series if n≥ δr

HAn(t) = (1+ t + · · · + tar−1)HAn−1(t) +
tar

(1− t)δr
HBn−δr

(t).

Proof. Consider multiplication byxar
n on An. Lemma2.1 shows that, forn ≥ 1, it induces a short

exact sequence

0→ (K[Xn]
/
〈Jn−δr 〉K[Xn])(−ar)→ An→ K[Xn]

/
〈In−1, x

ar
n 〉K[Xn] → 0(3)

Since the generators of the idealJn−δr are inK[Xn−δr ], we get

K[Xn]/〈Jn−δr 〉K[Xn] �


K[Xn] if 0 ≤ n < δr
Bn−δr [xn−δr+1, ..., xn] if n ≥ δr

Observe also thatK[Xn]
/
〈In−1, x

ar
n 〉K[Xn] � An−1 ⊗K K[xn]/(x

ar
n ), which implies

HK[Xn]/〈In−1,x
ar
n 〉K[Xn]

(t) = HAn−1(t) · HK[xn]/(xar
n )(t)

= HAn−1(t) · (1+ t + · · · + tar−1).

Now, Sequence (3) gives Claim (b).
For proving (a), we use induction onr ≥ 1. Let r = 1. If n ≥ µ1, then note thatAn =

K[Xn]/〈x
a1
µ1, x

a1
µ1+1, · · · , x

a1
n 〉, which has dimensionµ1 − 1. If r ≥ 2 andn ≥ µr , then the induction

hypothesis gives

dimK[Xn]
/
〈Jn−δr 〉K[Xn] = dim Bn−δr + δr = µr−1 − 1+ δr = µr − 1.

The above Hilbert series computation also yields dimK[Xn]
/
〈In−1, x

ar
n 〉K[Xn] = dimAn−1. Thus,

Claim (a) follows from Sequence (3). �

Remark 2.3. In terms of Gorenstein liaison theory, Lemma2.1says thatIn is a basic double link
of 〈Jn−δr 〉K[Xn] on 〈In−1〉K[Xn]. The name stems from the fact thatIn can be obtained from〈Jn−δr 〉K[Xn]

by two Gorenstein links ifK[Xn]/〈Jn−δr 〉K[Xn] is generically Gorenstein (see [5, Proposition 5.10]).

We are ready to establish the main result of this section.

Theorem 2.4.The equivariant Hilbert series of A= K[X]/I is

HA(s, t) =
gr,a,µ(s, t)

(1− t)µr−1
r∏

i=1

[
1− s(1+ t + ... + tai−1)

] ,

where gr,a,µ(s, t) ∈ Z[s, t] is the polynomial with

gr,a,µ(s, t) · (1− t − s) = (1− t)µr−r
r∏

i=1

(1− t − s+ stai ) − sµr t
r∑

i=1
ai
.

Moreover, the above right-hand side is in reduced form, thatis, the given numerator and denomi-
nator are relatively prime.

Proof. Denote the right-hand side in the definition ofgr,a,µ(s, t) by g̃r,a,µ(s, t), that is,

g̃r,a,µ(s, t) = (1− t)µr−r
r∏

i=1

(1− t − s+ stai ) − sµr t
r∑

i=1
ai
.
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We first show by induction onr ≥ 1

(4) HA(s, t) =
g̃r,a,µ(s, t)

(1− t)µr−1(1− t − s)
r∏

i=1

[
1− s(1+ t + ... + tai−1)

] .

Let r = 1. One hasAn = K[Xn] if n < µ1. If n ≥ µ1, then we get

An = K[Xn]/(x
a1
µ1
, xa1
µ1+1, ..., x

a1
n ) � K[Xµ1−1] ⊗K

(
K[z]/〈za1〉

)⊗(n−µ1+1)
.

Thus we obtain for the equivariant Hilbert series

HA(s, t) =
µ1−1∑

n=0

1
(1− t)n

sn
+

∑

n≥µ1

1
(1− t)µ1−1

(1+ t + ... + ta1−1)n−µ1+1 · sn

=

µ1−2∑

n=0

( s
1− t

)n
+

( s
1− t

)µ1−1 ∑

n≥µ1−1

[
s(1+ t + ... + ta1−1)

]n−µ1+1

=

1−
(

s
1−t

)µ1−1

1− s
1−t

+

( s
1− t

)µ1−1 1
1− s(1+ t + ... + ta1−1)

=

[
(1− t)µ1−1 − sµ1−1] · [1− t − s(1− ta1)

]
+ sµ1−1[1− t − s

]

(1− t)µ1−1(1− t − s)
[
1− s(1+ t + .... + ta1−1)

]

=
(1− t)µ1−1(1− t − s+ sta1) − sµ1ta1

(1− t)µ1−1(1− t − s)
[
1− s(1+ t + .... + ta1−1)

] ,

as desired.
Let r ≥ 2. Using Corollary2.2(b), we get

HA(s, t) − 1 =
∑

n≥1

HAn(t)s
n

=

δr−1∑

n=1

tar · HK[Xn](t) · s
n
+

∑

n≥δr

tar

(1− t)δr
HBn−δr

(t) · sn

+

∑

n≥1

[1 + t + ... + tar−1] · HAn−1(t) · s
n

= tar ·
s

1− t
·

1−
(

s
1−t

)δr−1

1− s
1−t

+
tar

(1− t)δr
sδr HB(s, t) + [1 + t + ... + tar−1] · s · HA(s, t).

Solving for the equivariant Hilbert series ofA, a straight-forward computation gives the following
recursive formula:

HA(s, t) =
1+

tar s
[
(1−t)δr−1−sδr−1

]
(1−t)δr−1(1−s−t) +

tar sδr
(1−t)δr HB(s, t)

1− s[1 + t + ... + tar−1]
5



Applying the induction hypothesis toB and notingµr = µr−1 + δr , we get

HA(s, t) · [1 − s · (1+ t + ... + tar−1)] = 1+
tar s(1− t)µr−1

[
(1− t)δr−1 − sδr−1]

(1− t − s)(1− t)µr−1

+

tar sδr (1− t)µr−1−r+1
r−1∏
i=1

[1 − t − s+ stai ] − sµr t
r∑

i=1
ai

(1− t)µr−1(1− t − s)
r−1∏
i=1

[
1− s(1+ t + ... + tai−1)

] .

Using (1− t) · [1 − s(1+ t + ... + tai−1))] = [1 − t − s+ stai ], this gives

HA(s, t) · (1− t)µr−1(1− s− t)
r∏

i=1

[1 − s · (1+ t + ... + tai−1)]

= HA(s, t) · (1− t)µr−r(1− s− t)[1 − s · (1+ t + ... + tar−1)]
r−1∏

i=1

[1 − t − s+ stai ]

= −sµr t
∑r

i=1 ai +

r−1∏

i=1

[1 − t − s+ stai ]·

{
(1− t)µr−r(1− s− t) + tar s(1− t)µr−1−r+1[(1− t)δr−1 − sδr−1]

+ tar sδr (1− t)µr−1−r+1
}

= −sµr t
∑r

i=1 ai +

r−1∏

i=1

[1 − t − s− +stai ] · (1− t)µr−r {1− t − s+ star } .

Now Equation (4) follows.
It remains to show that̃gr,a,µ(s, t) is divisible by (1− t − s) in Z[s, t], but not by any of the

polynomials [1− s(1+ t + · · · + tai−1)]. The first claim follows because

g̃r,a,µ(1− t, t) = (1− t)µr−r
r∏

i=1

[(1 − t) − (1− t) + (1− t)tai ] − (1− t)µr t

r∑
j=1

aj

= (1− t)µr−r(1− t)r t
r∑

i=1
ai
− (1− t)µr t

r∑
j=1

aj

= 0.

In order to show the other claims we compute

g̃r,a,µ

(
1

1+ t + · · · + tai−1
, t

)
= g̃r,a,µ

(
1− t

1− tai
, t

)
= −

(
1− t

1− tai

)µr

· t
∑r

i=1 ai .

Since this is not the zero polynomial, it follows that [1−s(1+ t+ · · ·+ tai )] does not dividẽgr,a,µ(s, t),
as desired. �

We give the numerator polynomial in the reduced form of the Hilbert series for smallr.
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Example 2.5.For r = 1, 2, 3, one gets

g1,a,µ(s, t) = (1− t)µ1−1
+ ta1

µ1−2∑

j=0

(1− t) j sµ1−1− j

g2,a,µ(s, t) = (1− t)µ2−1
+ s(1− t)µ2−2(−1+ ta1 + ta2) + ta1+a2 ·

µ2−3∑

j=0

(1− t) j sµ2−1− j

g3,a,µ(s, t) = (1− t)µ3−1
+ s(1− t)µ3−2(−2+ ta1 + ta2 + ta3)

+ s2(1− t)µ3−3(1− ta1 − ta2 − ta3 + ta1+a2 + ta1+a3 + ta2+a3) + ta1+a2+a3 ·

µ3−4∑

j=0

(1− t) j sµ3−1− j .

Here we use the convention that a sum
∑e

j=0 is defined to be zero ife< 0.

We can also use our methods to determine the degree of each ideal In.

Proposition 2.6. If n ≥ µr − 1, thendegIn is the coefficient of tn−µr+1 in the power series
∏r

i=1
1

1−ai t
.

In other words,
r∏

i=1

1
1− ait

=

∑

n≥µr−1

degIn · t
n−µr+1

Proof. One can deduce this from Theorem2.4. However, there is an easier, more direct approach.
SinceIµr−1 = 0 by definition, we get degIµr−1 = 1 for eachr ≥ 1, as claimed. To determine

degIn for largern, we use induction onr ≥ 1. If r = 1, thenIn = 〈x
a1
µ1, x

a1
µr+1, ..., x

a1
n 〉, and so degIn =

an−µ1+1
1 . Now the geometric series gives the claim, that is,

∑
n≥µ1−1

degIntn−µ1+1
=

∑
n≥0

an
1t

n
=

1
1−a1t .

Let r ≥ 2. If n ≥ δr , then Lemma2.1gives

(5) degIn = ar degIn−1 + degJn−δr .

By induction onr, one has

r−1∏

i=1

1
1− ait

=

∑

n≥µr−1−1

degJnt
n−µr−1+1

=

∑

n−δr≥µr−1−1

degJn−δr t
n−µr+1.

Hence we obtain,
r∏

i=1

1
1− ait

=

( ∑

n−δr≥µr−1−1

degJn−δr · t
n−µr+1

)
·
(∑

k≥0

ak
r t

k
)

=

∑

n≥µr−1


n−µr+1∑

i=0

an−µr+1−i
r · degJµr−1−1+i

 tn−µr+1

This implies our assertion because

n−µr+1∑

i=0

an−µr+1−i
r · degJµr−1−1+i = degIn.

7



Indeed, ifn = µr − 1 then this formula is true sincea0
r · degJµr−1−1 = 1 = degIµr−1. Let n ≥ µr .

Using Equation (5), one has
n−µr+1∑

i=0

an−µr+1−i
r · degJµr−1−1+i = degJn−µr+µr−1 + ar

n−µr∑

i=0

an−µr−i
r degJµr−1−1+i

= degJn−δr + ar degIn−1 = degIn,

as desired. �

One can use the last result to explicitly compute degIn. This is easiest ifa1, ..., ar are pairwise
distinct.

Corollary 2.7. If a1, ..., ar are pairwise distinct, thendegIn =

r∑

i=1

an−µr+r
i∏

j,i
(ai − a j)

, provided n≥ µr−1.

Proof. Using partial fractions, one can write
r∏

i=1

1
1− ait

=
C1

1− a1t
+ ... +

Cr

1− ar t
,

where

Ci =

∏

j,i

1

1− aj

ai

=
ar−1

i∏
j,i

(ai − a j)
.

Hence
r∏

i=1

1
1− ait

=

r∑

i=1

ar−1
i∏

j,i
(ai − a j)

·
1

1− ait
=

r∑

i=1

[ ar−1
i∏

j,i
(ai − a j)

·
∑

k≥0

ak
i t

k
]

Now we conclude by Proposition2.6. �

3. The General Case

We extend the results of the previous section. We use the notation established in the introduction.
So we fix an integerc ≥ 1 and consider the polynomial ringsK[Xn] = K[xi, j | 1 ≤ i ≤ c, 1 ≤ j ≤ n]
andK[X] = K[xi, j | 1 ≤ i ≤ c, 1 ≤ j]. Any monomial of positive degree inK[X] can be written as

xa
=

c∏

i=1

s∏

j=1

x
ai, j

i, j ,

wherea = (ai, j) is a c × s non-zero matrix whose entries are nonnegative integers. Denote the
indices of the non-zero columns ofa by µ1, . . . , µr , whereµ1 < µ2 < ... < µr . We may assume
that the last column ofa is not zero, that is,µr = s anda ∈ Nc×µr

0 . Thus, we can rewritexa more
explicitly as

xa
= (x

a1,µ1
1,µ1
· · · x

a1,µr

1,µr
) · (x

a2,µ1
2,µ1
· · · x

a2,µr

2,µr
) · · · (x

ac,µ1
c,µ1 · · · x

ac,µr
c,µr ).

Putµ = (µ1, . . . , µr).
In order to determine the equivariant Hilbert series ofK[X]/I , whereI = 〈Inc(N) ·xa〉, we also

consider the ideal

J = 〈Inc ·
c∏

i=1

µr−1∏

j=1

x
ai, j

i, j 〉

8



if r ≥ 2. Thus, we get forIn = I ∩ K[X] and Jn = J ∩ K[X] that In = 0 if n < µr and thatJn = 0 if
n < µr−1. Moreover, there is again a useful relation among these ideals.

Lemma 3.1. If n ≥ 1, then

In := 〈In−1〉K[Xn] +

c∏

i=1

xai ,µr

i,n 〈Jn−δr 〉K[Xn] ,

whereδr := µr − µr−1 ≥ 1.

It follows that In is a basic double link ofJn−δr on In−1 because of the following consequence.

We use the notationAn = K[Xn]/In, Bn = K[Xn]/Jn, andb j =
c∑

i=1
ai,µ j for j = 1, . . . , r. Thus,b j is

the total degree of the divisor ofxa whose factors are the variables appearing in columnµ j.

Corollary 3.2. (a) If n ≥ µr , then An is a Cohen-Macaulay ring of dimension n(c−1)+µr −1.
(b) If n ≥ δr , then one has for the Hilbert series

HAn(t) =
1− tbr

(1− t)c
HAn−1(t) +

tbr

(1− t)cδr
HBn−δr

(t).

Proof. Multiplication by
c∏

i=1
xai ,µr

i,n on An induces the exact sequence

0→ K[Xn]
/
〈Jn−δr 〉K[Xn](−br)→ An → K[Xn]

/
〈In−1,

c∏

i=1

xai ,µr

i,n 〉K[Xn] → 0.

Furthermore, we have

K[Xn]
/
〈Jn−δr 〉K[Xn] �


K[Xn] if 0 ≤ n < δr
Bn−δr

[
xi, j | 1 ≤ i ≤ c, n− δr < j ≤ n] if n ≥ δr .

Now the claims follow as in the proof of Corollary2.2. �

Our main result is the promised extension of Theorem2.4.

Theorem 3.3.Setting b= (b1, . . . , br), the equivariant Hilbert series of A= K[X]/I is

HA(s, t) =
gr,c,b,µ(s, t)

(1− t)c(µr−r−1)+r
r∏

j=1

[
(1− t)c−1 − s(1+ t + ... + tbj−1)

] ,

where gr,c,b,µ(s, t) ∈ Z[s, t] is the polynomial with

gr,c,b,µ(s, t) ·
[
(1− t)c − s

]
= (1− t)c(µr−r)

r∏

j=1

[
(1− t)c − s+ stbj

]
− sµr t

r∑
j=1

bj

.

Furthermore, the above rational function is in reduced form, that is, the given numerator and
denominator polynomials are relatively prime. (Notice that the exponent[c(µr − r −1)+ r] of (1− t)
is negative if and only if r< c andµr = r.)

9



Proof. We argue as in the proof of Theorem2.4. Set

g̃r,c,a,µ(s, t) = (1− t)c(µr−r)
r∏

j=1

[
(1− t)c − s+ stbj

]
− sµr t

r∑
j=1

bj

.

Using induction onr ≥ 1, one shows

(6) HA(s, t) =
g̃r,c,a,µ(s, t)

(1− t)c(µr−r−1)+r
[
(1− t)c − s

] r∏
j=1

[
(1− t)c−1 − s(1+ t + ... + tbj−1)

] .

Indeed, letr = 1. If n ≥ µi, then we get

An � K[Xµ1−1] ⊗
(
K[z1, .., zc]/(z

a1,µ1
1 · · · z

ac,µ1
c

)⊗n−µ1+1
,

wherez1, . . . , zc are new variables. It follows that

HA(s, t) =
µ1−1∑

n=0

1
(1− t)nc

sn
+

∑

n≥µ1

1
(1− t)c(µ1−1)

(1+ t + ... + tb1−1

(1− t)c−1

)n−µ1+1
sn.

Now a computation as in the proof of Theorem2.4gives the desired formula.
Let r ≥ 2. Corollary3.2 implies

HA(s, t) − 1 =
∑

n≥1

HAn(t)s
n

=

δr−1∑

n=1

tbr · HK[Xn](t) · s
n
+

∑

n≥δr

tbr

(1− t)cδr
HBn−δr

(t) · sn
+

∑

n≥1

1+ t + ... + tbr−1

(1− t)c−1
· HAn−1(t) · s

n

= tbr ·
s

(1− t)c
·

1−
(

s
(1−t)c

)δr−1

1− s
(1−t)c

+
tbr

(1− t)cδr
sδr HB(s, t) +

s(1+ t + ... + tbr−1)
(1− t)c−1

· HA(s, t).

This gives

HA(s, t) ·
(1− t)c−1 − s(1+ t + ... + tbr−1)

(1− t)c−1

= 1+ tbr s
(1− t)c(δr−1) − sδr−1

(1− t)c(δr−1)[(1 − t)c − s]
+

tbr sδr

(1− t)cδr
HB(s, t)

Applying the induction hypothesis toB, a computation similar to the one in the proof of Theo-
rem2.4establishes Equation (6).

It remains to show that̃gr,c,a,µ(s, t) is divisible by ((1− t)c − s) in Z[s, t], but not by any of the
polynomials [(1− t)c−1 − s(1+ t + · · · + tai−1)]. The first claim is true because

g̃r,c,a,µ((1− t)c, t) = (1− t)c(µr−r)
r∏

i=1

[(1 − t)c − (1− t)c
+ (1− t)ctbi ] − (1− t)cµr t

r∑
j=1

bj

= (1− t)c(µr−r)(1− t)rct
r∑

i=1
bi
] − (1− t)cµr t

r∑
j=1

bj

= 0.
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Substituings=
(1− t)c−1

1+ t + ... + tbr−1
=

(1− t)c

1− tbr
, we get

g̃r,c,a,µ

(
(1− t)c−1

1+ t + ... + tb1−1
, t

)
= −

(1− t)(c−1)µr

(1+ t + ... + tbr−1)µr
· t

r∑
j=1

bj

.

Since this is not the zero polynomial the argument is complete now. �

Again we give the numerator polynomial in the reduced form ofthe Hilbert series for smallr,
where we assume thatc(µr − r − 1)+ r ≥ 0.

Example 3.4.For r = 1, 2, 3, one has

g1,c,a,µ = (1− t)c(µ1−1)
+ tb1 ·

µ1−2∑

j=0

(1− t)c jsµ1−1− j

g2,c,a,µ(s, t) = (1− t)c(µ2−1)
+ s(1− t)c(µ2−2)(−1+ tb1 + tb2) + tb1+b2 ·

µ2−3∑

j=0

(1− t)c jsµ2−1− j

g3,c,a,µ(s, t) = (1− t)c(µ3−1)
+ s(1− t)c(µ3−2)(−2+ tb1 + tb2 + tb3)

+ s2(1− t)c(µ3−3)(1− tb1 − tb2 − tb3 + tb1+b2 + tb1+b3 + tb2+b3) + tb1+b2+b3 ·

µ3−4∑

j=0

(1− t)c jsµ3−1− j .

Notice that these polynomials simplify if theµi ’s are as small as possible, that is,µi = i. For
example, then one getsg1,c,a,µ = 1 andg2,c,a,µ(s, t) = (1− t)c

+ s(−1+ tb1 + tb2).

Remark 3.5. Observe the similarity of the formulas in Theorem2.4 and3.3. Indeed, Theorem
3.3is formally obtained from Theorem2.4by replacing eacha j by the total column degreeb j and
(1− t) by (1− t)c.

Now we determine the degree ofIn.

Proposition 3.6. If n ≥ µr −1, thendegIn is the coefficient of tn−µr+1 in the power series
∏r

j=1
1

1−bj t
.

That is,
r∏

j=1

1
1− b jt

=

∑

n≥µr−1

degIn · t
n−µr+1.

Proof. If r ≥ 2 andn ≥ δr , Lemma3.1gives

degIn = br degIn−1 + degJn−δr .

Now we conclude as in the proof of Proposition2.6. �

Analogously to Corollary2.7this gives the following explicit formula.

Corollary 3.7. If b1, ..., br are pairwise distinct, thendegIn =

r∑

i=1

bn−µr+r
i∏

j,i
(bi − b j)

, provided n≥ µr−1.

For any Inc(N)-invariant idealI of K[X], it is shown in [7, Theorem 7.9] that the two limits
lim
n→∞

dim K[Xn]/In

n and lim
n→∞

n
√

degIn exist and are non-negative integers, whereIn = I∩K[Xn]. Following

[7, Remark 7.14], we refer to these integers as thedimensionof K[X]/I and thedegreeof I ,
respectively. IfI is generated by the orbit of a monomial, we obtain the following values.
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Corollary 3.8. For I = 〈Inc(N) ·
∏c

i=1

∏µr

j=1 x
ai, j

i, j 〉, one has

(a) dimK[X]/I = c− 1.
(b) degI = max{b1, ..., br}.

Proof. (a) is a consequence of Corollary3.2.
(b) follows by using partial fractions as in [7, Lemma A.3]. We leave the details to the interested

reader. �

We conclude with some comments about non-negativity of the coefficients of the polynomials
appearing in an equivariant Hilbert series.

Remark 3.9. If A is a graded Cohen-Macaulay quotient of a noetherian polynomial ring, then it
is well-known that the numerator polynomial in its reduced Hilbert series has non-negative coeffi-
cients only. We have seen above that in the case of an Inc(N)-invariant idealI of K[X] the condition
that all ringsK[Xn]/In are Cohen-Macaulay is not sufficient to guarantee that the numerator poly-
nomialg(s, t) in a reduced Hilbert series ofK[X]/I as in Equation (1) has non-negative coefficients
only (see, e.g., Example3.4). However, the coefficients in the polynomialsf j(t) appearing in the
denominator of the Hilbert series all have non-negative coefficients if I is generated by the orbit of
a monomial. This suggests the following question.

Question 3.10.AssumeI is an Inc(N)-invariant ideal ofK[X] such that each ringK[Xn]/In is
Cohen-Macaulay. Is it then true that the coefficients of the polynomialsf j(t) appearing in the
reduced form of the Hilbert series (1) are all non-negative?
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