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Abstract

The automotive industry is evolving at a rapid pace, new technologies and techniques
are being introduced in order to make the driving experience more pleasant and safer as
compared to a few decades ago. But as with any new technology and methodology, there will
always be new challenges to overcome. Advanced Driver Assistance systems has attracted a
considerable amount of interest in the research community over the past few decades. This
research dives into greater depths of how synthetic world simulations can be used to train the
next generation of Advanced Driver Assistance Systems in order to detect and alert the driver
of any possible risks and dangers during autonomous driving sessions. As Autonomous
driving is still in the process of rolling out, we are far away from the point where Cars can
truly be autonomous in any given environment and scenario and there are still quite a fair
number of challenges to overcome. A number of semi autonomous cars are already on the
road for a number of years. These include likes of Tesla, BMW & Mercedes. But even more
recently some of these cars have been involved in accidents which could have been avoided
if a driver had control of the vehicle instead of the autonomous systems. This raises the
question why are these cars of the future so prone to accidents and whats the best way to
over come this problem. The answer lies in the use of synthetic worlds for designing more
efficient ADAS in the least amount of time for the automobile of the future.

This thesis explores a number of research areas starting from the development of an open
source driver simulator that when compared to the state-of-the art is cheaper and efficient
to deploy at almost any location. A typical driver simulator can cost between £10,000 to
as much as £500,000 [1] [2]. Our approach has brought this cost down to less than £2,000
while providing the same visual fidelity and accuracy of the more expensive simulators in the
market. On the hardware side, our simulator consist of only 4 main components namely, CPU
case, monitors Steering/pedal and webcams. This allows the simulator to be shipped to any
location without the need of any complicated setup. When compared to other state-of-the-art
simulators [3], the setup and programming time is quite low, if a PRT based setup requires
10 days on state-of-the-art simulators [3] [4] then the same aspect can be programmed on our
simulator in as little as 15 minutes as the simulator is designed from the ground up to be able
to record accurate PRT.



viii

The simulator is then successfully used to record accurate Perception Reaction Times
among 40 subjects under different driving conditions. The results highlight the fact that not all
secondary tasks result in higher reaction times. Moreover, the overall reaction times for hands
were recorded at 3.51 seconds whereas the feet were recorded at 2.47 seconds. The study
highlights the importance of mental workloads during autonomous driving which is a vastly
important aspect for designing ADAS. The novelty from this study resulted in the generation
of a new dataset comprising of 1.44 million images targeted at driver vehicular interactions
that can be used by researchers and engineers to develop advanced driver assistance systems.
The simulator is then further modified to generate hi fidelity weather simulations which when
compared to simulators like CARLA [3] provide more control over how the cloud formations
giving the researchers more variables to test during simulations and image generation.

The resulting synthetic weather dataset called Weather Drive Dataset is unique and
novel in nature as its the largest synthetic weather dataset currently available to researchers
comprising of 108,333 images with varying weather conditions. Most of the state-of-the-art
datasets only have non automotive based images or is not synthetic at all. The proposed
dataset has been evaluated against Berkeley Deep Drive dataset which resulted in 74%
accuracy. This proved that synthetic nature of datasets are valid in training the next generation
of vision based weather classifiers for autonomous driving.

The studies performed will prove to be vital in progressing the Advanced Driver Assis-
tance systems research forward in a number of different ways. The experiments take into
account the necessary state of the art methods to compare and differentiate between the
proposed methodologies. Most efficient approaches and best practices are also explained in
detail which can provide the necessary support to other researchers to set up similar systems
to aid in designing synthetic simulations for other research areas.
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Chapter 1

Introduction

1.1 Motivation

Transportation is the absolute pinnacle of human superiority and necessity. The 21st century
has proven to be vital in aggressive advancements within the automotive industry. It’s hard
to believe that just over a hundred years ago, we were still relying heavily on horses and
steam trains for the bulk of our transportation needs. But with the advent of technology and
new combustion techniques, we were quickly able to travel long distances with relative ease.
But with new methods of transport comes with greater risks to human life. US Department
of Transportation’s Data has shown that deaths by car crash has always been in the range
of 40,000 annually[5]. Although new safety standards had been introduced over time but
they are still not enough to get the number of deaths down to a manageable factor. The
report also states that in 2019 out of 50,000 drivers that lost their lives in fatal crashes, 3,008
of those were distracted[5]. Hence a human’s ability to loose concentration during long
driving sessions is quite concerning. Present day advancements pose a greater challenge
because automobiles are getting smarter and their systems are getting more complex. Ideally
removing the driver completely from the driver’s seat is a viable option and can reduce
the rate of fatalities by a huge margin. But these autonomous systems are far from perfect.
There are just too many obstacles that need to be navigated with extreme caution. Recently
a Tesla autonomous car crashed into an overturned Lorry on a Taiwanese highway [6]. It
is speculated that if the human driver had control instead of the autonomous car, this crash
could have been avoided. Moreover, this is not the only crash that has caused speculation
around the use of autonomous cars on the public roads [7]. Hence there is alot of room for
improvement and this is what motivates us to conduct our research into the challenges that
are being faced by the automotive industry in this new era of autonomous driving.
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1.2 Background

Fig. 1.1 ADAS - Advanced Driver Assistance Systems

The automotive industry is moving at a very fast phase; new and upgraded technologies
are being introduced day in and day out. A particular sector of automotive industry, where a
considerable amount of research is being done is the Advanced Driver Assistance Systems
(ADAS). ADAS refers to a collection of necessary equipment and sensors as shown in figure
1.1. These instruments and sensors make sure that the driver gets the necessary information
and assistance in due course which in return will aid the driver in making the right decision
while on the road. These systems are highly complex in nature and once implemented and
used to their fullest extent, they have the capacity to revolutionize the automotive industry.
Coupled with advance AI (Artificial Intelligence), ADAS can provide a creative and effective
way to project data and information at the moment when it is required.

The automotive industry has been shocked recently by a number of car crashes involving
autonomous cars. A few of these incidents had involved Tesla cars and the authorities have
blamed the car’s Autopilot mode [6, 7]. At least one death occurred during these crashes.
This resulted in a significant change in the marketing strategy by Tesla which now stresses
on the fact that the drivers should always keep their hands on the wheels at all times during
Autonomous Mode. As the world is being introduced to the age of Autonomous vehicles,
accidents are bound to happen. This particular instant also opens up doors for researchers
around the world to find an efficient method to streamline the transition from manual driven
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cars to Autonomous vehicles. More companies are now adapting to the changing landscape
brought forward by the the Autonomous revolution, namely Ford, Mercedes, BMW, Volvo,
Uber etc. Some of these manufactures have already launched their driverless fleet of cars in
major cities in 2021.

SAE (Society of Automotive Engineers) which is a U.S -based, globally active pro-
fessional association has defined five different levels of Autonomous Driving Technology.
Namely, Level 1 to 5 [8].

Level 0 is the baseline with no assistance at all. This is what resembles the average
car nowadays, whereas Level 1 supports systems such as automatic braking if a potential
imminent collision is detected. This type of Automation has already been implemented
in most of the big brand cars that went into production in 2020. Level 2 includes semi-
autonomous modes which involve acceleration, braking and basic steering assistance, this
also involves variable speed cruise control systems. Level 3 extends the autonomous driving
mode to a step further. This results in the car handling the driving tasks in a given parameter
like on the freeway and during clear day times, this type of Autonomous system can allow
the driver to take back control if he wishes. Level 4 further extends the autonomous tasks
and is able to handle all driving responsibilities even if the driver is present or not. Level 5 is
the ultimate Autonomous Driving mode, which can handle complex driving tasks in any sort
of road surface and weather conditions. It is also noted that Level 5 is still at a hypothesis
stages, some vehicle manufacturers believe that the level 5 is a pure myth at present.

1.3 Problem Statement and Challenges

There are a number of research challenges involved in designing an effective Driver As-
sistance System. Most of the variables revolve around finding the quickest way to test
algorithms and make the necessary adjustments in the next iterations of the design. There is
a reason why the automotive industry has been quite slow in recognizing these challenges
due to complex manufacturing processes and costing issues. Moreover, it took quite some
time for highway safety standards to be recognized and implemented during the second half
of 20th century. In short, the problem is that the automotive industry cannot rely on full scale
real simulators anymore due to the time and budget constraints attached to them, Moreover,
the hypothesis needs to be tested thoroughly to identify whether fully synthetic data is a
viable option to design the next generation of ADAS in the least amount of budget and time
hence empowering the researchers with the tools necessary to push forth the development of
new safety standards. This is the fundamental problem statement which helps to connect all
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the chapters in this thesis. This sub-section identifies some of the most crucial challenges
that will be targeted in this thesis and are addressed in later chapters.

1.3.1 Synthetic Environments

Fig. 1.2 Synthetic World View

In order to test the validity of complex algorithms, it is considered a more productive approach
to test them out in a closed and controlled environment before releasing them into the wild.
The concept of Synthetic Environments is not new but using them for the development of
ADAS is quite a challenge on its own. A synthetic environment can be termed as a digital
twin of it’s real world counterpart, closely reflecting the physical properties such as materials,
shading, lighting and weather conditions. Since the advancements made in computer graphics
in the early 2000’s, it is now possible to build virtual worlds than can simulate almost all the
necessary physical properties closing the gap between real and synthetic worlds even further.

1.3.2 Driver Simulator

Although big car maker companies such as Ford & BMW do have huge test facilities where
they can perform relative experiments but the iteration times between when an issue is
identified to when it is resolved can be quite high when it involves physical production.
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This is where virtual simulations can play an important part in reducing the time between
production iterations. Moreover, an unlimited amount of datasets can be generated from
this simulations. Chapter 3 deals with the approach and best practices necessary to develop
low-cost and mobile simulation systems that can efficiently simulate their real-world counter
parts.

Fig. 1.3 Driver Simulator

1.3.3 Perception Reaction Time

Perception Reaction Time or PRT is quite crucial in highlighting a potential crash and
subsequent solution to avoid it within a plausible time frame. On average, 1.1 second is the
typical time for when the driver sees an issue on the road to when he reacts to it with evasive
maneuvers [9]. But these times can vary heavily when the car is in autonomous mode and
the driver is distracted by other tasks. This is due to the fact that drivers do not pay the same
amount of attention as compared to when the car is in manual mode. This has resulted in
quite a few crashes and fines over the recent years. Main challenge is to know exactly how
much time is required for the driver to safely navigate through the potential collision ahead.
Chapter 4 will investigate this issue further in detail within this thesis. Experiment setups and
detailed result analysis are performed to answer the problem statements. Figure 1.4 shows
glimpses of the recorded data used for perception reaction time experiments.
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Fig. 1.4 Driver Simulator Recorded Data

1.3.4 Weather Classification

Fig. 1.5 Weather Classification Cnns

Effective Weather Classification is one of the most challenging problems faced by vehicle
manufacturers today. Knowing the severity of localized weather and then amending the
driving attributes of a vehicle can substantially decrease the chances of a potential crash. The
other issue to note is that weather is made of up many unique factors like color, visibility,
shadows & highlights and it is quite common to confuse certain weather conditions with
others which can be dangerous for self driving cars if perceived incorrectly. Moreover,
multiple variables can be used to provide absolute classification for weather. Chapter 5
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investigates this issue in more detail and will outline an approach that can classify weather
images at a respectable success rate by using only synthetic images generated on a custom
built simulator. This newly generated dataset can play a vital role in training pretrained
deep learning networks for better performance and accuracy in varied weather classification
scenarios. A number of Deep learning networks are used to test out the feasibility of the
recorded synthetic dataset.

1.4 Contributions

The contributions of this thesis for the problem statements as mentioned in section 1.3 vary
significantly in scope and can be broken down into the following points.

1. The first contribution of this work is the development of a driver simulator called LEE
Driver Simulator that is able to record important aspects of a driver during a variety of
autonomous driving scenarios. The simulator was designed specifically to be easy to
use and extendable which provides researchers with the freedom to simulate and test
with out being bound to any physical restrictions. The easy to use aspect is comparable
to other simulators in the market like CARLA [3] which might require 10 days of
programming in order to set it up for driver reaction control whereas Our approach is
build from the ground up to target driver reactions and hence can be deployed in less
than 15 minutes. Our simulator is also designed to be light weight meaning it only
has 4 main components namely CPU Case, monitors, Steering/pedal and webcams.
Hence, it can be transported to a target location without any specific physical setup
unlike other state-of-the-art simulators [4] [10]. The low cost aspect of the hardware
also makes sure that it is accessible by even the smallest of organizations and research
teams. A typical physical driver simulator can cost between £10,000 to as much as
£500,000 [4] [1] [2] [10]. Our approach has brought this cost down to less than £2,000
while providing the same visual fidelity and accuracy of the more expensive simulators
in the market.

2. The second contribution involves Testing the hypothesis that a driver behind the wheels
of an autonomous car can quickly lose focus on the road which results in increased
reaction times resulting in possible fatal outcomes. The driver simulator introduced
in the previous contribution is used to it’s fullest extent, resulting in accurate time
recording for PRT (Perception Reaction Time). The results show that not all secondary
tasks result in high Perception Reaction Times. Moreover, the global reaction times for
hands was recorded to be 3.51 seconds whereas the feet were recorded at 2.47 seconds
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which implied that drivers are always prioritise the feet over the hands. Our approach
also sheds light on the relationship between Perception Reaction times and mental
workload, although fatigue was not the outstanding entity, the study finds that reaction
times do suffer by approx 20% when secondary tasks are introduced during driving.

3. The third contribution is the generation of a new dataset of images which captures the
driver from three different viewpoints within an autonomous virtual car. This dataset
is generated form the PRT (Perception Reaction Time) experiments as discussed in the
previous contribution. The dataset comprises of a number of different scenarios, each
driver is subjected to a number of tasks during autonomous mode. The dataset sheds
light on a number of interesting facts with regards to where the driver rests his/her
arms, legs and eyes during the targeted scenarios. Moreover, important variables like
the velocity, distance and reaction times of feet as well as hands are also recorded
separately which gives a detailed insight into how drivers behave in an emergency
situation behind the wheel of an autonomous vehicle. The dataset is currently sized at
over 100 GB and contains over 1.44 million images. According to the literature review,
a dataset of such scale is not available freely. Hence the proposed dataset is vital for
researchers and engineers who are striving to design the next generation of ADAS.

4. The fourth contribution involves the generation of a new weather dataset comprising of
synthetic images with varying weather conditions known as Weather Drive Dataset or
WDD. This includes hi fidelity images produced for four different weather conditions,
Clear, Cloudy, Foggy and Rainy. The feasibility of these images is tested in deep
learning methods and when used with VGG it is able to attain an efficiency of 74%
which is unprecedented for a synthetic only dataset which is being tested on real
world images. These images were generated by our custom built simulator which was
developed ontop of the LEE simulator. It provides great ease of use meaning that a
number of different weather scenarios can be setup in a fraction of time as compared
to state-of-the art simulators like Carla [3]. Moreover our approach allows for wider
range of controls over the cloud visual fidelity making it one of the best weather based
simulators in the field and it is designed for a quick launch and record approach meaning
that very little setup is required to generate complex weather scenarios. Moreover,
the simulator is the only one of its kind whose purpose is to generate high fidelity
synthetic weather simulations for autonomous driving research. The Weather Drive
Dataset is novel in nature as it is the largest synthetic dataset for weather classification
comprising of 108,333 images in total.
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1.5 Thesis Structure

The thesis is divided into the following 5 Chapters:
In Chapter 2 we provide a detailed literature review of the existing research in the field

of Advanced Driver Assistance Systems. It covers a vast majority of the topics related to
synthetic worlds, Perception Reaction Times, Driver Behavior & Deep learning Networks.

In Chapter 3 we present a detailed development overview of the LEE driver simulator
which was designed specifically for recording Driver vehicular interactions in self-driving
mode. It sheds light onto many aspects of the development methodology and provides a fair
guide to what to look out for when developing a specialized simulator from scratch. It also
explores how the proposed simulator is suitable for assessing driver vehicular interactions
within a Level 3 autonomous vehicle.

In Chapter 4 dives deeper into recording usable data from the driver simulator introduced
in chapter 3. Major modifications were implemented in terms of camera setup and driver
input recorders. This resulted in an upgraded system that is able to perform well and can
simulate autonomous scenarios in a much more expansive detail. This particular chapter
also deals with the recording of Perception times of drivers behind an autonomous car, the
significance of the problem is provided in detail and statistical analysis techniques such as
ANOVA are also explained in detail. The experiments that were performed on human subjects
is also outlined providing details with regards to the way the subjects were introduced into
this experiment. The chapter also covers the dataset that was generated as a result of this study
which sheds more light into how the proposed simulator can be used to record important
driver behavior data that can be used in further research into other related fields.

In Chapter 5 we explain how the driver simulator that was introduced in the previous
chapter is further enhanced and modified to produce hi-fidelity synthetic images specifi-
cally for weather classification research. The resulting images were then used to retrain
CNNs (Convolutional Neural Networks) which resulted in 74% accuracy which is of great
importance because it shows the significance of synthetic only data which is capable of
plausible accuracy when tested on real world data. The chapter also highlights the important
methodology changes that were performed to conform the driver simulator to this specific
task of weather images. Deep Learning Models are also discussed in detail including the
setup of layers as compared to state-of-the-art.

Finally Chapter 6 deals with the concluding remarks and future directions related to
synthetic worlds for driver assistance systems, the limitations that the current approach
possesses and potential workarounds for highlighted issues. The chapter effectively leaves
the door open for future researchers to build on top of the experiments and results provided
in this thesis.
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Chapter 2

Literature Review

This chapter provides a detailed overview of the literature within the use of simulators and
synthetic worlds for the purpose of improving Driver Assistance Systems. A breakdown of
the most used techniques and methodologies is performed to give a better understanding of
the current state-of-the-art. The author also presents a detailed insight into datasets that are
currently available to further compare it to the datasets that were produced during this study.
This chapter provides a strong base to compare against the contributions highlighted in the
previous chapter.

2.1 Overview

When it comes to major literature review regarding Advanced Driver Assistance Systems
research, there are numerous publications in exceptional journals and conferences, some of
them deal with the effective use of cheap mobile devices as HUD systems while others are
researching on more complex systems like achieving collision Avoidance through HUD and
LIDAR systems. The overall aim is to address the problem of how an electronic device can
help to prevent road accidents in order to save human lives. Recent study[11] has shown that
most of major accidents are caused due to negligence and frequently leads to fatal accidents
on the motorways especially during lane switching maneuvers. Most of the factors include
recognition failure, lack of awareness and fatigue.

Moreover, researchers are also working closely with designers and engineers to work
out the most efficient implementation of Driver Visual Guidance Systems by using Heads
Up Displays. On the hardware side, researchers are looking into different optical designs
in order to efficiently implement HUD systems onto full windshield areas. Other research
areas include intelligent headlights [12] and lane changing assistance [13] which are quickly
becoming a standard for modern automotive assistance systems. A study was carried out
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recently where 16 participants were instructed to drive in a parking lot with a monoscopic
heads up display warning them of a possible collision with a pedestrian in front. The
experiment reflected the benefits of AR displays and conformable graphics such as the ability
to guide drivers attention and their positive consequences [14]. Moreover, Coleman [15] did
another study which involved 24 drivers and used fixed and animated AR graphics to find
out how the driver’s reacted in both cases. Results showed that the animated graphics can
produce some driving gains like goal-directed navigation tasks but often come at the cost of
response time and distance.

Our research also specifically deals with the fact that computer-generated virtual worlds
can play a vital role in designing and implementing new algorithms that can make driving
experiences more secure and efficient. The proposed research not only deals with manual
human factors involved in driving but also computer vision based components that can help
the autonomous cars of the future to better understand their surroundings and make efficient
decisions accordingly.

2.2 Autonomous Driving Levels

Fig. 2.1 SAE Levels of Autonomy

Before we dive deep into Advanced Driver Assistance Systems during autonomous
driving, first we have to understand what constitutes and can be termed as autonomous
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driving. SAE (Society of Automotive Engineers) which is a U.S -based, globally active
professional association has defined five different levels of Autonomous Driving Technology.
Namely, Level 0 to 5 [8].

Level 0 is the baseline with no advance assistance at all. This is what resembles the
average car nowadays with no electronics that can help a driver to drive more efficiently and
safely. This level can contain systems such as tyre pressure monitors and sensors that can
show and alert the driver of potential mechanical problems such as engine oil change warning
indicators. SAE has termed this level as if the driver is driving the car even if the feet are
off the pedals and there is no steering input from the driver. The driver should continuously
supervise the controls such as steering, braking and acceleration. So the total features in this
level are limited to providing warnings and momentary assistance like automatic emergency
braking, blind spot warning and lane departure warning.

Level 1 is the next level of autonomous driving. It supports steering or brake / acceleration
support to the driver which include lane centering and adaptive cruise control. Most of the
new cars built after 2020 have these features as standard. So instances where a vehicle can
be kept at a safe distance behind the other car, qualifies as Level 1 because the driver only
has to monitor the other aspects such as steering and braking.

Level 2 further steps up the driver assistance above level 1 as it supports both steering as
well as braking / acceleration at the same time. So effectively it provides the ability of lane
centering and Adaptive cruise control at the same time. This feature is particularly common
in cars built after 2021 making it a standard throughout the industry.

Tesla by far has been the first to develop autonomous vehicles. Tesla unveiled the famous
Level 2 Autopilot system 5 years back, which made headlines worldwide, it was the first
true autonomous system of its kind. It involved systems like Auto Steer, Auto Lane Change,
Traffic-Aware Cruise Control, Side Collision Warning and Auto Park.

BMW has been a major player within the Autonomous vehicles industry. They had rolled
out Level 2 Autonomous cars in late 2016. This included systems such as Traffic jam assist.
The system is able to detect the car ahead and can read lane markings, the car can correct it’s
heading by steering into the correct direction. Unfortunately, the system works up to 43 mph.
which is way lower than the standard highway speeds. The European version of the cars have
self-driving features which does not require the driver to be present behind the wheel.

Level 3 extends the autonomous driving mode to a step further. The driver is practically
not driving when Level 3 features are enabled. But when the feature requests, the driver
must take back control. The car is able to drive itself under limited conditions and will not
operate unless all required conditions are met. examples include features such as traffic jam
chauffeur in which car would gently keep a safe distance from another car in a traffic jam
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scenario. Other scenarios include the car handling the driving tasks in a given parameter like
on the motorway and during clear day times.

Major car companies are spending a large portion of their research and development
budget to bring Level 3 Autonomous modes to the roads worldwide. Audi was one of the
first manufacturers to bring a fully functional level 3 autonomous car onto the roads with
its A8 models. It comprised of unique features like Traffic Jam Pilot System. It was able to
handle acceleration, braking and steering at 40 mph. However, such systems have their own
set of limitations, For example the system needs at least 2 cars in front to decide whether
the traffic is heavy or light, the system is also bound to specific weather conditions, and as a
result the feature is unable to perform efficiently on a snowy road. Moreover, the car also
features a driver detection system which detects whether the driver is looking down the road
or not, also it will be able to tell if the driver is incapacitated or not.

After the successful roll out of level 3 system, Audi initially had plans to launch Level
3 plus close to the end of 2021 but was put on hold due to performance issues. This was
supposed to be a refined version of their level 3 Traffic Jam Pilot system, which would have
allowed the car to operate at standard highway speed such as 60 to 70 mph but the system
still requires the successful detection of a freeway environment by using the GPD and on
board camera systems. Moreover, the system was also planned to include a data recorder
system which would collect real-time driving data during a driving sessions, it almost acts as
an airplane black box, which collects vital data just before a crash.

Honda might be the most affordable option for Autonomous Driving Suites. They have
features like Adaptive Cruise Control and Lane Keep Assist, which uses a forward facing
camera to determine the distance and hence control the speed and direction. Honda cars
can also include Forward Collision warning, Collision Mitigation Braking, Lane Departure
Warning and Road Departure Mitigation systems. Honda plans to launch its Level 3 cars in
the next few years which will have car to car communication build in. This helps to share the
necessary road data with other Honda cars in effect making the autonomous driving more
accurate and efficient. Moreover, Honda has also made a bold claim of No crashes after
2040.

The Mercedes Drive pilot system is far the most resilient than the company allows it to be
under its current stage. Also the E-class was the first car ever to introduce V2V technology
which like Honda’s planned cars are able to communicate necessary road data with other cars
and this particular data is not bound to just Mercedes specific cars but it is a global shared
data pool to which every other car company can contribute effectively making it an open
source communication model for transmitting vital road data and information.
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Level 4 further extends the autonomous tasks and is able to handle all driving responsi-
bilities even if the driver is present or not. Examples can include local driver less taxis and
by design the vehicle can include or not include pedals or steering wheels. This level would
in theory bring about the biggest change in automotive industry but is still limited by specific
conditions.

Audi is also pushing the Level 4 Autonomous systems by 2030. This will allow the cars
to drive autonomously anywhere as long as the car is within a geo-fenced area. This system
will allow the car to travel from London to Paris, provided the road is already mapped into
the system. In total Audi would require at least 24 sensors to make Level 4 Autonomous
driving a reality, this includes sensors such as GPS, LIDAR (Light Imaging, Detection and
Ranging), short and long range radar system, and at least two different digital cameras for
computer vision based input.

Apart from Audi, BMW is planning to launch level 4 Autonomous cars in the next few
years and are planning to tackle Level 3 to 5 cars in the next 10 years.

Fig. 2.2 Level 5 Autonomy Concept

Level 5 is the ultimate Autonomous Driving mode, which can handle complex driving
tasks in any sort of road surface and weather conditions. It is also noted that Level 5 is still at
a hypothesis stages, One Audi representative recently described the level 5 as a pure myth
but that is surely bound to change with the progression of technology.
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The pioneering technologies do have their own set of limitations. As discussed before,
Tesla autopilot system has been involved in quite a few crashes since it’s debut which resulted
in at least one death.[16] [6] Tesla has always maintained that the users should have their
hands on the wheels at all times even in Autopilot mode, until there is a stricter procedure in
place to force the users to comply with the guidelines, these accidents are bound to happen
again and again until the automotive industry reaches level 5 Autonomous modes.

The above levels highlight the fact that in order to reach the Level 5 Autonomous Level,
researchers and designers require systems and simulators which can aid in reducing the
iteration times between algorithms. The author presents a number of solutions which are
vital in achieving this goal.

2.3 Synthetic Worlds

Fig. 2.3 Driver Simulator Synthetic View

Synthetic worlds are becoming very useful in the research community for the purpose
of iterating quickly and efficiently with regards to testing new algorithms. There are alot of
advantages and disadvantages for using synthetic data for deep learning applications. One of
the limitations of deep learning networks is the data-hungry nature of using such systems,
they just require too much data to train and test. This limitation can be overcome by using
virtually created data that can be generated easily and efficiently in great numbers without
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having to step outside into the real-world. The artificially generated data can help to improve
the performance of deep learning methods by meeting their data demands [17]. A report
created by Gartner agrees to this notion that artificially created data will surpass real data
usage for AI by mid 2030’s as shown in the figure 2.4[18]

Fig. 2.4 Gartner 2021 Report

Driving simulators are proving to be vital in automotive research and are used heavily in
other fields as well such as military and construction. The overall premise has changed so
much that it is safe to say that the research community cannot proceed without them. They
can primarily be broken down into 2 categories.

1. Physical Simulators

2. Virtual Simulators

2.3.1 Physical Simulators

The first interactive simulator was introduced in the 1960 [19] which paved the way forward
for other physical simulators like TRAFFIS which is an industrial grade simulator relying
specifically on a re-configurable approach [20]. Another recent research was carried out at
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The University of Auckland, New Zealand [21], It deals with recording the facial expression
of the driver to detect if the driver is paying attention towards the road or not with respect
to what exists in front of the road. The research proposes an advanced driver-assistance
system that correlates the driver’s head pose and hazards by analysing both simultaneously.
They also propose three novel ideas, Asymmetric appearance-modelling, 2D to 3D pose
estimation enhanced by the introduced Fermat-point transform, and adaptation of Global
Haar classifiers for vehicle detection under challenging lighting conditions. The system
is capable to detecting the driver’s direction of attention, it can also detect yaw and head
nodding as well as vehicular detection in front of the driver. Having both road and the driver’s
data and implementation of a fuzzy system, they had successfully managed to develop an All
in one system to detect driver’s attention and point of concentration. Moreover, the system is
also stable enough to provide real-time performance analysis for real-world driving scenarios.

Our approach demystifies the notion that physical simulators are better at performing
complex experiments than virtual simulators. The later chapters in this thesis will show
that virtual simulators are just as effective and accurate as their physical counterparts while
reducing the setup and iteration times by a huge factor.

2.3.2 Virtual Simulators

The complexities and setup times of physical simulators has a drastic effect on efficiency
and reusable data. A good example would be a specific weather condition would not be the
same next time a physical simulator is used. The environmental aspects are not controlable
enough, these issues can be solved by opting for a virtual simulator instead. which can
provide complete control over all aspects of driving while still maintaining the accuracy of
experiments performed.

Virtual Simulators are by far becoming more robust and cost effective, examples include
a research that was carried out at Stanford University which looks into ways of anticipating
manoeuvres via learning Temporal Driving Models [22]. A real car is fitted with cameras
and computing device that captures driver actions along a road, the research then proposes
an Auto-regressive Input-Output HMM to model the contextual information along with the
manoeuvres. The captured data is then evaluated against a diverse dataset of 180 miles of
real-world motorway and city driving. The results have shown that the system can anticipate
manoeuvres 3.5 seconds before they occur with over 80 percent F1-score in real-time. As the
above result reflects, this particular research is quite fascinating as it paves a way to have a
quick peek just over a few seconds into the future to detect what will happen next. This type
of approach would generously support new algorithms and applications that can detect and
avoid particular automotive accidents.
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An enormous amount of interest is being generated regarding the use of Virtual or
synthetic Worlds to test algorithms that will eventually make their way into the real world
applications [23]. Image-based detection of humans and automobiles is of vital importance
when it comes to AR and HUD development. The detection of non-occluded standing
humans has always remained a challenge for intensive research. One such approach involves
the training of data set that involves 3d animated humanoid models from a game engine [24].
The training dataset still requires a lot of human input to pave the way for Convolutional
Neural Networks to work effectively in identifying the humanoids. The results are quite
promising, the research presents a solution to a problem namely the acquisition at a low cost
of good samples to train. In short, subjects were instructed to play an open-world video game
which consisted of an urban environment full of cars, buildings and humanoid characters.
Whereas in the background vital data is being recorded, the captured data is then subjected to
a classifier which isolates humanoids from the background. As the data being used is virtual,
the game engine can automatically classify the humanoids from the background. Also later
the researchers introduce an active learning technique thereby using the virtual world data in
conjunction with the real-world data. They then also provide quantitative results showing the
validity of the approach.

Fig. 2.5 VR Simulator setup

Another crucial study was performed by Chen-Ruei et al [25]. The experiment proposes
a new methodology to carry out 3d pose estimation of an object by assuming a single lens
camera environment and then uses a synthetic virtual world dataset to assist the deep learning
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model. By using only the synthetic dataset to conduct the training the efficiency achieved
was close to 85% with 30 million parameters. The study increases the confidence in the
synthetic worlds by a huge margin as it provides insights into how virtual worlds can be used
to test and train deep learning models with plausible efficiency.

Tozman et al [26] A study was performed on a virtual simulator to understand the
relationship between flow and heart rate variability. 18 subjects took part in a driving
scenario that projected them to boredom, flow and anxiety. Heart rate variability or HRV
differed significantly between the three mental states.

Another study was performed by Yimen et all [27] studies the effects of driver vehicular
control switch between manual and autonomous driving systems. The subjects found it
challenging because they were not used to that system. the study proposes a robust controller
to assist human drivers in the handover scenarios. A virtual simulator was used equipped with
a VR headset.The results showed that the driver steering loads and vehicle lateral deviations
can be reduced by the designed controller hence improving the driver safety in the handover
process.

Virtual simulators can also be used in conjunction with the real world by using augmented
reality to overlay virtual information on top of the real one. We also have quite a lot of
examples relating to an effective AR in real-world scenarios, these include the use of AR
systems within Military equipment, like a fighter pilots visor display system. It effectively
helps the pilot to acquire targets on a battlefield by just looking in the direction of the target.
Examples like that can also be implemented within the automotive version of AR displays.
A typical scenario would involve the driver looking in a certain direction. By doing so
the AR systems would project data and information containing famous landmarks in the
bespoke direction, without having to need to stop on the side of the road or even the driver
taking out his phone to look for the required information, as a result making the driving
more effective and safer at the same time. Moreover, an effective design and composition
theory is also necessary for the projection of the above information. Because according
to a recent study from Toronto University, the HUD systems can have a negative effect
on the driving if the information being transmitted is too overwhelming. We believe such
problems can be overcome by using an effective design methodology while creating the AR
systems. The perfect example of such a scenario would be a driver being bombarded with
unwanted data and information at the wrong time. The design methodology may involve the
colour of the fonts as well as the contrast ratio with the background elements. This approach
is also beneficial to the psychological researchers as well, who are willing to see how a
driver responds to such scenarios. Which will result in a broader range of possible research
scenarios.
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Tracking and Registration are also quite important in delivering an effective driving
experience; The importance of VANETS (Vehicular Ad Hoc Network Systems) is crucial
under such circumstances [28]. It is a system that allows cars on the road to share vital
information regarding their surroundings, effectively allowing information to be transmitted
from one edge of the road to the other. This can involve an accident alert down the road. This
system has the ability to make the roads much safer and less crowded by relaying accident
info the incoming cars and effectively giving diversions before the bespoke point on the road.

Another challenge for an effective ADAS system is to assist the driver in all weather
conditions. This can be quite challenging for the ADAS of the future. A particular system
would work just as well as it’s military counterpart. Armies around the world are using the
Thermal and night vision system vigorously in everyday combat situations. The same can be
true for an automotive display system, a system that can operate in varying weather helping
the driver to overcome nature’s constraints. The scenarios can involve driving in a heavy
storm, extreme fog or pitch-black night [29].

In this section, we have seen how the virtual simulators have a decisive edge over the
physical simulators and that they can save enormous amount of time and budget when
designing advanced driver assistance systems. Moreover, the virtual simulators that are
available do require enormous amount of setup time and hence can be improved further
specifically towards the area of driver vehicular interaction and visual place recognition.

2.4 State-of-the-art Simulators

As discussed in the previous section, simulators have been part of the research community
for a number of decades, it is a plausible proving ground for testing new systems but only
a decade ago the visual fidelity was quite far behind. With the advent of technology this
is rapidly changing and the simulations are becoming more reflective of their real-world
counterparts. The challenge is to bring the cost down and design better scenarios that can
reflect the real world problems as close as possible.

Another study used 30 drivers strapped with a heart rate sensor to detect the increase in
heart rate of drivers during a scenario that simulated a critical situation which as a result
increased the driver’s heart rate. the Wahoo Tickr X chest strap was used to measure the
heart rate. [30]

Alexander and Neville [31] did an experiment on 26 drivers in two different scenarios.
The subjects were asked to read a newspaper while waiting for the car to give back control
from an automated scenario. The results showed that the lane positioning was unaffected
in both automated and manual conditions. However, a significant increase in the standard
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Table 2.1 LEE General Comparison for PRT and Weather classification with State-of-the-art
Simulators

Costing Learning Curve Extendable Visual Fidility
Our Work (LEE) Low Low High High
CARLA Low High Mid High
STISM High High Low Low

deviation of the steering wheel was noted. In short, drivers performed better in the self-
paced transfer as compared to system paced transitions. Another study showed that a
prior familiarization with takeover requests affected the driver’s takeover performance and
automation trust, hence the first take-over performance is the most relevant whereas it slowly
lowers driver’s automation trust [32]. Regarding the use of simulators to gather such scientific
results is concerned, it was found that the ADAS simulations contributed significantly to
enhance the data that would mean better ADAS for future auto-motives [33] [34].

Soleymanpour et al [4] performed a study by using a desktop driving simulator known
as STISIM Drive, the simulator was programmed with night driving for atleast 70 minutes
on a two way highway with no turns, fourteen healthy volunteers aged 18 were selected to
perform this experiment. The main purpose of the study was to detect drowsiness among the
drivers. The novel algorithm was able to show an accuracy of 78.79% and a detection rate of
95% by comparison with KSS based drowsiness. This shows that a lot of time can be saved
and iterations of experiments can be performed without the need to spend huge sums of time
and budget by using a virtual simulator. As shown in Table 2.1 STISIM is quite expensive
and requires special setup, and transporting issues can arise as well due to the bulky nature
of the hardware. Although the developer support is quite reasonable, the system still has a
steep learning curve which adds to the overall budget and time. The biggest issues if the Low
visual fidelity, STISIM is quite a respectable simulator when it comes to driver research but
for computer vision tasks it lacks the visual quality for efficient dataset generation.

Carla is another simulator which works really well in simulating an urban environment
for autonomous driving vision research, it is able to mimic Lidar camera outputs and also
generates dynamic weather conditions, but the issue is the setup which is quite cumbersome.
[3] Another extension of CARLA simulator came in the form of a bus modification. Xiang
et al [35] managed to modify the standard CARLA simulator to a Bus simulator. CARLA
is perhaps the only simulator that is closely comparable to LEE but the high learning curve
when it comes to accessing external hardware communication and scenario setups makes it
harder for researchers to adapt to it quickly. Same can be said for the extend-ability because
the users would need to access the API specifically for altering the virtual environment. The
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image quality is comparable to LEE as it provides a comparable visual fidelity especially
in the recent builds releases of CARLA. As we can see from the above that the gaps that
our approach can fill is in the area of affordability, easy usage and scalability which can
provide the researchers, a simulator that can provide the usage and feedback as efficiently and
accurately as the real-world counterparts. However the simulators discussed in this section
have one thing in common, although they are all significant in performance, but they lack in
setup times, plug and play and visual fidelity. Our approach will aim to solve these issues in
more detail in Chapter 3.

The above literature is enough to motivate that there is a plausible need for synthetic or
virtual simulator utilising synthetic worlds to help answer some of the problem statements
raised in the previous chapter. There is also a need for generating usable datasets that can
be used to test and train the next generation of deep learning models to assist in designing
better driver assistance systems. Chapter 3 introduces the development of a specialized
low-cost simulator called LEE that has proven to be beneficial in recording usable data and
experiments which have resulted in a publications of a journal paper as well as a conference
paper.

2.5 PRT: Perception Reaction Time

Fig. 2.6 Perception Reaction Time

PRT of human drivers is an active research area within the driving performance domain,
where it plays an important role in road incidents [36] - [37]. Green [36] highlights that the
most important variable is the driver’s expectation. Jurecki [37] Confirms that reaction time
is approximately a linear function of Time To Collision (TTC). Svetina [38] concludes that
mean reaction time and inter-individual variability progressively increases with age. It is
worth mentioning here that all these studies are carried out on active users while actually
driving a real vehicle.

Regarding the average reaction times in emergency situations, it has been studies that the
average time is 5 seconds [39]. Another interesting study shows that human reaction time
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can increase by 40 to 87 percent due to increased fatigue levels. [40] The problematic side of
transferring control from autonomous to manual driving results in a jitter effect no matter
how smooth the transfer is, Takahiro [41] proposes a shared authority approach for this type
of control transfer which results in increased driving control during simulator trials.

Regarding driver distraction studies, Saifuzzaman et al [42] investigated the impact of
mobile phone use on drivers within a car following scenario, interestingly it was found that
drivers tend to select lower speeds, large vehicle spacing and longer time headways as risk
compensation behaviour, Cognitive distraction and visual distraction was also one of the
focus points in that study.

Perception Reaction Time (PRT) and mental workload have proven to be crucial in
manual driving [43–45]. Meanwhile, in highly automated cars, Take-Over Performance
(TOP) is an addition variable to take into account for road safety [46]. In these cases, the
mental workload is closely related to immersing the driver in NDR-tasks (s)he is performing
while the car is driving autonomously [47]. Previous studies found impairments in take-over
performance while engaged in NDR-tasks, but little is known about the impact of specific
task characteristics [48, 49].

To summarize the above literature review, Chapter 4 aims to explore how the immersion
in NDR-tasks affects the success of TOP of drivers in a highway critical situation and evaluate
the influence of several variables, such as PRT, on this success.

2.6 Classification of Weather

Fig. 2.7 Weather Classification CNN

Weather is one of the most important variables that can affect the transportation industry as
a whole. If left unnoticed it can trigger car crashes, train derailments and numerous other
accidents that can cripple the logistics operations of a particular area. Numerous studies have
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been carried out which have tried to expose the vulnerability of transportation services due
to adverse weather conditions [50]. Current systems rely on expensive sensor arrays which
try to detect present weather [51]. Trying to get an autonomous car to detect weather is
quite a challenging endeavour on its own. the recent advancements in computing power have
paved the way for machine learning to classify images and features. Lu et al, [52] proposed a
two-class weather classifier which can differentiate between images based upon five features,
namely, Sky, Haze, Contrast, Reflection and Shadow.

There is a rise in the use of Convolutional Neural Networks for the purpose of image
classification. Works by Krizhevsky et al [53] consisted of a CNN architecture which takes
considerable advantage of the improved computing power to train and improve the overall
performance. The system utilises a built-in feature extractor based on supervised learning,
which is more efficient as compared to manual feature extraction used in other machine
learning systems.

Fig. 2.8 Krizhevsky Weather classifier Architecture

Other CNN systems have been designed around Krizhevsky et al [54] model such as [55]
are a good example. Elhoseiny et al [53] network is designed around Krizhevsky’s weather
classifier and is able to categorize between two possible classes, proving that a technology
used for general-purpose categorization can be used for highly specific applications while
achieving exceptional results. [56] resulted in an architecture which is quite successful when
it comes to image classification known as GoogLeNet, which was further explored later [57].

Another study performed by Di Lin et al [58] proposed a deep learning framework named
region selection and concurrency model (RSCM)which used regional cues to predict the
weather conditions.

Recent study [59] proposes a new open-source dataset comprising of three classes namely
Rainy, Foggy and Snowy. Each class contains 1100 images and uses a novel algorithm which
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Fig. 2.9 RFS Dataset

uses superpixels delimiting masks as a form of data augmentation, leading to reasonable
results with respect to ten convolutional neural network architectures.

A recent study performed by Mazin et al [60] which studies the detection efficiency of
road elements during a rainy weather, indicates that the performance of image detectors
trained on clear weather images can significantly degrade during rainy images. This implies
that better training datasets are required to overcome the issue of not enough images for a
particular weather class.

Most of the previous research includes the use of polarized and infrared cameras, the
use of these cameras can give some plausible data but the installation costs can easily be
substantial. [61] In order to combat this, the use of RGB cameras is much more simple and
cost-effective, hence making it viable for mass release.

Most of the studies aimed toward driver assistance systems have been performed towards
Rainy weather classifications [62] [63]. A study performed by Lu et al [64] deals with two
class weather classification which includes Sunny and Cloudy. In that study, the authors
proposed a new data augmentation scheme to substantially enrich the training data, which is
then used to train a latent SVM framework to make the solution insensitive to global intensity
transfer. Another study [65] deals with multi-class weather classification which only deals
with fixed camera point only.

The above literature review proves the fact that weather classification in autonomous
cars is a significant problem and needs to be solved in order for cars to provide a safe and
stable driving experience within any weather condition, especially for Level 3 to Level 5
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autonomous cars. Experiments and dataset generated in chapter 5 sheds more light into
probable solutions for the autonomous cars to classify the weather conditions more efficiently.
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2.7 Summary

In this chapter, readers were provided with an overview of the research being performed on
Advanced Driver Assistance Systems. Moreover, a detailed insight is provided into Driver
simulators, Perception Reaction times & Weather classification. A more in-depth literature
review is provided within each of the upcoming chapters as well. We also looked into the
different data sets that are currently available for Deep Learning model research which will
be explored in further detail in the next chapters and hence challenged. Our data sets are
further tested and analysed in later chapters as well.



Chapter 3

Driver Simulator

3.1 Background

The last few decades have seen a dramatic increase in the number of vehicles utilizing
ADAS, such as intelligent head- lights [12], lane change assistance [41], and even the first
attempts of automatic driving systems [66][67][6]. Although currently far from having
feasible completely automated driving systems, there are several intermediate levels of
driving automation for on-road vehicles, according to the SAE international standard J30164
[8], based on the system core functionality. Its level 3 specifies that the automated driving
system performs all aspects of dynamic driving task with the expectation that the driver will
recover the car’s control when required. Thus, the human driver can perform other activities
while the system is driving autonomously. This gives rise to an important question: At which
moment and how can the automated driving system return the control to the driver?

The answer to this question depends on several aspects, such as the activity of the driver,
his/her general state and possible reaction, the particular state of the environment and the
current state of the car. All these aspects should be carefully analyzed without compromising
road security, and hence require a simulated environment for research, development and
testing purposes so that greater number of iterations can be performed to get the most amount
of data without going on a real road.

This is where the idea of a custom built driver simulator comes into the picture. The
main objective of the driver simulator was to be light, inexpensive and portable means to test
different driving scenarios involving driver interactions and most importantly to generate
usable datasets for future research. The hardware assets that were required involved a
reasonably powered workstation, steering and pedal set and a web camera that is able to
capture the subject’s interactions with the hardware during different trials. The software
side is broken down into two parts, namely the assets and programming. The assets created
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involved vehicular 3d models and environmental props. The vehicle model was a pre-made
modelled bought from an online 3d model store. Moreover, the supplementary traffic car
models are also bought from 3rd party vendors to further enhance and populate virtual
environments. The models were then processed to optimize them for real-time renderings.
This included stripping down any unwanted details on the 3d models, in particular, the
interiors of the traffic vehicles were reduced quite substantially as they are never seen in the
actual simulation. The Main simulation car interior is also optimized to a point where it can
be interactive in the final simulation.

3.2 Development

Decision was made right at the beginning to follow an agile development approach, meaning
the simulator development followed many design iterations during which more enhancements
were made in order to get the required outputs and functionality. It was necessary to draw
attention to physical attributes on the virtual environment like virtual gravity and plausible
weights of the cars and other movable objects within the environment, car acceleration
systems were to be closely resemble the real world model, in our case it was the Mazda 3
which can reach 0-60 mph in 5.9 seconds. This was important as the absence of it would
make the experiment void. In other aspects of the virtual environment. the road surface
was to have a considerable amount of friction so that car tyres would adhere to it as close
as possible to the real road surface. This allowed the cars to drift if a certain amount of
centrifugal force was in action. on the other hand, collisions were planned in so that cars
would behave physically accurate if they hit the barrier of the neighbouring cars.
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3.2.1 Foundations

(a) Virtual Motorway View

(b) Driver Simulator Synthetic View

Fig. 3.1 Driver Simulator

The most important premise was to keep the development process represent a plug and play
design so that any new features could be added easily without too many issues. This allowed
us to incorporate new and upgraded features with ease like dynamic weather conditions
and advanced lighting controls which includes complete day/night cycle with atmospheric
features like distant fog and ozone layer system. These will be discussed more in detail in
this chapter. The main advantage is the portability of the whole setup, it can be transported to
almost any location. Apart from that a number of scenarios can be prepared and evaluated in
a short amount of time. The simulations can be executed unlimited number of times and for
as long as required, this was plausible by implementing efficient garbage collector systems



32 Driver Simulator

within the high level code which allows the simulator to keep operating under the most stress
full scenarios.

3.2.2 Hardware

In order to keep the costs down and the entire setup mobile in nature, a typical desktop setup
was used. A custom workstation equipped with an efficient Intel i7 processor, an NVIDIA
GTX Titan Graphics card with 12GB of usable VRAM, two HD monitors, a HD Webcam
which was further increased to three webcams later in the study in order to record more
detailed driver behaviors and a Logitech G27 Wheel and pedal Set were used as input devices
for the drivers. The input devices were then evaluated to make sure that they adhere with
the input accuracy required for the complex simulations that will be planned in the next
chapter. This allowed the simulator to be as cost effective as possible as compared to other
state-of-the-art simulators.

3.2.3 Software

On the software side, Autodesk 3DS Max was used to model and develop the virtual assets
for the driver simulator. This includes the driver’s car, other traffic cars as well as road
surfaces. Adobe Photoshop was used in the creation of 2D elements, which includes detailing
on the modelled cars as well as the road sections. Finally, Unity3D was used to tackle the
interactive challenges of the simulator.

3.2.4 Assets Prep

A standardized game development workflow was used to make sure that the projected
simulation scenarios would not be effected by graphical performance dropouts. The method
included

1. 3d Modelling

The road surface was modelled in 3dsmax by using reference imagery from the internet.
It is loosely based on a three lane section of M25 motorway around London. In order to
keep the modular aspect of the environment intact, only two road sections are modelled,
a straight road section consisting of 100 meters and an angular portion of 25 degrees.
These two road sections help in creating different looking road environments within
Unity3D. Basic poly modelling techniques were used and additional polygons and
vertices were kept to a minimum in order to adhere with the real time engine rendering
requirements.
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Fig. 3.2 Road surface Straight Section

Fig. 3.3 Road surface Curve Section

2. Texturing

In order to keep the export process as smooth as possible, It was decided to go for
a more linear texturing path as shown in 3.4 instead of advanced procedural maps.
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Advanced UVW mapping was avoided to keep the development time to the minimum.
Only Box and Planner UV mapping were used for all the textures. The texture sizes
were kept under 2048 x 2048 and were kept to a multiple of two for optimal memory
and GPU performance because memory usage would go up significantly once traffic
cars are spawned in the virtual world. Moreover, standard compression techniques were
also used to reduce the texture file sizes to a manageable limit. Mip Map techniques
were also Incorporated within unity3d for extra flexibility during run-time.

Fig. 3.4 Road Material Setup

3. Optimization

Optimization has to be the most important part of the simulator development process.
In theory we could have added as much geometry and textures as possible but without
optimization the graphical performance would have suffered significantly, rendering
the whole simulator useless. In order to keep the memory counts low and frames per
seconds high, more time was spend on cleaning and deleting the edges and polygons
that were not required at the current viewing distance. As an example, the main car
model as shown in 3.5 was originally consisted of more than 1 million polygons.
By using 3dsmax’s build in optimization tools such as ProOptimizer, we were able
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to bring down the poly count to a respectable 370,000 polygons for the complete
model. Moreover, similar objects that had the same material and shader applied were
connected together to keep the draw calls down, this resulted in the introduction of
SUb-Object material setup which applies multiple materials to the same geometry
based on surface IDs.

Fig. 3.5 Main Virtual Car Model

4. Export

Once the models are prepped in 3dsmax, the next step was bringing them into Unity3d
for real-time rendering. This process either makes or breaks the 3d models but good
results can be achieved if done properly. FBX was used as the preferred format for all
exports to unity3d. 3dsmax’s built in FBX exporter provides all the necessary options
to bring in geometry, materials as well as textures that already linked up to the 3d
model. This is one of the main advantages of using FBX over other formats like .3ds
and .obj. Moreover, the exporter provides useful options such as the options to export
keyframe animations, axis conversion because some game engine support y- axis as
vertical and some support z-axis, it also has the ability to do unit conversions. In our
case the units were set to Meters in order to target the default unit scale in Unity3d
i-e 1 Unit in unity is equal to 1 Meter. with regards to material/shader export from
3dsmax, care was taken as not to use unsupported maps, hence most of the textures
and maps were kept to RGB jpegs in order to boost compatibility.
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Fig. 3.6 FBX Export Window - 3dsmax

5. Shader Optimization

Once the 3d models and materials were exported from 3dsmax, they always show up as
standard shaders with diffuse channel textures attached. The next step is to amend the
shader’s specular and metalicness values to get the desired look of the shader within
unity3d. Normal Bump maps were also created to give the illusion of high quality
mesh. The advantages of using Normal Maps is the fact that it runs from a single jpeg
texture but it gives the illusion of a hi resolution 3d model effectively adding more
detail to the 3d model without affecting the memory usage too much.
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6. Virtual World Setup

Basic tree models were populated on either side of the road and a suitable sky en-
vironment is added to further enhance the realism of the virtual environment. The
finished 3D assets including the vehicles and the road sections were then imported into
Unity3D. The two road sections are cloned into multiple instances and are carefully
put together to form a looping M25 environment, which is approximately 4 miles long
and is used as a base for the synthetic world experiments. 3.1 shows the road surface,
including the two road sections at the top, the complete environment within Unity3D
in the middle and the complete road model dimensions at the bottom.

Fig. 3.7 Road Structure Dimensions

3.2.5 Programming

After the completion of the initial layout of the virtual environment, the next challenge comes
in the form of adding interactivity and simulating the virtual environment as close as possible
to the real world counter part. Traffic cars are populated by using a third party unity plugin
called ITS (Intelligent Traffic System) utilising the 3d modeled traffic cars by using the same
steps as described in 3.2.4. This allows the traffic cars to behave closely to their real-life
counterparts, the cars are able to move in and out of lanes and they can respect the particular
speed limits of each individual lane. The advantage of using this type of system is that it
provides a vast amount of random behaviour for traffic cars. Moreover, each new execution
of the simulator results in a different traffic structure which further adds to the realism and
unpredictability of the virtual world. In addition to that when the cars detect a particular
blockage on the road, they can stop to avoid it accordingly.

Additional controls include, Lane linking for Traffic cars, Tag system for traffic vehicles
which can be used to set properties for each vehicle to either be of a specific type i-e Taxi, Bus,
Lorry, etc. The system also supports pedestrian spawning which will become quite useful
for future iterations of the driver simulator. The main car model is then rigged to reflect the
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moving parts like the steering wheel, RPM needle, pedals, rear view mirror reflections and
the adaptive cruise control system. This part requires the most amount of time as it involves
the programming of various components that helps to reflect the final car movement. The
basic physics car model is based on the standard Unity3d car model. This is chosen so that
more complex physics models can be refined on a proven physics model in the future. The
main car also has a fully functional Autonomous Driving Mode which allows it to maintain a
specific distance from the car in front by the use of proximity zones. The Autonomous Mode
is also able to brake hard when the car in front enters a secondary proximity zone as shown
in 3.8.

Fig. 3.8 Autonomous Mode Proximity Model

The initial version of LEE simulator only consisted of 1 driver facing camera, which
recorded features such as head position, eye position and general arrangement of driver’s
sitting position as shown in 3.9. It also shows other useful information such as:

1. Current Speed

2. Engine RPM

3. Steering Angle

4. Autonomous Mode Toggle

5. Car Velocity at first road block detection

6. Distance to front car once the Main car is stopped
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Fig. 3.9 LEE Driver Sim Data Screen V1

The above data was enough for evaluating the performance of LEE simulator which will
be discussed in detail in initial sub sections of Chapter 4. The next version of LEE simulator
required a more robust upgrade to tackle PRT with NDR (Non-Driver Related) tasks in more
detail which will be discussed in the second half of Chapter 4. The upgraded LEE simulator
could now support as many as 3 separate cameras which recorded almost every aspect of the
driver’s behavior during a test session. the cameras could now record portrait view of the
driver, hand positioning on the steering wheel and foot positioning on the pedals as show in
3.10.

Theoretically it is now possible to use recorded data to train and test Deep learning
models aimed specifically at Driver Behavior based computer vision tasks. The updated data
screen was now able to output additional variables such as Reaction Times for Hands and
Feet as two separate variables instead of just one as was the case in the previous version of
LEE. Other variables included distance to front car while in autonomous cruise, distance to
front car after the main car comes to stop and car velocity at first detection of a road block.
These variables will be addressed in more detail in the next chapter.
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Fig. 3.10 LEE Driver Sim Data Screen V2

3.3 Cost effectiveness, Easy to use and Highly mobile

Typical virtual simulators can cost between the ranges of £10,000 to as much as £500,000
[4] [1]. Our cost saving approach brings the budget down to less than £2000 which makes
our proposed simulator accessible to vast majority of researchers and engineers making it
a viable option for quickly testing reaction times under different driving conditions. As
compared to state-of-the-art simulators [10], our approach only consists of 4 main parts,
CPU Case, 2 monitors, sterring/padel set and webcams. And it needs to be noted that these
peripherals have not been modified in any way and hence rely on a standard plug and play
protocols. The advantage of using such system is that no alteration is required for the initial
setup hence saving time and budget in the process. The build code can also be executed
on any specific windows machine provided that it has a reasonable GPU like an RTX 3080
installed, making it highly mobile as compared to other state-of-the-art simulators. The ease
of use aspect consists of developer friendly approach which allows our simulator to be highly
customizable as compared to CARLA [3]. As the LEE system has been developed from the
ground up as a simulator that can record reaction times, it is far simpler for researchers to
setup custom scenarios for recording PRT.
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3.4 Additional Notable Problem Statement

In the previous chapter we learned about how depth perception actually works and what are
the main cues to detect depth in images. We now move forward and find the problem and
challenges involved in acquiring an efficient depth perception detection system. Existing
implementations for depth estimation are quite varied, some rely on stereo cameras [68]
while others rely on LiDAR sensors to detect the surrounding obstacles [69]. The main
problem arises during the manufacturing process and cost effectiveness. A LiDAR sensor
and a stereo sensor would always be more expensive as compared to a single mono camera
lens [70] due to their higher production requirements.

3.5 Possible Solution

A plausible solution can be the introduction of optimized synthetic dataset generated from the
virtual simulator introduced in chapter 3. The simulator has the ability to generate depth data
parallel to RGB data at respectable resolutions of upto 1920 x 1080 or even 4k resolutions if
required. But most of the times for deep learning model based studies, it is always prefer to
introduce a lower resolution images for test/train.It is also plausible to introduce a mix and
match approach with other state-of-the-art simulators like Carla [3] to further enhance the
variation of input images.

3.6 Summary

This chapter can be summarized in the following manner:

• This chapter specifies the technical specifications needed to design and implement
a functioning driver simulator. This can have implications when HCI systems are
designed by using the results introduced above. Hence the implications of the results
are important in understanding the criteria needed for designing Human Machine
Interfaces for autonomous driving vehicles. This can include entities such as Driver’s
awareness to his/her surroundings which can be monitored by ADAS resulting in a
more enhanced driving experience.

• Successfully developed a custom driver simulator that is Open Source, easy to use
meaning the system is quite intuitive with a low learning curve for researchers to
modify for their needs and is highly mobile in nature which means that the system
only uses 4 main hardware parts namely, CPU case, 2 monitors, steering/pedal sets
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and webcams. None of the peripherals are modified in anyway and hence can be
transported and used via the standard Plug and Play protocols. Moreover, the code and
software are of a manageable file size which is less than 1 GB and can be transferable
to any windows based machine with little to no setup required.

• Successfully implemented a diverse traffic system that generates random vehicles
when a new session is loaded which is ideal for the procedural nature of the simulated
sessions, this also works in favour of a controlled environment where drivers can be
tested as close as possible to their real environment.

• Successful implementation of synced camera recording for all aspects of driver’s
behavior during autonomous driving sessions. This is highly practical for researchers
who require the monitoring of all the main aspects of the drivers sitting position and
head direction analysis.



Chapter 4

Perception Reaction Time and Effects of
NDR tasks

4.1 Background

After the successful development of the driver simulator as described in the previous chapter,
the next challenge was to evaluate the performance of the simulator for driver assessment
experiments.

The state of the art can be broken down in to the following three categories.

4.1.1 Perception Reaction Time

PRT of human drivers is an active research area within the manual driving performance
domain because it plays a central role in different road incidents.

Several studies have been carried out to deepen the comprehension of PRT’s role in
crash risks [43, 71, 72, 38, 36]. The methodologies range from proposing accident situations
involving surprise factor to examine the reaction times of drivers and also analyzing reaction
times as a factor to take into account within crash surrogate indicators.

The main results found in these studies are that the reaction time of drivers seem to be
approximately a linear function of Time To Collision (TTC), and the mean reaction time and
inter-individual variability progressively increases with age although some other factors such
as driver gender, cognitive load, and urgency might influence in human perception-brake
reaction time. However, the most influential factor is driver expectation.

All of the above studies were conducted under manual driving conditions, so they do not
take into account the PRT when the driver is carrying NDR-tasks.
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4.1.2 Mental Workload

Other studies have been centred on the influence of mental workload as a crash risk factor [73–
77]. Mental workload is not only related to being stressed, fatigued or drowsy but performing
a divided-attention task causes an increase of mental workload and task demands can exceed
the driver’s attention resources. These studies explore several indicators from many external
sensors, such as pulse rate, skin electric potential activity or surface temperature, to better
determine the physical and psychological state under different provoked circumstances.
Although the general workload is not well defined psychometrically [78], all of them coincide
that excessive (related to stress) or too low (related to vigilance) mental workload could
derail the quality of driving [79].

Besides, human performance can either deteriorate or improve depending on the degree of
automation which is introduced in that particular environment [80], so that mental workload
should also be taken into account in highly automated cars. Indeed, PRT and mental workload
can be closely related [9, 81], since increasing workload of the driver reduces the driver’s
ability to process information at different distances and thus deteriorates driving performances
and increases reaction times. The first study shows that mental calculations increase the
average reaction time for each age group, while the second one suggests that reaction times
can increase by 40%-87% due to increased fatigue levels, giving valuable insight into how
reaction times are taken into account via visual perception.

The above studies do appear to be invaluable in assessing the relationship between PRT
and mental workload but assessing these variables under a controlled simulated autonomous
car environment is quite crucial in exploring their effects further.

4.1.3 Control Switching

Last but not least, in highly automated cars, the process of getting the driver back into the
loop is very important. In this fashion, some authors [82–84] explore different ways to get
the driver back to the driving task in a safe manner, either focusing on signal modalities [82]
or designing complete human-machine interfaces [83, 84]. But still, the automated system
needs to know how far in advance and under which circumstances it has to warn the driver,
depending on the NDR-tasks the driver is doing or can do, so that the analysis of drivers’
take-over performance is crucial. Concerning the lead time to safely allow the driver to
regain control. Eriksson et al. [85] review several papers exploring driver control transitions,
although they not take into account secondary tasks, and carry on an experiment involving
secondary tasks. On one hand, they claim that the reviewed results differ depending on
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the emergency the driver perceives (s)he has to cover on, and, on the other one, they find
significant differences when drivers are engaged in secondary tasks.

Besides, [86] suggests that a take-over request with lead time at 10–60 s led to lower
crash rate, greater minimum TTC, and lower lateral acceleration. However, both studies do
not account for critical control transitions. Some other experiments [87, 48] exposed drivers
to critical take-over situations and showed evidence that cognitive load on its own might
not influence takeover time but have effects on the takeover quality. As well, reaction times
might be in line with the driver’s perception of emergency.

In case of being behind the wheel of an autonomous car such as Tesla S [88], although
the drivers were also told that they were responsible for the safe operations of the vehicle
regardless of it’s driving mode, the recorded data demonstrated behaviour indicative of
complacency and over-trust.

Still, prospectively evaluate the expected limitations caused by NDR tasks on the driver’s
ability to take control of an autonomous vehicle [89], more research is needed so that different
aspects of NDR tasks can be translated into a modelling of a framework to predict takeover
time or quality. This makes our present article more relevant as we explore in detail the
different effects that the NDR tasks have on reaction times of drivers in an autonomous
scenario.

4.2 Assessment of Driver Vehicular Interactions in Self
Driving Mode

4.2.1 Methodology

It should be noted that the use of virtual worlds has changed significantly during the recent
years for research purposes. Due to the progression being made in graphical processing
units, the visual fidelity of virtual worlds is increasing quite rapidly, this favours the use of
synthetic worlds as it increases the visual fidelity of data generated and in some cases can
match up quite closely to their real-world counter parts.

The first successful trial of our Low cost, extendable and easy to use driver simulator
allowed us to tackle a major issue of recording Perception Reaction Times [43] of drivers in
a given scenario.



46 Perception Reaction Time and Effects of NDR tasks

4.2.2 Experiment Setup

While the car is running in autonomous mode, two different scenarios are defined in this ex-
periment using LEE (Low-Cost, Extendable & Easy-to-use) simulator which was introduced
in Chapter 3:

1. The subject is not looking at the road, but attentive with hands on the wheel, which
serves as a baseline so that other scenarios can be used to compare the results for
evaluation.

2. The subject is on the phone checking social media. In both cases, once the car detects
a road block at a random distance ahead, it triggers an alarm, at which point the subject
has to take back control in order to avoid a crash.

LEE records the video of the subject, and several variables involved in the process, such
as Hands/Feet PRT and the speed at which the alarm was triggered. A total of 10 subjects
aged between 26 and 62 years were involved in the experiment. Each trial contains 12
sessions, 6 for each scenario. The distance at which the road block is detected is set to 60
meters in 3 sessions and 80 meters in the other 3. We have compared the hands and feet PRT
by means of the computation of their ranges (mean std) and have also explored the influence
of some of the variables recorded such as Hands/Feet PRT and speed. Hence three trials
for each distance gave an average Perception Reaction Time per distance trials. The second
scenario involved the same 6 trials at 60 meters and 80 meters, the only difference was the
subjects were now bound to look down on their phones at all times in order to simulate a
diversion of attention. They were free to roam around in their phones in applications like
WhatsApp and Facebook. The reaction times were recorded accordingly.

4.2.3 Results and Analysis

The subjects were found to keep the wheel in a static position unchanged from the Au-
tonomous mode was in, thus in this context, the driver appears to concentrate on control of
the pedals first. This result is also evident when we compare the Hands/Feet PRT of both
the scenarios, in which Hands PRT are significantly greater than Feet PRT. 4.1 summarizes
the ranges for Hands/Feet PRT in both scenarios. 4.1 shows the influence of three variables,
Hands/Feet PRT and speed, where blue and red colors show crash/no crash results, respec-
tively. Dots and circles represent results for scenario 1 and scenario 2, respectively. It can be
observed that the speed of the car when the alarm was triggered is a determinant variable
in both scenarios since we can appreciate two separate clusters in the speed direction. As
opposed to this, two separate clusters in the direction of feet or hands PRT cannot be seen.
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Hands Feet p-value
1st scenario 1.67 ± 1.61 1.26 ± 0.45 0.0034
2nd scenario 2.71 ± 1.91 1.42 ± 0.34 8.41 x 10-8

Table 4.1 PRT Results

This was a proper reflection of what might have happened during the recent Tesla crashes
where the drivers were feeling so much relaxed by the Autopilot system that they were
not paying enough attention down the road while the car was in Autonomous mode which
resulted in those inevitable crashes.

Fig. 4.1 Velocity vs PRT Hands and PRT Feet

The results were quite alarming, the Perception reaction time from the first scene came
in at approximately 1.67 seconds for the hands and 1.26 seconds for the feet. Whereas the
perception reaction times for the second scenario came in at approximately 2.71 seconds
for the hands and 1.46 seconds on the feet, which proved the fact that drivers were treading
a very thin line when it came to taking back control from an autonomous car in case of an
emergency [90].

The fact is that the Autonomous cars still have a long way to go before they can fully
understand the road ahead. The work discussed above was successfully published at the
ECCV 2016 (European Conference on Computer Vision). The aim of the paper involved
the use of the photo realistic virtual environment for assessing driver-vehicle interactions in
self-driving mode. As a result, the driver simulator was an ideal candidate for performing
experiments in the above particular scenario. It can be fair to say that this particular goal of
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a low cost driver simulator was achieved successfully, not only that but the simulator also
proved its worth by successfully becoming a part of a research paper that was accepted in
one of the top computer vision conferences in the world (ECCV16).

4.3 Enhanced Driver Vehicular Interactions

Moving forward from the first version of the driver simulator, the driver simulator was further
enhanced to support more cameras to capture the driver’s actions in more detail. The system
already had one camera that was pointing towards the driver’s face, capturing the details like
if the driver is paying attention or not, or whether the subject is busy in secondary tasks apart
from driving. The second additional camera was directed towards the subject’s hand position
on the steering wheel, this can further help to develop more Advanced Driver Assistance
System (ADAS). Which can pave way for analyzing whether the subject is positioning his/her
hands in the optimal driving position? The third additional camera focuses on the position
of the feet. This data can be quite useful in assessing if the subject had his feet positioned
correctly or not, also it can help to diagnose if the subject had accidentally pressed the
accelerator instead of the brake pedal during an accident scenario.

4.3.1 Methodology

The second trial of the driver simulator was a more enhanced version as compared to the
first one, Forty participants (10 female, 30 male) between 19 and 45 years old (mean =
30.73, std = 7.086) were recruited. All of them held a valid driver’s license at the time of the
experiment with a seniority of at least 1 year and at most 26 years (mean = 9.725, std = 7.66).
Moreover, a consent form was prepared for the subjects which asked for their name age and
years of driver’s license held. It also contained useful information like if the subject felt
uncomfortable at any stage of the trial, he/she would be free to quit. Safety and well being of
the subjects were of great importance throughout the entire trial sessions. The trail consisted
of 3 main scenarios namely Default Scenario, Social Media and Immersive Questions and
Answers. Each scenario was further split into 4 separate runs, each run consisted of a change
in the distance which the Autonomous car would keep which was 40 meters and 80 meters
respectively. Whereas the other two runs consisted of the distance at which the alarm was
triggered upon successful detection of the roadblock ahead which was also 40 meters and 80
meters. This gave us a diverse set of tests that would be beneficial in the data analysis stage.
It has been noted that older drivers can solve critical traffic events as well as young drivers
yet their methods of operation differs [81].
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4.3.2 Simulated Situation

The simulated situation consisted of an infinite three-lane motorway of 4 miles loop, as
explained in the subsection above. The car was driving in autonomous mode and, suddenly,
the vehicle detected an invisible obstacle, an alarm was triggered and all the cars in front of
it stopped. The detection time for obstacles randomly varies from trial to trial but usually, it
happens between 2-5 minutes during a trial. At that moment, all the cars in front stopped and
the driver had to take over the control of the car in order to avoid a collision. The average
distance and the standard deviation of the main car to the car in front at the time the alarm
was triggered was 40.64±13.34 meters and the velocity of the car was 45.2±10.97 mph.
The traffic can be turned ON on both sides of the road, but this was not a requirement for
the current experimental setup. Moreover, the drivers had the instruction of only braking or
dodging if needed, depending on the situation.

To carry out the experiment, a series of plausible scenarios were needed that a driver
would find behind the wheel of an autonomous car. Following a previous experiment
performed by Eriksson et al. [31], in which he used a newspaper reading scenario while the
car was in autonomous mode, the challenge was to enable the driver to lose focus on the road
ahead while engaging in secondary tasks inside the car. Secondary tasks were selected in
such a way that they resembled real-life situations as closely as possible. Hence keeping that
in mind, three different scenarios for the driver were posed while the car was in autonomous
driving mode. The first scenario, henceforth Default, is termed as the base scenario in which
the driver was aware to the road with the hands and feet ready to react (hands on the wheel
but without touching them and feet on a marked place very close to the pedals). The second
scenario, henceforth Social, deals with the fact that the driver was not paying attention down
the road, but was freely immersed in social media activities on her/his smartphone. Since
immersion to social media could be total and the system is automatically driving, to suppress
the variable off-road glance time, the driver was not allowed to look at the road. In the third
scenario, namely Immersive Question and Answers (IMQA), the driver was answering a list
of questions via a smartphone. These were relatively basic questions consisting of the driver’s
name, age, hobbies, etc and more cognitive loaded ones such as some basic mathematical
addition and subtraction questions. Strict guidelines were provided to the drivers so that they
won’t even peek at the road ahead while the car was driving automatically and the driver is
indulging in secondary tasks (second and third scenarios), the penalty for which was to start
the trial again if the driver looked at the road during specific scenarios.

Each driver performed the experiment four times in each scenario under different cir-
cumstances, that is a combination of enabling to dodge or not and a threshold on the initial
distance to the car in front during the autonomous driving (the approximate distance that
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the car would keep from the car in front in autonomous mode). Thus, there are a total of
12 trials that were carried out on each subject, although we group the four trials per driver
and scenario as 4 different samples. There are a number of variables that are being recorded:
Hands/feet PRT, cruise distance threshold to the front car, distance to the front car at which
the alarm is triggered, final distance to the front car after the car comes to a stop, the speed
at which the alarm is triggered, any traffic cars to the left and right side of the driver’s car,
crashed or not, and if the driver tried to dodge and save himself. The experiment also includes
other basic variables like the age and gender of the driver and the seniority of his/her license.

4.3.3 Experimental Design

After a brief introduction to the driver simulator, the participants were given a trial run
with the autonomous mode disabled just so that they could get the feel and sensitivity of
the steering wheel as well as the pedals. Afterwards, the autonomous mode was turned on
and the participants were told to take back control as soon as the audio/visual alarm was
triggered by the simulator. Moreover, the participants were also instructed to place their
hands and feet in a neutral position during this time. This gave them the initial confidence in
tackling the simulated event and the baseline scenario (Default). For the next scenario, Social
Media, the participants were briefed to indulge themselves in social media activities on
their smartphones while behind the wheel of the virtual autonomous car. For the Immersive
Question and Answers scenario, the participants were only given a short briefing regarding
the type of questions that would be asked for this part of the experiment. All the data recorded
during the trials was used in an anonymous form.

4.3.4 Objective measures

During the experiment, we recorded several objective variables to be explored under different
scenarios.

1. PRT: We understand the PRT as the time that elapses from the instant that the driver
recognizes the existence of a hazard on the road to the instant that the driver takes
appropriate action. The hazard can result from traffic cars in front of the driver’s car
suddenly stopping and queuing up, which would alert the driver of a possible hazard.
In this case, the hazard recognition is perceived thanks to an acoustic alarm. Since we
do not have a tool to measure the time from when the alarm is triggered until the driver
perceives it and the time elapsed from when the driver perceives it until (s)he acts, we
can only measure the elapsed time from the moment the alarm is triggered until the
moment when the driver reacts.
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(a) PRT of hands (PRTH): The appropriate action for hands is steering the wheel.
The system only records the reaction times of the steering once it receives at least
1 degree of input in either direction from the driver. Notice that the alarm is only
triggered during straight road sections, so that normal steering inputs on a curve
are absent.

(b) PRT of feet (PRTF): The appropriate action for feet is braking, so that, the system
records the reaction time as soon as it detects pressure on the brake pedal.

2. Velocity of the car at the time the alarm is triggered.

3. Distance of the car to the one in front at the time the alarm is triggered.

4. Success of TOP: We consider a success when the car does not crash.

To answer how the immersion in NDR-tasks affects the TOP of drivers we analyze
the PRTH and PRTF as soon as the alarm is triggered across different scenarios. As well,
we explore the relationship between the velocity and distance at the moment the alarm is
triggered.

4.3.5 Statistical Analysis

According to the objective variables explained in the above subsection notice that success of
TOP can be considered as a dependent variable, while the remaining ones are independent, so
that we analyze how such independent variables can influence on the success of TOP. Also,
since the scenario can influence on the performance of the driver, PRTH and PRTF can be
analyzed across the scenarios to explore if they are affected by the current scenario.

To decide if PRTH and PRT are affected by the scenario, a one-way ANOVA should be
computed for each variable. This test is usually used to detect significant differences between
the distributions of more than two factors (in this case the different scenarios). That is, its
hypothesis test associated considers as null hypothesis H0 meaning the factor has no effect,
and as an alternative that it does. In terms of parameters, the ANOVA test can be written as
follows: {

H0 : µ1 = µ2 = µ3

H1 : ∃ µi s.t. µi ̸= µ j for some j = 1, . . . ,3

where µi, i = 1,2,3 corresponds to the mean of the objective variable for each scenario.
A requirement for applying an ANOVA is that data is normally distributed, which can

be contrasted by means of a Kolmogorov–Smirnov test. In particular, the Lilliefors test
is a normality test based on the Kolmogorov–Smirnov one that compares the empirical
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distribution of the data with a normal distribution without any expected value and variance
of the distribution [91]. In case the data does not follow a normal distribution we can use
a non-parametric statistical test, instead of a parametric one, which analyzes differences
among group medians instead of means. In particular, since each subject repeats the test
for all scenarios in our experimental design, we can consider a repeated measure one way
ANOVA, so that we use a Friedman test [92].

To measure the strength of agreement between subjects (effect size) we also compute
Kendall’s W , defined as W = χ2/N(k−1), where χ2 is the test statistic, N the number of
samples (160) and k the number of scenarios (3). The results can be categorized as small,
medium and large, which in our case will be [0,0.10), [0.10,0.30) and [0.30,1], respectively.

To analyze the influence of an objective variable on the TOP success in each scenario,
we also need to compute a non-parametric test in case the data does not follow a normal
distribution. In this case the Wilcoxon rank-sum test [93] is an alternative to the Student’s
t-test for independent (unpaired) samples and the effect size is computed as r = ∥Z/N0.5∥,
where Z is the Z-statistic, and N is the number of participants. In this case, the results are
categorized as small effect = [0.10,0.30), medium effect = [0.30,0.50) and large effect =
[0.50,1].

4.4 Results

For each variable recorded there is a total of 480 samples (40 participants x 4 trials x 3
scenarios). In all tests, the significance level is 0.05. As well, none of the variables follow a
normal distribution because the null hypothesis of the Lilliefors test is rejected with a p-value
less than 0.05.

To have a visual idea of the distributions of PRT on each scenario, Figure 4.2 shows the
boxplots of the 3 global scenarios (Default, Social and IMQA) for PRT of hands and feet.
The first observation is that the hands reaction times are higher as compared to their feet
counterpart in all scenarios. Outliers, in this case are reflecting the non-normality of the data.
One plausible explanation about this non-normality is that there were some instances where
the drivers failed to input any motion within the steering or the feet resulting in a crash, the
reaction times were recorded only after the user performed any input, this caused the system
to record higher than normal reaction times, hence the outliers.

The corresponding measures of central tendency are reported in Table 4.4. For each
scenario we report the ranges (mean ± std), medians and p-values of the Wilcoxon Signed-
rank test, which is the same as Wilcoxon rank-sum test, but for paired data.
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Fig. 4.2 BoxPlots of PRTH and PRTF among the three scenarios

Table 4.2 Mean ± std, median (in Seconds) and p-values for PRTH and PRTF

PRTH PRTF p-value
µ ±σ median µ ±σ median

Scenario
Default 3.645±2.212 2.99 2.211±1.158 1.90 7.88e−14
Social 3.632±2.326 2.9 2.723±1.967 2.2 1.81e−11
IMQA 3.247±1.716 2.7 2.485±1.139 2.21 6.75e−11

The results of the test verify the above visual observation with a global p-value of 6.2954e-
33, ensuring the significant difference between PRT for hands and feet. This is due to the
fact that drivers, when suddenly encountering an obstacle, tend to prioritize to use the brake
pedal before putting any input into the steering wheel hence resulting in the above higher
reaction times for hands.

Still, the global average reaction time was 3.51 seconds for hands and 2.47 seconds for
feet which coincides with the minimum amount of time described in [39] in which drivers
can take over the control of vehicle safely and comfortably in this situation.

The results of Friedman test for PRTH show that there are no significant effects among
the 3 scenarios, χ2(2,N = 160) = 3.6904, p = 0.1580, W = 0.0115, although the strength
of agreement among drivers is very small. That means that drivers take more or less the same
time to steer the wheel in both scenarios. However, in the case of feet there are significant
differences between at least one of the scenarios, with a medium strength of agreement:
χ2(2,N = 160) = 44.3974, p = 2.2868e− 10, W = 0.1387. To know what scenario is
different from the rest, a multiple comparison test has been computed using the output of
the Friedman test and shown in Figure 4.3. Two means are significantly different if their
intervals are disjoint, and are not significantly different if their intervals overlap, so that the
significant difference in PRTF is on the default scenario against the other two.
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Fig. 4.3 Multiple comparison test of PRTF among the three scenarios

These results make sense from the point of view that drivers have to avoid a sudden
hazard on the road, so probably the first instinctive action would be braking, taking into
account that the alarm is triggered at the same time the cars in the front stop. In this way,
as we pointed out before, the reaction time of hands is not relevant in any scenario, but
drivers’ reaction time of feet might be slower in NDR-tasks scenarios due to their cognitive
processing [94], and the driver’s lack of attention to the road.

Still, another interesting point is the success of the TOP action by itself, which is reflected
in table 4.3.

Table 4.3 Percentage of Successes of TOP among the 3 global scenarios

Default Social IMQA global
Failure 18.75 26.25 19.38 21.46
Success 81.25 73.75 80.63 78.54

We can appreciate a slight peak of failures in the Social scenario, although it is not
significant (Pearson’s chi-squared test [95]: χ2 = 3.2881, p− value = 0.193 at significant
level of 0.05). There are no significant differences in PRT among Social and IMQA scenarios
either, but probably social activities provokes a deepen immersion than questions and answers,
so that there are more crashes. If we separate by gender, we can observe that the peak in
social scenario remains, as table 4.4 suggest. As well, we can notice that females have less
crashes than male, although these data could be biased since the number of females is 1

3 than
males.
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Table 4.4 Percentage of Successes of TOP by gender among the 3 global scenarios

Default Social IMQA
Female 85 67.5 85
Male 80 75.84 79.17

As well, we can assess the relationship between variables such as velocity, distance or
PRTH and PRTF and the success of TOP in each scenario. Global descriptive statistics from
Figure 4.4 show that the clearest variable that has significant differences between crashing or
not is the velocity. Other variables like Occlusion and aggressive traffic cars had little part to
play because the experiment was targeted towards a controlled study of driver’s perceptions
in a given scenario. That is, the bihistogram of velocity is the most asymmetric one, having
most of the no-crash samples lower velocity than most of the crash ones.

(a) Velocity (b) Initial distance

(c) PRTH (d) PRTF

Fig. 4.4 Bihistograms of the distributions of the different variables about their success of
TOP

This fact is proved by means of the Wilcoxon rank-sum test, summarized in table 4.5. In
all the scenarios we can reject the null hypothesis so that we have evidence that the medians
of the velocity when crashing or not differ.
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Table 4.5 Wilcoxon rank-sum test for the relationship between velocity and crashing

Crash No crash z-score r p-value
Default 55.55 41.01 6.103 0.482 < 0.001
Social 54.88 42.09 6.121 0.484 < 0.001
IMQA 55.16 40.95 5.744 0.454 < 0.001
global 55.34 41.09 10.436 0.476 < 0.001

Table 4.6 for the variable of the initial distance of the car to the one in front at the time
the alarm is triggered shows that, depending on the scenario, their medians when crashing or
not significantly differ, although p-value is very close to the significant level. If we do not
take into account the scenario, the p-value obtained rejects the null hypothesis, but we can
appreciate that the effect size is small, unlike in the case of velocity.

Table 4.6 Wilcoxon rank-sum test for the relationship between initial distance and crashing

Crash No crash z-score r p-value
Default 31.5 45.99 −0.560 −0.044 0.576
Social 31.44 48.11 −1.871 −0.148 0.061
IMQA 28.34 47.53 −2.046 −0.162 0.041
global 31.15 47.55 −2.553 −0.117 0.011

If we focus on the relationship between PRT and success of TOP we can observe that
PRTH maintain the little relevance they already had across the scenarios. Table 4.7 shows
that p-values are much greater than the significance level. It makes sense in the light of the
foregoing. On the contrary, PRTF seems to impact on the success of TOP, since there are
significant differences between crashing or not in most of the scenarios, with a medium effect
size. In the case of Social scenario, the null hypothesis can not be rejected. but the p-value is
very close to the significance level.

Table 4.7 Wilcoxon rank-sum test for the relationship between PRTH and crashing

Crash No crash z-score r p-value
Default 2.870 2.990 −0.981 −0.078 0.326
Social 3.100 2.820 1.256 0.099 0.209
IMQA 2.660 2.740 −0.052 −0.004 0.959
global 3.100 2.760 1.1017 0.046 0.309
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Table 4.8 Wilcoxon rank-sum test for the relationship between PRTF and crashing

Crash No crash z-score r p-value
Default 2.290 1.900 2.018 0.159 0.044
Social 2.380 2.14 1.943 0.154 0.052
IMQA 2.620 2.100 3.104 0.245 0.002
global 2.420 2.060 4.403 0.201 < 0.001

4.5 Summary

This chapter can be summarized in the following manner:

• Experiment shows that not all secondary tasks result in higher Perception Reaction
Times. The experiment clearly shows that the subjects who were busy on their phones
indulged in social media activities recorded a higher reaction time of 2.72 seconds on
the feet as compared to when they were answering IMQA’s at 2.48 seconds.

• Experiment shows that the Perception Reaction Times have a global average of 3.51
seconds for hands and 2.47 seconds for feet.

• The chapter shows that any secondary tasks while driving result in deterioration of
quality of driving. Also the results of Friedman test for PRTH show that there are
no significant effects among the 3 scenarios, χ2(2,N = 160) = 3.6904, p = 0.1580,
W = 0.0115, although the strength of agreement among drivers is very small. That
means that drivers take more or less the same time to steer the wheel in both scenarios.
However, in the case of feet there are significant differences between at least one
of the scenarios, with a medium strength of agreement: χ2(2,N = 160) = 44.3974,
p = 2.2868e−10, W = 0.1387.

• The chapter also highlights the fact that the true self-driving cars can be hazardous if
they lack the proper systems that can observe the driver’s behavior in a timely manner.

• Generation of a more enhanced dataset with an extended data capture system, that
contains all possible positions of driver’s Hands, Feet and Face. This is specifically
useful for Computer vision research area as it is necessary to monitor the driver in a real
car. The dataset comprises of a number of different scenarios, each driver is subjected
to a number of tasks during autonomous mode. Moreover, important variables like
the velocity, distance and reaction times of feet as well as hands are also recorded
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separately which gives a detailed insight into how drivers behave in an emergency
situation behind the wheel of an autonomous vehicle. The dataset is currently sized
at over 100 GB and contains over 1.44 million images. According to the literature
review, a dataset of such scale is not available freely. Hence the proposed dataset is
vital for researchers and engineers who are striving to design the next generation of
ADAS (Advanced Driver Assistance Systems).

• Perception Reaction Time trials have shown that the driver’s reaction times are re-
duced when they are answering challenging questions while behind the wheel of an
autonomous car. Whereas the reaction times are increased when the driver is busy in
social media activities during the same scenario.



Chapter 5

Weather Classification

5.1 Background

Road accidents related to adverse weather conditions play a huge part in disrupting the
flow of traffic in a busy city environment [96–98]. The data available at present contains
a large amount of variation. Figuring out a particular weather condition is a straight for-
ward task for a normal human being but can be quite challenging for a computer vision
system [99–101]. To overcome the challenges neural networks, in the last decades, have
revolutionised computer vision systems to detect the weather condition using images as
an input. Indeed, Convolutional Neural Networks (CNN) have been deployed in various
fields like ship detection [102–107], object tracking in endoscopic vision [108, 109], nuclear
plant inspection [110–112], transport systems [113, 114] and other complex engineering
tasks [115, 116]. Yet there is still a lot of ground to cover.

5.2 Why weather classification?

After the successful experiment for PRT in the previous chapter, it was certain to find the
next problem to solve, as LEE had a fairly decent visual quality aspect, the next challenge
certainly needed to be a vision based issue. There were alot of problems to choose from like
place recognition systems or even traffic detection systems. Weather classification is one field
which has it’s own set of variables. No one distinct weather is equal to the other and deep
learning systems should be accurate enough to distinguish between different weathers. It is
a complex matrix of light, color, shadows and different sun angles at any given time. This
proved to be an ideal candidate to test out the flexibility of LEE. Hence, weather classification
was identified as the next target to tackle the issue of hi-fidelity dataset for training deep
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learning models. The Detection of weather conditions based on visual data is a crucial
research area with regards to the autonomous driving research, Presently there is not enough
work being done to tackle this problem, the vision based system currently available in the
market tend to work well under certain weather conditions like sunny day, whereas they
struggle to keep up when it comes to the harsh weather conditions like heavy rain, fog and
snow. The problems is that there is a certain lack of accessible datasets that can be used to
train the deep network frameworks to successfully detect varying weather scenarios. This
can be achieved if the datasets were recorded on the same location, with the same camera
positions but with different varying weather conditions. Achieving that target in real-life is
quite cumbersome and time consuming. This is where Synthetic datasets can play a vital role
in bridging the gap between input data and scene understanding. We already know that the
use of synthetic data can greatly increase the performance and accuracy of Convolutional
Neural Network systems [117].

In the case of weather recognition on road the main challenges are: variability in elements
such as camera placement and road layouts [118] and the machine learning methods such
as CNN. Under such circumstances there is a need to explore more methods of filling
the gaps left from using real world images, ideally a set of images recorded in the same
location but with different weather conditions would be ideal in maximising the efficiency of
machine learning system. This is the main reason why the use of synthetic data can be more
productive as compared to the real-world counter part. In this chapter, two main objectives
are approached: firstly to assess the modifications made to the driver simulator which was
previously used for driver vehicular interactions [119]. The second objective is to test the
performance of the generated dataset with other comparable ground truth datasets.

A custom-built virtual simulator that specializes in varying weather systems is imple-
mented [120]. It utilizes Unity3d to simulate the weather with accurate lighting effects.
The simulator environment is based on a real-world location of central Colchester, United
Kingdom. It features a good mix of wide-open road and inner-city roads. An autonomous car
is driven at different hours of the day in weather conditions ranging from sunny, cloudy, rainy
and foggy with different camera angles. The final dataset recorded comprises of 108,333
images, approx 35,000 images per class The results show that state-of-the the art CNN
architectures trained on synthetic dataset were able to achieve an accuracy as high as 74%
when tested on real-world dataset [121].
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5.3 Related Work

Previous research work has shown that the use of synthetic images can greatly increase
the performance of 2d pose estimation of humans by using automatically annotated 3d
pose dataset.[122] Also the use of single step frameworks for training convolutional neural
networks that can differentiate instances, estimate masks and categorize objects is of a
great interest. [123] Another paper discusses the usefulness of generating synthetic flying
chairs showed that the networks trained on this unrealistic data still generalized very well
to existing datasets such as sintel and KITTI, achieving a competitive accuracy at frames
rates of 5 to 10 fps. [124]. Real-world datasets like KITTI are of great importance and can
be enhanced by enhancing the existing datasets with synthetic clones. [117][125] Moreover,
Synthetic datasets have also proved invaluable when it comes to text detection, dataset
images were generated procedurally containing texts in cluttered environments, the resulting
CNN outperformed the current methods for text detection. [125] Another interesting use of
synthetic data came about in the form of generating 3d human models positioned correctly
over a CCTV footage for training convolutional neural networks for detecting pedestrians,
the proposed approach outperformed the classical pedestrian detection methods as well as
real world specific data. [126] Hassan went for another noval approach for training cnns for
car segmentation, he was able to augment real world datasets with synthetic data to generate a
varying traffic density in the prepared images. [127] Scott [128] used a data driven approach
in which he developed a framework for rendering 3d models from a given viewpoint and than
comparing the 3d model with an input image for a better scene understanding. Rendering
of Entire synthetic environments have been proposed for training convolutional neural
networks for stereo disperity and scene flow estimation [129]. Also SYNTHIA [23] is
another dataset which is fully synthetic and contains pixel-perfect annotations. The dataset
contains approximately 200,000 images recorded with pixel perfect annotations which results
in a decent training material for CNN’s. Results showed that using synthetic dataset such as
SYNTHIA can greatly improve the performance of Deep Learning Networks.

Most of the previous research includes the use of polarized and infrared cameras. The
use of such cameras can give some plausible data but the installation costs can easily be
substantial [130]. In order to overcome this issue, the use of RGB cameras is preferred
because they are much more simple and cost-effective, hence making them viable for mass
production.

A study performed by Omer & Fu [131] used Color cues to add illumination variance,
however, their approach requires the detection of white road lines for the detection of road
area which can be quite challenging in severe winter weather conditions.
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Most of the studies aimed toward driver assistance systems have been performed towards
Rainy weather classifications [132, 133]. A study performed by Lu et al. [134] deals with
two class weather classification which includes Sunny and Cloudy. In that study, the authors
proposed a new data augmentation scheme to substantially enrich the training data, which is
then used to train a latent SVM framework to make the solution insensitive to global intensity
transfer. Another study [135] deals with multi-class weather classification which only deals
with fixed camera point only.

With regards to synthetic datasets, there is alot of research being carried out with a goal
to fill the gaps between real world data with synthetic data. There are some driver simulators
that can fill in the void by generating synthetic datasets for weather classification. CARLA
[136] is one such simulator that aides in autonomous research. It comprises of a built in
weather system that can be used to generate weather classification datasets. Synthia dataset
[137] is another example which comprises of 200,000 plus images comprising of varying
dynamic seasons like clear sky, rain & night time. Hao et al. [138] developed a weather
simulator that could replicated the weather at a given time in a virtual environment. But it
lacks in visual fidelity for our experiments. The current chapter also has specific requirements
that require the camera position to be from the location on the driver’s car.

Another plausible direction of research for weather monitoring has been use of microwave
based Synthetic Aperture Radar (SAR) imaging. Unlinke, optical sensors, this tool is
unaffected by weather conditions. This is the main reason that they have been used for high
speed ship detection [139, 140]. The SAR images are used as input to a grid convolutional
neural network (G-CNN) to detect ship while considering their speed. Another prominent
work has used depthwise separable convolution neural network (DS-CNN) to detect high
speed ship [141]. Other direction of research has focused on small sized of ships [142] and
unperceived imbalance problem [143]. However, connection to the satellite is not always
possible, thus in this research, optical sensors have been considered.

Fig. 5.1 SYNTHIA Dataset

Ros [63] proposed a new approach for detecting weather conditions based on images
captured via in-vehicle vision system that takes into account the histogram of gradient
amplitude, HSV color histogram and road information, and employ an algorithm based on
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real AdaBoost making use of category structure to achieve the task of classification. the
experiments showed superior performance. Elhoseiny [53] showed some very promising
results when he trained the convolutional neural networks for weather classification, an
overall accuracy of 82.2% was achieved when compared to state-of-the-art’s 53.1%.

Fig. 5.2 Weather Classification using CNN

5.4 Significance of the Problem

The problem being faced at present is the lack of datasets for efficiently training CNNs.
Training a Deep Learning network requires exponential amount of image data in order to get
the best possible result. The present datasets are mostly real life images captured throughout
the world, the problem arises with specific requirements for weather classification. In order
to acquire a good data one needs to record the same visual image from the same angle
with different weather conditions which will give the CNN layers important features to
compare and differentiate between weather conditions. We intend to solve this problem by
incorporating and modifying our Driver simulator to generate varying photo-realistic images
of a known real world urban environment. As discussed above synthetic datasets provide a
means of enhancing the training process of deep learning networks and in some cases even
exceed their real-world counterparts when it comes to overall accuracy. The main advantage
is the absolute control over how and when weather can change in the virtual environment.
Since there are not enough synthetic datasets available in the wild which can assist in training
deep learning networks, it is evident that we solve this issue with the help of our simulator
by generating a large dataset of varying weather based images from the perspective of an
autonomous car. Therefore streamlining the pathway for other researchers to further enhance
the ADAS for the car of the future.

5.4.1 Research Questions and Hypothesis

The hypothesis states that the use of synthetically generated datasets comprising of different
weather conditions will greatly increase the accuracy of the resulting CNNs. This can
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include mixed training models which will consist of a collection of real images coupled
with synthetically generated images. Is it possible to achieve the same performance when
you team up a synthetic with a non synthetic dataset? Our research will try to answer these
questions in this chapter.

5.4.2 Methodology

Previous two driver simulator Experiments as described in Chapter 3 relied on a motorway
track for recording Perceptional Reaction times of the drivers. In order to test the capabilities
of the driver simulator further, more complex environments were needed. For this purpose
we moved towards urban environments because they are more demanding when it comes to
complex driving scenarios. We had 3 options of possible road layouts to test out, namely,
Colchester High Street, North Station Road, Essex University route and Cowdry Avenue.

1. Colchester High Street provided a busy urban environment full of parked cars and
pedestrian movements. It also consisted of not too wide streets which provided a
challenge for the development due to time constraints. Ideally this environment will
eventually be required in the future to further enhance capabilities of the simulator
providing exceptional challenges to test and train car of the future.

2. North Station Road provided a good balance of urban and wide roads which were
inline with the goals of this version of the simulator. There were 4 roundabouts int
he entire circuit which meant a complex mix of traffic simulations. Moreover, future
versions of this environment would add more detail to make sure the deep learning
methods get all the necessary details for test/train purposes.

3. Essex University Route and Cowdry Avenue provided a more quiet environment
with open fields and long straight roads with minimal traffic, probably not the best
mix for the current goals.This type of environment is good for entry level autonomous
vehicle training but as we had already done a version of the simulator with straight
roads in the previous version, it was probably not the best fir for current purpose.

In the end, after careful consideration it was decided to move forward with Colchester
North Station Road route as shown in figure 5.3, due to it’s plausible mix of straight and
urban roads.

The selected route provided a good balance between 2 lane A-Road and two way urban
road. The route also has a good collection of Retail, Commercial and Residential areas. This
provides the basics for testing out a complex synthetic environment for the next iteration



5.4 Significance of the Problem 65

Fig. 5.3 Colchester North Station Road Route

of the driver simulator. The novelty is to test if we can get better performance if we train
Convolutional Neural Network models with a mix of Real world data [144] and the above
Synthetic data. The above proposed synthetic environment would also include varying
weather simulation as well, which would pave the way for not only training deep models for
autonomous vehicles but also for weather classification in general. This will be helpful in
further branching out the research into image classification territory. Previous studies have
shown that including synthetically generated weather conditions actually deteriorates the
deep models for tracking. [117] The total preparation time for the above environment was no
more than 3 months and included methodologies as discussed previously in chapter 3. In
theory, the updated simulator can generate a million images with varying weather conditions.
Google maps and street views was be used as a guide to match the synthetic data to the real
world data as close as possible. The goal was to make our synthetic data more realistic as
compared to the state of the art synthetic dataset i-e Virtual Kitti. This will provide clues
to whether a more realistic data actually results in better training performance or not. After
the successful preparation of the images, the next step was to record the images in varying
weather conditions. The approach has some similarities with what Stephen [128] did, he
used the popular Grand Theft Auto 5 Game for recording twenty five thousand images with
pixel perfect annotation, the difference between his and our approach is the fact that we
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have more control over what we can create. Moreover, Using an already released game
for research purposes without asking the developers of the game first can lead to illegal
use of the software which we defiantly wanted to avoid. In the end the generated dataset
would prove invaluable for training future deep learning models. Kunming [145] recently
used advanced computer graphics techniques to produce synthetic virtual environments for
evaluating weather conditions. In edition they also benchmarked recent de-hazing methods.
This will be useful in our Analysis as well, But the drawback of Kunming’s approach
[145] is that it only takes in to consideration fog environments whereas we are generating
cloudy, rainy and Fog conditions. Once fully recorded our dataset would be one of the most
comprehensive synthetic datasets available any where.

After the initial production of the synthetic environment, we were able to generate close
to 650,000 images comprising of three weather classes namely, Cloudy, Foggy and Rainy.
The number of images is targeted to go well beyond 1 Million in the near future. The novelty
in our a recorded dataset is that it includes images that were generated from only three
different vantage points (C1,C2,C3). Below are the some of the images from the generated
data-set. More vantage points are planned to be added in order to avoid over fitting.

(a) Cloudy (b) Foggy

(c) Rainy

Fig. 5.4 Three class data-set

Figure 5.5 shows a Mosaic generated from the cloudy class images, Note the amount
of variation achieved between the cloud formations. This is what makes our dataset quite
unique in terms of weather formations. To explain this further, it is to be noted that the cloudy
class alone contains 3 different cloud variations recorded at 3 different day time intervals
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Fig. 5.5 Cloudy Class Mosaic

(10:00am, 12:00pm, 2:00pm, 4:00pm)and each interval contains 10,000 images comprising
of unique cloud formations. The system is capable of generating random formation of clouds
with varying wind speeds at any given instance.

After this successful generation of synthetic images from limited vantage point, it was
then decided to better utilize the extent at which the images can be produced. Instead of
static vantage points, the virtual camera was attached to an autonomous car and was then
let to drive throughout the circuit. The figure 5.6 below shows the virtual car ready for the
simulation. The virtual environment required some further treatment in order to fill the gaps
on the areas that might potentially be visible to the camera.
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(a) Virtual Car

(b) Environment

Fig. 5.6 Virtual Environment

Each session of the simulation lasted for approximately 2500 images. initially the footage
was captured at +1 hour instances from 9:00 AM to 4:00PM for each weather condition. The
images below shows the car in different weather conditions.

Further adjustments were made in order to get a better overall lighting and atmosphere.

5.5 WDD: Weather Drive Dataset

The generated dataset provides a plausible amount of varied weather conditions. The main
classes include Sunny, Cloudy, Foggy and Rainy. Each class then contains further sub
classes involving the same class captured every hour from 9 AM to 4 PM. This methodology
provides the most efficient learning material for CNN’s and deep learning algorithms as it
provides the same location within varied lighting and weather conditions. For each recording
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session the virtual car was allowed to run through the circuit which resulted in the capture of
approximately 2600 images. Each session was recorded on a one hour difference basis, i-e
for a clear day weather each session driving was captured at 9, 10, 11, 12, 1, 2, 3 and 4 o
clock. This provided a much needed variation in the overall shadow and lighting conditions
for a varied data-set generation. Figure 5.7 shows the 4 main classes captured at various
locations through different sessions.

Class Training Testing
Clear 9,613 1,764
Cloudy 38,949 1,677
Foggy 29,914 5
Rainy 29,857 396
Total 108,333 3,842

Table 5.1 No. of Training images(Our dataset) & Testing images(BDD) per class distribution

Moreover, extensive care was taken to simulate secondary imperfections like water
droplets on the camera lens for distortion, Traffic Car signal bloom effects, water shower
behind traffic car wheels. Additional camera angles such as left view, right view & back view
were also captured to meet the challenge of diverse nature task and absence of discriminate
features among various weather conditions. Table 5.1 shows the distribution of images per
class. The resolution of each image was recorded at 1280 x 720, the channels used were
Red, Green & Blue. Notice that the validation images for Foggy class only consist of 5
images, this is because a foggy image is by far the most specific in color tone and channel
information. Moreover, the quantity of validation images is set by the creators of Berkeley
Deep Drive dataset.
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(a) Clear (b) Cloudy

(c) Rainy (d) Foggy

Fig. 5.7 WDD: Weather Drive Dataset

Our synthetic dataset has been evaluated on the Berkeley Deepdrive dataset[121] because
it provides a considerable variation of varying weather conditions in a fairly balanced
annotated pattern as shown in the Figure below.

(a) Clear (b) Cloudy

(c) Rainy (d) Foggy

Fig. 5.8 BDD (Berkeley Deep Dive) Dataset
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5.6 Deep Learning Networks

The state-of-the-art Deep learning frameworks include weather classification CNN based
on AlexNet [53]. where the weather is classified between sunny and cloudy, the dataset
used comprised of ten thousand images. Our initial results were not very promising as there
was quite alot of over fitting detected and the accuracy was not more then 50%, which was
partially due to corrupted data, once the data was edited we approached the training via
AlexNet model as done by [53]. The current state involves the replacement of final layers
with our target classes which includes Cloudy, Foggy and Rainy weather.

Fig. 5.9 AlexNet Transfer Learning

The figure 5.10 shows the initial training progress that was recorded. Already the accuracy
started from above 60% and started to stabilize close to the 65% to 70% mark. It should be
noted that the training cycle is still in the 1st Epoch, also the fact that the training is being
performed on a single Nvidia Tesla GPU, hence the timed required to train such a model is
quite substantial.

The table 5.2 below shows the total number images trained and tested so far from the
generated data-set. The next approach would be to train the model with datasets captured
from multiple cameras and test the model with a dataset involving a camera angle that was
not used in the training process.

Table 5.2 Total Images Trained and Tested

Class Test (No. of Images) Train (No. of Images)
Cloudy 160311 240567
Rainy 80127 161218
Foggy 8032 16079

The important to know that training deep learning models with this amount of data
requires exceptional amount of time and resources, It can easily take somewhere between 3
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Fig. 5.10 AlexNet initial Results

to 4 months to train an efficiently working model. Thee training performed for this study
averages between 2 to 3 weeks per learning model. Moreover, the results indicate the use
of just AlexNet training model. It is a necessity to train our weather classifier with atleast
another state of the art model, like ResNet which performed well in another recent study
[59]. This will be done later in the chapter.

The field of weather classification is still evolving and applying new techniques can never
guarantee the best of results, Weather is a very complex phenomenon and segmentation of
such images can be a problematic task in complexity. Rutkowski [146] lays down the fact
that different techniques of computer science when combined can constitute to new and
better proposals. So it can be said that tackling uncertainty as an opportunity rather then a
problem is a very important step towards tackling efficient weather classification [59].

Further training of the CNN was performed with the newly generated WDD Weather
Drive Dataset, this time the testing images from the RFS(Rain, Fog, Sunny) dataset were
used, this resulted in an accuracy of only 42% which was not a plausible result.

It was further noted that perhaps the non road environments of the RFS dataset might
have played a part in the lower accuracy. Hence we decided to go for a road oriented dataset
for testing our CNN. BDD Berkeley Deep Drive is one of the most extensive real world
driving datasets available. [147] and this particular dataset also has carefully labelled images
with respect to time of day and weather conditions. This works perfectly for testing our CNN.
As expected the results produced far better accuracy then the RFS dataset.
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Fig. 5.11 RFS Test

Fig. 5.12 BDD Test
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62% is a much welcomed starting point, at this stage some issues were identified within
the generated images, especially the rainy class. The rainy class was lacking some of the
visual aspects like reflective water puddles and wet surfaces in general. Also it is further
planned to introduce a new weather classification category like snowy conditions to further
enhance the dataset. we also managed to try out Mappilary dataset which has a generous
amount of 25,000 images [148]. Although the dataset has been advertised as containing
variety of different weather and seasons. However the dataset images are not labelled
according to the weather which is the case with most of the state of the art datasets. This is
one instance where our WDD(Weather Drive Dataset) contributes heavily to the research
community as it provides the only Synthetic set of images specifically aimed toward weather
classification.

5.7 Weather Classification Methodology adjustment

Fig. 5.13 Pipeline: Step 1: The pre-trained network is loaded, Step 2: unfreeze classification
layers and add softmax layer (4,1), Step 3: Train the weights of classification layers with

synthetic dataset, Step 4: Test the network accuracy with real time test dataset.

To check to what extent our synthetic dataset is useful for weather classification, we
propose to apply a number of deep learning networks to test the dataset. One of the most
famous deep learning architecture, Convolutional Neural Networks (CNN) have been able
to perform various vision tasks with capabilities comparable to humans. However, CNNs
performance is highly dependent upon the large size of training data. This problem intensifies
for the weather classification task as the real time weather variation data availability for
self-driving cars is difficult [149]. Based on this problem, we try to gauge whether different
CNN architectures trained using synthetic data are good enough to classify the weather
captured in real time.

Transfer learning is a powerful machine learning technique which allows re-usage of
model for different tasks. It has gained immense popularity for computer vision tasks where
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pre-trained CNN architectures are used as the standard starting point given the vast resources
in terms of computation and time required to develop CNNs from scratch.

The pipeline used for the work described in this paper is visually represented in Fig-
ure 5.13. The pipeline operates in a fashion where the weights of entire pre-trained network
are frozen except the classification layers in the end. The softmax layer is added for multi
weather classification. The softmax layer (4,1) is added because the number of classes is
4. The classifier layers of the pre-trained networks are re-trained on the proposed synthetic
weather dataset. The test real-time images are passed through re-trained CNN models to
extract predict the network’s accuracy.

The classifier layers are trained on the synthetic images and tested on real-world dataset
Berkeley DeepDrive [121]. After performing set of the experiment, the mean Average
Precision (mAP) was calculated for each of the models.

5.7.1 Pre-trained Models

The pre-trained Models used for predicting weather have been described in depth in the
following subsections:

1. AlexNet

AlexNet [150] can easily be considered as a breakthrough network that has popularized
deep learning approaches against traditional machine learning approaches. With eight
layers, AlexNet won the famous object recognition challenge known as called the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. It is a variants
of artificial neural networks where the hidden layers comprise of convolutional layers,
pooling layers, fully connected layers, and normalization layers. Few of its standout
features were addition of non-linearity, use of dropout to overcome overfitting and
reduction in network size due to overfiting.

2. VGGNET VGGNET [151], a 19 layer network, was proposed as a step to the AlexNet
and was a runner up of ILSVRC- 2014 challenge. As an improvement, the large
kernal size of the first and second convolutional layer of AlexNet net were replaced by
multiple 3 x 3 size kernal filters. The small-size filters allows the network to have a
large number of weight layers. Non-linearity in decision making was incremented by
adding 1x1 convolution layer.

3. GoogleLeNet

GoogleLeNet [152], a 22 layer network, was the winner of ILSVRC- 2014 challenge. It
was proposed as a variant of inception network to reduce the compuational complexity
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of traditional CNNs.The inspection layer had a variable receptive fields to capture
sparse correlation patterns in the feature map.

4. Residual Network

Residual Network [153] was the winner of ILSVRC-2015 challenge. It was proposed
with the aim of overcoming the problem of vanishing gradient in ultra-deep CNN by
introducing residual blocks. Various versions of Residual Network (ResNet) were
developed by varying the number of layers as 34, 50,101, 152, and 1202. The popular
Residual Networks ResNet50 and ResNet101 are used in our experiment.

5.8 Results

In this section, we evaluate various CNN models trained on our proposed synthetic dataset
and compare their performance on BDD dataset. The synthetic dataset contains images
annotated with 4 weather classes. The number of epochs is set to be 500. The learning rate
of stochastic gradient descent (SGD) optimizer for cross-entropy minimization was set to
be 0.0001. These parameters were deduced empirically by analyzing the training loss. As a
regularization strategy during training phase, two data augmentation techniques were used
for all architectures. The first technique took random crops of training images and second
technique applied rotation to the training images. All the algorithms are implemented using
MATLAB, and the experiments are performed on a Tesla K80 with 12GB GPU memory and
916.77GB storage.

Architecture mAP Trainable Parameter Time (min)
AlexNet 0.6856 ±0.012 61M 986
VGGNET 0.7334 ±0.023 138M 2930
GoogleLeNet 0.6034 ±0.009 7M 618
ResNet50 0.6183 ±0.025 26M 1020
ResNet101 0.63 ±0.006 44M 1242

Table 5.3 Results from CNN evaluations

Each experiment of calculating accuracy for any given pre-trained model on testing
dataset is conducted 10 times. Then average accuracy for any given model is calculated and
denoted as mean Average Precision (mAP). The results tabulated in Table 5.3 show that mAP
for all the architectures vary between 60% to 74%. The accuracy variation over each epoch
has been shown in Figure 7 and 8.
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ResNet architectures achieve lowest accuracy due to their complicated multi-branch
designs, i.e., residual addition in ResNet, as the fine tuning of hyper-parameters and other
customisation becomes difficult. Given the constraint of hardware in self driving cars, the
inference is slowed down along with the reduction in memory utilization [154].
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(a) AlexNet

(b) VGG

(c) GoogleNet

Fig. 5.14 Accuracy variation over each epoch for (a) AlexNet (b) VGG (c) GoogleLeNet
model
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(a) ResNet50

(b) ResNet101

Fig. 5.15 Accuracy variation over each epoch for Residual Networks (a) ResNet50 (b)
ResNet101

The most efficient weather classification accuracy on testing dataset was achieved by the
VGGNet architecture. These results indicate that the optimisation achieved by the inclusion
of smaller kernel filters at the initial convolutional layers has a positive effect in the overall
task of weather classification. The universal effectiveness of performance of VGGnet to
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extract deep features has also been affirmed previously by state-of-the-art PFGFE-Net [107]
that use VGGNet as a backbone.

The training time from Table 5.3 reveal that it is directly proportional to the parameter
due to the back propagation process to retrain the weights of classification layers. However, a
closer look at the task at hand, one can conclude the training of weather classification process
for self driving cars will be performed at cloud and it is one time process. In the particular
case of VGG, training is time intense but is a one time task. The testing time for determining
weather from single image on average using VGG is 15.67 fps that is real-time efficient.
Concluding the potential of this type of architecture on classification task with paucity of
dataset, draws attention for the possibility of more experimentation by training on larger
synthetic dataset with more diverse classes.

5.9 Summary

1. This chapter highlights the modification of the custom driver simulator first introduced
in chapter 3 that is now able to produce complex weather scenarios in immaculate
detail. The simulator is designed to be highly user friendly and uses a launch and
record approach towards generating different weather conditions within a virtual road
environment.

2. The chapter also highlights the newly generated synthetic dataset called WDD (Weather
Drive Dataset) to train a classifier in the context of weather classification and provides
a synthetic dataset validated with the real world Berkeley DeepDrive [121]. WDD
comprises of 108,333 images and consists four different weather conditions namely,
Clear, Cloudy, Foggy & Rainy. The evaluation of this dataset has been tested as
mentioned in the last point. The study shows that the use of synthetic data set can
result in accuracy of upto 74% which opens up further room for research in the future.

3. The weather classification accuracy is derived by testing classifiers on different real
time dataset which allows the persistent problem of bias in vision datasets to be tackled.
The study proves that a persistent visual fidelity is important in generating realistic
datasets for computer vision based datasets. In other words, details like lighting, color,
shadow , form and depth are paramount when generating a realistic synthetic images
for weather classification. Furthermore, with advent of computer graphics it will be
possible to achieve advanced photo-realism in the virtual environments, game engines
like Unity & Unreal are embedding new visualization techniques to further enable the
data-scientists to generate accurate synthetic data for vision based tasks.



Chapter 6

Conclusion and Future Directions

Use of Synthetic worlds for Advanced Driver Assistance Systems is still quite a varied field
for designers and engineers because there is no hard and fast framework for how a virtual
world should be constructed. Moreover, these systems are vital for ensuring that car of
tomorrow is able to safely transport it’s passengers efficiently from one location to the other
without any fatal collisions and accidents. Till we reach a point where the cars are totally
autonomous, the researchers would still have to manage how the driver’s interact with their
semi-autonomous vehicles in a meaningful manner.

The application domains of using synthetic worlds for solving real world problems
is quite broad, ranging from automotive related simulations to medical and even military
simulations. The automotive industry still has a long road ahead before it reaches the Level
5 autonomous vehicles. But in order to reach that goal alot more research and problem
and solving still needs to be done. The author has tried to answer the main questions and
problem statements that were raised in Chapter 1 to the best of his abilities followed by an
extensive literature review introduced in Chapter 2 which gives a detailed overview of the
state-of-the-art related to the thesis chapters.

This thesis is a combination of various research gaps within the field of drivers assistance
systems. As such the author’s research work can be divided into three separate tracks, (a)
Driver Simulator, as discussed in Chapter 3 which goes through the complete process of
developing an efficient and cost effective driver simulator from scratch - (b) Chapter 4
Perception Reaction Time - which uses the LEE driver simulator developed previously and
efficiently records the reaction times of drivers in a given scenario which in return highlights
the potential risks of drivers ability to take back control of an autonomous car - (c) Chapter 5
Weather Classification by using synthetic data from a modified version of the LEE simulator
which shows effective use of computer generated images to train weather classifiers. All
of these chapters are peer reviewed and have gone through extensive revisions. As these
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chapters are all linked to the overall objective of progressing the Advanced Driver Assistance
Systems, they pose their own future directions in unique ways.

6.1 Initial Research Questions and Objectives

This thesis covers alot of ground in terms of simulators and synthetic datasets. The initial
research questions can be listed as follows,

6.1.1 Driver Simulator

Can the use of virtual simulators in place of physical simulators decrease the time, budget
and complexity required in terms of ADAS research? What are the technical specifications
required for such a setup. The main objective was to find a plausible solution which would
help researchers to program any specific scenario for the sole purpose of testing and improving
ADAS of the future. This objective was achieved in the form of the successful development
of a virtual Driver Simulator namely LEE that has the capacity to be open source, meaning
the it is accessible by a broad range of Research community who can use it for solving not
just ADAS related problems but also driver behavior related issues as well. It is Light-weight
meaning, it only has 4 separate hardware parts namely, CPU Case, 2 monitors, steering/pedal
and webcams and hence can be transferred from one Location to the other with out any
complex setup processes. There are no modifications done to these hardware items and
comply with plug and play protocols. The code is also transferable to any windows based
machine provided that it has a decent Nvidia RTX 3 series GPU installed. The next headline
feature of the driver simulator involves a procedural based traffic system which populates
cars on the road in new locations every time a session is executed which makes it match
closer to the real-world challenges on the road. Driver simulator also supports multiple
webcams meaning a researcher can record almost all aspects of a drivers behavior during a
session. The LEE driver simulator is of vital importance to the research community and when
compared to the state-of-the-art it provides a good balance of accessibility and accuracy.

6.1.2 Perception Reaction Time

How much time is required for the driver to safely navigate through the potential collision
ahead? This is quite a important research question that the researchers have been tackling
with in the past. And what happens when the Drivers are busy in other non driver related
tasks behind the wheel of an autonomous car? Does it have any specific implications on
the reaction times if suddenly a crash is to be avoided on the road in front? these research
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questions are quite complex in nature and the main objective is to allow the researchers to
be able to test different driving scenarios in which accurate reaction times can be recorded
thus paving the way for the better ADAS. This objective was achieved by utilizing the LEE
driver simulator to record accurate reaction times of drivers in different scenarios. This has
implications on the HCI designs when the results are analysed.

Experiment shows that not all secondary tasks result in higher Perception Reaction Times.
The experiment clearly shows that the subjects who were busy on their phones indulged in
social media activities recorded a higher reaction time of 2.72 seconds on the feet as compared
to when they were answering IMQA’s at 2.48 seconds. The global average of 3.51 seconds
for hands and 2.47 seconds for feet is recorded during the advanced perception reaction time
experiments. Any secondary tasks while driving result in deterioration of quality of driving.
Also the results of Friedman test for PRTH show that there are no significant effects among
the 3 scenarios, χ2(2,N = 160) = 3.6904, p = 0.1580, W = 0.0115, although the strength
of agreement among drivers is very small. That means that drivers take more or less the same
time to steer the wheel in both scenarios. However, in the case of feet there are significant
differences between at least one of the scenarios, with a medium strength of agreement:
χ2(2,N = 160) = 44.3974, p = 2.2868e−10, W = 0.1387.

6.1.3 Synthetic datasets

Can the virtual simulators be used to generate realistic images for the purpose of improving
ADAS? synthetic worlds have come a long way since their inception a few decades ago.
The advent of computer graphics now allows for more realistic images to be produced at
real-time. This begs the question, how good are the dataset and can the help to improve
driving experience of the future? This objective was achieved by successfully recording and
generating a hybrid dataset consisting of virtual car environment images coupled with real
footage of drivers interacting with the synthetic car, paving the way for the future ADAS
research. The dataset is currently sized at over 100 GB and contains over 1.44 million images.
According to the literature review, a dataset of such scale is not available freely.

6.1.4 Weather Classification

Can synthetically generated realistic weather images be used in classifying different weather
conditions efficiently? This is a more complex question to answer as the weather itself is
made up of alot of different entities such as shape of clouds, lighting, etc. This objective was
achieved by modifying the LEE simulator and allowing it to produce a number of different
weather conditions, the images are recorded with resulted in the formation of a new dataset
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called Weather Drive Dataset. The performance was analyzed against real world data and
the research question was answered. WDD comprises of 108,333 images and consists four
different weather conditions namely, Clear, Cloudy, Foggy & Rainy. The evaluation of
this dataset has been tested as mentioned in the last point. The study shows that the use
of synthetic data set can result in accuracy of upto 74% which opens up further room for
research in the future. Yes, synthetic data can be used to train deep learning models to classify
real world weather which opens up different avenues in the weather classification field.

6.2 Contributions Summary

This thesis presents the author’s research performed during the path to satisfy the requirements
for Doctor of Philosophy. The main contributions can be listed as follows:

1. Firstly, this thesis explains the concept of Advanced Driver Assistance Systems and
their link to Synthetic Data. The major problem statements and challenges are also
identified.

2. Secondly, A detailed literature review is presented which covers all the important
aspects of existing research and state-of-the-arts.

3. Chapter 3, presents a detailed method for designing and developing an open source
and extendable driver simulator known as LEE that is able to perform experiments
to acquire results quicker and efficient iterations. The effectiveness of the driver
simulator is evident as it provides the basis for almost all of the experiments within
this thesis. Our simulator is also designed to be light weight meaning it only has 4
main components namely CPU Case, monitors, Steering/pedal and webcams. Hence, it
can be transported to a target location without any specific physical setup unlike other
state-of-the-art simulators [4] [10]. The low cost aspect of the hardware also makes
sure that it is accessible by even the smallest of organizations and research teams. A
typical physical driver simulator can cost between £10,000 to as much as £500,000
[4] [1] [2] [10]. Our approach has brought this cost down to less than £2,000 while
providing the same visual fidelity and accuracy of the more expensive simulators in
the market.

4. Using the driver simulator that was developed in Chapter 3, Chapter 4 covers the novel
method of recording perception reaction times for the purpose of autonomous driver
vehicular interaction research. The driver simulator is used extensively during this
experiment and provides alarming results with regards to the time required before a
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manageable action can be performed by the driver when an alarm is triggered. The
driver simulator goes through some worthy upgrades during this time. The results
show that not all secondary tasks result in high Perception Reaction Times. Moreover,
the global reaction times for hands was recorded to be 3.51 seconds whereas the feet
were recorded at 2.47 seconds which implied that drivers are always prioritise the feet
over the hands. Our approach also sheds light on the relationship between Perception
Reaction times and mental workload, although fatigue was not the outstanding entity,
the study finds that reaction times do suffer by approx 20% when secondary tasks are
introduced during driving.

5. During the experiments for Perception Reaction times, a new dataset was generated
from all 40 participants resulting in recorded data that captures 4 different views of
the virtual driving sessions (a) Driver’s view of the road (b) portrait view of driver (c)
steering view (d) pedal view. Future researchers can use this dataset to further test and
train future ADAS systems based on computer vision. The dataset sheds light on a
number of interesting facts with regards to where the driver rests his/her arms, legs
and eyes during the targeted scenarios. Moreover, important variables like the velocity,
distance and reaction times of feet as well as hands are also recorded separately which
gives a detailed insight into how drivers behave in an emergency situation behind the
wheel of an autonomous vehicle. The dataset is currently sized at over 100 GB and
contains over 1.44 million images. According to the literature review, a dataset of such
scale is not available freely. Hence the proposed dataset is vital for researchers and
engineers who are striving to design the next generation of ADAS.

6. Building on top of the work done in Chapter 4, Chapter 5 deals with the complex
problem of weather classification, after successful modification of the driver simulator
we were able to produce hi fidelity weather classification images that were then used to
train deep learning networks to efficiently classify weather in real-world images. This
resulted in a the production of a novel dataset called Weather Drive Dataset, comprising
specifically for synthetic weather images. This includes hi fidelity images produced for
four different weather conditions, Clear, Cloudy, Foggy and Rainy. The feasibility of
these images is tested in deep learning methods and when used with VGG it is able to
attain an efficiency of 74% which is unprecedented for a synthetic only dataset which
is being tested on real world images. These images were generated by our custom built
simulator which was developed ontop of the LEE simulator. It provides great ease of
use meaning that a number of different weather scenarios can be setup in a fraction of
time as compared to state-of-the art simulators like Carla [3]. Moreover our approach
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allows for wider range of controls over the cloud visual fidelity making it one of the
best weather based simulators in the field and it is designed for a quick launch and
record approach meaning that very little setup is required to generate complex weather
scenarios. Moreover, the simulator is the only one of its kind whose purpose is to
generate high fidelity synthetic weather simulations for autonomous driving research.
The Weather Drive Dataset is novel in nature as it is the largest synthetic dataset for
weather classification comprising of 108,333 images in total.

6.3 Future Directions

This thesis has been a culmination of so many different domains and the author hopes that it
will provide insights into many solutions to the problematic statements concerning synthetic
worlds for advanced driver assistance systems. The next question arises where can we go
from here? The author acknowledges that the solutions provided in this research are not
absolute in nature and better solutions will catch up in the near future building on top of what
has been provided in this thesis. Some of the future directions are listed as follows:

1. The main purpose of the driver simulator was to bring the cost and iteration times
down that normally took quite a huge amount of resources. There is significant room
for improvement in the overall design and feature set of the LEE simulator. More
sensors can be added in like eye tracking and heart rate sensor to increase the amount of
variables that can be recorded at any specific time. Moreover, additional autonomous
car scenarios can be added to further enhance the future experiments that can directly
contribute to the design and testing of future autonomous car algorithms.

2. Additional datasets can be generated from the simulator to further aid the computer
vision domain and explore further work frames of deep learning networks.

3. Some drawback to such a setup can include a lack of true real world connection.
sure the simulations can be modelled as close as possible to the real counter part
but the complexity and reliability of the real world exercise can not be taken lightly.
So caution should be taken under such circumstances. but for the purpose of our
research i-e recording perception Reaction Times, the simulator works flawlessly and
the relationship between synthetic world and the real life counter part is quite close.

4. The simulator can be further modified to add pedestrian related data that can in theory
simulate close to reality pedestrian movements within a given scenario. examples can
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include an inner city pedestrian crossing in which an autonomous car has to make a
decision to stop upon a successful detection of humanoids at the crossing.

5. This thesis leaves a lot of room open for future research into variables like lead times
of NDR tasks (Non Drive Related Tasks). This can further aid in identifying which
secondary tasks are more bound to increase perception reaction times which as a result
can affect the quality of driving.

6. Weather classification dataset can be enhanced further by adding additional camera
angles on the virtual car, which in turn can increase the number of generated images.
this can have significant effect on the training of the pre training deep learning models,
further more additional test/train ratio of the images can fine tune the accuracy of the
models as well.

7. Depth Perception is a complex problem in it’s own domain, the simulator lays the
ground work for it to be used for depth estimation as well. After some minor code
changes it will be able to generate datasets for depth estimation which can then be used
to train deep learning networks. Evaluating these results would prove to be crucial in
making the driver assistance systems of the future more reliable. It is crucial to get
this data as efficiently as possible otherwise it can have drastic effects on the driving
quality of the autonomous car. Over the years many different approaches have been
used to detect depth and distance to other cars and obstacles like Radars, LiDARs and
Stereo image sensing technology but most of these techniques use specialist hardware
and can be quite expensive to manufacture resulting in high production costs to the car
maker. The hypothesis is to use just one colour camera to detect depth and calculate
the necessary distance between objects and cars. This can be achieved by using
Convolutional Neural Networks and Deep Learning Networks to detect distance and
depth. Furthermore, this approach can be further enhanced by using synthetic data to
train these networks for acquiring better efficiency.
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[37] R. Jurecki and T. Stańczyk, “Driver reaction time to lateral entering pedestrian in a
simulated crash traffic situation,” Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 27, p. 22–36, 2014.

[38] M. Svetina, “The reaction times of drivers aged 20 to 80 during a divided attention
driving,” Traffic Injury Prevention, vol. in press, 2016.

[39] B. Mok, M. Johns, K. J. Lee, D. Miller, D. Sirkin, P. Ive, and W. Ju, “Emergency,
automation off: unstructured transition timing for distracted drivers of automated
vehicles,” in Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International
Conference on. IEEE, 2015, pp. 2458–2464.



92 References

[40] M. Körber, C. Gold, D. Lechner, and K. Bengler, “The influence of age on the take-
over of vehicle control in highly automated driving,” Transportation Research Part F
Traffic Psychology and Behaviour, vol. 39, pp. 19–32, 03 2016.

[41] A. Bartels, M.-M. Meinecke, and S. Steinmeyer, “Lane change assistance,” in Hand-
book of Intelligent Vehicles. Springer, 2012, pp. 729–757.

[42] M. Saifuzzaman, S. M. M. Haque, Z. Zheng, and S. Washington, “Impact of mo-
bile phone use on car-following behaviour of young drivers,” Accident Analysis &
Prevention, vol. 82, pp. 10–19, 2015.

[43] Y. Kuang, X. Qu, J. Weng, and A. Etemad-Shahidi, “How does the driver’s perception
reaction time affect the performances of crash surrogate measures?” PLoS one, vol. 10,
no. 9, p. e0138617, 2015.

[44] N. Lyu, L. Xie, C. Wu, Q. Fu, and C. Deng, “Drivers cognitive workload and driving
performance under traffic sign information exposure in complex environments: a case
study of the highways in china,” International journal of environmental research and
public health, vol. 14, no. 2, p. 203, 2017.

[45] C. Dijksterhuis, K. A. Brookhuis, and D. De Waard, “Effects of steering demand on
lane keeping behaviour, self-reports, and physiology. a simulator study,” Accident
Analysis & Prevention, vol. 43, no. 3, pp. 1074–1081, 2011.

[46] C. Gold, D. Damböck, L. Lorenz, and K. Bengler, ““take over!” how long does it
take to get the driver back into the loop?” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 57, no. 1. SAGE Publications Sage CA:
Los Angeles, CA, 2013, pp. 1938–1942.

[47] B. Wandtner, N. Schömig, and G. Schmidt, “Effects of non-driving related task
modalities on takeover performance in highly automated driving,” Human factors,
vol. 60, no. 6, pp. 870–881, 2018.

[48] B. Wandtner, G. Schmidt, N. Schoemig, and W. Kunde, “Non-driving related tasks in
highly automated driving-effects of task modalities and cognitive workload on take-
over performance,” in AmE 2018-Automotive meets Electronics; 9th GMM-Symposium.
VDE, 2018, pp. 1–6.

[49] N. Merat, A. Jamson, F. Lai, M. Daly, and O. Carsten, “Transition to manual: Driver
behaviour when resuming control from a highly automated vehicle,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 26, p. 1–9, 2014.

[50] J. Andrey, B. Mills, M. Leahy, and J. Suggett, “Weather as a chronic hazard for road
transportation in canadian cities,” Natural Hazards, vol. 28, pp. 319–343, 2003.

[51] J. Nystuen and H. Selsor, “Weather classification using passive acoustic drifters,”
Journal of Atmospheric and Oceanic Technology - J ATMOS OCEAN TECHNOL,
vol. 14, 1997.

[52] C. Lu, D. Lin, J. Jia, and C.-K. Tang, “Two-class weather classification,” 2014, pp.
3718–3725.



References 93

[53] M. Elhoseiny, S. Huang, and A. Elgammal, “Weather classification with deep convolu-
tional neural networks,” 2015.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” in Advances in Neural Information Processing Systems,
F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25. Curran Associates,
Inc., 2012.

[55] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Neural Information Processing Systems, vol. 25, 2012.

[56] Z. Zhu, L. Zhuo, P. Qu, K. Zhou, and J. Zhang, “Extreme weather recognition using
convolutional neural networks,” 2016, pp. 621–625.

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” 2015, pp. 1–9.

[58] D. Lin, C. Lu, H. Huang, and J. Jia, “Rscm: Region selection and concurrency
model for multi-class weather classification,” IEEE Transactions on Image Processing,
vol. PP, pp. 1–1, 2017.

[59] J. Guerra, Z. Khanam, S. Ehsan, R. Stolkin, and K. McDonald-Maier, “Weather classi-
fication: A new multi-class dataset, data augmentation approach and comprehensive
evaluations of convolutional neural networks,” 2018, pp. 305–310.

[60] M. Hnewa and H. Radha, “Object detection under rainy conditions for autonomous ve-
hicles: A review of state-of-the-art and emerging techniques,” IEEE Signal Processing
Magazine, vol. 38, no. 1, pp. 53–67, 2021.

[61] S. Kawai, K. Takeuchi, K. Shibata, and Y. Horita, “A method to distinguish road
surface conditions for car-mounted camera images at night-time,” 2012, pp. 668–672.

[62] H. Kurihata, T. Takahashi, I. Ide, Y. Mekada, H. Murase, Y. Tamatsu, and T. Miyahara,
“Rainy weather recognition from in-vehicle camera images for driver assistance,” 2005,
pp. 205– 210.

[63] X. Yan, Y. Luo, and X. Zheng, “Weather recognition based on images captured by
vision system in vehicle,” vol. 5553, 2009, pp. 390–398.

[64] C. Lu, D. Lin, J. Jia, and C.-K. Tang, “Two-class weather classification,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PP, pp. 1–1, 2016.

[65] H. Song, Y. Chen, and Y. Gao, “Weather condition recognition based on feature
extraction and k-nn,” Advances in Intelligent Systems and Computing, vol. 215, pp.
199–210, 2014.

[66] E. Jitsukata, S. Kobayashi, and K. Tamura, “Automatic driving system,” 2001, uS
Patent 6,169,940.

[67] W. Zhang, T. Mei, H. Liang, B. Li, J. Huang, Z. Xu, Y. Ding, and W. Liu, “Research and
development of automatic driving system for intelligent vehicles,” in Foundations and
Practical Applications of Cognitive Systems and Information Processing. Springer,
2014, pp. 675–684.



94 References

[68] W. Mehringer, M. Wirth, D. Roth, G. Michelson, and B. M. Eskofier, “Stereopsis only:
Validation of a monocular depth cues reduced gamified virtual reality with reaction
time measurement,” IEEE Transactions on Visualization and Computer Graphics,
vol. 28, no. 5, pp. 2114–2124, 2022.

[69] J. Eom, G. Kim, and Y. Park, “Concurrent firing lidar for self-driving car,” in 2021 In-
ternational Conference on Information and Communication Technology Convergence
(ICTC), 2021, pp. 1226–1229.

[70] Al Root. (2021) https://www.barrons.com/articles/lidar-is-the-future-of-autonomous-
driving-this-company-is-making-it-cheaper-and-better-51625405944.
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