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Abstract

Optical camera communication (OCC) has emerged as a key enabling tech-

nology for the seamless operation of future autonomous vehicles. By lever-

aging the supreme performance of OCC, the stringent requirements of ultra-

reliable and low-latency communication (uRLLC) can be met in vehicular

OCC. In this thesis, a rate maximization approach is presented to vehicular

OCC that aims to optimize vehicle speed, channel code rate, and modula-

tion order while adhering to uRLLC requirements. The reliability is mod-

elled by satisfying a target bit error rate (BER) and latency as transmission

latency. To improve transmission rate and reliability, low-density parity-

check codes and adaptive modulation are adopted in this thesis. First,

the rate maximization problem is formulated as an optimization problem

aimed at determining vehicle speed, channel code rates, and modulation

order given reliability and latency constraints. Even for a small set of

modulation orders, this problem is mixed integer programming, which is

NP-hard. To overcome the complexity of the NP-hard problem, the pro-

posed optimization problem is modelled as a Markov decision process and

then solved it distributively using multi-agent deep reinforcement learning

(DRL). Then, the optimization problem is solved using the actor-critic DRL

framework with Wolpertinger architecture. A deep deterministic policy

gradient algorithm is employed to operate over continuous action spaces.

The proposed model and optimization formulation are justified through

numerous simulations by comparing capacity, BER, and latency. From the

findings, it is clear that the multi-agent DRL framework in vehicular OCC

leads to improved performance in terms of maximizing the communica-
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tion rate while respecting uRLLC. This work constitutes a significant step

towards addressing the challenges in vehicular OCC to respect uRLLC.

Keywords: Deep reinforcement learning, optical camera communica-

tions, autonomous vehicular communications, uRLLC, LDPC code.
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1
Introduction

1.1 Motivations

Driven by vehicular networks, the automotive industry is undergoing key

technological transformations through Autonomous Vehicles (AVs). In the

modern world, the number of vehicles and vehicle-assisting infrastructures

is increasing rapidly, making the transportation system more vulnerable

than ever, resulting in more traffic congestion, road causalities, and overall

less road safety. These rapid growths in the number of vehicles will open

a significantly challenging but profitable market for the future Intelligent

Transportation Systems (ITSs) [1]. To cope with the current ever-growing

and complex vehicular networks, the practice of sharing information and

cooperative driving on the road is substantially increasing. Moreover, there

is the consumption of data along the way, where the users spend time on

vehicles and want to consume more content. Besides, the vast amounts of

generated data (each vehicle can generate up to 750 Megabits per second

(Mbps)) need to be communicated in vehicular networks. However, The

deployment of AVs can help in reducing traffic congestion, increasing road

safety, minimizing fuel consumption, and enhancing the overall driving ex-
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perience [2], [3]. Though several Vehicle-to-Vehicle (V2V) applications,

such as lane changing alert, and automotive braking systems, have already

been deployed, mission-critical services, e.g., collision avoidance, autonom-

ous driving, and other safety-related issues, are still creating severe chal-

lenges. Therefore, providing efficient V2V communications is necessary for

enabling future ITS [4].

The concept of establishing communication among devices is promising,

and inter-vehicular communication has been attracting massive attention

from academia and industry. AV communication will play an essential role

in the next-generation networks and is considered as one of the most prom-

ising enablers for intelligent transportation systems [2], [5]. Typically, AV

safety applications are believed to be time-critical, as they rely on acquir-

ing real-time status updates from individual vehicles. To effectively op-

erate AVs, reliable communication between vehicles and infrastructure is

required. The performance of the growing transportation systems depends

on the availability of V2V communication links at ultra-low latency and er-

rors. As a result, data should be delivered within a short time, providing a

high probability of success.

Every year, the data sharing within the vehicular networks are continu-

ously increasing, thus incurring enormous network overhead [3, 6]. As a

result, the current congested and saturated Radio Frequency (RF) spectrum

cannot accommodate the increasing demand for data traffic although RF-

based communication systems (e.g., cellular, Wi-Fi, and sensor networks)

are essential parts of existing wireless communication systems. Recently,

Optical Camera Communication (OCC) has emerged as a potential techno-

logy for ITS [7], [8] and as an alternative to RF due to the fact it offers

license-free unlimited spectrum, longer lifespans, lower implementation

cost, lower power consumption, and enhanced security [7]. OCC systems

belong to the family of Visible Light Communication (VLC) systems. In typ-

ical OCC systems, Light-Emitting Diodes (LEDs) are usually used as trans-

mitters and cameras are employed as receivers. VLC systems using Photo-

2



Figure 1.1: Overview of (a) RF and (b) OCC-based communication system.

diode (PD) as the receiver are called Light Fidelity (LiFi), which is termed

as PD-based system in this thesis. In traditional VLC, the receiver often

consists of a non-imaging device, i.e., PD, and its performance is limited by

the trade-off between transmission range and signal reception. Different

from PD-based systems, OCC can spatially separate and process different

sources independently on its image plane, which allows the receiver to

discard noise sources, e.g., Sun, streetlights, and other light sources, and

focuses mainly on the pixels to which the LEDs strikes [8]. Thus, it reduces

interference by a great margin. Furthermore, it is easier to integrate OCC

with the existing vehicular communication systems at a minimum addi-

tional cost and without any significant infrastructure changes because the

LED lights are already existing in traffic lights, infrastructures, and vehicles.

OCC can face challenges due to its Line-of-Sight (LoS) properties, i.e., com-

munication links can be obstructed by objects or bad weather conditions,

for example, buildings, walls, rain, cloud, or fog. Studying the effect of

weather conditions is beyond the scope of this thesis though it is an inter-

esting topic.

Fig. 1.1 illustrates the key difference between RF and OCC-based sys-

tem. From the Fig. 1.1(a), it is seen that RF-based systems employ cellular

or WiFi, whereas OCC system uses direct LoS channel (Fig. 1.1(b)). In

RF-based communication systems, the centre base station or edge server is

a compulsory element. Moreover, they mostly rely on centralized resource

management, where fast and efficient distributed algorithms are needed to

3



Table 1.1: Comparison between OCC, PD, and RF

Parameter
VLC

RF
OCC PD

Carrier band-

width

Unlimited

(400 - 700)

nm

Unlimited (400 -

700) nm

300 GHz (satur-

ated and regu-

lated)

Electromagnetic

Interference
No No Yes

Transmitter LED
LED or Laser Di-

ode (LD)
Antenna

Receiver Camera PD Antenna

Power con-

sumption
Relatively low Higher than OCC Medium

Interference Negligible Low Very high

Communication

distance
200 m 10 m

> 100 km using

Microwave

Noise No
Sun and ambient

light

Electrical, elec-

tronic appliances

Security High High Low

Data rate 54 Mbps

10 Gbps using

LED, 100 Gbps

using LD

6 Gbps (IEEE

802.11ad at

60GHz)

Main purpose

Illumination,

communica-

tion

Illumination,

communication

Communication,

positioning

Limitation Low data rate
Short distance, no

mobility guaranty
Interference

4



manage tasks in dense vehicular networks. The information is processed

centrally in the base station, which takes time to process and send back

to the vehicles. As a result, it induces extra latency. Please note that in

this dissertation, only V2V communication is considered though Vehicle-to-

Infrastructure (V2I) is an interesting direction to work on in future. Table

1.1 summarizes the key differences of OCC, PD and RF communication

systems, which shows that OCC suffers from almost negligible interference

and consumes less power than RF. Further, OCC supports almost 20 times

longer distance than the PD-based systems. Although having a low data

rate, OCC can be a better alternative to the congested and saturated RF

system due to its negligible noise and interference characteristics. Besides,

OCC offers LoS communication, which guarantees security. The system will

also be fully decentralized communication where each vehicle will process

the surrounding information individually or collectively.

Another challenge of vehicular networks arises from the fact that, they

are time-varying and highly dynamic, while the data should be delivered

reliably within stringent time constraints for ensuring safety. This makes

it challenging to respect ultra-Reliable and Low-Latency Communication

(uRLLC). Various technologies have been proposed in recent years to en-

sure reliability and low latency in ITS using traditional optimization schemes,

such as [9, 10], which reflect on delay minimization and reliability guar-

antee. Specifically, in [9], the vehicular network transmission power is

minimized by grouping vehicles into clusters and modelling reliability as

queuing delay violation probability. In [10], a joint resource allocation and

power control algorithm is proposed to maximize the communication rate

considering latency and reliability constraints. Vehicular communication

systems become even more complex when they involve controlling various

decision-making parameters, e.g., channel code rate, speed, distance and

modulation scheme. Using traditional distributed methods, it is difficult to

solve these decision-making problems because of the inherent complexity

and the time needed to solve them.
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Figure 1.2: Basic OCC communication system.

Fortunately, Reinforcement Learning (RL) methods can serve as an ef-

fective solution to overcome the complexity of the above systems [11] due

to the fact that it is possible to apply them distributively. The RL is modelled

as a Markov Decision Process (MDP), where each vehicle acts as an agent,

and everything beyond the particular vehicle is regarded as the environ-

ment. Every vehicular agent interacts with the environment to have a better

understanding of it to decide its policy. The agents explore the environment

and improve the policies based on their observations of the environmental

state. Despite MDP providing an efficient way to express the vehicular prob-

lem, traditionally used methods to solve them, like value-iteration, require

the knowledge of the state-action transition probability matrix that is diffi-

cult to be obtained in dynamic problems such as the one examined in this

thesis. These limitations are overcome through Q-Learning [11]. However,

Q-Learning has slow convergence and cannot solve large-scale problems.

To address this limitation of the Q-Learning algorithm, Deep Reinforce-

ment Learning (DRL) is utilized [12]. DRL has also emerged as a possible

candidate to solve autonomous vehicular problems [13, 14]. DRL uses a

Deep Q-Network (DQN) which combines Q-learning with Deep Neural Net-

works (DNNs) to approximate the state-action value function by adjusting

the weights of the neural networks.

Channel coding scheme strongly affects the capacity and reliability of

the system. In some cases, channel coding can be an optional choice,

where only grey codes are used. Fig. 1.2 illustrates a basic OCC system

consisting of transmitter, channel coding, modulation, demodulation, de-

coding and the receiver to show different parts of OCC system. The details
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of this framework will be discussed in Chapter 4. Choice of channel cod-

ing and modulation depend on the user requirement. However, meeting

uRLLC constraints necessitate the use of strong channel coding. There are

different channel codes to ensure uRLLC, e.g., LDPC codes and convolution

codes. Low-Density Parity-Check (LDPC) codes are a promising candid-

ate for uRLLC, which has been adopted in the Fifth Generation (5G) New

Radio (NR) services [15]. LDPC codes can help achieving a higher trans-

mission rate, low latency and high reliability. In light of the fact that the

proposed vehicular OCC system requires ultra-reliability and low-latency,

5G NR LDPC codes are employed in this thesis, which have already been

implemented for adaptive modulation schemes [16].

1.2 Challenges of uRLLC in Vehicular OCC

Having discussed the motivations of vehicular OCC to ensure uRLLC in this

thesis, the following research challenges are required to overcome:

Research Challenge 1: How to meet the stringent transmission latency

in vehicular OCC?

Research Challenge 2: How to respect the ultra-reliability require-

ment while meeting low-latency?

Research Challenge 3: How to satisfy uRLLC in multi-links vehicular

networks?

Research Challenge 4: How to meet uRLLC in AV communication

while mitigating the mobility?

These research challenges are examined and resolved throughout this

dissertation. A brief explanation of solving the above challenges is presen-

ted in the next section as contributions.
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1.3 Contributions

In this thesis, we aim at maximizing the communication rate by optimiz-

ing code rates and modulation schemes to respect uRLLC constraints in

vehicular OCC. To this end, we first justify whether OCC is suitable for

employing uRLLC in Chapter 3. In this chapter, we demonstrate the OCC

system model, which will be utilized for the rest of the thesis. To the best

of our knowledge, this is the first time where OCC will be used to examine

whether OCC is suitable for employing uRLLC that formulates the commu-

nication link performance with an adaptive modulation scheme in automot-

ive vehicles. We analyze the performance of vehicular OCC in terms of Bit

Error Rate (BER), spectral efficiency, and transmissions latency at different

inter-vehicular distances and Angle of Incidences (AoI). Further, we invest-

igate the use of adaptive modulation to improve spectral efficiency. Please

note that Chapter 3 is also a research contribution where we test the valid-

ity of the OCC system model to employ uRLLC in vehicular communication.

This has been published at the 2019 IEEE Global Communications Confer-

ence (GLOBECOM) [C3]. The major contributions of this dissertation are

covered in Chapter 4, Chapter 5, and Chapter 6, which are presented briefly

in next subsections.

1.3.1 Multi-Agent Deep Reinforcement Learning for

Spectral Efficiency Optimization in Vehicular OCC

The first research question is examined in Chapter 4. In this chapter, a

spectral efficiency maximization scheme in vehicular OCC is proposed that

satisfies BER and latency constraints. In doing so, the optimal modulation

order and speed of the vehicles using DRL are determined. A decentralized,

independent and Multi-Agent Reinforcement Learning (MARL) scheme is

considered to solve this problem. To the best of my knowledge, this is the

first time where DRL is applied in vehicular OCC for resource allocation.
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The formulated optimization problem aims at maximizing the spectral

efficiency subject to BER, latency and a small set of modulation schemes

constraints. The optimization function is a Non-deterministic Polynomial-

time (NP) hard problem leading to a difficult search for the optimal solu-

tion. Hence, the optimization problem is formulated as an MDP problem

to reduce the complexity of the NP-hard problem, which enables us to find

an optimal solution. The reward function is designed considering the ob-

jective function and satisfying users’ requirements. The constrained prob-

lem is relaxed into an unconstrained one using the Lagrangian relaxation

method by relaxing the BER and latency constraints, which essentially sim-

plifies the solution of the complex problem. We then solve the spectral

efficiency maximization problem using deep Q-Learning to deal with large

state-action spaces. We evaluate the performance of the proposed DRL-

based optimization scheme and compare it with various variants of our

scheme as well as RF-based communication schemes. The results demon-

strate that a DRL-based optimization scheme can effectively learn to max-

imize spectral efficiency while meeting the constraints. The Cumulative

Distribution Function (CDF) of latency and BER are evaluated, which con-

firm that the proposed system can satisfy ultra-low latency communication

and BER constraints while the rest of the schemes fail. Further, the res-

ults show that the proposed vehicular system achieves better sum spectral

efficiency and lower average latency compared to all the schemes under

comparison. This work has been published in a conference paper at the

IEEE 95th Vehicular Technology Conference [C1] and submitted for public-

ation in IEEE Transactions on Mobile Computing, which is under revision

currently.

1.3.2 Deep Reinforcement Learning based Ultra Reliable

and Low Latency Vehicular OCC

In continuation to the finding of Chapter 4, where spectral efficiency is

maximized, the answer to the second question is examined in Chapter 5.
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In this chapter, 5G NR LDPC codes are presented in vehicular OCC, which

offers variable rate, low latency and high reliability. To the best of my

knowledge, this is the first where code rates are optimized using actor-

critic based DRL scheme in vehicular OCC to ensure uRLLC. This method

aims at maximizing the achievable rate while respecting the uRLLC con-

straints. In doing so, the communication rate is maximized subject to se-

lecting the optimal modulation schemes, deciding appropriate code rates

and adjusting the relative speed of the vehicle to the optimal value while

respecting uRLLC requirements and dealing with the massive continuous

state-action spaces. Similar to the problem in Chapter 3, the presented

problem is an NP-hard problem, and it also contains non-linear operations

in latency and BER formulations. Hence, the problem is modelled as a DRL

framework. However, DQN cannot be straightforwardly applied to continu-

ous state-action spaces [17], which is the case for the proposed vehicular

system. The issues with continuous state-action space can be alleviated by

adopting the actor-critic DRL frameworks [17]. The Wolpertinger architec-

ture [18] along with the actor-critic network achieves convergence faster

than the vanilla actor-critic method over a large actions space by consider-

ing the nearest neighbour’s actions. Hence, an actor-critic DRL framework

is employed by adopting the Wolpertinger policy for the vehicular OCC sys-

tem. A Deep Deterministic Policy Gradient (DDPG) [17] is used to train

the model, which updates both the critic and actor networks. A multi-layer

neural network is employed as a function approximator for the actor and

critic functions. The performance of the proposed DRL framework is evalu-

ated in terms of achievable capacity, BER, and transmission latency. Then,

the performance is compared with several variants of our scheme and an

RF communication-based scheme. The average goodput of our proposed

scheme shows a considerably higher value compared to other schemes un-

der comparison. The proposed scheme can guarantee uRLLC while maxim-

izing the goodput, whereas other methods fail most of the time. The results

show that the proposed actor-critic based DRL scheme can achieve prom-
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ising results and maximize the transmission rate while satisfying the uRLLC

requirements and outperforming the comparison schemes. This work has

been submitted for publication in the IEEE Transactions on Communica-

tion, and it is under review at this moment.

1.3.3 Multi-agent Deep Reinforcement Learning for

uRLLC in Vehicular OCC

This dissertation is completed by presenting the final contribution in Chapter

6, where the third research question is solved. In this chapter, the single

link problem of Chapter 5 is extended to a multi-link vehicular scenario

considering multiple lanes. If the multi-link problem using the proposed

approach in Chapter 5 is solved, the solution will be sub-optimal. This

happens because the decision for all the links is taken by observing the

state of a particular link and thereby optimizing the policies for them. This

could be sub-optimal for all other links most of the time because the state

of the other links is unknown to the agent. In this chapter, a multi-agent

DRL vehicular OCC system is proposed while considering all the possible

communication links. To this aim, the communication rate is maximized

subject to selecting an optimal code rate, deciding the optimal modula-

tion scheme, and choosing the optimal relative speed of the vehicle while

respecting the uRLLC constraints. The 5G NR LDPC code is used simil-

arly to Chapter 5, which helps to achieve a higher transmission rate, ultra-

reliability and low latency that requires for this case. The decisive differ-

ence between this Chapter and Chapter 5 is as follows. In this chapter,

the parameters for multiple vehicular links, i.e., channel code rate, mod-

ulation scheme, and relative speed, are optimized, whereas it is done for

a single link in Chapter 5. The major challenge in this work is to satisfy

uRLLC conditions for all the links and optimize the decision parameters.

An actor-critic based DRL framework is employed by adopting the Wolp-

ertinger architecture for the multi-agent system in large continuous state-

action spaces. The Wolpertinger architecture avoids the complexity of ex-
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ploring the large action space over all the decision intervals. The model

is trained using DDPG, which updates the actor-critic network paramet-

ers. The performance of the proposed multi-agent vehicular DRL scheme

is evaluated for achievable rate, latency and BER. Then, the performance

with different variants of the proposed scheme, a single link optimization

scheme, and a scheme without coding is presented. The results illustrate

that the proposed scheme achieves a better rate and average latency than

other schemes under comparison. The results further demonstrate that our

proposed DRL based vehicular OCC always satisfies the uRLLC constraints,

whereas the other methods under comparison fail to meet most of the time.

Finally, it can be concluded that uRLLC is achieved in a multi-agent DRL

based vehicular OCC system. This work is planned to submit for publication

in the IEEE Transactions on Vehicular Technology journal.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 gives the rel-

evant works of the optical vehicular communication, vehicular uRLLC, DRL

and channel codes. In Chapter 3, the performance analysis of vehicular

OCC is presented starting from the system model toward the performance

parameters modelling. Afterwards, Chapter 4 illustrates the DRL based

multi-agent vehicular OCC system to maximize the sum spectral efficiency,

where coding mechanism is not considered. Then, a code rate optimiza-

tion scheme is used to ensure uRLLC while maximizing the goodput of the

transmission link for a single vehicular link in Chapter 5. The contribution

of this thesis is finalized in Chapter 6 by maximizing the communication

rate for multi-link vehicular OCC systems while satisfying uRLLC by optim-

izing the code rate, selecting an optimal modulation scheme, and optimal

relative speed. Finally, Chapter 7 outlines the concluding remarks of this

dissertation and provides a discussion of future research directions.

12



C
H

A
P

T
E

R

2
Related Works

2.1 Introduction

In this chapter, an overview of the literature related to this thesis is presen-

ted. This chapter is organized as follows: Section 2.2 discusses different

existing technologies used in vehicular networks before presenting works

related to OCC in Section 2.3. Then various approaches in vehicular net-

works are provided to ensure uRLLC in Section 2.4 while outlining their ad-

vantages and disadvantages. Afterwards, reinforcement learning in vehicu-

lar networks is discussed in Section 2.5. Finally, in Section 2.6, an overview

of related works in channel coding is given.

2.2 Traditional Vehicular Networks

In the modern world, the number of vehicles and Roadside Unit (RSU)s

(RSUs) are increasing rapidly, making the transportation system more vul-

nerable than ever. This results in more traffic congestion, road causalities,

accidents, and less road safety. The RSU is a fixed infrastructure compon-

ent that can connect with other similar components and supports vehicu-
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lar communications. To cope with the current complex traffic system, a

unique network is required to accumulate vehicular-system information

and ensure an effective transportation system, such as Vehicular Ad-Hoc

Networks (VANETs) [19], thus providing proficient communication on the

road with the help of pre-established infrastructure. VANETs connect all

vehicles and infrastructure within their coverage area through a wireless

router or Wireless Access Point (WAP). The connection between the vehicle

and the network can be lost when a vehicle moves away from the signal

range of the network. As a consequence, a new free WAP is generated in

the existing VANET for other vehicles outside of the network. Improving

traffic safety and enhancing traffic efficiency by reducing time, cost and

pollution are two major reasons behind the demand for VANETs.

Though creating greater opportunity in the transportation system at

lower operational cost [20], VANETs suffer drawbacks such as lack of pure

ad-hoc network architecture [21], incompatibility with personal devices

[22], unreliable Internet service [23], lower service accuracy, unavailabil-

ity of cloud computing [24], and cooperative operational dependency of

the network. Concurrently, there are a limited number of access points

for the particular networks. Several countries, e.g., the United States and

Japan, have tried to implement the basic VANET architecture but not the

whole system due to the lack of commercialization. This leads to demand

for more reliable and market-oriented architecture for modern transporta-

tion systems [25].

There are also some vehicular localization systems, such as Global Pos-

itioning System (GPS), Light Detection and Ranging (LiDAR) for position-

ing or ranging applications [26]. However, GPS is not a reliable positioning

technique in the vehicular environment. The LiDAR system requires more

complex and heavy systems, and its deployment is costly. Also, the LiDAR

system does not include any communication mechanism with the surround-

ing vehicles or infrastructures, and it is only used for remote sensing or

building Three Dimensional (3D) image points. But, the information about
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the surrounding vehicles or infrastructures is the most significant factor for

next-generation intelligent autonomous vehicles and intelligent transport

systems as with the case of our system.

2.3 Optical Camera Communication

In recent years, OCC have attracted attention in various camera-based ap-

plications and services, such as multimedia, security tracking, localization,

broadcasting [27], and ITS [8], [28]. Since LEDs and cameras are already

installed in vehicles and traffic lights, there has been rapid advancement in

AV communications. OCC is a promising technology with the functionality

of LoS service and LED illumination, and it has considerable superiority

over existing communication technologies in the wireless domain, e.g., ra-

dio waves or single-element PDs-based communication [29], [30]). In the

general OCC system, LED arrays act as transmitters that are embedded in

the vehicle or on traffic lights, and the camera performs as a receiver. Cam-

eras can build image pixels projected from various light sources within their

Field of View (FoV), which helps to achieve LoS and directed communica-

tions.

Recently, various studies of the capabilities, potentials and advantages

of the OCC system have already been conveyed [8], [31]. The existing

works mainly targeting to increase the data rate, but they do not consider

the uRLLC aspects that we study here [7, 32–34]. Based on variation in

LED light intensity, a flag image was generated via communication pixels

with a 10-Mbps data rate [7]. To increase the data rate, in [32], the authors

proposed an optical orthogonal frequency-division multiplexing where they

achieve a transmission data rate of 54 Mbps based on the IEEE802.11p

standardization. In other research, the data rate was improved to 15 Mbps

with 16.6-ms real-time LED detection [33]. The transmission performance

was further improved to 54 Mbps with a BER < 10−5. Recently, in [35],

the authors tried to improve the BER performance by driving a close form
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expression for BER in V2I applications. But they did not consider the ultra-

reliability and low-latency aspects. However, the above mentioned schemes

tried to enhance performance by improving the data rate, but none of them

have considered the resource allocation or uRLLC performance analysis.

2.4 Ensuring uRLLC in Vehicular Networks

Ensuring low-latency and ultra-reliable communication for future wireless

networks is of capital importance. To date, no work has been done on

combining latency and reliability into a theoretical framework. Besides

that, no wireless communication systems have been proposed for systems

with latency constraints on the order of milliseconds and with system reli-

ability requirements. We would like to emphasize that we are aiming for

uRLLC in vehicular OCC, so we design the constraints to meet the reliabil-

ity and latency requirements. The requirements for uRLLC vary depending

on the use case; for example, ultra-reliability in terms of packet error rate

can range from 10−5 to 10−9 [36] and low-latency can range from 1-10

ms [37]. In the case of vehicular communication, the required reliability is

1-10−5 and the latency is 3-10ms for a packet size of 300 bytes [37]. Please

note that the latency requirement reduces to 1 ms for packet sizes of 32

bytes [37]. So, for large packet sizes (5 kbits in our case), maximum of 10

ms latency will be ideal.

Furthermore, the requirement to meet both latency and reliability re-

quirements simultaneously makes the vehicular communication a very chal-

lenging problem. Hence, to cope with these issues, resource management,

e.g., communication rate, latency, BER, plays a vital role in this system

in order to achieve both efficiency and reliability in vehicular networks.

The existing radio resource management schemes in V2V communication

mainly focus on maximizing data rate. In the freeway scenario, a location-

dependent uplink resource management scheme for V2V communication is

proposed to maximize the sum rate of V2V links [38]. In an urban scen-
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ario, to satisfy the latency and reliability requirements of V2V services, a

resource block allocation and power control algorithm are proposed, taking

into account the intra-cell interference [10].

For enabling uRLLC in ITSs, several methods are examined in literature,

such as delay minimization [9], reliability guarantee [10], vehicle cluster-

ing [39], and excess queue length evaluation [40]. Specifically, in [9], the

vehicular network transmission power is minimized by grouping vehicles

into clusters and modelling reliability as queuing delay violation probab-

ility. In [10], a joint resource allocation and power control algorithm is

proposed to maximize the V2V rate considering latency and reliability con-

straints. In [39], the authors study the impact of transmission time interval

on the performance of low-latency vehicular communications. Recently,

several principles for supporting uRLLC from the perspective of traditional

assumptions and models applied in communication theory are discussed

in [40]. In [41], the authors survey various software-defined latency con-

trol schemes in V2I networks. The work in [42] proposes different radio

resource management methods for achieving low-latency vehicular com-

munications. Recently, packet duplication was proposed to achieve high

reliability in [43], [44], high availability (in an interference-free scenario)

using multi-connectivity was studied in [45].

Moreover, edge computing is also considered as an attractive solution to

minimize latency. This is done by processing the requested tasks locally at

the edge servers, without relying on the remote servers, e.g., base stations

and cloud servers [46, 47]. Reliable V2V communication and mobile edge

computing with uRLLC guarantees were studied in [48]. From an ultra-

reliable communication perspective, a maximum average rate was derived

in [49] guaranteeing a minimum signal-to-interference ratio coverage. In

[50], an edge computing framework is developed to reduce computational

latency for vehicular services. Finally, a recent (high-level) uRLLC survey

can be found in [40] highlighting the building principles of uRLLC.

The above schemes employ RF systems that face interference issues.

17



These can be solved using OCC, which is also used in this dissertation [32].

2.5 Reinforcement Learning in Vehicular

Networks

Recently, deep learning has made great stride in speech recognition [51],

image recognition [52], and wireless communications [53]. With deep

learning techniques, reinforcement learning has shown impressive improve-

ment in many applications, such as playing videos games [54] and playing

Go games [55]. It has also been applied in resource allocation in various

areas. In [56], a deep reinforcement learning framework has been de-

veloped for scheduling to satisfy different resource requirements. In [57],

a DRL-based approach has been proposed for resource allocation in the

cloud radio access network to save power and meet the user demands.

In [14], the resource allocation problem in vehicular clouds is solved by re-

inforcement learning, where the resources can be dynamically provisioned

to maximize long term rewards for the network and avoid myopic decision

making. A deep reinforcement learning-based approach has been proposed

in [58] to deal with the highly complex joint resource optimization problem

in virtualized vehicular networks.

To deal with the time-varying nature of the optimization problems in

vehicular applications, DRL has already been applied for solving resource

allocation problems [13, 14, 59]. In [13], a deep reinforcement learning

framework has been developed for spectral sharing in an RF-based cent-

ralized system, where each V2V link acts as an agent. In this paper, the

agents collectively interact with the communication environment, receive

a common reward, and learn to improve spectrum and power allocation

through MARL. In [14], the authors address the resource provisioning

problem in vehicular clouds to dynamically meet resource demands and

stringent Quality of Service (QoS) requirements with minimal overhead.

The authors in [59] study a transmission delay minimization problem in

18



software-defined vehicular networks, where the problem is formulated as

partially observable MDP and solved with an online distributed learning

algorithm. But these methods only optimize the spectral efficiency in RF-

based systems without considering uRLLC constraints. Even though DNNs

has improved the scalability of RL, training a centralized RL agent is still

infeasible for large scale V2V environments. First, we need to collect all

vehicle parameters in the network and feed them to the agent as the global

state. This centralized state processing itself will cause high latency and

failure rate in practice, and the topological information of the traffic net-

work will be lost. Further, the joint action space of the agent grows expo-

nentially in the number of signalized intersections. Therefore, it is efficient

and natural to use MARL based problem representation, where each agent

decides its policy by considering the local observation, which requires lim-

ited communication from other agents or servers. A simpler and more

common alternative is independent Q-learning [60], in which each local

agent learns its policy independently by modelling other agents as parts of

the environment dynamics.

Since the vehicular environment is time-varying and decision making

parameters, e.g., speed, distance, are continuous, general DQN cannot be

applied to this system without sacrificing the performance [17]. As these

discretize the state-action spaces, we may lose some state or actions, which

is important for decision making. Recently, actor-critic based deep rein-

forcement learning frameworks are proposed to solve the continuous prob-

lem in various applications [61–63]. In [61], the authors address a power

allocation problem to maximize the sum rate and ensure fairness in free-

space communication. In [62], the authors propose a deep reinforcement

learning-based user scheduling, phase shift control, beamforming optim-

ization algorithm to maximize the aggregate throughput and achieve the

proportional fairness while improving the trade-off between throughput

and fairness in an intelligent reflecting surface. A platooning control of

vehicular communication is proposed in [63]. To the best of my knowledge,
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actor-critic based DRL frameworks have not been applied in vehicular OCC

up to the present time.

2.6 Channel Coding

Various coding schemes are available, but most of them do not function

consistently well for a vast variety of code rates and block lengths. Con-

volutional, turbo, polar, and LDPC codes are the four general considered

coding systems [64].

Turbo codes have a variety of uses, including 3G/4G mobile commu-

nication, deep-space communications, and universal mobile telecommu-

nications system, since they offer a lower error probability and low com-

plexity. Because of the interleaving and iterative process, turbo codes have

high decoding complexity, which induces extra latency [65]. Convolutional

codes are widely used codes because of their benefits of low-complexity

encoding, easy rate-adaptation ability, and hardware-friendly decoding al-

gorithms [66]. In contrast to other coding schemes, their BER does not

improve with the increase of message length, which makes them inap-

propriate for long-range communication. They, however, perform compar-

ably for small message lengths using maximum-likelihood decoding [65].

Moreover, the convolutional code has a loss in rate performance [67]. Po-

lar code being a very efficient channel code has a vast range of applications

in wireless communications [68]. However, for a short block length, the

redundancy to join with codes becomes higher, thus reducing the overall

efficiency [69]. LDPC code is a very useful coding approach for error cor-

rection and BER reduction in communication channels. Since LDPC codes

offer performance close to Shannon’s, the chance of information loss is

lower.

To satisfy the uRLLC requirements in vehicular OCC, effective chan-

nel coding is required in addition to the interference mitigation and DRL

framework. Recently, 5G NR LDPC codes are used to provide reliability
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and low latency while improving transmission rate [15]. To the best of my

knowledge, LDPC codes have not been applied in vehicular OCC yet, along

with the DRL framework. LDPC codes have also been tested to improve the

reliability of communications using adaptive modulation schemes both in

wireless [70] and optical communication [16]. These techniques use tradi-

tional optimization methods to solve the underlying optimization problem,

which is inefficient in a time-varying vehicular environment because of the

entailed computational complexity.

Channel coding scheme strongly affects the capacity and reliability of

the system. Due to the fact that the proposed vehicular OCC system re-

quires ultra-reliability and low-latency, 5G NR LDPC codes are embraced

in this thesis, which have already been applied for adaptive modulation

schemes [16]. 5G NR system uses Quasi-Cyclic (QC)-LDPC as the data

channel coding scheme because of the advantages of efficient implementa-

tion and offering improved performance [71]. The QC-LDPC coded modu-

lation can also resolve the weaknesses of having poor reliability and latency

performance for arbitrary order of modulation formats [16,72] while guar-

anteeing a low error rate for all code rates. A notable feature of the 5G NR

LDPC codes is the flexibility to support a wide range of information block

lengths ranging from 40 to 8448 bits and various code rates ranging from

1/5 to 8/9 [15, 73]. 5G NR codes use a feedback channel to adapt protec-

tion, which makes them more reliable. Therefore, we use 5G NR QC-LDPC

channel coding over the Galois Field (GF)(Q) for Q-ary QAM transmissions

in our vehicular OCC systems.
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3
Performance Analysis of Optical Cam-
era Communications

3.1 Introduction

In this chapter, we study communication link performance with adaptive

modulation scheme to examine whether OCC is suitable for employing

uRLLC in automotive vehicles. To the best of our knowledge, this is the

first OCC based vehicular systems that focus on uRLLC aspects. To this

aim, we introduce a novel low latency V2V communications framework

that ensures reliability using OCC. The proposed system is fully decentral-

ized and each vehicle process the communicated information either indi-

vidually or collectively. We provide a mathematical framework to model

the OCC channel in order to find out the probability of errors, achievable

spectral efficiency, and transmission latency as a function of inter-vehicular

distances and AoIs while considering the adaptive modulation. To model

the latency, we only consider transmission latency, as a small amount of

data is processed in our system that is related to the action or safety in-

formation, and hence, the computational latency is negligible. To improve

the efficiency of OCC-based communication, we use an adaptive modula-
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tion scheme. By increasing the modulation order, higher spectral efficiency

and lower latency can be achieved. In our evaluation, we consider satis-

fying the target BER as an indication of reliability in our system. If the

reliability requirement for a certain modulation scheme is not met, the sys-

tem can reduce the AoI at the receiver. Finally, we analyze the performance

of the proposed system in terms of BER, spectral efficiency, transmission

latency for various inter-vehicular distances and AoIs of LED lights at the

receiver. We investigate how to achieve uRLLC by introducing a mechanism

of varying the AoI at the receiver vehicle when the transmitter changes the

modulation scheme depending on the size of the transmitting data.

The rest of this chapter is organized as follows: Section 3.2 outlines the

vehicular OCC overview. Next, we present vehicular OCC system modelling

in Section 3.3 before presenting the performance analysis of the vehicular

OCC system in Section 3.4. Finally, in Section 3.5, we summarize the con-

tribution of this chapter.

3.2 Overview of Vehicular OCC

In this section, we first discuss the advantages of OCC over other existing

communication systems. Then, we illustrate the general architecture of the

vehicular OCC. Finally, a overview of several existing studies on vehicular

OCC is presented.

In recent years, OCC has gained new momentum as a promising com-

plementary technology over existing communication systems, e.g., RF or

PD-based communication, [29,30]. The advantages of the license-free un-

limited spectrum, longer lifespans, lower implementation cost, negligible

interference, less power consumption, and enhanced security have promp-

ted the OCC technology as a viable candidate for future wireless commu-

nication applications [7]. Also, OCC does not harm the human body or

eyes and is not affected by electromagnetic interference. It is, in fact, very

easy to integrate OCC to the existing vehicular systems without making any
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Figure 3.1: An illustration of vehicular optical camera communication op-

eration.

significant changes. This is because LEDs already exists in vehicles, traffic

lights, or road infrastructures. Besides achieving a low data rate, OCC can

be a better alternative to the congested and saturated RF systems due to

its negligible noise and interference and higher security [29]. However,

OCC can face challenges due to its LoS requirements for communication.

The speed of LED switching frequency is kept high enough so that it is

not perceivable by the human eye. As a result, LED lights maintain their

main purpose of illumination or indication. The camera can receive a sig-

nal which lies within its FoV. The radiated signal passes through an optical

filter and a lens to ensure maximum light within the FoV of the receiver.

In general vehicular OCC architecture, LED arrays located on the rear

side of a vehicle or other light sources act as transmitters, and cameras act

as receivers (see Fig. 3.1). As shown in the figure, Vehicle 1 and Vehicle

2, communicate information through LED lights, which are called here-

after transmitters. Other light sources, e.g., Sunlight, ambient lights, traffic

lights, and digital signages, are considered as noise sources. Meanwhile,

the camera at the receiver vehicle captures the video frames within its FoV,

which then passes it through an imaging lens. The captured images are

fed into the image processor, which identifies the LEDs pattern from the

captured images. After processing the image, the signal is passed to the

data extraction unit to recover the communicated information. In vehicu-
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lar OCC, no complex signal processing algorithm is required to filter out the

light sources that do not convey information. The noise and data sources

can easily be distinguished and captured on the image plane of the image

sensor because the cameras only focus on the pixels in which the LED lights

strike [33]. In this manner, interference-free and secure communications

can be achieved using an image sensor.

Besides OCC, VANETs created immense opportunities in the ITS at lower

operational cost [19, 20]. But, VANETs have shortcomings, such as lower

accuracy, unreliable internet service, and lack of pure network architec-

ture [25]. Alternatively, AV communication uses wireless access in vehicu-

lar environments, i.e., IEEE 802.11p standard [34]. However, OCC has sev-

eral advantages over IEEE 802.11p, including unlicensed frequency spec-

trum access, BSs independency, and simultaneous lighting and communica-

tion. Moreover, there are several existing experimental methods to improve

the performance of vehicular OCC systems. Specifically, in [7], the authors

have achieved 10 Mbps data rate based on the LEDs intensity variation by

generating a flag image from the communication image pixels in which the

high-intensity light sources appear. In [33], the authors have proposed an

image sensor based VLC system, which achieved a 20 Mbps/pixel data rate

without LED detection and 15 Mbps/pixel data rate with 16.6 ms real-time

LED detection. In [74], the transmission rate was improved to 45 Mbps

without bit errors and to 55 Mbps with BER < 10−5.

The above mentioned OCC schemes investigated the data rate enhance-

ment through experimental study, and none of them examined the uRLLC

aspects of vehicular OCC and optimization of system parameters, e.g., rate.

To the best of our knowledge, this is the first time in vehicular OCC where

uRLLC is examined.
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Figure 3.2: Proposed system model of vehicular optical camera communic-

ation.

3.3 System Model

In this section, we present the considered system model and parameters of

vehicular OCC. Then, we specify the performance defining metrics of OCC

in terms of the BER, the achievable rate, and the observed transmission

latency.

3.3.1 System Modelling

Fig. 3.2 outlines the proposed vehicular OCC system model, where vehicles

communicate with each other. In this scenario, the vehicle conveying in-

formation is denoted as “Transmitter Vehicle (TV)". Whereas the vehicle

which follows TV and receives the transmitted information is defined as

“Receiver Vehicle (RV)". In our system, the LED lights located at the back

side of TV is the transmitter, and a high-speed camera (also known as im-

age sensor and has a frame rate of 1000 frame per second (fps)) located at

the front side of RV, is the receiver. If cameras of low frame rate were used,

e.g., 30 fps, the data rate per pixel would be limited to 15 bits per second

(bps) or less to satisfy the Nyquist frequency requirement [8], which is low

for the considered applications. Therefore, high-speed cameras should be

utilized in the receiver systems to achieve higher data rates or receive high-

speed optical signals. The communicated information between the vehicles

is mainly vehicle’s internal information, e.g., speed, next action, position,
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and/or other safety and action-related information from the transmitter.

We denote the distance between transmitter and receiver by d(t). In our

system, each vehicle has two camera sets, one in the front and another in

the back. The front camera, i.e., high-speed camera, has dual function-

ality. Firstly, it measures forward distance, d(t), between the TV and RV

using the distance between the LEDs and pixel information on the image

sensor, which we will discuss later in the next sub-section. Secondly, the

camera acts as the receiver, which decodes transmitted data from the LED

transmitters. The back camera, i.e., vision camera, measures the backward

distance, d(t), between the vehicles using a stereo-vision camera as the one

discussed in [75].

M-ary Quadrature Amplitude Modulation (M-QAM) is used to modu-

late the signal in VLC [76] as it is a multi-level, high-order, and spectrally-

efficient modulation technique that is relatively easy to implement and of-

fers very low BER, high-speed, and flicker-free communication [77]. For

employing M-QAM, at the transmitter, the data bit-streams are first mapped

into symbols by splitting amplitude and phase into in-phase and quadrat-

ure parts, respectively. The symbol is modulated to a square wave signal

with an amplitude, period and a shifting phase, i.e., period × phase/2π. A

preamble is inserted with the data bits for synchronization and modulation

scheme estimation at the receiver. The resulting signal is then transmitted

through the optical channel by modulating intensity of the LEDs. At the

receiver, the camera captures the modulated light waveform within its ex-

posure time. During this time, the image sensor captures the intensity of

the light coming in as different LED states, e.g., on, off, mid. The cam-

era integrates the signal during its exposure time, which is recorded as the

pixels of the image. We can extract the original signal information from this

detected intensity in these pixels using an efficient M-QAM demodulation

scheme [78]. At the receiver, frame synchronization, modulation scheme

estimation, and post-equalization are carried out to eliminate the effect of

the channel with the help of the preamble. In [78], a simple mathemat-
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Figure 3.3: (a) LoS channel model of OCC and (b) Inter-vehicular distance

measurement [7].

ical formulation for encoding and decoding of the amplitude and phase of

transmitted symbols is proposed, where the modulated symbol is sampled

in three consecutive frames by the image sensor. From the captured frames,

the LED states, e.g., on, off, mid, are identified, and a lookup table is de-

veloped. Then, the phase position is retrieved using the lookup table, and

the reconstructed phase is converted to radian so that it can be mapped to

M-QAM. Finally, the original signal is perfectly recovered from the detected

amplitude and phase.

3.3.2 Optical Channel Model

We assume an uninterrupted LoS link between the transmitter and camera

receiver, ensuring the vehicles are free from obstruction to communicate

with each other continuously. Depending on the channel conditions, OCC

has either a flat-fading or diffuse channel. Generally, OCC channel has

two types of light propagation components: (i) LoS component resulting

from direct light propagation from the transmitter to the receiver and (ii)

diffuse components resulting from the reflected lights from other vehicles

or reflective surfaces. Usually, the diffuse propagation has much lower

energy than the LoS component, and therefore, the diffuse light component

is neglected in this thesis. Accordingly, considering the LOS channel, the

Direct Current (DC) channel gain, H(θ, t), between the transmitter and the

receiver is given by [79]
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H(θ, t) =


Aeff(θ)
d2(t)

ℜ(ϕ), 0 ≤ θ ≤ θl

0, θ > θl
(3.1)

where Aeff(θ) is the effective signal collection area of the image sensor, θ is

the AoI with respect to the receiver axis, ϕ is the angle of irradiance with

respect to the emitter, ℜ(ϕ) is the transmitter radiant intensity, θl denotes

the FoV of the image sensor lens, and finally, t is the time-frame index. The

d(t) is expressed as [7]:

d(t) =
f

a
· δ

η(t)
, (3.2)

where δ is the distance between the left and right LED array units, f is the

lens focal length, η(t) is the distance in terms of number of pixels between

the left and right LED array units on the captured image, and a is the

image pixel size. The inter-relation between the distance measurement

parameters is illustrated in Fig. 3.3(a). The backward distance can be

estimated with a stereo vision camera using a similar method to the one

in [75], which is presented in Appendix A.

Regarding the above parameters: δ is sent from TV to RV through LEDs,

and f and a are known values for any system, such as 15 mm and 7.5 µm,

respectively, as we considered in this work [7]. The value of η(t) can be

obtained via simple image processing techniques or by calculating the pixel

values using data pointer. In this way, using both the received data and the

captured image, the RV can estimate the inter-vehicular distance, d(t) and

the channel gain. Please note that positioning accuracy is not emphasized

in the literature because the focus is to ensure communication quality. The

positioning error is estimated to be 10 cm [7].

We assume that the LED follows a Lambertian radiation pattern and has

wider directivity. Therefore, the light emission from the LED transmitters

can be modelled using a generalized Lambertian radiant intensity [79, 80]
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and following the link geometry, as shown in Fig. 3.3(b):

ℜ(ϕ) = (m+ 1)

2π
cosm(ϕ), (3.3)

where m is the order of Lambertian radiation pattern, which is derived

from the LED semi-angle at half luminance, Φ1/2, as

m =
−ln(2)

ln(cos(Φ1/2))
. (3.4)

Also, Aeff(θ) can be expressed as [79]

Aeff(θ) =

A Ts(θ) g cos(θ), 0 ≤ θ ≤ θl

0, θ > θl
(3.5)

where A is the area of the entrance pupil of the camera lens, Ts(θ) is the

signal transmittance of the optical filter, and g is the gain of the lens. An

ideal lens has a gain: g = n2/sin2(θl), where n is the internal refractive

index of the lens.

Based on the above definitions and considering (3.3) and (3.5), finally,

H(θ, t) can be formulated as

H(θ, t) =


(m+1)A
2πd2(t)

cosm(ϕ) Ts(θ) g cos(θ), 0 ≤ θ ≤ θl

0. θ > θl
(3.6)

From (3.6), we observe that if A and g are fixed for an image sensor,

the channel power gain H(θ, t) can be increased by either (a) decreasing

the distance, d(t) and/or (b) increasing the signal collection area, i.e., by

decreasing the AoI of the camera lens. Lower AoI of the camera lens means

the strength of light beam will be stronger on the image sensor, which in

turn, will increase the channel power gain. Alternatively, higher AoI re-

duces the H(θ, t) as the LED light beam will spread out at the wide angle of

the camera lens. So, maintaining narrower AoI at the receiver will provide

improved performance because of having higher gain.
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Finally, the received optical power Pr(θ, t) can be derived using the op-

tical transmitted power P from LED lights

Pr(θ, t) = P ·H(θ, t). (3.7)

I would like to note that in this work, I neglect the signal detection

overhead of recognizing the desired light sources under mobile scenarios.

This is motivated by [30], where the authors have proposed a statistical

vehicle motion model in an image plane and showed that the vehicle mo-

tion along the vertical and horizontal axes of the image plane is limited to

within one pixel in most cases, which is very small compared to entire im-

age pixels on the captured image. Moreover, the DC gain, and as a result,

the Signal-to-Noise Ratio (SNR) at a pixel remains constant as long as the

projected image of the transmitter LED occupies several pixels. Further, a

simple design of an LED detection and tracking system is proposed using

the result and the vehicle motion model of [30], which limits the track-

ing area of the VLC transmitter and reduces the computational cost. Thus,

the vehicle motion and the pixel illumination model is used as a guideline

for our system to overlook the overhead of recognizing the desired light

sources for the mobile environment.

3.3.3 Parameters Modelling

In order to analyze the system performance, we first formulate the SNR of

the optical link.1 We consider SNR as a measure of communication link

quality of the signal transmission. Therefore, according to [81], the re-

ceived SNR, γ(θ, d) of visible light link can be expressed by

γ(θ, d) =
(ρPr(θ, d))

2

σ(d)
(3.8)

1From (3.6), we see that the channel gain depends on θ and t, where t represents the

changes in inter-vehicular distance, i.e., d over time. So, the only changing variable is

the distance, and from now we can drop the variable t by only keeping d. Therefore, for

formulating the SNR, we use d by leaving t.
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where σ(d) represents the total noise power, which can be computed as

in [79]

σ(d) = qρPnA(d)Wfps, (3.9)

where q is the electron charge, Pn is the power in background light per unit

area, and Wfps is the sampling rate of the camera in fps.

Regarding the calculation of A(d): Points at different distances are im-

aged as a little circle on the image plane. Hence, a LED occupies a circle

having a diameter [82], l′ = fl
d

, where l is the diameter of a LED and f

is the focal length. To conservatively account for the quantization effects,

measurements are commonly made at the nodes of a square grid of points.

This means that, the LED will occupy a square area of size l′2. When the

LED moves away from the camera, the projected diameter l′ will eventually

become smaller than the size of a photodiode. We refer to the distance

where the LED generates an image that falls onto exactly one pixel as the

critical distance dc = fl/s, where s is the edge-length of a pixel.

So, (3.9) can be rewritten as

σ(d) =

qρPnW
f2l2

d2
; if d < dc ,

qρPnWs2; if d ≥ dc .
(3.10)

Finally, from (3.7) and (3.10), (3.8) can be summarized as,

γ(d) =


ρk2P 2

qPnWf2l2d2
; if d < dc ,

ρk2P 2

qPnWs2d4
; if d ≥ dc .

(3.11)

where k = (m+1)A
2π

cosm(ϕ) Ts(θ) g cos(θ).

Motivated by the trade-off among modulation order, achieved BER, and

improved spectral efficiency, we consider adaptive modulation that permits

us to adapt the modulation order by satisfying the target BER requirement

of the system. The adaptive scheme can deal with the time-varying nature

of the channel while maintaining the desired link quality and maximizing

the rate for the given channel conditions [83]. Furthermore, the adaptive
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modulation scheme transmits at high-speed under favourable channel con-

ditions, and the rate decreases when the channel conditions worsen. It is

worth noting that different users might have a different rate since they do

not have precisely the same SNR and, consequently, they provide varying

BERs. However, in practice, a particular discrete modulation set is used to

examine how the performance varies after limiting the system to a small

modulation set. For the considered system, we study Binary Phase-Shift

Keying (BPSK) and uncoded M-QAM with the square constellation as an

example because they offer higher spectral efficiency, low BER and easy im-

plementation. Still, our scheme is general and other modulation schemes

can also be employed. The BER of the optical wireless channel at the re-

ceiver using the BPSK and M-QAM scheme is evaluated similarly to [84]

and [85]as:

BER(θ, d) =

Q
(√

2γ(θ, d)
)
, for BPSK

4
log2(M(θ,d))

·Q
(√

3 γ(θ,d) log2(M(θ,d))
M(θ,d)−1

)
, for M-QAM

(3.12)

where M is the constellation size and Q(x) = 1
2

erfc
(

x√
2

)
stands for the

Q-function. So, the spectral efficiency of the BPSK and M-QAM modula-

tion schemes can be expressed as SEBPSK = 1 and SEM-QAM = log2(M(θ, d)),

respectively.

It is worth noting that the adjustment of modulation depends on the

road scenarios. At normal conditions, when there is nothing to commu-

nicate, RV maintains the wider AoI to understand the whole scenario of

the road. If the TV wants to transmit any critical information, it chooses

a higher modulation based on the size of the transmitted data. On the

receiver side, if the RV notices any sudden change in the TV transmitted

signal and fails to decode it using the current modulation scheme, the RV

switches to another modulation from the chosen limited modulation set.

If there are consecutive failures, the receiver employs the closest possible

modulation. In the meantime, RV decreases the AoI of the camera lens to

focus on the LED transmitter and decodes the transmitted signal within the
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shortest possible time. The adaptive modulation in our system is adjusted

as follows. Suppose there is any change in the modulation scheme during

communication. In that case, the transmitter informs the receiver regard-

ing the employed modulation by appending a small overhead, e.g., some

extra bits, in each transmitted packet. This overhead can be neglected be-

cause, in practice, as a small set of modulation scheme is used, e.g., 6, in

our system. We require only 3 bits to be appended in the transmitted data

for the receiver. Hence, the overhead will be minimal compared to the

transmitted packet size, i.e., 5 kbits, in our system.

We should note that the transmission rate (measured in bit per second

(bps)) of a camera based-communication system depends on the received

SNR as shown in [32] and is given by

C(θ, d) =
Wfps

3
Ws(d) · log2(M(θ, d)), (3.13)

where Ws(d) is the spatial-bandwidth, which denotes the number of in-

formation carrying pixels per image frame. The term Wfps/3 refers to the

fact that the camera must sample the modulated signal three times of the

sampling frames to decode the original M-QAM signal [78]. In other words,

for reconstructing the amplitude and phase perfectly, a modulated symbol

is sampled in three consecutive frames. Finally, Ws(d) is defined as

Ws(d) = NLEDs ·Nrow(d), (3.14)

where NLEDs is the number of LEDs at each row of the transmitter and

Nrow(d) represents the captured number of row pixel lines in each frame.

Considering a rolling shutter camera, the actual number of samples, Nrow(d)

acquired from the captured image at d can be expressed as

Nrow(d) = w
ϱ

2 tan
(
θl
2

)
d
, (3.15)

where w is the image resolution and ϱ is the normalized length (diameter)

of the LEDs along the width. Taking into account (3.14) and (3.15), C(θ, d)
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is re-written as:

C(θ, d) =
Wfps NLEDs wϱ

6 tan
(
θl
2

)
d
· log2(M(θ, d))

=
l0
d
· log2(M(θ, d)), (3.16)

where l0 =
Wfps NLEDs wϱ

6 tan
(

θl
2

) . Considering the communications between the vehicles,

the overall end-to-end latency, τ(θ, d) can be found as [46]

τ(θ, d) =
L

C(θ, d)
, (3.17)

where L is the packet size in bits. Recall that in our system, we consider that

the end-to-end latency is dominated by transmission latency, and therefore,

we neglect the computational latency. This is because we process a small

amount of data, i.e., the decision information from TVs to the RVs, and

hence, the computational time will be short.

Since, the goal of the system is to avoid critical conditions, i.e., avoid

collisions between vehicles, a minimum distance has to be maintained

between the vehicles so that the collision between the vehicles can be

avoided. However, by increasing the distance between the vehicles, the

quality of the communication deteriorates. Specifically, increasing distance

beyond a threshold would lead uRLLC conditions to be violated. So, in

order to maintain uRLLC, we can vary the modulation order at the trans-

mitter depending on the size of the transmitting data and the AoIs at the

RV to satisfy the target BER. In our system, we analyze the performance

of our proposed OCC system by varying both the inter-vehicular distances

and AoIs. However, as it is challenging to change AoI sharply in a realistic

scenario, which would introduce additional delays in changing the AoI in-

side the vehicle mechanically, in the next section, we consider distance as

the only free variable and fix AoI in a value that guarantees system require-

ments.
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Table 3.1: Simulation Parameters

Parameter, Notation Value

Angle of irradiance w.r.t. the emitter, ϕ 70o [79]

Semi-angle at half luminance of the LED, Φ1/2 60o [79]

Inter-vehicular distance, d (0− 150) m

AoI w.r.t. the receiver axis, θ 0o to 90o

FoV of the camera lens, θl 90o [79]

Image sensor physical area, A 10 cm2 [79]

Transmission efficiency of the optical filter, Ts 1 [79]

Refractive index of concentrator/lens, n 1.5 [79]

Constellation size, M 4, 8, 16, 32, 64

Camera-frame rate, Wfps 1000 fps [7]

Optical transmitting power, P 1.2 Watts

Number of LEDs in the transmitter, NLEDs 300 (30 × 10) [7]

Electron charge, q 1.6× 10−19 C

Focal length of the camera lens, f 15 mm [7]

Image pixel size, a 7.5 µm [7]

Distance between left and right LED array, δ 50 cm [7]

Size of the LED, ϱ 15.5 × 5.5 cm2 [7]

Resolution of image, w 512 × 512 pixels [7]

3.4 Simulation Results and Performance

Analysis

In this section, simulations are conducted to investigate the performance of

the proposed system model in vehicular OCC. We start by evaluating differ-

ent performance metrics of the proposed system model to get a better un-

derstanding of the interplay among the various parameters of our system.

We consider the vehicular OCC system as described in Section 3.3.1 and

3.3.2. We demonstrate the performance for distances up to 150 m, which
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Figure 3.4: BER versus SNR (dB) for various modulation schemes consid-

ering AoI = 600 and fixed transmit power at 1.2 W, when d is varying.

we believe is sufficient to maintain communication and avoid collisions.

We chose an AoI range of 0-90 to accommodate the FoV of the camera lens.

We employ the OCC modelling parameter described in [7,79] as presented

in Table 3.1. We propose an adaptive modulation scheme using BPSK and

M-QAM with five different constellations, M = {4, 8, 16, 32, 64} as example,

still, other modulation schemes can also be employed. Here, we consider a

transmitter size of 300 (30 × 10) LEDs with 0.5 cm spacing between each

LED and a 1000 fps camera for the receiver, where the resolution of the

received image is 512×512. Target BER is set to 10−4 and 10−5 for perform-

ance comparison to be compliant with uRLLC requirements. The rest of the

simulation-related parameters are summarized in Table 3.1.
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Figure 3.5: BER versus SNR (dB) for various modulation schemes consid-

ering d = 50 m and fixed transmit power at 1.2 W, when AoI is varying.

3.4.1 Performance of BER Modelling

In this sub-section and the following sub-section, we analyze the perform-

ance of the proposed system model for BER, spectral efficiency, and latency

at different inter-vehicular distances and AoIs. We start by comparing the

BER versus SNR (dB) for the chosen modulation set with a fixed transmit

power of 1.2 Watt. The results for different inter-vehicular distances and

AoIs are illustrated in Fig. 3.4 and Fig. 3.5, respectively. The plots demon-

strate that we achieve better BER performance at higher-order modulation,

but this comes at the cost of higher SNR level. In our evaluation, we do

not vary the distance and AoI at the same time. While varying distance, we

change it from 0 m to 150 m by keeping the AoI at 60o, similarly we vary

38



0 50 100 150

Distance (m)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

BPSK

4-QAM

8-QAM

16-QAM

32-QAM

64-QAM

Figure 3.6: BER versus Distance (m) for various modulation schemes con-

sidering AoI = 600 and fixed transmit power at 1.2 W.

AoIs between 0o to 90o by keeping the distance to 50 m. In this manner, we

justify that the same BER performance can be achieved at various distances

and AoIs while using different modulation schemes.

In Fig. 3.6 and Fig. 3.7, we evaluate the achieved BER performance for

the different modulation schemes at varying distances and AoIs, respect-

ively. Fig. 3.6 shows that BPSK satisfies target BER (10−4) up to 82 m,

and for 64-QAM, it is satisfied at 52 m. Similarly, in Fig. 3.7, target BER

(10−4) is satisfied at 80o and 62o for BPSK and 64-QAM, respectively. The

plots confirm that at a shorter distance and narrower AoI, the modulation

order will be higher due to higher SNR at the receiver. This is due at the

narrower AoI, the strength of the light beam on the image sensor is strong,
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Figure 3.7: BER versus AoI (Degree) for M-QAM scheme considering d =

50 m and fixed transmit power at 1.2 W.

which increases channel gain. Alternatively, at the shorter distance, the

SNR gets higher. Thus, the target BER can be achieved while maintaining

the trade-off between the modulation order and distances or AoIs.

3.4.2 Spectral Efficiency and Latency Performance

The achieved spectral efficiency and observed latency improvements of the

proposed system are presented in Fig. 3.8 for various distance values. In

this evaluation, we consider, 10−4 and 10−5, as the target BER for perform-

ance comparison. We determine the distance that satisfies the target BER,

and then adopt the highest modulation scheme from the available schemes

using Fig. 3.6. Then, we calculate spectral efficiency at that correspond-
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Figure 3.8: Spectral efficiency and latency versus distance at target BER of

10−4 and 10−5.

ing modulation scheme and distance. We achieve spectral efficiency of 6

bps/Hz (Fig. 3.8) for distance until 48 m (for BER = 10−5) and 52 m (for

BER = 10−4) using 64-QAM. Likewise, we notice a spectral efficiency of 2

bps/Hz from 74 m to 81 m and 69 m to 76 m at the target BER of 10−4

and 10−5, respectively. Please note that the above evaluation is ideal since

the modulation level is perfectly adapted, and the target BER is known to

both the transmitter and receiver in advance. As a result, the transmitter

and receiver can choose the modulation order and target BER from the

predefined sets.

For latency evaluation, we first calculate the achievable rate using (3.16),

considering w as 512 × 512 pixels. Then, we compute the transmission

latency for a packet size of 5 kbits using (3.17). Here, we consider trans-
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mission latency to be equal to the end-to-end latency because we process

small amount of data in our system. The results are presented in Fig. 3.8

for distances from 0 m to 90 m and two different target BERs, i.e., 10−4

and 10−5. This evaluation shows that our system can achieve the latency of

1ms at 52 m and 48 m at target BER of 10−4 and 10−5, respectively. From

Fig. 3.8, it can be seen that we gain 1ms latency and 6 bps/Hz spectral

efficiency using 64-QAM at constant power. Therefore, we note that both

latency and BER requirements are satisfied at 600. As a result, we con-

sider AoI as 600 for our optimization problem formulation to deal with the

complexity of changing AoI in practice and its induced latency.

From Fig. 3.8, we can conclude that the use of adaptive modulation

offers higher spectral efficiency and lower latency. Whereas a single mod-

ulation scheme offers fixed-rate and latency having limitations in distance

coverage and BER requirements. For example, 64-QAM can satisfy a target

BER of 10−4 and a latency of 1.2 ms up to 52 m. Thus, beyond this distance,

we need another modulation scheme for satisfying the target BER, i.e., 32-

QAM, 16-QAM, and so on. Similarly, BPSK meets the target BER of 10−4 up

to 83 m but offers a lower rate, i.e., 1 bps/Hz, and higher latency of 7.5 ms.

Thus, it can be said that adaptive modulation provides better performance

while satisfying the trade-off between BER and latency requirements.

3.5 Summary

In this chapter, the performance of adaptive modulation has been analyzed

for automotive vehicular uRLLC considering OCC. The latency is modelled

based on the capacity of the vehicular OCC while considering the trans-

mission latency only. Further, the BER performance is studied for various

sets of the AoI and inter-vehicular distance. In our system, the spectral

efficiency of vehicular OCC is adjusted adaptively using adaptive modula-

tion which ensures reliability by maintaining the BER to a pre-determined

target value. We carried out simulations to get an understanding of how
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to adjust the employed modulation scheme as well as AoIs so that it meets

the BER requirements. Interestingly, the proposed model provides about 7

ms latency while satisfying the reliability requirement of 10−4 or 10−5 when

the AoI is varied between 0o to 90o.
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4
Multi-Agent Deep Reinforcement Learn-
ing for Spectral Efficiency Optimization
in Vehicular OCC

4.1 Introduction

Following the performance analysis in Chapter 3, we justified that OCC can

satisfy BER and low latency requirements in AVs. Therefore, we utilize OCC

in multi vehicular networks to maximize the communication rate while

meeting the BER and latency requirements. One of the major challenges

in vehicular networks arises from the fact that they are time-varying and

highly dynamic, while the vast amounts of generated data (each vehicle

can generate up to 750 Mbps, i.e., sensors data, videos or images data from

cameras) should be delivered reliably within stringent time constraints for

ensuring safety. Various technologies have been proposed in recent years

to ensure reliability and low latency in ITS using traditional optimization

schemes, such as [9,10], reflect on delay minimization and reliability guar-

antee. However, ensuring reliability and low latency have been challen-

ging due to the complexity of the system. The complexity arises when it
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involves decision-making in controlling different parameters, e.g., speed,

distance and modulation schemes. Using traditional distributed methods,

it is difficult to solve these decision-making problems because of the in-

herent complexity and the time needed for solving them. Fortunately, RL

methods can serve as an effective alternative solution to overcome the com-

plexity of such systems [11] due to the fact that it is possible to be applied

distributively.

In this chapter, we propose an OCC-based vehicular communication sys-

tem to maximize the communication rate by satisfying the latency require-

ments while respecting BER. The studied problem can be modelled as a

MDP. Despite MDP providing an efficient way to express our framework,

traditionally used methods to solve them, like value-iteration, require the

knowledge of the state-action transition probability matrix that is difficult

to be obtained in dynamic problems such as the one we examine in this

chapter. These limitations are overcome through Q-Learning [11]. How-

ever, Q-Learning has slow convergence and cannot solve large-scale prob-

lems. To address this limitation of the Q-Learning algorithm, we use the

DRL [12]. DRL approximates the state-action value function by adjusting

the weights of a neural network.

Even though DRL has improved the scalability of RL, training a cent-

ralized RL agent is still infeasible for large-scale V2V environments as the

one considered in this chapter. This is due to the fact that we need to col-

lect all the observation states from the vehicular network and communicate

them to an agent (e.g., base station), which optimizes the policies of all the

vehicles centrally. After determining the policies, the central agent should

communicate them to the vehicles. This centralized decision-making is

problematic as it causes higher latencies due to communicating data back

and forth, it worsens congestion in the network, and it may lead to finding

inefficient policies in particular when the information is lost or delayed. To

avoid the above problems, we formulate the problem as a MARL, where

each agent considers only local observations and does not require global
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communication. In particular, we adopt independent Q-Learning [60], in

which each local agent learns its policy independently by modelling other

agents as part of the environment. It has been shown that independent

Q-Learning can lead to well-performing solutions though there are no the-

oretical guarantees [86].

To the best of our knowledge, optimizing the performance of vehicular

OCC employing DRL has not been investigated in the literature. In this

chapter, we propose a spectral efficiency maximization scheme in vehicular

OCC that satisfies BER and latency constraints. In doing so, we determine

the optimal modulation order and speed of the vehicles using DRL. We

consider a decentralized, independent and MARL scheme in solving this

problem.

The major contributions of this chapter are summarized as follows:

• We propose a multi-vehicular spectral efficiency maximization scheme

based on independent deep reinforcement learning in vehicular OCC;

• We formulate the maximization problem subject to BER, latency and

a small set of modulation schemes constraints. As the optimization

function is a NP hard problem leading to a difficult search for the

optimal solution, we model the problem as an MDP, where the reward

function is designed to satisfy users’ requirements;

• We relax the constrained problem into an unconstrained one using

the Lagrangian relaxation method, which essentially simplifies the

solution of the complex problem. We then solve the spectral efficiency

maximization problem using deep Q-Learning;

• We evaluate the performance of the proposed DRL-based optimiza-

tion scheme through simulations. The results demonstrate that DRL-

based optimization algorithm can effectively learn to maximize the

spectral efficiency while meeting the constraints. Further, the results

show that our scheme outperforms significantly methods based on

other communication technologies.
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Chapter 3 is organized as follows. We present the vehicular OCC sys-

tem model and the proposed problem formulation in Section 4.2. Section

4.3 outlines the RL based MDP formulation and solution to the multi-agent

problem using deep Q-Learning. The simulation set up and training pro-

cedure of our proposed DRL algorithm is explained in Section 4.4. Section

4.5 provides the simulation results using the proposed DRL-based optimiz-

ation scheme. Finally, concluding remarks are drawn in Section 4.6.

4.2 System Model and Problem Formulation

In this section, we first present the considered vehicular OCC system model.

Then, we specify the performance defining metrics of OCC in terms of the

BER, the achievable rate, and the observed transmission latency. Finally,

we formulate a sum spectral efficiency maximization problem setting BER

and latency constraints to a predefined target value while adjusting the

constellation size.

4.2.1 System Model

We consider a vehicular OCC system as shown in Fig. 4.1, where each

vehicle is an individual agent. Let B be the number of V2V links at the back

of each vehicle, where B = {1, 2, · · ·B} is the set of V2V links. We express

the distance with the backward vehicles as db where b ∈ B represents the

index of the backward V2V link.

Our system employs an adaptive modulation scheme that consists of

M-QAM and Time Division Multiple Access (TDMA). The transmitter con-

tains arrays of LEDs, which transmit at a different rate for different users

under the adaptive modulation scheme. To support transmission at differ-

ent modulation orders for different backward vehicles (link), we introduce

TDMA in our system, similar to [87], where specific time slots are assigned

to each vehicular link at the back. In this way, different time slots are alloc-

ated to each V2V link for either transmission or reception. However, since
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Figure 4.1: Proposed system model for vehicular optical camera commu-

nication.

each link of the vehicle transmits information only at specific times, the

sum spectral efficiency is divided by the number of available vehicles, B, at

the back.

4.2.2 Optical Channel Model

We considering the LoS channel between transmitter and receiver, accord-

ing to [79,88] and (3.11), the received SNR, γb
t , of the link b at time t for a

single LED-camera communication can be expressed as1

γb =


ρk2P 2

qPnWf2l2(db)2
; if db < dc ,

ρk2P 2

qPnWs2(db)4
; if db ≥ dc .

(4.1)

Motivated by the trade-off among modulation order, achieved BER, and

improved spectral efficiency, we consider adaptive modulation that permits
1For notational simplicity, we drop t from the notation in the remainder of the chapter

unless it is necessary; hence, we will adopt γb instead of γb
t and so on. Also, it is clear

from the context that distance is our working variable.
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us to adapt the modulation order by satisfying the target BER requirement

of the system. In this considered system, we study uncoded M-QAM with

the square constellation as an example. Still, our scheme is general and

other modulation schemes can also be employed. The BER of the optical

wireless channel at the receiver using the M-QAM scheme is evaluated sim-

ilarly to [89] as:

BERb =
2
(√

M b − 1
)

√
M b log2(M

b)
erfc

(√
3 γb log2(M

b)

2 (M b − 1)

)
, (4.2)

where M b is the available constellation points for each V2V link b, e.g.,

M = 4, 8, 16, · · · and erfc(·) is the complementary error function.

For a given M b, the spectral efficiency of the M-QAM scheme can be

expressed as:

SEb = log2(M
b). (4.3)

The channel capacity of a camera-based communication system depends

on the employed modulation scheme as has been shown in [32] where the

transmission rate of link b is expressed as

Cb =
(Wfps/3)NLEDswϱ

2 tan
(
θl
2

)
· db

· log2(M b), (4.4)

where NLEDs is the number of LEDs at each row of the transmitter, w is

the image width (in case the rolling axis is along the width of the image

sensor), and ϱ is the size of LED lights in cm2. Please note that the distance

db in (4.4) is affected by relative speed of the vehicle, which affects the

position of the vehicle on the road. Let us assume a slotted time. The inter-

vehicular distance at current time t is adjusted using dt = dt−1 + vt · ∆t,

where dt−1 is the distance of the previous time instance, vt represents the

velocity of vehicle, and ∆t is the time elapsed between time instant t and

t− 1.

The transmission latency of packet size, L, can be expressed similarly

to [88] as:

τ b =
L

Cb
. (4.5)
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4.2.3 Proposed Problem Formulation

Considering the proposed framework and ultra-low latency and BER re-

quirements, we formulate an optimization scheme that aims at maximizing

the sum spectral efficiency of the vehicular OCC system by selecting the

optimal modulation order from an available set and adjusting the relat-

ive speed of the vehicle to the optimal value. The BER and latency are

constrained so that they meet the values imposed by the system. Mathem-

atically, our constrained maximization problem is, hence, formulated as:

max
M,v

1

B

B∑
b=1

log2
(
M b
)
, (4.6)

s.t. BERb ≤ BERtgt, ∀b; (4.7)

τ b ≤ τmax, ∀b; (4.8)

M b ∈M, ∀b; (4.9)

where M is the set of QAM modulation orders, BERtgt is the maximum

target BER, and τmax is the maximum affordable latency. Constraints (4.7)

and (4.8) indicate that the BER and latency thresholds are satisfied. The

modulation scheme is chosen from a small set of available M-QAM schemes,

as shown in (4.9).

4.3 DRL-based Problem Formulation and

Proposed Solution

The studied problem in (4.6) is mixed-integer programming (MIP) with

nonlinear constraints for BER (4.7) and delay (4.8). This makes our prob-

lem NP-hard [90]. It is known that MIP problems have high computational

complexity [91] and although it may be possible to solve them using dy-

namic programming or exhaustive search techniques, these methods can-

not be used in dynamic systems as the one we investigate in this paper

since they are extremely time-consuming or computationally demanding.
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As in our problem, we simultaneously control the speed and modulation

for multiple links, the decision space is large. Due to the entailed compu-

tational and time complexities in solving the proposed problem, we first

express the problem as an MDP problem in the next subsection. This gives

us the opportunity to use other tools, such as deep RL, to solve the prob-

lem with less complexity. Note that vehicular communication must satisfy

the maximum latency and BER requirements to ensure that the informa-

tion is received reliably within the shortest time. We adopt an independent

learning framework, where each vehicle independently decides its action,

but they all affect the environment. It has been shown that this leads to

well-performing solutions without requiring explicit communication [91].

Preceding to presenting our solution, we first model the optimization prob-

lem in (4.6) as an MDP in the next subsection.

4.3.1 Modelling of MDP

We model the proposed multi-agent RL problem as an MDP, where each

vehicle acts as an agent, and everything beyond the particular vehicle is

regarded as the environment. Every vehicular agent interacts with the en-

vironment to have a better understanding of it to decide its own policy. The

agents explore the environment and improve the spectral efficiency max-

imization policies based on their observations of the environmental state.

The optimization problem (4.6) is modelled as a MDP with a tuple (S, A,

p, r, ζ) [11], where S is the set of all possible states; A denotes the set of

all possible actions; p(st+1, rt|st, at) denotes the transition probability which

describes the probability that an agent selects an action at ∈ A and transits

to a new state st+1 ∈ S from the current state st ∈ S; while r represents

the reward. The parameter ζ ∈ [0, 1] is the discount factor, which gradually

discounts the effect of an action to future rewards. A discount factor ζ = 0

provides a short-sighted goal that maximizes the immediate reward. When

ζ is close to 1, the agent focuses more on the future reward, and the scheme

becomes far-sighted. In practice, a far-sighted approach is desirable as it
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Figure 4.2: An illustration of basic reinforcement learning framework for

V2V communications.

achieves better returns by focusing on future discounted rewards. It is also

notable that an algorithm with lower discount factors converges faster, es-

pecially during early learning. But of course, a small valued discount factor

can lead to highly sub-optimal policies that are too myopic.

We present a general RL framework in Fig. 4.2 consisting of agents

and environment. From this figure, we see that at each time t, an agent

observes a state, st ∈ S and accordingly takes an action, at ∈ A based on

the policy, π and receives a reward, rt, from the environment. Next, we

express the state space S, the action space A, and the reward function, r of

the considered RL framework.

State Definition

In our system, the observed state from the environment to each agent

couples two components: the backward distance vector, db
t = (d1t , · · · , dBt )

and transmitting modulation order for the backward vehicles, M b
t from

the set M = {4, 8, 16, 32, 64}. In summary, the state is expressed as

st =
{

db
t ,M

b
t

}
.

Action Definition

At each time t, the agent takes an action at, a decision regarding the relative

speed of the agent (i.e., vehicle), vt and selecting modulation order from
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the setM, based on the current state, st by following a policy π. Overall,

the action space is summarized as at =
{
vt,M

b
t

}
.

Reward Definition

At each time slot t, when agent takes an action at in state st, it will imme-

diately receive a reward rt. Note that, an effective reward framework is

imperative for the learning algorithm to achieve the desired goal, which is

achieved through exploration. Therefore, the reward function that guides

the overall learning should be consistent with the objective.2 First, we ex-

press the reward related to distance as follows:

rd,i
t =

−1× (dstop − dbt), dbt < dstop ,

1
dbt−dstop

, dbt > dstop ,
(4.10)

where i is the index of the agent. Recall that, dbt represents the backward

distance of the vehicle, but in designing our reward, we only consider the

vehicle behind residing at the same lane on the road. The priority is to

avoid collision with the vehicle on the same lane. This is the decisive

vehicle since it has the possibility of coming closer to the agent vehicle

in the following time step or near future. dstop is the stopping distance,

which is equal to the sum of covered distance by the vehicle to travel after

the brakes are activated, and the covered distance to travel due to driver’s

reaction time after observing a situation [92]. In our system, each vehicle

will carry out the same process individually. As a result, for notational sim-

plicity, we drop i hereafter. Since our objective is to maximize the sum

spectral efficiency, we design our reward function as a weighted sum of a

reward related to the backward distance and the sum spectral efficiency

(4.6). As the goal of RL is to maximize the reward, it will conclusively

maximize the spectral efficiency while maintaining a safe distance. Hence,

2From hereon, we will use backward distance and distance interchangeably though it

indicates the same meaning.
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considering the objective function (4.6), the overall reward, Rt, can be ex-

pressed as

Rt = ωd r
d
t + ωr

1

B

B∑
b=1

log2
(
M b

t

)
, (4.11)

where ωd and ωr are positive weights that balance distance and sum spec-

tral efficiency rewards. The weights are adjusted based on the system re-

quirements. It sets the priority depending on its distance and modulation

scheme changes.

4.3.2 RL-based Problem Formulation

After interaction with the environment in each time slot t, the agent re-

ceives a reward rt = r(st, π(st)) by taking an action at and following a

policy π at the current state st. The goal of RL is to find the optimal policy

that maximizes the expected return from the state st, whereas the return,

Gt, is defined as the cumulative discounted reward, as follows:

Gt =
∞∑
j=0

ζjRt+j+1, 0 ≤ ζ ≤ 1. (4.12)

The objective is as follows: An agent (i.e., a vehicle) selects the speed

and modulation order while respecting the BER and latency constraints to

find a policy that maximizes the expected cumulative discounted rewards.

Finally, the constrained reward maximization problem is expressed in the

RL framework as

max E [Gt (st, at)] , ∀t (4.13)

s.t. BERb
t ≤ BERtgt, ∀t; (4.14)

τ bt ≤ τmax, ∀t; (4.15)

4.3.3 The Lagrangian Approach

According to [93], constrained MDP problems can be solved by recasting

them as unconstrained ones via the Lagrange relaxation method. Hence,
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we reformulate the constrained optimization problem in (4.13) - (4.15)

by introducing Lagrange multipliers associated with the BER and latency

constraints, cλ,ν(st, at), as:

cλ,ν(st, at) = Rt (st, at)−
B∑
b=1

λb · (BERb
t − BERtgt)−

B∑
b=1

νb · (τ bt − τmax),

(4.16)

where λ = (λ1, λ2 · · · , λb) and ν = (ν1, ν2, · · · , νb) are vectors representing

the Lagrange multipliers corresponding to the constraints in (4.14) and

(4.15), respectively. The optimal value of the constrained MDP problem

can be computed as [94]:

Lπ∗,λ∗,ν∗

δ (s) =min
π∈ϕ

max
λ,ν≥0

V π,λ,ν(s)−
B∑
b=1

λbδ1 −
B∑
b=1

νbδ2

= max
λ,ν≥0

min
π∈ϕ

V π,λ,ν(s)−
B∑
b=1

λbδ1 −
B∑
b=1

νbδ2, (4.17)

where δ = {δ1, δ2}, with δ1 = BERtgt and δ2 = τmax. ϕ denotes the set of all

possible stationary policies,

V π,λ,ν(s) = E

[
∞∑
t=0

ζcλ,ν (st, π (st)) | s0 = s

]
. (4.18)

A policy π∗ is optimal for the constrained MDP, if and only if

Lπ∗,λ∗,ν∗

δ (s) = max
λ,ν≥0

V π∗,λ,ν(s)−
B∑
b=1

λbδ1 −
B∑
b=1

νbδ2. (4.19)

For a fixed λ and ν, the rightmost maximization of (4.17) is equivalent

to solving the following dynamic programming equation:

V ∗,λ,ν(st) = min
at∈A

cλ,ν(st, at) +ζ
∑

st+1∈S

p(st+1 | st, at)V ∗,λ,ν(st+1)

 ,∀s ∈ S,

(4.20)
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where V ∗,λ,ν : S 7→ R is the optimal state-value function and st+1 is the

state at time slot t+ 1.

We also define optimal action-value function Q∗,λ,ν : S × A 7→ R which

represents the Q-value of action at in a given state st.

Q∗,λ,ν(st, at) = cλ,ν(st, at) + ζ
∑

st+1∈S

p(st+1 | st, at)V ∗,λ,ν(st+1), (4.21)

where V ∗,λ,ν(st+1) = maxat∈AQ∗,λ,ν(st+1, at),∀s ∈ S. In words, Q∗,λν(st, at),

is the infinite discounted cost achieved after taking action at in state st and

therefore, following the optimal policy π∗,λ,ν , which is given by

π∗,λ,ν(st) = argmax
at∈A

Q∗,λ,ν(st, at),∀s ∈ S. (4.22)

3In practice, the optimal policy, π∗, cannot be determined using value-

iteration method [11] as it requires transition probabilities to be known

beforehand. For the considered problem, continuous computation of the

transition probability matrix is necessary, which is computationally demand-

ing. To solve this problem, we adopt a model-free RL approach known as

Q-Learning, which learns Q∗ and π∗ online, without requiring the model

of the environment and computing the transition probability matrix. Q-

Learning uses the Qt(st, at) values instead of the value function in (4.20).

Qt(st, at) represents how good it is to take action at when starting from

state st, and thereafter follow the policy π. To determine the optimal policy

π∗, the Q-Learning algorithm employs the following recursive formula to

update the Qt(st, at) values:

Qt+1(st, at) = (1− αt)Qt(st, at) + αt

[
ct(st, at) +ζ max

at+1∈A
Qt(st+1, at+1)

]
,

(4.23)

where αt ∈ [0, 1] is a time-varying learning rate and at+1 is the greedy action

in state st+1 at time slot t+ 1. The learning rate refers to the rate at which

newly updated information overrides old one.
3For notational simplicity, we drop the Lagrangian multipliers from the notation in the

remainder of the chapter unless it is necessary, for example, we will write c(st, at), Q∗(st),

instead of cλ,ν(st, at), Q∗,λ,ν(st), respectively.
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Q-Learning can select actions using policies such as the ϵ-greedy, where

ϵ ∈ [0, 1] [95]. It has been shown in [94] that the Q-Learning algorithm will

eventually converge to the optimal Q, Q∗(st, at) with probability 1 when all

the state-action pairs are visited often, and the learning rate αt respects the

following conditions:

αt ∈ [0, 1],
∞∑
t=0

αt =∞,
∞∑
t=0

(αt)
2 <∞. (4.24)

We discuss how to learn the optimal λ and ν in Section 4.3.4.

4.3.4 Deep Q-Learning

Q-Learning is a well-known method [11] that is used to solve problems ex-

pressed as MDP. The convergence speed of this algorithm depends on the

state-action space size. Q-Learning converges faster for small state-action

spaces since the agent can quickly explore the state-action pairs and de-

termine the optimal policy. For larger state-action spaces, the convergence

is slow which makes the determination of the optimal actions not feasible

within the stringent time constraints imposed by the dynamic nature of

the environment in problems like the one we study here. Although some

linear function approximation approaches exist for solving large-scale RL

problems, their capabilities are limited to medium-scale problems. In high-

dimensional and complex systems, conventional RL methods cannot learn

the informative features of the environment quickly, despite employing ef-

fective approximation functions. This is due to the fact that most of the

state-action pairs are rarely visited, and thus the corresponding Q-values

are not updated regularly, leading to a much longer time to converge. More

importantly, distance and speed are continuous values that lead to a large

state-action space; hence, the tabular Q-learning algorithm cannot be used

because it works with discrete values. Discretization may be applied, but

this affects the quality of the solution.

However, this problem can be resolved by employing deep learning-

based function approximators, in which DNNs are trained to learn the op-
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timal policy. In a DQN, a DNN function approximator with weights θ is

employed as Q-network, and then Q-Learning is combined with deep learn-

ing. Once weights θ are determined, Q-values, Q(s, a), will be the outputs

of the DNN. DNN addresses sophisticated mappings between the channel

information and the desired output through excessive training data, which

are then used to determine the Q-values.

Target Network

In order to stabilize the learning of DQN, we follow the target network ap-

proach. The DQN consists of two separate networks known as the main net-

work that approximates the Q-function and the target network that gives

the target for updating the main network. In the training phase, while the

main network parameters β are adjusted after every action, target network

parameters β− are updated after a certain period of time. The target net-

work is not updated after each iteration because it adjusts the main network

updates to control the value estimations. If both networks are updated sim-

ultaneously, the change in the main network would be exaggerated due to

the feedback loop from the target network, which results in an unstable

network. To ensure the stability in learning, the neural network aims to

minimize the loss function, L(β), which is expressed as

L(β) = E [yt −Q (st, at;β)]
2 , (4.25)

where yt = c(st, at) + ζmaxat+1∈A Q (st+1, at+1;β−) is the target for each

iteration. Note that, β− are held fixed when optimizing the loss function

L(β).

Optimal Lagrange Multipliers

The optimal value of the Lagrange multipliers λb, νb in (4.16) depend on

the BER constraint, BERtgt and latency constraint, τmax, respectively and

can be learned online using a stochastic sub-gradient method as presented
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in [96]

λb
t+1 = Λ

[
λb
t +ϖt(BERb

t − BERtgt)
]
, (4.26)

νb
t+1 = Λ

[
νb
t +ϖt(τ

b
t − τmax)

]
, (4.27)

where we apply the projection operator Λ in order to project λb and νb

onto [0, λmax] and [0, νmax]. To ensure the boundedness of λmax and νmax,

we consider λmax, νmax > 0 to be large enough. ϖt corresponds to a time-

varying learning rate, which obeys the same conditions as αt in (4.24). The

following additional conditions must be jointly satisfied by αt and ϖt to

guarantee the convergence of (4.26) and (4.27) to λ∗ and ν∗, respectively:

∞∑
t=0

(αt +ϖt) <∞ and lim
t→∞

ϖt

αt

→ 0. (4.28)

4.4 Experimental Set up

This section describes the implementation details of our proposed DRL-

based vehicular OCC scheme. Specifically, we build upon the simulation

environment upon microscopic traffic simulator Simulation of Urban Mo-

bility (SUMO) [97] and DRL framework within SUMO.

4.4.1 SUMO Framework

Our simulation framework maintains the connection between SUMO and

the DRL agent using Traffic Control Interface (TraCI). SUMO is an open-

source, microscopic, multi-model traffic and extensible simulator and has

been widely used in research projects with worldwide community support.

It allows the users to simulate specific traffic scenarios performed in given

road maps. In our experiments, SUMO is used as the traffic simulator be-

cause: (i) it performs an optimized traffic distribution method based on

vehicle types or driver behaviors to maximize the capacity of the urban

transportation network; (ii) it provides flexibility and scalability to create
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Figure 4.3: Proposed simulation framework combining SUMO simulator,

middleware and DRL agent for the vehicular communication.

the scenario maps; and (iii) it supports TraCI, a Python-based API to com-

municate the traffic simulation with the controls from the smart agents.

In order to simulate the proposed vehicular framework in a more prac-

tical scenario, we convert the proposed environment into a corresponding

SUMO map. Each vehicle is considered as an agent and accordingly mod-

elled to test the proposed DQN method in the integrated environment. The

vehicles enter randomly in the SUMO environment and then move or leave

the network following SUMO mobility models.
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Figure 4.4: Illustration of proposed scenario in SUMO GUI interface.

As shown in Fig. 4.3, the proposed simulation framework consists of

three parts: firstly, SUMO, which is the simulator environment for creating

traffic scenarios; secondly, the middleware that connects the SUMO envir-

onment with the DRL agents; and finally, the DRL agents, which maintain

and update the network policies and execute actions for the simulation.

After the training is initialized, the SUMO simulator is loaded, progressed,

and reset with required information such as the transportation network and

vehicles via TraCI. During the simulation, TraCI interacts with the SUMO

environment and extracts the data from SUMO to produce the observation

for state space and aggregate rewards. Moreover, TraCI retrieves differ-

ent features from the network, e.g., the number of vehicles on each road,

the speed of the vehicle, and the current position of the agent. Based on

the current observations, the DRL agent evaluates the current traffic envir-

onment and assigns an action based on the policy of the neural network.

Accordingly, the agent updates the state and moves to the next step in the

SUMO environment and this process continues until all the simulation steps

finish. The reward is then computed and transferred to the DRL agent for

optimization at the end of each simulation run. The objective is to train the

policy network that ensures higher communication quality in the form of

spectral efficiency, delay, and BER.

We modified the SUMO environment according to the requirement of

our proposed multi-agent vehicular system. For example, we have a win-

dow size of the simulation of 180 m. To introduce randomness. we put an

aggressive vehicle in the SUMO model, which moves freely in the environ-

ment. The simulation parameters of the SUMO framework are presented

in Table 4.1. We illustrate a screenshot of the simulated vehicular model

represented on SUMO Graphical User Interface (GUI) interface in Fig. 4.4.
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Table 4.1: SUMO modelling parameters

Parameter Value

Initial velocity of vehicle 5 miles per hour

Window size of the simulation 180 m

Maximum number of vehicle per window 20

Number of lane 3

Step length 1 m

Lateral movement of vehicle 0.64 m per timestep

As shown in this figure, we have three lanes, where vehicles move at dif-

ferent velocity and each vehicular agent has potentially multiple vehicles

in front and back. The agent extracts the various parameters of the vehicle

and surrounding environment related to our modelling and exports them

to the DRL agent using TraCI. Please recall that the agent must satisfy the

constraints of the system to generate a higher reward and minimize the

loss.

4.4.2 DQN Settings

Network Architecture

This subsection provides the details of the employed DNN architecture

as well as the training parameters we employed. The DQN consists of three

fully connected layers, including an input layer, a hidden layer, and an out-

put layer. Recall that distance and modulation order define the state space;

hence, the input layer consists of M b+db nodes. The output layer consist of

M b+v nodes, as we have M b+v actions. The hidden layer has 250 neurons.

We use Rectified Linear Unit (ReLU) as the activation function [95], defined

as f(x) = max(0, x). We adopt Root Mean Square Propagation (RMSPro)

optimizer [98] as the training algorithm to minimize the loss function and

update DQN network parameters, which is one of the most used optimizers
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Algorithm 1 DQN Training Algorithm

Initialization: Initialize SUMO environment, DQN parameters, replay

memory according to system requirements.

Output: Action-value function, loss (4.25).

for each episode do

Update vehicle speed and modulation order

for each link, b do

Observe state st

Choose action at according to the ϵ-greedy policy

Execute action at, observe reward rt and next state st+1

Store transitions (st, at, rt+1, st+1) in the replay memory

end for

Agent takes actions and receive reward rt using (4.11).

Update Lagrange multipliers λ and ν using sub-gradient method as in

(4.26) and (4.27), respectively.

end for

Sample a mini-batch from the replay memory.

Optimize error between Q-network and target Q, defined in (4.25), using

RMSProp optimizer gradient descent.

in neural networks. We set the initial learning rate α to 0.001, which will be

sufficient to balance the convergence time. It is known that a large learning

rate leads to fast convergence behaviour, but at the same time, may incur a

poor convergent point with unsatisfactory performance, e.g., local minima,

saddle point. On the contrary, intensive training computations are required

for a small α as it results in slow convergence. Therefore, an appropriate

α should carefully be chosen. In our case, the RMSPro optimizer is used

to vary the learning rate over time. In our simulations, to implement deep

reinforcement learning, we use TensorFlow [99], which allows us to de-

bug better and track the training process. We implement ϵ-greedy policy to

balance between exploration and exploitation while avoiding overfitting.
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Table 4.2: List of DRL hyper-parameters and their values

Parameter, Notation Value

Mini-batch size 32

Replay memory size 100000

Number of hidden layer (Neurons) 1(250)

Exploration rate, ϵ 0.05

Discount factor, ζ 0.98

Activation function ReLU

Optimizer RMSProp

Learning rate (used by RMSProp) 0.001

Gradient momentum (used by RMSProp) 0.95

According to ϵ-greedy policy, the action with maximum Qt(st, at) value is

chosen with probability 1 − ϵ while a random action is selected with prob-

ability ϵ.

Training Procedure

The training procedure of our proposed DQN algorithm is summarized in

Algorithm 1. The input of the algorithm is the current observations (dis-

tance and modulation scheme), and the output is the chosen actions (speed

and modulation scheme) by the vehicle. The agents map the actions with

the corresponding action-value functions, i.e., Q-value. We train the DQN

algorithm for multiple episodes and, at each training step, all the agents

execute the ϵ-greedy policy to explore the state-action space. Following the

environment transition due to channel variation and actions taken by all

agents, each agent observes and stores the transition tuple, (st, at, rt+1,

st+1), in the replay memory. At each episode, a uniformly sampled mini-

batch of experiences are taken from the memory for updating β parameters

of (4.25) using stochastic gradient descent methods and the loss is estim-

ated using (4.25).
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For the simulations, we train the DQN for 10000 episodes. The ex-

ploration rate, ϵ is set to 0.05. The target Q-network parameters are up-

dated every 400 learning steps, where each episode contains 100 steps. We

choose a discount factor, ζ = 0.98. For our simulation run, we use a track

size of 180 m, and we measure the density of vehicles as the number of

vehicles per 180 m. The total replay memory size for storing the transac-

tions is 100000, and the mini-batch for training is 32. The training and

testing parameters of the DRL are presented in Table 4.2.

Normalization

The goal of normalization is to bring the different sub-rewards correspond-

ing to delay and spectral efficiency in (4.16) to be on a similar scale. This

normalization improves the performance and provides training stability of

the Neural Network (NN) model. Specifically, we normalize the reward

function (4.11), BER and latency constraints of (4.16) to keep the scale

between 0 and 1. Please note that, we perform quantization on the con-

tinuous values of distance and speed of the vehicle to convert them into

discrete values. For example, we quantize the values of distance into step

length of 1 m and the speed into 0.5 ms−1 step.

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed multi-agent

RL based spectral efficiency maximization scheme for vehicular OCC. The

simulation parameters for OCC system model are listed in Table 4.3.

4.5.1 Overview of Comparison Schemes

We investigate the performance of the proposed multi-agent DRL based

vehicular scheme, termed hereafter as the proposed scheme against differ-

ent methods for comparison. We present a brief summary of all the schemes
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Table 4.3: Vehicular OCC modelling parameters

Parameter, Notation Value

Angle of irradiance w.r.t. the emitter, ϕ 70o

AoI w.r.t. the receiver axis, θ 60o

FOV of the camera lens, θl 90o

Image sensor physical area, A 10 cm2

Transmission efficiency of optical filter, Ts 1

Concentrator/lens gain, g 3

Optical transmitting power, P 1.2 Watts

Constellation size, M 4, 8, 16, 32, 64

Camera-frame rate, Wfps 1000 fps

Number of LEDs at each row, NLEDs 30

Packet size, L 5 kbits

Size of the LED, ϱ 15.5 × 5.5 cm2

Resolution of image, w 512 × 512 pixels

under comparison below:

• Proposed scheme: By the proposed scheme, we refer to our multi-

agent DRL-based vehicular OCC system, where each agent performs

independent learning considering all other vehicles as environment.

In this case, we employ the settings as we discuss in Sections 4.4.2

and 4.4.2. We set the discount factor to 0.98.

• Greedy: The greedy method is when we assume ζ = 0 in (4.25). This

method is a variant of our scheme, where we set the discount factor

to ζ = 0 in (4.25), while we keep all other parameters of the systems

as reported in Table 4.2. In this scenario, the agent chooses the action

which maximizes only the immediate reward.

• Far-sighted: This method is a variant of our scheme, where we set the

discount factor to ζ = 1 in (4.25), while we keep all other parameters
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Figure 4.5: Convergence of loss function for ϵ = 0.05 and learning rate α

= 0.001.

of the systems as reported in Table 4.2. This scheme takes future

rewards into account more strongly and ignores immediate rewards.

• Random: This is a scheme, where the actions are chosen randomly

for all the vehicles at each time slot. In this case, the system paramet-

ers are not optimized and the agent chooses speed and modulation

schemes randomly.

• RF-based MARL [13]: This is a multi-agent RL based resource alloc-

ation scheme presented in [13]. This method is based on RF tech-

nology. For this scheme, we adapt the hyper-parameters according

to our proposed scheme while keeping the environment unchanged.

This scheme considers centralized learning and distributed imple-

67



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Episode

0

0.2

0.4

0.6

0.8

1

1.2
R

e
w

a
rd

 p
e

r 
E

p
is

o
d

e

Proposed scheme

Far-sighted (  = 1)

Greedy (  = 0)
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when ϵ = 0.05 and learning rate α = 0.001.

mentation. The system performance-related reward is available to

each individual agent through a centralized base station in the cel-

lular network. Then the agent adjusts its action towards the op-

timal policy by updating its DQN and utilises its local observation

and trained DQN to select the best action. Finally, the agent commu-

nicates the updated DQN towards the base station.

• RF-based SARL [13]: This is a single agent RL based scheme pro-

posed in [13], specified as Single Agent Reinforcement Learning (SARL),

where at each time only an agent, i.e., V2V link, updates its action

based on the locally observed information, whereas other agents’ ac-

tion remains unchanged. A single DQN policy is shared over the
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vehicular network towards all the vehicles.

4.5.2 Simulation Results

The convergence trend of the training algorithm confirms the suitability

of the proposed scheme. To this end, we investigate the convergence of

the proposed algorithm. First, we perform an ablation study to determine

the weight values corresponding to distance and rate rewards in (4.11). In

doing so, we examine our algorithm for different weight settings of distance

and rate rewards, but for simplicity of representation, we only demonstrate

four settings, including ωd = 0.2 and ωr = 0.8, ωd = 0.4 and ωr = 0.6,

ωd = 0.6 and ωr = 0.4, ωd = 0.8 and ωr = 0.2, as shown in Fig. 4.5. We

observe that we achieve lower loss when we allocate higher weight value

to the spectral efficiency component. By observing Fig. 4.5, we can see that

our scheme converges at around 8000 episodes for ωd = 0.2 and ωr = 0.8.

On the contrary, other weight sets require longer times for convergence

and show frequent variations in the loss and offer higher loss than ωd = 0.2

and ωr = 0.8 set. So, we adopt this weights setting for the rest of our

performance evaluation.

We then present the rewards per training episode to analyze the conver-

gence behaviour of the multi-agent vehicular OCC system at three different

discount factors, i.e., the proposed scheme (ζ = 0.98), greedy (ζ = 0) and

far-sighted (ζ = 1). The results are shown in Fig. 4.6. Please note that

for the ease of visualization, we present the reward until 5000 episodes as

they follow the same trend after that. From this figure, we observe that

until 1500 episodes, the greedy and far-sighted approaches achieve better

performance than the proposed scheme. This happens because the agent

requires time at the start to fit in an optimal solution through a perfect

exploration and exploitation policy. However, the cumulative reward for

the proposed scheme improves as the training advances and reaches to

lower loss. Instead, the rewards for greedy and far-sighted schemes fluctu-

ate throughout the training episodes. We can conclude that the proposed
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scheme achieves higher rewards than other variants of our scheme.

To minimize the loss in the DQN, there are different gradient descent

optimizers, which vary the learning rate adaptively. Here, we investigate

the loss performance of two mostly applied optimizers, namely, RMSPro

and Adaptive Moment Estimation (Adam) optimizers for 10000 episodes.

The results are illustrated in Fig. 4.7. From this figure, we can see that

the RMSPro optimizer achieves lower loss throughout the training period

than the Adam optimizer. More specifically, while Adam optimizer does not

converge within 10000 episodes, the RMSPro converges at around 7000

episodes. Therefore, we adopt an RMSPro optimizer in our framework.

To justify the superiority of the proposed multi-agent DRL-based vehicu-

lar OCC scheme, we compare its performance with MARL and SARL method
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presented in [13] and a random scheme. We utilize the same DQN para-

meter to optimize the problem in [13]. For example, we implement a single

hidden layer with 250 neurons instead of three hidden layers, a fixed dis-

count factor, and 10000 training episodes. We also formulate the spectral

efficiency and latency according to our formulation. Though the system

proposed in [13] have not considered latency, we estimated it to study how

the latency requirements are satisfied. As the MARL and SARL methods

require base stations to communicate with each other, it involves uplink

and downlink latency in addition to processing latency. Whereas our sys-

tem has only transmission latency as it is a decentralized scheme, RF-based

MARL and SARL in [13] require centralized communication, which incurs

additional latency.

Fig. 4.8 shows the maximized sum spectral efficiency performance with

respect to the density of vehicles for all schemes under comparison. From

this figure, we observe that the sum spectral efficiency increases with an in-

crease in density of vehicles for all the methods using our proposed frame-

work, namely, greedy, far-sighted, proposed scheme as well as the random

scheme. On the contrary, the performance drops with increasing density

of vehicles for RF-based MARL [13] and SARL systems [13]. For our OCC

system, an increase in vehicle density means that the distance between

vehicles is smaller, and hence, the communication quality improves, which

boosts the spectral efficiency. Whereas for RF-based MARL and SARL, an

increased vehicles’ density causes higher interference, and thus, it reduces

the spectral efficiency. The results show that the proposed algorithm ob-

tains approximately 2.4 times better rates in comparison to the MARL, 2.9

times for the SARL, and about 1.6 times for the random scheme when the

density of vehicles is 16. Whereas, it is lower by 0.73 times for MARL and

0.82 times for SARL when vehicle density is 6. From this comparison, we

can conclude that our OCC system performs better in urban scenarios or

highways with dense traffic where the density of vehicles is always higher.

We present the comparison results of average latency versus the density
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Figure 4.8: Comparison of sum spectral efficiency with different ap-

proaches when ϵ = 0.05 and learning rate α = 0.001.

of vehicles in Fig. 4.9, which shows that the latency reduces for different

variants of our scheme using our proposed algorithm as the number of

vehicles increases. Whereas for SARL and MARL schemes, it follows the

opposite trend. This is because when the density of vehicles increases,

the latency increases, and therefore, the delay performance falls. More

importantly, the interference becomes stronger with an increase in vehicles

density. Also, there is latency involved in the RF-based centralized system

as it needs to communicate with the base station and receive feedback.

Therefore, the latency increases with the increase of vehicles density. For

our proposed scheme, there is no interference, which improves the spectral

efficiency and hence, the latency with the increase of vehicles density. Our
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Figure 4.9: Comparison of average latency versus density of vehicle with

different schemes when ϵ = 0.05 and learning rate α = 0.001.

scheme achieves the lowest average latency of 4.5 ms and the maximum of

8.2 ms when the density of vehicles is 16 and 6, respectively. Whereas for

MARL, SARL and the random scheme, the average latency is 8.5 ms and

14.2 ms, 7.1 and 12.2, 12.9 ms and 9.2 ms, respectively, when the number

of vehicles is 6 and 16. From this comparison, it is seen that our proposed

algorithm achieves lower latency compared to other schemes.

To explore whether the proposed scheme can maximize the spectral

efficiency and at the same time respect the latency and BER constraints,

we present the CDF of BER and latency for the schemes under compar-

ison. First, we compare the CDF of the observed latency considering the

maximum latency of all available links at each time slot for 10000 epis-
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Figure 4.10: CDF of observed latency while considering the maximum

latency of all the available link behind the agent for ϵ = 0.05 and learn-

ing rate α = 0.001.

odes in Fig. 4.10. From the figure, we observe that the proposed scheme

can always satisfy the latency requirements of 10 ms whereas, the greedy,

far-sighted and random methods, satisfy the constraint only 50%, 78%,

and 27% of the time, respectively. At the same time, the RF-based MARL

and SARL schemes meet the latency requirement for 29%, and 20% of the

time, respectively. Therefore, we can conclude that our proposed multi-

agent DRL-based vehicular OCC system can maximize the rate by satisfying

latency constraints, whereas other schemes fail to respect the requirement

most of the time.

Finally, Fig. 4.11 illustrates the comparison of CDF of the observed BER
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for different schemes under comparison when the schemes have been op-

timized for 10000 episodes. In doing so, we examine only the maximum

observed BER of all available links at each time slot, which will respect the

minimum BER. From this figure, we note that our algorithm always satisfies

the BER constraints of 10−4. We can also see that the other algorithms viol-

ate the BER constraints most of the time. Specifically, far-sighted schemes

satisfy BER requirements a maximum of 40%, whereas greedy and random

schemes meet 27% and 8% of the time, respectively. Similarly to what we

observed in Fig. 4.10, the proposed method also respects the BER require-

ment when other schemes satisfy it only for some time.

From the presented results, we can summarize that using the proposed

adaptive modulation scheme and besides following a decentralized ap-

proach, we achieve better performance than the fixed modulation and cent-

ralized RF system.

4.6 Summary

In this chapter, we present a DRL-based spectral efficiency optimization

scheme for a multiple vehicular OCC scenario while respecting BER and

latency requirements. Firstly, we model the OCC channel and several per-

formance parameters. Then, we formulate a sum spectral efficiency max-

imization problem considering a small set of modulation orders, as well

as the BER and latency constraints. To reduce the complexity of the NP-

hard problem, we formulate the optimization problem as an MDP problem,

which enables us to find an optimal solution. We design the reward func-

tion considering the objective function. We then convert the constrained

problem into an unconstrained problem through the Lagrangian relaxation

method by relaxing the BER and latency constraints. To solve the prob-

lem, we employ deep Q-Learning to deal with large state-action spaces.

We verify the performance of our proposed scheme through extensive sim-

ulations and compare it with various variants of our scheme as well as
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available link behind the agent for ϵ = 0.05 and learning rate α = 0.001.

schemes based on RF communications. Our system achieves better sum

spectral efficiency and lower average latency compared to all the schemes

under comparison. By observing the CDF of latency and BER, we can con-

clude that our system can satisfy ultra-low latency communication and BER

constraints, while the rest of the schemes fail.

76



C
H

A
P

T
E

R

5
Deep Reinforcement Learning based Ul-
tra Reliable and Low Latency Vehicular
OCC

5.1 Introduction

From the findings of Chapter 4, we see that we can maximize the com-

munication rate while meeting low latency and BER requirements. We

maintain low latency but could not ensure ultra-reliability. Providing effi-

cient V2V communications is necessary, while the performance of the grow-

ing transportation systems depends on the availability of V2V communica-

tion links at extreme low latency and ultra-reliability [4]. The requirement

to respect both latency and reliability requirements simultaneously makes

vehicular communication a very challenging problem.

Since vehicular environments are time-varying and dynamic, it is chal-

lenging to respect uRLLC constraints. Further, vehicular communication

systems become even more complex when they involve controlling various

decision-making parameters, e.g., code rates, speed, distances, and modu-

lation schemes. It is hard to solve these problems using traditional methods
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because of their inherent complexity and the time required to solve them.

DRL has emerged as a possible candidate to solve autonomous vehicular

problems [13, 14]. DQN cannot be straightforwardly applied to continu-

ous state-action spaces [17], which is the case for our proposed vehicular

system. One of the approaches to solve continuous problems is to discret-

ize the state-action spaces. However, this introduces suboptimality, as we

may not find the optimal action because of discretization. This happens as

inexperienced discretization needlessly discards information, which can be

critical for solving the underlying problems. These issues can be alleviated

by adopting the actor-critic DRL frameworks [17], where the DRL agent in-

corporates two parts, namely, the actor network and the critic network. The

actor network controls the agent’s behaviour by selecting actions, whereas

the critic network refines the actor’s choices to accomplish the optimal

policy approximation. The Wolpertinger architecture [18] along with the

actor-critic network converges faster than the vanilla actor-critic method

over a large actions space by considering the nearest neighbour’s actions of

a proto-actor action selected by the actor network.

However, meeting uRLLC constraints necessitate the use of channel cod-

ing. LDPC codes are a promising candidate for uRLLC, which has been

adopted in the 5G NR services [15]. As LDPC codes can help achieve a

higher transmission rate, low latency and high reliability, we use them in

our system. In this chapter, we propose an actor-critic DRL approach in

vehicular OCC that aims at maximizing the achievable rate while respect-

ing the uRLLC constraints. We apply the actor-critic DRL framework by

adopting the Wolpertinger policy for our vehicular OCC system. In doing

this, we optimize the achievable rate by selecting the optimal code rate,

modulation scheme and speed of the vehicle. We use DDPG [17] to train

the model. The main contributions of this chapter are summarized below:

• To the best of our knowledge, this is the first to use 5G NR LDPC

codes in vehicular OCC to ensure uRLLC.

• We present a DRL based capacity maximization scheme subject to
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selecting adaptive modulation schemes, deciding appropriate code

rates and adjusting the speed of the vehicles while respecting uRLLC

requirements and dealing with the massive continuous state-action

spaces.

• We adopt the Wolpertinger architecture along with the actor-critic

network to avoid exploring large action spaces over all the decision

intervals.

• We evaluate the performance of the proposed DRL framework in terms

of achievable capacity, BER, and transmission latency. The results

show that the proposed actor-critic based DRL scheme achieves prom-

ising results and maximizes the transmission rate while satisfying the

uRLLC constraints and outperforms the comparison schemes.

The remainder of this chapter is organized as follows. Section 5.2 out-

lines the OCC channel model and mathematical representation of the per-

formance parameters of the proposed V2V system, while the formulation

of the maximization problem and RL is presented in Section 5.3. Sec-

tion 5.4 introduces the actor-critic deep reinforcement learning framework

with Wolpertinger architecture. The simulation setup for the proposed sys-

tem’s performance evaluation is given in Section 5.5 followed by Section

5.6 where we provide the simulation results with respect to different per-

formance parameters and comparison with various schemes under consid-

eration. Finally, we summarize the contribution of this chapter in Section

5.7.

5.2 System Modelling

We start this section by introducing the considered vehicular OCC system

parameters. We, then, discuss the employed LDPC channel codes and ad-

aptive modulation schemes. Finally, we present the performance defining
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parameters of the proposed vehicular OCC systems involving the achievable

channel capacity and the observed transmission latency.

5.2.1 System Overview

We consider the same system model of Fig. 3.1, where each vehicle is

an individual agent. Considering the advantages of adaptive modulation

to improve the transmission rates and maintain the quality of service, we

employ M-QAM. However, different modulation schemes can still be ap-

plied to our system. M-QAM has already been used in optical communica-

tions [89], which offers very low BER, high-speed, and flicker-free commu-

nication [77]. To further improve the transmission rate and guarantee low

BER, i.e., ultra-reliability and low latency, we utilize the 5G NR LDPC code

with the M-QAM scheme. We illustrate the overall block diagram of the

OCC system employing the transmitter, OCC channel, and receiver in Fig.

5.1. The transmitter consists of an LDPC encoder, an M-QAM modulator,

and a LED transmitter, whereas the receiver consists of an image sensor

receiver, an M-QAM demodulator, and an LDPC decoder. We will describe

the employed LDPC codes in Section 5.2.2. At the transmitter, the data

bitstreams are first encoded using LDPC codes before mapping the channel

encoded codewords into M-QAM symbols. Then, the coded data are trans-

mitted over an OCC channel through LEDs. At the receiver, the camera

captures the modulated light intensity as three different LED states, i.e.,

on, off, and mid. The originally transmitted information is then extracted

from the detected intensity using M-QAM demodulation [78].

5.2.2 Channel Coding

Channel coding strongly affects the achieved throughput and reliability of

a communication system. In light of the fact that our vehicular OCC system

requires ultra-reliability and low-latency, 5G NR LDPC codes we have used,

which have already been applied in optical communications [16]. 5G NR

80



Figure 5.1: Block diagram of LDPC coded M-QAM for vehicular OCC.

system uses QC-LDPC as the data channel coding scheme because of the

advantages of efficient implementation and offering improved performance

[71]. The QC-LDPC coded-modulation can also resolve the weaknesses of

having low reliability and high latency performance for arbitrary order of

modulation formats [16, 72] while guaranteeing a low error rate for all

code rates. A notable feature of the 5G NR LDPC codes is the flexibility

to support a wide range of information block lengths ranging from 40 to

8448 bits and various code rates, κ, ranging from 1/5 to 8/9 [15, 73]. 5G

NR codes use a feedback channel to adapt protection, which makes them

reliable and efficient. Therefore, we use 5G NR QC-LDPC channel coding

over the GF(Q) for Q-ary QAM transmissions in our vehicular OCC systems.

For a GF size of Q = 2M , the transmitter encodes the original data using

Q-ary LDPC codes. Then, the encoded bits are sequentially mapped to sym-

bol constellations with M-QAM modulation schemes. On the receiver side,

the modulated symbols, i.e., codeblock, are accumulated for demodulat-

ing and decoding the originally transmitted information. Among the LDPC

decoding algorithms, the Sum-Product Algorithm (SPA) is the most effi-

cient in terms of BER performance [100]. As SPA has a higher computation

cost, we have not employed it in our system, but instead, we use the Min-

81



Sum algorithm (MSA) [101]. MSA reduces LDPC decoding complexity by

decreasing the number of multiplication operations on the SPA with only

minor performance loss [102]. After LDPC decoding, the receiver uses a

standard M-QAM demodulator to demodulate the incoming message in or-

der to recover the original information message. In the Appendix B, LDPC

encoder and decoder details are provided.

5.2.3 Optical Channel Model

We can model our OCC system as equivalent baseband model [79], and,

thus, the received signal Yt for a transmitted symbol Xt is given by

Yt = Xt ⊗ ρHt + σt, (5.1)

where the⊗ symbol denotes convolution, Ht is the channel DC gain, t is the

time-frame index, and ρ is the receiver’s responsitivity. The channel input

Xt represents instantaneous optical power, which is non-negative, Xt ≥ 0,

and the transmitted optical power is given by

P = lim
T→∞

1

2T

∫ T

−T

Xtdt . (5.2)

5.2.4 Capacity and Latency Modelling

The channel capacity of a camera-based communication system for a code

rate, κ, with the employed modulation scheme is expressed as in (3.16)

and [32]

C(d,κ) =κ
Wfps NLEDs wϱ

6 tan
(
θl
2

)
d
· log2(M(d))

=κ
l0
d
· log2(M(d)), (5.3)

where l0 =
Wfps NLEDs wϱ

6 tan
(

θl
2

) .

The transmission latency, τ(d,κ), for a packet size, L, can be expressed

as [46]

τ(d,κ) =
L

C(d,κ)
, (5.4)
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Recall that in our system, we consider that the end-to-end latency is

dominated by transmission latency, and therefore, we neglect the compu-

tational latency.

5.3 Problem Statement and MDP Formulation

5.3.1 Constrained Problem Formulation

Considering the proposed vehicular environment and ultra-reliable and

low-latency communication requirements, we formulate an optimization

problem that aims at maximizing the goodput of the considered vehicu-

lar OCC system by selecting the optimal modulation order and LDPC code

rate from the available sets in 5G NR and adjusting the relative speed of

the vehicle to the optimal value. The BER and latency are constrained to

meet uRLLC conditions. Hence, our constrained maximization problem is

formulated as:

max
M, X , v

C(d,κ) = κ
l0
d
· log2(M(d)) (5.5)

s.t. BER(d,κ) ≤ BERmax, (5.6)

τ(d,κ) ≤ τmax, (5.7)

M(d) ∈M, (5.8)

κ ∈ X , (5.9)

whereM is the set of QAM modulation orders, X is the set of LDPC codes,

v is the relative speed of the vehicle, BERmax is the maximum target BER,

and τmax is the maximum allowable latency. To ensure uRLLC, the reliability

is satisfied by maintaining the target BER as in (5.6), and the latency re-

quirement is respected as in (5.7). The modulation scheme is chosen from

a small set of available M-QAM modulation schemes, as shown in (5.8).

The code rates are adjusted using the set of available 5G NR codes [73], as

defined in the IEEE standard as presented in (5.9). We adapt the distance
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by dt = dt−1 + vt ·∆t, where dt−1 is the distance at the prior state, and ∆t is

the time difference between two states.

By observing the optimization problem in (5.5), we notice that we have

a NP-hard combinatorial problem [90], where finding the optimal solu-

tion is hard. We also have non-linear operations in (5.5) - (5.7). Solving

this problem using a traditional optimization technique is time-consuming,

where each vehicle should choose the speed, code rate, and modulation

scheme individually. We can overcome these limitations using RL. In RL,

the vehicles (agents) interact with the unknown environment to decide the

optimal policy, i.e., selecting optimal code rate, speed, and modulation or-

der, while adapting to the environmental changes. Before driving to the

solution in the following section, we first formulate the optimization prob-

lem of (5.5) as a Markov Decision Process (MDP) in the next subsection.

5.3.2 MDP Modelling

The proposed optimization problem in (5.5) is formulated as an MDP,

where each vehicle acts as an agent, and everything beyond the particular

vehicle is regarded as the environment. The agent explores and interacts

with the environment to have a better understanding of it and decides the

capacity maximization policies based on their observations of the environ-

mental state. Next, we present the state space S, the action space A, and

the reward function, r of the considered RL framework.

State Definition

At each time t, the agent observes the state st from the environment.

In our system, the state consists of three parameters: the backward dis-

tance, dt, the transmitting modulation scheme, Mt, from the set M =

{4, 8, 16, 32, 64}, and the code rate, κt, from the set X = {5G NR codes}
[73]. We summarize the state at time t as st = {dt,Mt,κt}.
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Action Definition

At the current state st, the agent chooses an action at from the action set

A following a policy π. For our considered system, the action space is the

combination of selecting a modulation scheme from the set M, code rate

from the set of X , and adjusting the relative speed, vt. In summary, the

action space is expressed as at = {△Mt,△κt,△vt}, where △ represents

the change of values of the respective parameters, e.g., △Mt refers to the

change in modulation scheme.

Reward Function

Following the action taken at the current state, the agent receives a re-

ward. Note that, an effective design of the reward is imperative for the

learning algorithm to obtain the desired goal, which is achieved by ex-

perience and a multitude of attempts. Therefore, the reward function that

controls the learning should be relevant to the objective. In our framework,

the reward function is the weighted sum of the rewards corresponding to

inter-vehicular distance, goodput (5.5), BER constraint (5.6), and latency

constraint (5.7). Firstly, we model the reward for the distance changes, rd
t ,

as follows:

rd
t =

−1× (dstop − dt), dt < dstop

1
dt−dstop

, dt > dstop

(5.10)

where dstop is the stopping distance, which is equal to the sum of covered

distance by the vehicle to travel after the brakes are activated, i.e., braking

distance, and the covered distance to travel due to driver’s reaction time,

i.e., reaction distance, after observing a situation [103]. We, then, model

the reward for the reliability, i.e., BER, rrt , as:

rrt = 1b(BERmax ≥ BERt), (5.11)

where 1b stands for the indicator function for the BER. The indicator func-

tion returns 1 if the condition for BER requirement is satisfied or 0 other-

wise. Similarly, the latency is constrained so that it meets the low latency
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requirement. Accordingly, the reward for latency, rτt , is modelled as fol-

lows:

rτt = 1τ (τmax ≥ τt), (5.12)

where, 1τ is the indicator function for latency that returns 1 for true condi-

tion and 0 otherwise.

Finally, from the above modelling, the overall weighted sum of rewards,

rt, is expressed as

rt = ωd r
d
t + ωbr

r
t + ωτr

τ
t + ωc C(d,κ), (5.13)

where, ωd, ωb, ωτ , and ωc are positive weights to balance between the dis-

tance, BER, latency, and communication rate rewards. The weights can be

adjusted based on the system requirements. For instance, a higher value

for ωc gives higher priority to selecting actions that maximize the goodput

at every step.

The return from a state in the MDP is the discounted sum of future re-

wards received by the agent, Gt =
∑∞

j=0 ζ
jrt+j+1. The goal of the RL is to

maximize the expected return over all episodes, i.e., max E[Gt(st, at)], is

the expected return starting from a given state, st, and taking an action, at,

following a policy, πt, thereafter. The Q-learning based action-value func-

tion is commonly used in RL algorithms. It can be expressed in a recursive

relationship using the Bellman equation:

Qπ (st, at)) = r(st, at) + ζEat+1∼π [Q
π (st+1, at+1)] , (5.14)

where Eat+1∼π stands for expectation of future accumulated reward Qπ (st+1, at+1),

while taking an action following a policy π at time t + 1. Here, the agent

considers both current and next state to calculate the Q value for each ac-

tion A.

5.4 Proposed Solution

The rate of convergence of the Q-learning algorithm depends on the size of

the state-action space. When the state-action space is small, the RL agent
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can explore all the state-action pairs rapidly and find the optimal policy.

However, if the state-action space is large, the Q-learning convergence rate

slows down since many state-action pairs may not be explored by the RL

agent and the storage size of the Q-table is extremely large. In particular,

when the state-action space is infinitely large, the Q-learning algorithm

requires significant time to converge and significant storage space for the Q-

table. The problem quickly becomes intractable when the cost of evaluating

the Q function increases since the execution complexity grows linearly with

the increase in state-action spaces.

Moreover, if the environment is time-varying, similarly to our case, we

need to deal with the continuous state-action spaces. Discretizing the state,

action spaces is a way of dealing with the issue of the continuous problem,

but there is a trade-off between the discretization and the size of the state-

action space. Thus, we have to sacrifice the performance because we may

require to generalize the state-action space while discretizing them. Un-

fortunately, Q-learning cannot be straightforwardly applied to continuous

action spaces. This is because, in continuous spaces, we require optimiz-

ation at every timestep to find the greedy policy in Q-learning. Then the

optimization becomes too slow to be practical when we have large, uncon-

strained function approximators and nontrivial action spaces. This motiv-

ates the approach described in this cap. In particular, we use an actor-critic

framework based on the DDPG algorithm [104], where we utilize a new

policy architecture termed as Wolpertinger architecture [18]. This archi-

tecture avoids the heavy computational cost of evaluating Q-function on

every action taken.

5.4.1 Wolpertinger Architecture

As we have already mentioned that the proposed policy architecture fol-

lows the Wolpertinger architecture [18], this policy builds upon the actor-

critic [11] framework. The Wolpertinger architecture consists of three main

components: actor network, K-nearest Neighbour (KNN), and critic net-
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work, which works in three steps. First, the actor network takes states as

its input and provides a single proto-actor â at its output. Then, KNN re-

ceives the proto-actor as its input and calculates the L2 distance between

every valid action and the proto-actor in order to expand the proto-actor to

action space, AK , with K elements and each element being a possible ac-

tion a ∈ A. Finally, the critic network takes AK as its input and refines the

actor network based on the Q value. We train the policy using the DDPG

algorithm [17], which is applied to update both critic and actor networks.

We use multi-layer neural networks as function approximators for the actor

and critic functions.

We provide a more detailed description of the key components of the

Algorithm 2.

The actor network

The actor network maps the state s from the state space S to the action

space and chooses a proto-actor â ∈ A from the valid actions. The network

is expressed as a function and characterized by θµ. Finally, the proto-actor

is defined as follows:

µ(s | θµ) : S → A

µ(s | θµ) = â. (5.15)

K-nearest neighbours (KNN)

The generation of the proto-actor can help reduce the potentially high com-

putational complexity due to the large size of the action space. However,

reducing the high-dimensional action space to only a single actor will lead

to poor decision making. To resolve this, the KNN mapping, gK , is applied

to expand the actor’s choice of action to a subset of valid actions from A.

The set of actions returned by gK is denoted by AK:

AK = gK(ât), (5.16)
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where

gK = arg
K

min
a∈A
| a− â |2 . (5.17)

We determine the K nearest neighbours of the proto-actor using (5.17).

Here, | a − â |2 is the distance of the features between the chosen action a

and the proto-actor â. When the actor network selects the proto-actor, the

agent will traverse the action space to find the K nearest feature distances,

and then the action set will be determined accordingly.

The critic network

To avoid selecting an action that leads to a low Q-value frequently, a critic

network is introduced to refine the actor. The deterministic target policy is

characterized as below:

Q
(
st, at | θQ)

)
= E

[
r(st, at) + ζQ

(
st+1, at+1 | θQ

)]
, (5.18)

where θQ is the parameters of the critic network. The critic network evalu-

ates all actions in the expanded action space, and the action that provides

the maximum Q-value is chosen as

π∗(st) = argmax
at∈A

Q∗(st, at),∀s ∈ S. (5.19)

The critic calculates the Q value while considering the current state st

and the next state st+1 as its input. The critic network evaluates all actions

in AK , and chooses the action that provides the maximum Q-value, as

follows:

at = arg max
at∈AK

Q(st, at | θQ). (5.20)

Update: At each timestep, the actor and critic networks are updated by

sampling uniformly a minibatch from the replay buffer. Because DDPG is an

off-policy algorithm, the reply buffer can be large, allowing the algorithm

to benefit from learning across a set of uncorrelated transitions. Therefore,
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the actor policy is updated using DDPG with a minibatch size NB, which is

given as

∇θµJ ≈
1

NB

∑
t

∇aQ
(
s, a | µQ

)
|s=st,a=µ(st) ∇θµµ (s | θµ) | st, (5.21)

and the critic is updated by minimizing the loss:

L =
1

NB

∑
t

(
yt −Q

(
st, at | θQ

))2
, (5.22)

where

yt = rt + ζQ′
(
st+1, µ

′(st+1 | θµ
′
) | θQ′

)
. (5.23)

Implementing (5.22) directly with neural networks becomes unstable in

many environments. Since the updated Q(s, a | θµ) network is used to cal-

culate the target value (5.23), the Q update is prone to divergence. Instead

of directly copying the weights, we present a similar target network used

in [54] as the solution but is adjusted for actor-critic while using “soft” tar-

get updates. In doing so, we calculate the target values by creating a copy

of the actor and critic networks, Q′(s, a | θµ′
) and µ′(s | θµ′

), respectively.

The weights of these target networks are then updated by having them

slowly track the learned networks as

θQ
′ ← βθQ + (1− β)θQ

′
, (5.24)

θµ
′ ← βθµ + (1− β)θµ

′
, (5.25)

where β ≪ 1 is the soft target update rate. This means that the target

values are constrained to change slowly while improving the stability of

learning.

In contrast to the general Q-learning, where the balance between ex-

ploration and exploitation is controlled using a ϵ-greedy method [11], a

major challenge in continuous action spaces learning is exploration. Fortu-

nately, the DDPG algorithm can separately deal with the exploration prob-

lem from the learning algorithm. Hence, we define an exploration policy
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Algorithm 2 Actor-Critic Algorithm

Randomly initialize critic network Q
(
s, a | θQ

)
and µ(s | θµ) with weights

θQ and θµ.

Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ

Initialize SUMO environment and replay memory according to system

requirements.

for episode do

for each timestep t do

Receive observation state st

Actor: Receive proto-action from actor network ât = µ(st | θµ).
KNN: Retrieve k approximately closest actions AK = gK(ât)

Critic: Select action at = argmaxat∈AK
Q(st, at | θQ) according to the

current policy

Execute action at, and compute reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in replay memory.

Sample a random mini batch of NB transitions (st, at, rt, st+1) from

replay memory

Set target yt = rt + ζQ′ (st+1, µ
′(st+1 | θµ

′
) | θQ′)

Update critic by minimizing the loss using (5.22)

Update the actor policy using the sampled policy gradient using

(5.21)

Update the target networks with β ≪ 1 using (5.24) and (5.25)

Update the state

Update features space F
Update rate

end for

end for

µ′ by adding sampled noise from a noise process nt to the actor policy

µ′(st) = µ(st | θµt ) + nt, (5.26)

where nt is chosen to suit the environment. We consider temporally cor-
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related noise to explore well in the environment using the similar process

introduced in [105].

5.5 Experimental Setup

In this section, we present the simulation setup for the proposed actor-

critic based DRL scheme in vehicular OCC system. In particular, we start

by presenting the microscopic traffic simulation of SUMO [97]. We, then,

present the considered parameters for the proposed actor-critic scheme and

training workflow.

5.5.1 SUMO Framework

In order to implement our vehicular environment, we have chosen SUMO

which already includes a set of different driver models and where is re-

latively easy to include additional models. Thus, we transform the pro-

posed vehicular environment into a corresponding SUMO map, where each

vehicle is an agent. The vehicles enter randomly in the SUMO environment

and then move or leave the map following the SUMO mobility model set

by the system. The interaction between the SUMO framework and the DRL

agent is managed by a middleware, which is termed as Traffic Control In-

terface (TraCI). The agent can retrieve various features of the vehicle from

the SUMO network, such as the inter-vehicular distance, the speed of the

vehicle, the current position of the agent, and so on.

5.5.2 OCC System Design

To present the efficiency of the proposed OCC-based communication scheme,

we consider the communication of 1011 bits and a packet size of 5 kbits.

Please note that our BER requirement is 10−7. For our simulation, we

consider the 5G NR LDPC codes set from the IEEE standard [106]. The

required stimulation parameters are shown in Table 4.3. We train the sys-
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tem model with transmission of zero codewords, i.e., all the bits of the

codeword are zero, which are sufficient for the training as the channel is

symmetric. On the transmitter side, the zero codewords are encoded by the

LDPC encoder and, after M-QAM modulation, are transmitted through the

LoS OCC channel. On the receiver side, the data is first demodulated by the

M-QAM demodulator and then decoded by the LDPC decoder. The error is

computed by comparing the received codeword with the zero codeword.

5.5.3 Actor-critic DRL Framework

Training Parameters Settings

In this subsection, we introduce the actor-critic-based DRL network settings

and the considered training parameters. The individual actor and critic net-

work has three fully connected layers, including an input layer, a hidden

layer, and an output layer. The input layer has (d +M + |X |) nodes since

the state space combines the distance, modulation scheme, and code rate,

where d = 150,M = 5. We consider distance up to 150 m, which is suffi-

cient to maintain communication quality and avoid collisions and M = 5

because we use only 5 modulation schemes as the set. Whereas the output

layer has (△M +△κ +△v) nodes, as in our proposed system, the action

includes the change in modulation scheme, code rate, and velocity where

△M = 5, and △v = 60). The hidden layer has 250 neurons. We adopt a

typical ReLU as the actor and critic networks’ activation functions [95]. For

learning the neural network parameters, we set the initial learning rate α

to 10−4 for both the actor and critic networks. Whereas, for the soft tar-

get updates we set β = 0.001, which is sufficient to balance between the

optimality and computational cost. The final layer weights and biases of

both the actor and critic are initialized from a uniform distribution to en-

sure the initial outputs for the policy and value estimates were near zero.

We use TensorFlow [99] in our simulations to implement deep reinforce-

ment learning algorithms. We use RMSPro optimizer [98] as the training
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Table 5.1: List of DRL hyper-parameters and their values

Parameter, Notation Value

Mini-batch size, NB 64

Replay memory size 1011

Number of hidden layer (Neurons) 1(250)

Discount factor, ζ 0.98

Exploration rate, ϵ 0.05

Activation function ReLU

Optimizer RMSProp

Learning rate (used by RMSProp), α 10−4

Soft target updates rate, β 0.001

Gradient momentum (used by RMSProp) 0.95

algorithm, which minimizes the loss function and updates DQN network

parameters.

In our implementation, we train the actor-critic based DRL scheme for

10000 episodes, which we find sufficient to have better performance con-

vergence. For the exploration noise process, we use temporally correl-

ated noise to effectively explore the environments. We use the Ornstein-

Uhlenbeck process models [105] with mean value equal to 0.15 and vari-

ance equal to 0.2, which results in temporally correlated values centered

around 0. We set the discount factor ζ to 0.98 for our proposed scheme.

For exploration, we consider ϵ = 0.05 for the ϵ-greedy algorithm. We train

the network with minibatch sizes of 64 while having a replay buffer size

of 1011 to store the transitions in the memory. We also perform normal-

ization to bring the different sub-rewards corresponding to distance, BER,

latency, and transmission rate in (5.13) to a similar scale. This normaliz-

ation improves the performance and provides training stability for the NN

model. Specifically, we normalize the reward function of distance (5.10)

and rate of (5.5) to keep the scale of (5.13) between 0 and 1. The training
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parameters are listed in Table 5.1.

Training Procedure

The training workflow of our proposed actor-critic based DRL algorithm

is introduced in Algorithm 2. At each training step, t, the agent observes

the current state st (distance, modulation scheme, and code rate) from the

environment. Then, the proto-actor obtained by the actor network based

on the current policy is passed to the KNN algorithm, and the expanded

action set (change in modulation scheme, code rate, and velocity) will be

evaluated by the critic network. After the chosen action is executed in

the environment, the transition (st, at, rt, st+1) will be stored in the replay

buffer at the end of this epoch. Next, a minibatch with size, NB, will be

randomly sampled from the memory and replayed to update the actor and

critic networks. Then critic network is updated by minimizing the loss

(5.22), and the actor policy is updated using the sampled policy gradient

(5.21). Finally, the target network is updated by slowly varying the weights

of (5.24) and (5.25). To evaluate the K-nearest neighbour actions, we con-

sider K ratio as 0.1 of the action space A. Please note that, throughout our

simulation, we refer to the episode or timestep as the decision interval of

our scheme.

In this section, simulations are conducted to investigate the perform-

ance of the proposed system model and rate optimization schemes in vehicu-

lar OCC. We start by evaluating different performance metrics of the pro-

posed system model to get a better understanding of the interplay among

the various parameters of our system.

5.5.4 Comparison Schemes

We investigate the performance of the proposed DRL-based actor-critic

scheme, termed hereafter as the proposed scheme against different meth-

ods for to get insights on the system performance. We present a brief sum-

mary of all the schemes under comparison below:
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• Proposed scheme: By the proposed scheme, we refer to our DRL-

based vehicular OCC system, where each vehicles is an agent con-

sidering other vehicles as environment. In this case, we employ the

settings as we discuss in Sections 5.5 and 5.5.3. We set the discount

factor ζ to 0.98.

• Greedy: This is one of the variants of our scheme, where we set the

discount factor to ζ = 0 in (5.22), while we keep all other parameters

of the system as reported in Table 5.1. In this scenario, the agent

chooses the action which maximizes only the immediate reward.

• Farsighted: This method is a variant of our scheme, where we set the

discount factor to ζ = 1 in (5.22), while we keep all other parameters

of the system as reported in Table 5.1. This scheme focuses on the

future rewards and ignores immediate rewards.

• RF-based Scheme [13]: This is a RF technology based resource alloc-

ation scheme presented in [13]. For this scheme, we adapt the hyper-

parameters according to our proposed scheme while keeping the en-

vironment unchanged. This scheme considers centralized learning,

which involves communication between server and the agent. This

system incurs extra delay due to having feedback loop.

5.6 Performance Evaluation

5.6.1 Simulation Results

We start by exploring the training convergence of the proposed actor-critic

based DRL scheme by performing an ablation study for addressing the

trade-off between the different weight settings of the total rewards in (5.13),

namely distance ωd, BER ωb, latency ωτ , and rate ωr rewards. For ease of

visual representation, we only demonstrate five particular settings, includ-

ing (i) ωd = 0.1, ωb = 0.1, ωτ = 0.1, ωc = 0.7; (ii) ωd = 0.1, ωb = 0.4,
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Figure 5.2: Convergence of loss function for different weight settings of

sub-reward function with learning rate = 10−4.

ωτ = 0.4, ωc = 0.1; (iii) ωd = 0.1, ωb = 0.5, ωτ = 0.2, ωc = 0.2; (iV)

ωd = 0.5, ωb = 0.2, ωτ = 0.2, ωc = 0.1; and (v) ωd = 0.4, ωb = 0.1, ωτ = 0.1,

ωc = 0.4, as shown in Fig. 5.2. From the figure, we observe that setting

(i) converges after 5000 decision episodes and presents better loss perform-

ance when we assign higher weight related to goodput. Other settings have

more elevated losses compared to setting (i). Though setting (ii) demon-

strates better performance until 3000 episodes, setting (i) overcomes (ii)

after 3000 episodes as the DRL agent takes some time to provide a balance

between the action and the achieved rewards. Therefore, we adopt this

weights setting (i) for the rest of our performance evaluation.

To verify the improvement of rewards over decision interval, we illus-

trate the cumulative rewards for the different variants of our proposed
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Figure 5.3: Reward per training episode for the proposed scheme and its

variants with learning rate = 10−4.

scheme, i.e., the proposed scheme (ζ = 0.98), greedy (ζ = 0) and farsighted

(ζ = 1) for 10000 episodes in Fig. 5.3. From the figure, we see that the

proposed scheme demonstrates higher rewards over all the decision inter-

vals, whereas the greedy and farsighted schemes display fluctuating re-

wards in most cases. We also observe that the reward traverses over 1 after

9000 episodes. This happens because we present the cumulative rewards

over the episodes, which has the effect of the discount factor towards the

future rewards for both of the schemes. In contrast, the reward never ex-

ceeds 1 for the greedy scheme because the discount factor has no impact on

the future rewards. Therefore, we can conclude that the proposed scheme

achieves higher rewards than the other variants of our scheme.
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Figure 5.4: Comparison of average rate by varying the BERmax requirement

for all schemes under comparison.

After demonstrating the training implementation, we now examine dif-

ferent communication performance metrics for our actor-critic based vehicu-

lar OCC system. Consequently, we evaluate the schemes under comparison

with respect to goodput, latency and reliability. Please note that for the RF-

based scheme, we require communication between the server and agent

back and forth through feedback link, which involves an extra delay that

is usually 1 ms to 12 ms. For our simulation, we consider 2 ms as the

additional delay for the feedback, which is a favourable setting for the RF

scheme though other settings can also be used as user necessities.

First, we investigate the effect of BER on the average goodput (Mbps)

in Fig. 5.4 to measure the goodput performance for various BERmax. From
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Figure 5.5: Comparison of achievable goodput by our scheme over timestep

considering different BERmax requirement.

the figure, we see that the average goodput increases as we reduce the

BERmax requirements from 10−9 to 10−5. This happens because of using

less strong LDPC codes. We also observe that the proposed scheme out-

performs all the other schemes under comparison. Initially, the RF-based

method achieves the lowest rate of all the schemes but performs better than

the greedy method beyond BERmax = 10−8. Hence, it is seen that when the

BER requirements are more tight, other schemes fail to meet the constraint

(5.6), and therefore performance degrades. As a result, the average good-

put is lower than that of the proposed scheme all the time. For example, for

the proposed scheme when BERmax = 10−9, the average goodput is 4 Mbps,

whereas, for greedy, farsighted and RF-based schemes, it is 2 Mbps, 2.75
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Figure 5.6: Box plot to justify how the reliability requirement is satisfied

considering our maximum allowable BER 10−7.

Mbps, and 1.8 Mbps, respectively. Meanwhile, the average goodput in-

creases to 5.5 Mbps, 3.95 Mbps, 4.6 Mbps, and 4.2 Mbps for the proposed,

greedy, farsighted and RF-based scheme, respectively, when BERmax = 10−5.

We will examine the effect of BER further in detail in the later part of this

section.

In an effort to present the robustness of selecting the code rate, we

evaluate the goodput (Mbps) for three different BERmax requirements in

Fig. 5.5. For this simulation, we illustrate the goodput across 120 runs,

where a sample is taken from the whole run at 6000 - 6120 timesteps. From

the figure, we observe that the goodput varies near the average values for

all BERmax. We also notice that we achieve higher goodput, and there is less
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Figure 5.7: Box plot to verify how the latency requirement is satisfied con-

sidering our latency requirement 10 ms

fluctuation between decision intervals when the BER requirement is lower,

e.g., 5.36 Mbps for 10−6. Since at lower BERmax, the probability of violating

(5.11) is becoming smaller, the goodput is higher, and variation between

one decision interval to another is less and vice versa.

To visualize how the proposed scheme respects the uRLLC requirements

while maximizing the goodput, we analyze the BER and latency perform-

ance for the various schemes under comparison. Please note that in this

cap, we consider meeting BER of 10−7 and latency of 10 ms as the ultra-

reliability and low-latency requirements, respectively. We execute the simu-

lation for 10000 decision episodes to investigate the BER and latency data.

We then generate boxplots over all the available data and compare the res-
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ults with all the schemes under comparison. First, we illustrate the boxplot

of the BER to demonstrate whether all the schemes under comparison meet

the reliability requirement in Fig. 5.6. We have also plotted a reference line

to present our BER constraint of 10−7 (dashed black line). From the figure,

we observe that our proposed algorithm always satisfies the reliability re-

quirement, whereas other schemes cannot respect the constraint most of

the time. Specifically, for greedy, farsighted and RF-based schemes, the

maximum BER is 3.4× 10−7, 2.3× 10−7, and 8× 10−6, respectively.

Finally, we present the boxplot of observed latency for all the schemes

under comparison in Fig. 5.7. Similar to the BER performance, we evaluate

the boxplot to examine how the low latency requirement (10 ms) is satis-

fied by the different comparison schemes. Like in the previous comparison,

we also show a reference line for the latency constraint (dashed black line)

in Fig. 5.7. From the figure, we can note that our proposed scheme al-

ways respects the low latency requirements of 10 ms, while the other three

schemes fail to meet the constraint most of the time in our simulation. In

particular, for the greedy, farsighted and RF-based schemes, the maximum

observed latency is 14.5 ms, 11.8 ms, and 17.5 ms, respectively. From

this comparison, we can conclude that our proposed vehicular OCC system

can maximize the goodput while guaranteeing uRLLC, while the RF-based

schemes cannot meet the delay requirements.

5.7 Summary

In this chapter, we introduce an actor-critic DRL framework in vehicular

OCC by selecting the optimal code rates and modulation schemes as well

as changing the relative speed of the vehicles while respecting uRLLC re-

quirements. First, we model the vehicular OCC system. To support variable

rate and ultra-reliability, we use 5G NR LDPC code rate optimization for

the M-QAM scheme. We solve the continuous optimization problem using

an actor-critic algorithm with Wolpertinger architecture. We verify our pro-
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posed scheme through numerous simulations and compare it with several

variants of our scheme and an RF communication-based scheme. The av-

erage goodput of our proposed scheme shows a considerably higher value

compared to other schemes under comparison. We neglect the effect of

weather conditions in this chapter. Our proposed scheme can guarantee

uRLLC while maximizing the goodput, whereas other methods fail most

of the time. This happens because interference free OCC DRL-based sys-

tems achieve higher rates even at low BER requirements, and the code rate

optimization scheme offers ultra-reliability.
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Multi-agent Deep Reinforcement Learn-
ing for uRLLC in Vehicular OCC

6.1 Introduction

In the previous two chapters, we showed that DRL helps to solve the large

scale and continuous problems and the requirement of reliability is met

through code rate optimization. Whereas OCC helps to respect low-latency

constrain. In Chapter 4, we presented a DRL scheme by discretizing the

state-action spaces, where we can meet the low latency but could not

achieve ultra-reliability. Discretization reduces the overall system perform-

ance. If the discretization is too coarse probably it will lead to a sub-optimal

solution, if it is too fine it will require enormous time to find a solution and

there will be no optimality guarantee. In Chapter 5, we utilize code rate op-

timization to ensure uRLLC [15] and actor-critic based DRL scheme to solve

the continuous problem, where we considered a single link. In this case, the

solution can be sub-optimal when we have multiple links scenarios in a real

urban road scenario. This happens because the information of other links is

unknown to the vehicular agent. The performance of other links is optim-

ized using the optimal policy from the observed single link performance. To
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mitigate the above challenges, we present a multiple links vehicular OCC

system in this chapter. In this scheme, we propose a rate maximization

scheme to meet the uRLLC of multiple links while optimizing the paramet-

ers of all links, i.e., speed, code rate, and modulation scheme. To this aim,

we use a multi-link actor-critic based DRL framework in the proposed OCC

system for continuous and large state-action spaces. We use Wolpertinger

architecture with actor-critic to limit the search for optimal action to the

nearest neighbour’s actions of a proto-actor action selected by the actor net-

work. We evaluate the performance of the actor-critic based DRL scheme in

vehicular OCC system and compare it with the performance of the different

schemes under comparison, e.g., No Coding scheme, Single Link Optimiz-

ation (SLO) scheme, greedy scheme and farsighted scheme. The results

demonstrate that the proposed method shows superiority against its coun-

terpart schemes. The results further make it obvious the benefit of using

code rate optimization and actor-critic based DRL scheme in multi-agent

vehicular OCC system to meet uRLLC.

The rest of the chapter is organized as follows. We outline the vehicular

OCC system model in Section 6.2. Afterwards, in Section 6.3, we present

the proposed optimization problem before presenting the simulation setup

in Section 6.4. We then show the evaluation results of the proposed scheme

in Section 6.5. Finally, we draw the conclusion remarks in Section 6.6.

6.2 System Model

In this section, we present the considered system model and parameters of

vehicular OCC. Then, we specify the performance defining metrics of OCC

in terms of the BER, the achievable rate, and the observed transmission

latency.

For the employed M-QAM modulation scheme, the achievable capacity

of the OCC system for the link b for the 5G NR LDPC codes with code rate,
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κ, is expressed by following (5.3) and [107]:

Cb(κ) = κ
WfpsNLEDswϱ

6 tan
(
θl
2

)
· db
· log2(M b). (6.1)

We have already mentioned in Section 3.3.3 that the End-to-End (E2E)

latency is contributed by the transmission latency because we process a

small amount of data, i.e., the decision information from transmitter to

receiver. Therefore, the transmission latency for packet size, L, is given by

following [107]:

τ b(κ) =
L

Cb(κ)
. (6.2)

6.3 Proposed Problem Formulation

6.3.1 Constrained Problem Formulation

The objective of this chapter is to present an optimization framework to

maximize the communication rate of the proposed vehicular environment

which meeting uRLLC requirements. To this aim, we formulate an optimiz-

ation problem that aims at maximizing the sum rate of the vehicular OCC

system by selecting the optimal modulation order and code rate and adjust-

ing the relative speed of the vehicle to the optimal value. We set the BER

and latency to a predefined value to respect the uRLLC conditions imposed

by the system. Finally, we formulate the constrained maximization problem

as:

max
M,X ,v

1

B

B∑
b=1

Cb(κ), (6.3)

s.t. BERb(κ) ≤ BERtgt, ∀b; (6.4)

τ b(κ) ≤ τmax, ∀b; (6.5)

M b ∈M, ∀b; (6.6)

κb ∈ X . ∀b; (6.7)
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Constraint (6.4) indicates that the reliability is satisfied by maintaining

a target BER, and the latency requirement is respected by (6.5), for ensur-

ing uRLLC. The modulation scheme is chosen from a small set of available

modulation schemes, as shown in (6.6), whereas the 5G-NR codes are ad-

justed from the set as in (6.7).

Our formulated problem (6.3) is an NP-hard problem, which is hard to

solve using distributed optimization methods [90]. Further, there are non-

linear operations in (6.3) - (6.5), which makes it time-consuming and com-

plex to find the optimal solution. This happens because in traditional op-

timization methods, the decision-making parameters, i.e., code rate, mod-

ulation scheme and speed, should be selected in a distributed way. To

overcome these challenges, we introduce RL in our system, which inter-

acts with the environment and finds the optimal policy by adapting to the

environmental changes.

We start the next subsections by describing our problem spaces as MDP

and then detail our policy architecture, demonstrating how we train it using

DDPG methods in an actor-critic framework.

6.3.2 Modelling of MDP

Our proposed maximization problem can be modelled as an MDP, with a

tuple (S, A, p, r, ζ) [11]. We outline the state space S, the action space A,

and the reward function, r of the considered RL framework as follows:

State space

At time t, each agent interacts with the environment and observes the

state, st. The state in our system has three components: the backward

distance vector, db
t = (d1t , · · · , dBt ), the transmitted modulation scheme,

Mb
t = (M1

t , · · · ,MB
t ), from the set M = {4, 8, 16, 32, 64}, and the code

rate vector, κκκb
t = (κ1

t , · · · ,κB
t ), from the set X . In summary, the state is

outlined as st =
{

db
t ,M

b
t ,κκκb

t

}
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Action space

From the state st, the agent takes an action at from the set A, consisting of

adjusting the relative speed, vt, selecting modulation scheme Mb
t ∈M, and

code rate κκκb
t ∈ X . We summarize the action space as at =

{
vt,Mb

t ,κκκb
t

}
.

Reward function

The agent receives a reward based on the action, at, taken from the state,

st. In our framework, the reward function is the weighted sum of the

rewards corresponding to inter-vehicular distance, BER constraint (6.4),

latency constraint (6.5), and goodput (6.3). We first model the reward for

the distance changes, rd
t , as follows:

rd,i
t =

−1× (dstop − dbt), dbt < dstop ,

1
dbt−dstop

, dbt > dstop ,
(6.8)

where i is the index of the agent. For notational simplicity we drop the i

hereafter. To satisfy the BER requirement, we model the reward for BER,

rbt , as:

rrt (κ) = 1b(BERb
t(κ) ≤ BERmax), (6.9)

Similarly, the latency is maintained so that it obeys the latency constraint.

Accordingly, the reward for latency, rτt , is modelled as follows:

rτt (κ) = 1τ (τ
b
t (κ) ≤ τmax), (6.10)

Considering the above definition, we express the overall weighted sum

of the rewards, Rt, is expressed as

Rt = ωd r
d
t + ωbr

r
t (κ) + ωτr

τ
t (κ) + ωc

1

B

B∑
b=1

Cb(κ), (6.11)

where, ωd, ωb, ωτ , and ωc are positive weights to balance between distance,

BER, latency, and communication rate rewards.

After each interaction with the environment in time slot, t, the agent re-

ceives a reward rt The goal of RL is to maximize the total future discounted

reward: Gt =
∑∞

j=0 ζ
jrt+j+1.
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6.3.3 Proposed Solution

The Q-Learning convergence is slow when it involves large state-action

space. To overcome the slow convergence, we use DRL in our system.

Moreover, the vehicular networks are time-varying and dynamic, where

the state-action spaces are continuous. Therefore, we propose actor-critic

based DRL framework with Wolpertinger architecture to solve the continu-

ous and large state-action problems. This helps us apply the closest action

to proto-actor in the set directly to the environment or select the highest

valued action from the set related to the cost function.

As we have already explained the Wolpertinger architecture at Section

5.4.1 in Chapter 5, we will discuss them briefly in here.

The actor network: The actor network maps the state s ∈ S to the

action space A and chooses a proto-actor â from the valid actions set A.

The actor network is characterized by θµ, where we define the proto-actor

as in (5.15).

K-nearest neighbours (KNN): We determine the K nearest neighbours

of the proto-actor using (5.17). Through KNN mapping, the actor can ex-

pand its choice to the nearest neighbour of proto-actor action determined

by the actor network.

The critic network: The critic network refines the actor’s choices to ac-

complish the optimal policy approximation. The deterministic target policy

for the critic network is expressed similar to as (5.18):

Q
(
st, at | θQ)

)
= E

[
r(st, at) + ζQ

(
st+1, at+1 | θQ

)]
, (6.12)

The critic assesses all the actions from the expanded action space AK and

calculates the Q-value. Finally, the critic selects the action that offers the

maximum Q-value using

at = arg max
at∈AK

Q(st, at | θQ). (6.13)

Update: We update the actor policy using DDPG algorithm for a mini-
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batch size NB as

∇θµJ ≈
1

NB

∑
t

∇aQ
(
s, a | µQ

)
|s=st,a=µ(st) ∇θµµ (s | θµ) | st, (6.14)

The update of critic network is done through minimization of the loss:

L =
1

NB

∑
t

(
yt −Q

(
st, at | θQ

))2
, (6.15)

where

yt = rt + ζQ′
(
st+1, µ

′(st+1 | θµ
′
) | θQ′

)
. (6.16)

The weight parameters of actor network θµ and critic network θQ through

“soft” target updates. This helps to improve the stability of learning. This

done by slowing changing the weight parameters and are given by

θQ
′ ← βθQ + (1− β)θQ

′
, (6.17)

θµ
′ ← βθµ + (1− β)θµ

′
, (6.18)

6.4 Simulation Setup

In this section, we start by providing a brief overview SUMO framework.

We then provide the details of the considered training parameters in our

simulation.

6.4.1 SUMO Framework

We implement our vehicular environment in SUMO framework, where the

vehicles are modelled according to our proposed system modelling. TraCI

maintains the interaction between the SUMO framework and the DRL agent

from where the agent receive different information about the vehicular net-

work, including distance, speed, position of the vehicle, and can feed the

decision back to the SUMO again.
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6.4.2 Training Parameters

For OCC system design, we consider the communication of 1011 bits and a

packet size of 5 kbits, where we train the model with transmission of zero

codewords. We consider the code rates of the 5G NR LDPC codes as defined

in the IEEE standard [106]. In our simulation, we consider the following

training parameters and setting for the actor-critic based DRL framework.

Each of the actor and critic networks have four fully connected layers, in-

cluding an input layer, two hidden layers, and an output layer. The two

hidden layers have 500 and 250 neurons, respectively. The input layer has

(d +M + |X |) nodes since the state space combines the distance, modula-

tion scheme, and code rate, where d = 150 and M = 5. Whereas the output

layer has (△M +△κ +△v) nodes, as in our proposed system, the action

includes the change in modulation scheme, code rate, and velocity. We

utilize ReLU activation function [95]. We employ TensorFlow [99] as the

training algorithm to minimize the loss, where we set the initial learning

rate, α, to 10−4. We set the soft target value to β = 0.001.

We run the training of the proposed the actor-critic based DRL scheme

for 10000 episodes. We use temporally correlated noise from the Ornstein-

Uhlenbeck process models [105] with mean 0.15 and variance 0.2 for the

exploration. In our proposed scheme, we set the discount factor, ζ to 0.98.

We consider minibatch sizes of 64 and a replay buffer size of 1011 to store

the transition in the memory. We normalize the sub-rewards values cor-

responding to distance, BER, latency, and transmission rate in (6.11) to

be on a similar scale between 0 and 1. The stimulation parameters are

summarized in Table 4.2.

6.5 Performance Evaluation

In this section, we perform numerous simulations to understand the per-

formance of our proposed multi-agent actor-critic based DRL scheme in

vehicular OCC. Before presenting the simulation results, we first provide a
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overview of the various schemes under comparison.

6.5.1 Comparison Scheme

In this subsection, we provide a brief summary of all the schemes under

comparison in this chapter.

• Proposed scheme: We refer our actor-critic vehicular OCC system to

the proposed scheme. In our scheme, we employ the settings as we

have mentioned in Section 6.4.2. We set the discount factor to 0.98.

Further, we perform code rate optimization in multi-agent RL system,

where we observe all the links behind the agent vehicle and optimize

the policy based on the observations.

• No Coding: In this scheme, we consider a multi-link system similar

to our proposed scheme, without using channel coding. This scheme

helps us understand the impact of channel coding to the system per-

formance. Hence, we termed this scheme as ’No Coding’ scheme.

This is an extension of our previous scheme (Chapter 4), where we

maximized the sum spectral efficiency without performing the code

rate optimization. This scheme considered only latency constraint,

the extension takes into account also the reliability constraint.

• Single Link Optimization: This is a variant of our proposed scheme,

where we observe the state of a single link. Then, we apply the optim-

ized code rate and modulation order to all other links. In this scheme,

we consider the states of other links are unknown to the agent while

keeping track of the observed single link only. Therefore, we called it

as SLO scheme.

• Greedy: This method is a variant of our scheme, where we set the

discount factor to ζ = 0 in (6.15), while we keep all other parameters

of the systems as reported in Table 4.2. In this scenario, the agent

chooses the action which maximizes only the immediate reward.
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Figure 6.1: Convergence of loss function for different weight settings of

sub-reward function with α = 10−4.

• Far-sighted: This method is another variant of our scheme where, we

consider the discount factor to be ζ = 1 in (6.15). In this scheme, we

maintain all other parameters of the systems to be same as reported

in Table 4.2. This scheme takes future rewards into account more

strongly and ignores immediate rewards.

6.5.2 Simulation Results

We first start our evaluation by presenting an ablation study of different

weight values of reward function (6.11) to select the setting that leads

to faster convergence of the loss function. In particular, we present five

different settings weight values of distance, ωd; BER, ωd; latency, ωd and
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Figure 6.2: Comparison of sum goodput with different approaches for

learning rate α = 10−4.

rate, ωd for easy visualization in Fig. 6.1 though more settings could be

illustrated. From the figure we see that the setting ωd = 0.1, ωb = 0.1,

ωτ = 0.1, ωc = 0.7 provides faster convergence and leads to lower loss.

Therefore, we employ this setting for the rest of our evaluation.

We now study the impact of training over the different performance

parameters for the schemes under comparison with respect to goodput,

latency and reliability. We first evaluate the effect of the density of vehicles

on the average goodput and average latency for different schemes under

comparison. To this end, we vary the density of the vehicle in the range

from 6 to 16. We first study the average goodput for various schemes un-

der comparison in Fig. 6.2. We can note from figure that the proposed
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Figure 6.3: Comparison of average latency versus density of vehicle with

different schemes with learning rate α = 10−4.

scheme outperforms the schemes under comparison significantly in terms

of the average goodput in all the range of density of vehicles. Specific-

ally, for low density of vehicles, i.e., 6, the performance gap between the

proposed scheme and the No Coding, SLO, farsighted, and greedy schemes

is approximately 0.3 Mbps,1 Mbps, 1.4 Mbps, and 1.7 Mbps, respectively.

For the highest density of vehicles, i.e., 16, the gap increases to about 0.2

Mbps, 0.9 Mbps, 0.7 Mbps, and 1.2 Mbps, respectively. From the figure,

it is evident that No Coding scheme offers the second-best performance,

which shows the advantage of using code rate optimization in our pro-

posed scheme. Whereas for the SLO scheme, the gap is considerably bigger

than the No Coding scheme. This happens because, in SLO, we observe the
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state of one link while optimizing the parameters of other links based on

the policy of the observed link. So, all the constraints may not be satisfied,

and therefore there is a big performance gap from the proposed scheme.

For farsighted and greedy schemes, the gap grows further because of con-

sidering only the future rewards and immediate rewards, respectively.

We then illustrate the average latency for the various schemes under

comparison at different density of vehicles in Fig. 6.3. From the figure, we

observe that the proposed scheme outperforms other schemes. Specifically,

for low density of vehicles, i.e., 6, the gap between the proposed scheme

and No Coding, SLO, farsighted, and greedy schemes is about 0.7 ms, 2.4

ms, 3.7 ms, and 5 ms, respectively. Whereas for high density of vehicles,

i.e., 16, the gap grows to 0.8 ms, 3.3 ms, 3 ms, and 5.2 ms, respectively.

Similar to the average goodput in Fig. 6.2, the No Coding scheme shows

the lowest latency gap and hence, we can see the effect of code rate op-

timization in our proposed scheme. Similarly, the SLO scheme offers more

gaps in performance, and even it obtains higher latency when the dens-

ity of vehicles passes 14. So, we can conclude that we achieve a higher

rate and low latency if we use code rate optimization and multi-link policy

maximization.

We then visualize how the proposed scheme meets the uRLLC require-

ments while maximizing the goodput. To this aim, we analyze the BER

and latency performance for the various schemes under comparison. Please

note that in this paper, we set the requirements ultra-reliability to meet BER

of 10−7 and low-latency to satisfy 10 ms latency. We execute the simulation

for 10000 decision episodes to investigate the BER and latency data. We

then generate boxplots over all the available data and compare the results

with all the schemes under comparison. First, we illustrate the boxplot of

the BER to demonstrate whether all the schemes under comparison meet

the reliability requirement in Fig. 6.4. We have also plotted a reference

line to present our BER constraint of 10−7 (dashed black line). From the

figure, we observe that our proposed algorithm always satisfies the reli-
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Figure 6.4: Box plot showing the maximum and minimum BER offered for

all the schemes under comparison to justify how the reliability requirement

is satisfied considering our maximum allowable BER 10−7.

ability requirement, whereas other schemes cannot respect the constraint

most of the time. In particular, no coding scheme can never satisfy BER.

Therefore, it is evident that we cannot meet the reliability requirements

without channel coding. The SLO scheme can respect the BER for 60% of

the time because we optimize the performance of multiple links from the

observation of single link parameters. In this scenario, there is the possib-

ility of bad policies for other vehicles, which was considered good for the

observed link.

Finally, Fig. 6.5 illustrates the boxplots of the observed latency to ex-

amine how the low latency requirement (10 ms) is met by the different
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Figure 6.5: Box plot showing the maximum and minimum latency offered

for different schemes under comparison to verify how the latency require-

ment is satisfied considering our latency requirement 10 ms.

comparison schemes when we optimize all the schemes for 10000 epis-

odes. Similar to the BER performance, we also draw a reference line for

the latency constraint (dashed black line) in Fig. 6.5. From the figure, we

can note that our proposed scheme always respects the low latency require-

ments of 10 ms, while the other schemes fail to meet the constraint most

of the time in our simulation. In particular, for the greedy, farsighted, SLO,

and No coding schemes, the maximum observed latency is 15.5 ms, 13.8

ms, 11.5 ms, and 11 ms, respectively.

From all the above performance comparisons, we can conclude that

our proposed vehicular OCC system can maximize the goodput while guar-
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anteeing uRLLC, while the other schemes cannot meet the reliability and

delay requirements. It is also obvious that we get better performance if we

perform code rate optimization in the multi-agent vehicular OCC system.

6.6 Summary

In this chapter, we study a multi-link DRL based rate maximization scheme

to ensure uRLLC in vehicular OCC. To this aim, we choose the optimal code

rate, modulation scheme and the speed of vehicles for multiple vehicular

links. We apply actor-critic based DRL frameworks with Wolpertinger archi-

tecture for multiple links. 5G NR LDPC code rates and adaptive modulation

scheme are used as they offer variable rates and ultra-reliability. We then

solve the continuous optimization problem using a multi-links actor-critic

algorithm through the Wolpertinger policy. We evaluate the performance of

the proposed scheme by comparing it with various variants of our scheme.

The proposed method achieves considerably higher average goodput and

lower latency than all the schemes under comparison. The results further

demonstrate that our schemes always satisfy uRLLC requirements, whereas

other schemes fail to meet most of the time. This happens because we

consider multiple vehicular link optimization with code rate optimization.

While, for No Coding, reliability can not be satisfied because of not having

any coding scheme and for SLO, the agent optimizes the policies for other

links without considering the state-action space of other links, where the

solution becomes sub-optimal most of the time. Finally, we can conclude

that the proposed multi-links actor-critic based DRL framework maximizes

the communication rate while respecting uRLLC in vehicular OCC.
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Conclusions and Future Work

7.1 Conclusions and Summary

Ensuring uRLLC is essential in AV to provide seamless operation and re-

liable communication between vehicles. However, existing RF-based com-

munication systems suffer from interference and, therefore, face challenges

to meet uRLLC without sacrificing communication performance, i.e., rate

and latency. Recently, OCC is considered as one of the promising tech-

nologies in vehicular communication as it offers interference-free and LoS

communication. Motivated by the advantages of variable rate and ultra-

reliability, we employ code rate optimization and adaptive modulation in

this thesis. Since the vehicular networks are time-varying and dynamic,

solving these problems using a traditional optimization method is challen-

ging. Therefore, we utilize the DRL framework, which can learn from the

environment while interacting with unknown environments. We apply the

actor-critic framework with Wolpertinger architecture to solve large scale

and continuous state-action space problems. Finally, we propose a multi-

agent DRL framework based optimization scheme that aims at maximizing

the communication rate while selecting the optimal code rate, modulation
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scheme and speed of the vehicles.

We summarize the findings of this dissertation as follows:

• In Chapter 3, we analyze the performance of adaptive modulation in

vehicular OCC systems. To this aim, we model the latency consid-

ering the transmission latency only. We evaluate the BER at various

ranges of the AoI and distances. Afterwards, we use a predefined tar-

get BER to adaptively adjust the spectral efficiency using the available

modulation schemes. In this way, the BER requirement is satisfied.

We performed numerous simulations to determine how to adjust the

employed modulation scheme and AoIs while satisfying the BER re-

quirements. The results demonstrate that we can achieve 7ms latency

by respecting the target BER requirements of 10−4 and 10−5 when we

vary the AoI varied between 0o to 90o.

• In Chapter 4, a DRL-based spectral efficiency maximization scheme

for a multiple vehicular OCC scenario is studied while meeting BER

and latency requirements. To this end, we formulate a sum spectral

efficiency maximization problem considering an adaptive modulation

scheme subject to BER and latency constraints. We show that the op-

timization problem is the NP-hard problem and contains non-linear

operations. Therefore, to overcome the difficulty of the above chal-

lenges, we model the optimization problem as an MDP framework. In

this way, we can solve the problem distributively. We also observe that

the problem is a constrained problem, where finding the optimal solu-

tion is complex and time-consuming. So, we relax the problem to an

unconstrained one using the Lagrangian relaxation method. Since we

have large state-action spaces, we solve it using the DRL algorithm.

We then conduct a performance evaluation to see how the proposed

scheme performs over all other schemes under comparison. The res-

ults demonstrate that we achieve better sum spectral efficiency and

lower average latency compared to all the schemes under compar-

ison. The CDF of latency and BER further show that our system can
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satisfy ultra-low latency communication and BER constraints, while

the rest of the schemes fail.

• Chapter 5 introduces an actor-critic DRL framework in vehicular OCC

by optimizing the code rates, modulation schemes and changing the

speed of the vehicles to meet uRLLC requirements. We model the sys-

tem as a single link vehicular problem. We use 5G NR LDPC code rates

as it offers variable rates and ultra-reliability. We employ the Wolp-

ertinger architecture based actor-critic DRL framework to deal with

the continuous state-action spaces. The performance of the proposed

scheme is verified through simulations in terms of goodput, latency

and BER. To show the superiority of the proposed scheme, we com-

pare the performance with two variants of the proposed schemes and

RF-base schemes. From the results, we see that our proposed scheme

achieves higher average goodput and lower average latency while

other schemes fail most of the time. The results further demonstrate

that our scheme always satisfies the uRLLC requirements. This hap-

pens because we use an interference-free OCC system, which gives

low latency and code rate optimization offers ultra-reliability, and

DRL provides higher goodput.

• Finally, in Chapter 6, a multi-link DRL based rate maximization scheme

is proposed to ensure uRLLC in vehicular OCC. To this end, we choose

the optimal code rate, modulation scheme and the speed of vehicles

for multiple vehicular links. We employ 5G NR LDPC code rates and

an adaptive modulation scheme to support variable rates and ultra-

reliability. The large scale and continuous problem is solved through

a multi-links actor-critic algorithm based on Wolpertinger architec-

ture. We perform numerous simulations to get an understanding of

how our proposed algorithm works and compare it with several vari-

ants of our scheme. We observe from the results that the proposed

method achieves higher average goodput and lower latency than all
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Figure 7.1: Hybrid RF-OCC communication mechanism.

the schemes under comparison. Further, the proposed scheme can

meet the uRLLC constraints, whereas other schemes under compar-

ison fail to respect most of the time. This happens because we con-

sider multiple vehicular link optimization with code rate optimization

in an interference-free OCC system. While, for No Coding, reliability

can not be satisfied because of not having any coding scheme and for

SLO, the agent optimizes the policies for other links without consider-

ing the state-action space of other links, where the solution becomes

sub-optimal most of the time. Finally, we can summarize that the

proposed multi-links actor-critic based DRL framework maximizes the

communication rate while respecting uRLLC in vehicular OCC.

7.2 Future Directions

We conclude this dissertation by presenting some research directions for

future investigation. Through our work in the various Chapters of this

thesis, We identified the following possible extensions of our work can be

done in the future:

• Throughout the thesis, we only consider V2V communication. But in

the urban road environment, there exist various infrastructures, e.g.,
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traffic lights and digital signages. Therefore, we want to extend our

current work toward vehicle-to-everything communications by intro-

ducing V2I communication. In this scenario, there will be commu-

nication between vehicles and infrastructures simultaneously. In this

way, the agents can take decisions and optimize the performance in-

dividually based on the observation of the surrounding environment,

which will cover the entire road environment. This will be an in-

teresting problem to solve as the vehicles are moving whereas the

infrastructures are stationary. In solving this complicated problem,

DRL will be a viable solution by maximizing the communication rate

while respecting uRLLC.

• We then want to extend the previous vehicular problem to multi-

vehicular problem in a more advance direction, where the vehicles

will take a collective decision rather than the decision of individual

vehicle. In this manner, the vehicle can communicate with each other

more effectively. Here, each vehicle will be able to share their actions

or any emergency condition in the road environment. As a result,

the vehicle will have clear and collective information about the road

environment while satisfying uRLLC.

• We would also like to use hybrid RF-OCC system to communicate with

the servers or remote vehicles. Fig. 7.1 illustrates the overall over-

view of an hybrid system. The communication medium for vehicle to

remote vehicle and servers will be performed using RF, whereas the

LoS communication will be performed using OCC systems. This will

ensure wider coverage area and communication with the servers or

remote vehicles. This scheme will be effective if there is any emer-

gency in the road that we need to inform other vehicles or central

servers so that they can acts to these situations.
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A
Stereo Detection

After the camera calibration, the distance from the captured images is com-

puted. Distance information can help to make decisions for the vehicle to

pay attention and information extraction. However, all incidents that hap-

pen in the real world can be described in three-dimensional (3D) format

but the camera generates only two-dimensional (2D) images. Thus, an

adaptive convention algorithm is required to measure the distance from a

2D image. There are various approaches to measure the depth of 2D im-

age. The most recent trend is to use a stereo-vision camera, rather than

a single camera, in a manner analogous to vision system [71]. A stereo-

vision camera consists of two cameras mounted at a fixed position on a

single apparatus for (i) synchronizing the focal point and (ii) adjusting the

image-focal plane of both cameras. Both cameras capture the same scene

but with a slightly shifted FoV, allowing the formation of a stereo-image

pair. Distance measurement relies on matching the pixels in the left and

right images. The following algorithm is being used to complete the task.

• Image acquisition (i.e., input image from both left and right cameras).

• Image rectification to align epipolar line of two camera images hori-

zontally by using a linear transformation.
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Figure A.1: Distance measurement: (a) using stereo images of stereo cam-

era, (b) system platform algorithm

• Segmentation for detection, recognition, and measurement of objects

in images.

• Algorithms for stereo matching for depth calculation. There are dif-

ferent algorithms are being used for stereo matching, such as the sum

of absolute differences (SAD), correlation, normalized cross-correlation,

and the sum of squared differences (SSD). The SAD algorithm com-

putes the intensity differences for each center pixel (i, j) in a window

W (x, y):

SAD(x, y, d) =
N∑

(i,j)∈W (x,y)

|IL(i, j)− IR(i− d, j)| (A.1)

where IL and IR are pixel-intensity functions of the left and right im-

ages, respectively. W (x, y) is a square window that surrounds the

position (x, y) of the pixel. The minimum difference value over the

frame indicates the best matching pixel, and the position of the min-

imum defines the disparity of the actual pixel.

Depth map estimation: For stereo cameras with parallel optical axes

(see Fig. A.1), focal length f , baseline b, and corresponding image points
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(xl, yl) and (xr, yr), the coordinates of a 3D point P (xp, yp, zp) from 2D

image can be determined by the following equations:

zp
f

=
xp

xl

=
xp − b

xr

=
yp
yl

=
yp
yr

(A.2)

xp =
xlz

f
= b+

xrz

f
(A.3)

yp =
ylz

f
= b+

yrz

f
(A.4)

The depth is calculated from the disparity map using the rectified image

from stereo camera. The disparity map (A.5) is determined by the differ-

ence between the x-coordinate of the projected 3D coordinate, xp, onto

the left camera image plane and is the x-coordinate of the projection onto

the right image plane. Therefore, the disparity can be calculated from the

following equation,

d = xl − xr = f

(
xp +

b
2

zp
−

xp − b
2

zp

)
=

fb

zp
(A.5)

or, zp =
fb

d
(A.6)
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B
5G NR LDPC Code

B.1 LDPC Encoder

LDPC codes are the type of linear codes (n, p) which takes p bits information

symbol and maps to n bits codeword. In LDPC code, initially, H matrix is

constructed which is sparse matrix i.e., having few 1’s when compared to

0’s [108], [109]. The BER execution of LDPC codes mainly depends on the

H matrix. Therefore, different calculation methods are used to compute H

that ultimately reduce the error rate and complexity.

The parity check matrix has been constructed through specified column

weight wc and row weight wr [109]. If specified column and row weights

are uniform throughout the H matrix, then the code is termed as “Regular

LDPC”. In contrast, if column and row weights are not uniform then the

code is “Irregular LDPC” [110]. The parameters wc and wr are defined as

the number of non-zero columns and rows within the H matrix. Also, the

parity check matrix is termed as low density if the following two conditions

are satisfied, i.e., wc << n and wr << p. While the coding rate for LDPC is

formulated as [110]:

κ = 1− wc

wr

. (B.1)
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LDPC encoding is done by matrix multiplication which is given as:

E = pG. (B.2)

For multiplication, first convert (n− p)× n parity check matrix into sys-

tematic form as H = [In−p | Pm], where In−p is the identity matrix and Pm is

the parity check matrix. Now from parity check matrix, generator matrix is

constructed as, G =
[
Pp×(n−p) | Ip

]
. The resultant generator matrix is used

to encode (B.2) into the incoming message.

B.2 LDPC Decoder

The receiver uses standard 2M -ary QAM to demodulate the incoming mes-

sage by calculating the log-likelihood ratio (LLR) and the channel decoding

is carried out for the LLR values to obtain original information.

The LLR of bit li of the received symbol is given by [111]

LLR(li) = log

(∑
α1∈S(1)

i
Pr{x = α1 | y,H}∑

α2∈S(0)
i

Pr{x = α2 | y,H}

)
, (B.3)

where where S
(0)
i and S

(1)
i denote the set of symbols for which, X = 0

and X = 1, respectively. To reduce implementation complexity, the LLR

computation is often simplified as the following min-operation [111]:

LLR(li) = −
1

2ϵ2
log

(
min
S(0)
| y −Hx |2 −min

S(1)
| y −Hx |2

)
. (B.4)

Using the LLR(li) obtained above, we can derive the analytical expres-

sion for the probability of error for the bits, li. The probability of error for

bit li, Pb,i, is given by [111]

Pb,i =
1

2
(Pb,i |li=1 +Pb,i |li=0) . (B.5)
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