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Abstract

The automotive industry is evolving at a rapid pace, new technologies and techniques
are being introduced in order to make the driving experience more pleasant and safer as
compared to a few decades ago. But as with any new technology and methodology, there will
always be new challenges to overcome. Advanced Driver Assistance systems has attracted a
considerable amount of interest in the research community over the past few decades. This
research dives into greater depths of how synthetic world simulations can be used to train the
next generation of Advanced Driver Assistance Systems in order to detect and alert the driver
of any possible risks and dangers during autonomous driving sessions. As Autonomous
driving is still in the process of rolling out, we are far away from the point where Cars can
truly be autonomous in any given environment and scenario and there are still quite a fair
number of challenges to overcome. A number of semi autonomous cars are already on the
road for a number of years. These include likes of Tesla, BMW & Mercedes. But even more
recently some of these cars have been involved in accidents which could have been avoided
if a driver had control of the vehicle instead of the autonomous systems. This raises the
question why are these cars of the future so prone to accidents and whats the best way to
over come this problem. The answer lies in the use of synthetic worlds for designing more
efficient ADAS in the least amount of time for the automobile of the future.

This thesis explores a number of research areas starting from the development of an open
source driver simulator that when compared to the state-of-the art is cheaper and efficient
to deploy at almost any location. A typical driver simulator can cost between £10,000 to
as much as £500,000 [1] [2]. Our approach has brought this cost down to less than £2,000
while providing the same visual fidelity and accuracy of the more expensive simulators in the
market. On the hardware side, our simulator consist of only 4 main components namely, CPU
case, monitors Steering/pedal and webcams. This allows the simulator to be shipped to any
location without the need of any complicated setup. When compared to other state-of-the-art
simulators [3], the setup and programming time is quite low, if a PRT based setup requires
10 days on state-of-the-art simulators [3] [4] then the same aspect can be programmed on our
simulator in as little as 15 minutes as the simulator is designed from the ground up to be able

to record accurate PRT.
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The simulator is then successfully used to record accurate Perception Reaction Times
among 40 subjects under different driving conditions. The results highlight the fact that not all
secondary tasks result in higher reaction times. Moreover, the overall reaction times for hands
were recorded at 3.51 seconds whereas the feet were recorded at 2.47 seconds. The study
highlights the importance of mental workloads during autonomous driving which is a vastly
important aspect for designing ADAS. The novelty from this study resulted in the generation
of a new dataset comprising of 1.44 million images targeted at driver vehicular interactions
that can be used by researchers and engineers to develop advanced driver assistance systems.
The simulator is then further modified to generate hi fidelity weather simulations which when
compared to simulators like CARLA [3] provide more control over how the cloud formations
giving the researchers more variables to test during simulations and image generation.

The resulting synthetic weather dataset called Weather Drive Dataset is unique and
novel in nature as its the largest synthetic weather dataset currently available to researchers
comprising of 108,333 images with varying weather conditions. Most of the state-of-the-art
datasets only have non automotive based images or is not synthetic at all. The proposed
dataset has been evaluated against Berkeley Deep Drive dataset which resulted in 74%
accuracy. This proved that synthetic nature of datasets are valid in training the next generation
of vision based weather classifiers for autonomous driving.

The studies performed will prove to be vital in progressing the Advanced Driver Assis-
tance systems research forward in a number of different ways. The experiments take into
account the necessary state of the art methods to compare and differentiate between the
proposed methodologies. Most efficient approaches and best practices are also explained in
detail which can provide the necessary support to other researchers to set up similar systems

to aid in designing synthetic simulations for other research areas.
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Chapter 1

Introduction

1.1 Motivation

Transportation is the absolute pinnacle of human superiority and necessity. The 21st century
has proven to be vital in aggressive advancements within the automotive industry. It’s hard
to believe that just over a hundred years ago, we were still relying heavily on horses and
steam trains for the bulk of our transportation needs. But with the advent of technology and
new combustion techniques, we were quickly able to travel long distances with relative ease.
But with new methods of transport comes with greater risks to human life. US Department
of Transportation’s Data has shown that deaths by car crash has always been in the range
of 40,000 annually[5]. Although new safety standards had been introduced over time but
they are still not enough to get the number of deaths down to a manageable factor. The
report also states that in 2019 out of 50,000 drivers that lost their lives in fatal crashes, 3,008
of those were distracted[5]. Hence a human’s ability to loose concentration during long
driving sessions is quite concerning. Present day advancements pose a greater challenge
because automobiles are getting smarter and their systems are getting more complex. Ideally
removing the driver completely from the driver’s seat is a viable option and can reduce
the rate of fatalities by a huge margin. But these autonomous systems are far from perfect.
There are just too many obstacles that need to be navigated with extreme caution. Recently
a Tesla autonomous car crashed into an overturned Lorry on a Taiwanese highway [6]. It
is speculated that if the human driver had control instead of the autonomous car, this crash
could have been avoided. Moreover, this is not the only crash that has caused speculation
around the use of autonomous cars on the public roads [7]. Hence there is alot of room for
improvement and this is what motivates us to conduct our research into the challenges that
are being faced by the automotive industry in this new era of autonomous driving.
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1.2 Background
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Fig. 1.1 ADAS - Advanced Driver Assistance Systems

The automotive industry is moving at a very fast phase; new and upgraded technologies
are being introduced day in and day out. A particular sector of automotive industry, where a
considerable amount of research is being done is the Advanced Driver Assistance Systems
(ADAS). ADAS refers to a collection of necessary equipment and sensors as shown in figure
1.1. These instruments and sensors make sure that the driver gets the necessary information
and assistance in due course which in return will aid the driver in making the right decision
while on the road. These systems are highly complex in nature and once implemented and
used to their fullest extent, they have the capacity to revolutionize the automotive industry.
Coupled with advance Al (Artificial Intelligence), ADAS can provide a creative and effective
way to project data and information at the moment when it is required.

The automotive industry has been shocked recently by a number of car crashes involving
autonomous cars. A few of these incidents had involved Tesla cars and the authorities have
blamed the car’s Autopilot mode [6, 7]. At least one death occurred during these crashes.
This resulted in a significant change in the marketing strategy by Tesla which now stresses
on the fact that the drivers should always keep their hands on the wheels at all times during
Autonomous Mode. As the world is being introduced to the age of Autonomous vehicles,
accidents are bound to happen. This particular instant also opens up doors for researchers

around the world to find an efficient method to streamline the transition from manual driven
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cars to Autonomous vehicles. More companies are now adapting to the changing landscape
brought forward by the the Autonomous revolution, namely Ford, Mercedes, BMW, Volvo,
Uber etc. Some of these manufactures have already launched their driverless fleet of cars in
major cities in 2021.

SAE (Society of Automotive Engineers) which is a U.S -based, globally active pro-
fessional association has defined five different levels of Autonomous Driving Technology.
Namely, Level 1 to 5 [8].

Level O is the baseline with no assistance at all. This is what resembles the average
car nowadays, whereas Level 1 supports systems such as automatic braking if a potential
imminent collision is detected. This type of Automation has already been implemented
in most of the big brand cars that went into production in 2020. Level 2 includes semi-
autonomous modes which involve acceleration, braking and basic steering assistance, this
also involves variable speed cruise control systems. Level 3 extends the autonomous driving
mode to a step further. This results in the car handling the driving tasks in a given parameter
like on the freeway and during clear day times, this type of Autonomous system can allow
the driver to take back control if he wishes. Level 4 further extends the autonomous tasks
and is able to handle all driving responsibilities even if the driver is present or not. Level 5 is
the ultimate Autonomous Driving mode, which can handle complex driving tasks in any sort
of road surface and weather conditions. It is also noted that Level 5 is still at a hypothesis

stages, some vehicle manufacturers believe that the level 5 is a pure myth at present.

1.3 Problem Statement and Challenges

There are a number of research challenges involved in designing an effective Driver As-
sistance System. Most of the variables revolve around finding the quickest way to test
algorithms and make the necessary adjustments in the next iterations of the design. There is
a reason why the automotive industry has been quite slow in recognizing these challenges
due to complex manufacturing processes and costing issues. Moreover, it took quite some
time for highway safety standards to be recognized and implemented during the second half
of 20th century. In short, the problem is that the automotive industry cannot rely on full scale
real simulators anymore due to the time and budget constraints attached to them, Moreover,
the hypothesis needs to be tested thoroughly to identify whether fully synthetic data is a
viable option to design the next generation of ADAS in the least amount of budget and time
hence empowering the researchers with the tools necessary to push forth the development of
new safety standards. This is the fundamental problem statement which helps to connect all
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the chapters in this thesis. This sub-section identifies some of the most crucial challenges

that will be targeted in this thesis and are addressed in later chapters.

1.3.1 Synthetic Environments

Fig. 1.2 Synthetic World View

In order to test the validity of complex algorithms, it is considered a more productive approach
to test them out in a closed and controlled environment before releasing them into the wild.
The concept of Synthetic Environments is not new but using them for the development of
ADAS is quite a challenge on its own. A synthetic environment can be termed as a digital
twin of it’s real world counterpart, closely reflecting the physical properties such as materials,
shading, lighting and weather conditions. Since the advancements made in computer graphics
in the early 2000’s, it is now possible to build virtual worlds than can simulate almost all the

necessary physical properties closing the gap between real and synthetic worlds even further.

1.3.2 Driver Simulator

Although big car maker companies such as Ford & BMW do have huge test facilities where
they can perform relative experiments but the iteration times between when an issue is

identified to when it is resolved can be quite high when it involves physical production.
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This is where virtual simulations can play an important part in reducing the time between
production iterations. Moreover, an unlimited amount of datasets can be generated from
this simulations. Chapter 3 deals with the approach and best practices necessary to develop
low-cost and mobile simulation systems that can efficiently simulate their real-world counter

parts.

Fig. 1.3 Driver Simulator

1.3.3 Perception Reaction Time

Perception Reaction Time or PRT is quite crucial in highlighting a potential crash and
subsequent solution to avoid it within a plausible time frame. On average, 1.1 second is the
typical time for when the driver sees an issue on the road to when he reacts to it with evasive
maneuvers [9]. But these times can vary heavily when the car is in autonomous mode and
the driver is distracted by other tasks. This is due to the fact that drivers do not pay the same
amount of attention as compared to when the car is in manual mode. This has resulted in
quite a few crashes and fines over the recent years. Main challenge is to know exactly how
much time is required for the driver to safely navigate through the potential collision ahead.
Chapter 4 will investigate this issue further in detail within this thesis. Experiment setups and
detailed result analysis are performed to answer the problem statements. Figure 1.4 shows

glimpses of the recorded data used for perception reaction time experiments.
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ACC Threshold Distance

Fig. 1.4 Driver Simulator Recorded Data

1.3.4 Weather Classification
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Fig. 1.5 Weather Classification Cnns

Effective Weather Classification is one of the most challenging problems faced by vehicle
manufacturers today. Knowing the severity of localized weather and then amending the
driving attributes of a vehicle can substantially decrease the chances of a potential crash. The
other issue to note is that weather is made of up many unique factors like color, visibility,
shadows & highlights and it is quite common to confuse certain weather conditions with
others which can be dangerous for self driving cars if perceived incorrectly. Moreover,

multiple variables can be used to provide absolute classification for weather. Chapter 5
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investigates this issue in more detail and will outline an approach that can classify weather
images at a respectable success rate by using only synthetic images generated on a custom
built simulator. This newly generated dataset can play a vital role in training pretrained
deep learning networks for better performance and accuracy in varied weather classification
scenarios. A number of Deep learning networks are used to test out the feasibility of the

recorded synthetic dataset.

1.4 Contributions

The contributions of this thesis for the problem statements as mentioned in section 1.3 vary

significantly in scope and can be broken down into the following points.

1. The first contribution of this work is the development of a driver simulator called LEE
Driver Simulator that is able to record important aspects of a driver during a variety of
autonomous driving scenarios. The simulator was designed specifically to be easy to
use and extendable which provides researchers with the freedom to simulate and test
with out being bound to any physical restrictions. The easy to use aspect is comparable
to other simulators in the market like CARLA [3] which might require 10 days of
programming in order to set it up for driver reaction control whereas Our approach is
build from the ground up to target driver reactions and hence can be deployed in less
than 15 minutes. Our simulator is also designed to be light weight meaning it only
has 4 main components namely CPU Case, monitors, Steering/pedal and webcams.
Hence, it can be transported to a target location without any specific physical setup
unlike other state-of-the-art simulators [4] [10]. The low cost aspect of the hardware
also makes sure that it is accessible by even the smallest of organizations and research
teams. A typical physical driver simulator can cost between £10,000 to as much as
£500,000 [4] [1] [2] [10]. Our approach has brought this cost down to less than £2,000
while providing the same visual fidelity and accuracy of the more expensive simulators

in the market.

2. The second contribution involves Testing the hypothesis that a driver behind the wheels
of an autonomous car can quickly lose focus on the road which results in increased
reaction times resulting in possible fatal outcomes. The driver simulator introduced
in the previous contribution is used to it’s fullest extent, resulting in accurate time
recording for PRT (Perception Reaction Time). The results show that not all secondary
tasks result in high Perception Reaction Times. Moreover, the global reaction times for

hands was recorded to be 3.51 seconds whereas the feet were recorded at 2.47 seconds
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which implied that drivers are always prioritise the feet over the hands. Our approach
also sheds light on the relationship between Perception Reaction times and mental
workload, although fatigue was not the outstanding entity, the study finds that reaction
times do suffer by approx 20% when secondary tasks are introduced during driving.

. The third contribution is the generation of a new dataset of images which captures the
driver from three different viewpoints within an autonomous virtual car. This dataset
is generated form the PRT (Perception Reaction Time) experiments as discussed in the
previous contribution. The dataset comprises of a number of different scenarios, each
driver is subjected to a number of tasks during autonomous mode. The dataset sheds
light on a number of interesting facts with regards to where the driver rests his/her
arms, legs and eyes during the targeted scenarios. Moreover, important variables like
the velocity, distance and reaction times of feet as well as hands are also recorded
separately which gives a detailed insight into how drivers behave in an emergency
situation behind the wheel of an autonomous vehicle. The dataset is currently sized at
over 100 GB and contains over 1.44 million images. According to the literature review,
a dataset of such scale is not available freely. Hence the proposed dataset is vital for

researchers and engineers who are striving to design the next generation of ADAS.

. The fourth contribution involves the generation of a new weather dataset comprising of
synthetic images with varying weather conditions known as Weather Drive Dataset or
WDD. This includes hi fidelity images produced for four different weather conditions,
Clear, Cloudy, Foggy and Rainy. The feasibility of these images is tested in deep
learning methods and when used with VGG it is able to attain an efficiency of 74%
which is unprecedented for a synthetic only dataset which is being tested on real
world images. These images were generated by our custom built simulator which was
developed ontop of the LEE simulator. It provides great ease of use meaning that a
number of different weather scenarios can be setup in a fraction of time as compared
to state-of-the art simulators like Carla [3]. Moreover our approach allows for wider
range of controls over the cloud visual fidelity making it one of the best weather based
simulators in the field and it is designed for a quick launch and record approach meaning
that very little setup is required to generate complex weather scenarios. Moreover,
the simulator is the only one of its kind whose purpose is to generate high fidelity
synthetic weather simulations for autonomous driving research. The Weather Drive
Dataset is novel in nature as it is the largest synthetic dataset for weather classification
comprising of 108,333 images in total.
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1.5 Thesis Structure

The thesis is divided into the following 5 Chapters:

In Chapter 2 we provide a detailed literature review of the existing research in the field
of Advanced Driver Assistance Systems. It covers a vast majority of the topics related to
synthetic worlds, Perception Reaction Times, Driver Behavior & Deep learning Networks.

In Chapter 3 we present a detailed development overview of the LEE driver simulator
which was designed specifically for recording Driver vehicular interactions in self-driving
mode. It sheds light onto many aspects of the development methodology and provides a fair
guide to what to look out for when developing a specialized simulator from scratch. It also
explores how the proposed simulator is suitable for assessing driver vehicular interactions
within a Level 3 autonomous vehicle.

In Chapter 4 dives deeper into recording usable data from the driver simulator introduced
in chapter 3. Major modifications were implemented in terms of camera setup and driver
input recorders. This resulted in an upgraded system that is able to perform well and can
simulate autonomous scenarios in a much more expansive detail. This particular chapter
also deals with the recording of Perception times of drivers behind an autonomous car, the
significance of the problem is provided in detail and statistical analysis techniques such as
ANOVA are also explained in detail. The experiments that were performed on human subjects
is also outlined providing details with regards to the way the subjects were introduced into
this experiment. The chapter also covers the dataset that was generated as a result of this study
which sheds more light into how the proposed simulator can be used to record important
driver behavior data that can be used in further research into other related fields.

In Chapter S we explain how the driver simulator that was introduced in the previous
chapter is further enhanced and modified to produce hi-fidelity synthetic images specifi-
cally for weather classification research. The resulting images were then used to retrain
CNNss (Convolutional Neural Networks) which resulted in 74% accuracy which is of great
importance because it shows the significance of synthetic only data which is capable of
plausible accuracy when tested on real world data. The chapter also highlights the important
methodology changes that were performed to conform the driver simulator to this specific
task of weather images. Deep Learning Models are also discussed in detail including the
setup of layers as compared to state-of-the-art.

Finally Chapter 6 deals with the concluding remarks and future directions related to
synthetic worlds for driver assistance systems, the limitations that the current approach
possesses and potential workarounds for highlighted issues. The chapter effectively leaves
the door open for future researchers to build on top of the experiments and results provided
in this thesis.
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Chapter 2
Literature Review

This chapter provides a detailed overview of the literature within the use of simulators and
synthetic worlds for the purpose of improving Driver Assistance Systems. A breakdown of
the most used techniques and methodologies is performed to give a better understanding of
the current state-of-the-art. The author also presents a detailed insight into datasets that are
currently available to further compare it to the datasets that were produced during this study.
This chapter provides a strong base to compare against the contributions highlighted in the

previous chapter.

2.1 Overview

When it comes to major literature review regarding Advanced Driver Assistance Systems
research, there are numerous publications in exceptional journals and conferences, some of
them deal with the effective use of cheap mobile devices as HUD systems while others are
researching on more complex systems like achieving collision Avoidance through HUD and
LIDAR systems. The overall aim is to address the problem of how an electronic device can
help to prevent road accidents in order to save human lives. Recent study[11] has shown that
most of major accidents are caused due to negligence and frequently leads to fatal accidents
on the motorways especially during lane switching maneuvers. Most of the factors include
recognition failure, lack of awareness and fatigue.

Moreover, researchers are also working closely with designers and engineers to work
out the most efficient implementation of Driver Visual Guidance Systems by using Heads
Up Displays. On the hardware side, researchers are looking into different optical designs
in order to efficiently implement HUD systems onto full windshield areas. Other research
areas include intelligent headlights [12] and lane changing assistance [13] which are quickly

becoming a standard for modern automotive assistance systems. A study was carried out
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recently where 16 participants were instructed to drive in a parking lot with a monoscopic
heads up display warning them of a possible collision with a pedestrian in front. The
experiment reflected the benefits of AR displays and conformable graphics such as the ability
to guide drivers attention and their positive consequences [14]. Moreover, Coleman [15] did
another study which involved 24 drivers and used fixed and animated AR graphics to find
out how the driver’s reacted in both cases. Results showed that the animated graphics can
produce some driving gains like goal-directed navigation tasks but often come at the cost of
response time and distance.

Our research also specifically deals with the fact that computer-generated virtual worlds
can play a vital role in designing and implementing new algorithms that can make driving
experiences more secure and efficient. The proposed research not only deals with manual
human factors involved in driving but also computer vision based components that can help
the autonomous cars of the future to better understand their surroundings and make efficient

decisions accordingly.

2.2 Autonomous Driving Levels

Learn more about SAE J3016 or
purchase the standard document:

www.sae.org/autodrive

AUTOMATED DRIVING SYSTEM
MONITORS DRIVING ENVIRONMENT

HUMAN DRIVER
MONITORS DRIVING ENVIRONMENT

No Automation Drfver Palﬁal Conditional

Fig. 2.1 SAE Levels of Autonomy

Before we dive deep into Advanced Driver Assistance Systems during autonomous

driving, first we have to understand what constitutes and can be termed as autonomous
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driving. SAE (Society of Automotive Engineers) which is a U.S -based, globally active
professional association has defined five different levels of Autonomous Driving Technology.
Namely, Level O to 5 [8].

Level 0 is the baseline with no advance assistance at all. This is what resembles the
average car nowadays with no electronics that can help a driver to drive more efficiently and
safely. This level can contain systems such as tyre pressure monitors and sensors that can
show and alert the driver of potential mechanical problems such as engine oil change warning
indicators. SAE has termed this level as if the driver is driving the car even if the feet are
off the pedals and there is no steering input from the driver. The driver should continuously
supervise the controls such as steering, braking and acceleration. So the total features in this
level are limited to providing warnings and momentary assistance like automatic emergency
braking, blind spot warning and lane departure warning.

Level 1 is the next level of autonomous driving. It supports steering or brake / acceleration
support to the driver which include lane centering and adaptive cruise control. Most of the
new cars built after 2020 have these features as standard. So instances where a vehicle can
be kept at a safe distance behind the other car, qualifies as Level 1 because the driver only
has to monitor the other aspects such as steering and braking.

Level 2 further steps up the driver assistance above level 1 as it supports both steering as
well as braking / acceleration at the same time. So effectively it provides the ability of lane
centering and Adaptive cruise control at the same time. This feature is particularly common
in cars built after 2021 making it a standard throughout the industry.

Tesla by far has been the first to develop autonomous vehicles. Tesla unveiled the famous
Level 2 Autopilot system 5 years back, which made headlines worldwide, it was the first
true autonomous system of its kind. It involved systems like Auto Steer, Auto Lane Change,
Traffic-Aware Cruise Control, Side Collision Warning and Auto Park.

BMW has been a major player within the Autonomous vehicles industry. They had rolled
out Level 2 Autonomous cars in late 2016. This included systems such as Traffic jam assist.
The system is able to detect the car ahead and can read lane markings, the car can correct it’s
heading by steering into the correct direction. Unfortunately, the system works up to 43 mph.
which is way lower than the standard highway speeds. The European version of the cars have
self-driving features which does not require the driver to be present behind the wheel.

Level 3 extends the autonomous driving mode to a step further. The driver is practically
not driving when Level 3 features are enabled. But when the feature requests, the driver
must take back control. The car is able to drive itself under limited conditions and will not
operate unless all required conditions are met. examples include features such as traffic jam

chauffeur in which car would gently keep a safe distance from another car in a traffic jam
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scenario. Other scenarios include the car handling the driving tasks in a given parameter like
on the motorway and during clear day times.

Major car companies are spending a large portion of their research and development
budget to bring Level 3 Autonomous modes to the roads worldwide. Audi was one of the
first manufacturers to bring a fully functional level 3 autonomous car onto the roads with
its A8 models. It comprised of unique features like Traffic Jam Pilot System. It was able to
handle acceleration, braking and steering at 40 mph. However, such systems have their own
set of limitations, For example the system needs at least 2 cars in front to decide whether
the traffic is heavy or light, the system is also bound to specific weather conditions, and as a
result the feature is unable to perform efficiently on a snowy road. Moreover, the car also
features a driver detection system which detects whether the driver is looking down the road
or not, also it will be able to tell if the driver is incapacitated or not.

After the successful roll out of level 3 system, Audi initially had plans to launch Level
3 plus close to the end of 2021 but was put on hold due to performance issues. This was
supposed to be a refined version of their level 3 Traffic Jam Pilot system, which would have
allowed the car to operate at standard highway speed such as 60 to 70 mph but the system
still requires the successful detection of a freeway environment by using the GPD and on
board camera systems. Moreover, the system was also planned to include a data recorder
system which would collect real-time driving data during a driving sessions, it almost acts as
an airplane black box, which collects vital data just before a crash.

Honda might be the most affordable option for Autonomous Driving Suites. They have
features like Adaptive Cruise Control and Lane Keep Assist, which uses a forward facing
camera to determine the distance and hence control the speed and direction. Honda cars
can also include Forward Collision warning, Collision Mitigation Braking, Lane Departure
Warning and Road Departure Mitigation systems. Honda plans to launch its Level 3 cars in
the next few years which will have car to car communication build in. This helps to share the
necessary road data with other Honda cars in effect making the autonomous driving more
accurate and efficient. Moreover, Honda has also made a bold claim of No crashes after
2040.

The Mercedes Drive pilot system is far the most resilient than the company allows it to be
under its current stage. Also the E-class was the first car ever to introduce V2V technology
which like Honda’s planned cars are able to communicate necessary road data with other cars
and this particular data is not bound to just Mercedes specific cars but it is a global shared
data pool to which every other car company can contribute effectively making it an open

source communication model for transmitting vital road data and information.
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Level 4 further extends the autonomous tasks and is able to handle all driving responsi-
bilities even if the driver is present or not. Examples can include local driver less taxis and
by design the vehicle can include or not include pedals or steering wheels. This level would
in theory bring about the biggest change in automotive industry but is still limited by specific
conditions.

Audi is also pushing the Level 4 Autonomous systems by 2030. This will allow the cars
to drive autonomously anywhere as long as the car is within a geo-fenced area. This system
will allow the car to travel from London to Paris, provided the road is already mapped into
the system. In total Audi would require at least 24 sensors to make Level 4 Autonomous
driving a reality, this includes sensors such as GPS, LIDAR (Light Imaging, Detection and
Ranging), short and long range radar system, and at least two different digital cameras for
computer vision based input.

Apart from Audi, BMW is planning to launch level 4 Autonomous cars in the next few

years and are planning to tackle Level 3 to 5 cars in the next 10 years.

Fig. 2.2 Level 5 Autonomy Concept

Level 5 is the ultimate Autonomous Driving mode, which can handle complex driving
tasks in any sort of road surface and weather conditions. It is also noted that Level 5 is still at
a hypothesis stages, One Audi representative recently described the level 5 as a pure myth

but that is surely bound to change with the progression of technology.
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The pioneering technologies do have their own set of limitations. As discussed before,
Tesla autopilot system has been involved in quite a few crashes since it’s debut which resulted
in at least one death.[16] [6] Tesla has always maintained that the users should have their
hands on the wheels at all times even in Autopilot mode, until there is a stricter procedure in
place to force the users to comply with the guidelines, these accidents are bound to happen
again and again until the automotive industry reaches level 5 Autonomous modes.

The above levels highlight the fact that in order to reach the Level 5 Autonomous Level,
researchers and designers require systems and simulators which can aid in reducing the
iteration times between algorithms. The author presents a number of solutions which are

vital in achieving this goal.

2.3 Synthetic Worlds

Fig. 2.3 Driver Simulator Synthetic View

Synthetic worlds are becoming very useful in the research community for the purpose
of iterating quickly and efficiently with regards to testing new algorithms. There are alot of
advantages and disadvantages for using synthetic data for deep learning applications. One of
the limitations of deep learning networks is the data-hungry nature of using such systems,
they just require too much data to train and test. This limitation can be overcome by using

virtually created data that can be generated easily and efficiently in great numbers without
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having to step outside into the real-world. The artificially generated data can help to improve
the performance of deep learning methods by meeting their data demands [17]. A report
created by Gartner agrees to this notion that artificially created data will surpass real data
usage for Al by mid 2030’s as shown in the figure 2.4[18]

By 2030, Synthetic Data Will Completely Overshadow Real Data in Al Models

*

« Artificially Generated Data

* Generated From Simple
Rules, Statistical Modelling,
Simulation and Other
Techniques

Future Al

Data Used

for Al Today's Al

« Obtained From Direct
Measurements

» Constrained by Cost, Logistics,
Privacy Reasons

2020 2030

Gartner

Fig. 2.4 Gartner 2021 Report

Driving simulators are proving to be vital in automotive research and are used heavily in
other fields as well such as military and construction. The overall premise has changed so
much that it is safe to say that the research community cannot proceed without them. They

can primarily be broken down into 2 categories.

1. Physical Simulators

2. Virtual Simulators

2.3.1 Physical Simulators

The first interactive simulator was introduced in the 1960 [19] which paved the way forward
for other physical simulators like TRAFFIS which is an industrial grade simulator relying
specifically on a re-configurable approach [20]. Another recent research was carried out at
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The University of Auckland, New Zealand [21], It deals with recording the facial expression
of the driver to detect if the driver is paying attention towards the road or not with respect
to what exists in front of the road. The research proposes an advanced driver-assistance
system that correlates the driver’s head pose and hazards by analysing both simultaneously.
They also propose three novel ideas, Asymmetric appearance-modelling, 2D to 3D pose
estimation enhanced by the introduced Fermat-point transform, and adaptation of Global
Haar classifiers for vehicle detection under challenging lighting conditions. The system
is capable to detecting the driver’s direction of attention, it can also detect yaw and head
nodding as well as vehicular detection in front of the driver. Having both road and the driver’s
data and implementation of a fuzzy system, they had successfully managed to develop an All
in one system to detect driver’s attention and point of concentration. Moreover, the system is
also stable enough to provide real-time performance analysis for real-world driving scenarios.

Our approach demystifies the notion that physical simulators are better at performing
complex experiments than virtual simulators. The later chapters in this thesis will show
that virtual simulators are just as effective and accurate as their physical counterparts while
reducing the setup and iteration times by a huge factor.

2.3.2 Virtual Simulators

The complexities and setup times of physical simulators has a drastic effect on efficiency
and reusable data. A good example would be a specific weather condition would not be the
same next time a physical simulator is used. The environmental aspects are not controlable
enough, these issues can be solved by opting for a virtual simulator instead. which can
provide complete control over all aspects of driving while still maintaining the accuracy of
experiments performed.

Virtual Simulators are by far becoming more robust and cost effective, examples include
a research that was carried out at Stanford University which looks into ways of anticipating
manoeuvres via learning Temporal Driving Models [22]. A real car is fitted with cameras
and computing device that captures driver actions along a road, the research then proposes
an Auto-regressive Input-Output HMM to model the contextual information along with the
manoeuvres. The captured data is then evaluated against a diverse dataset of 180 miles of
real-world motorway and city driving. The results have shown that the system can anticipate
manoeuvres 3.5 seconds before they occur with over 80 percent Fl-score in real-time. As the
above result reflects, this particular research is quite fascinating as it paves a way to have a
quick peek just over a few seconds into the future to detect what will happen next. This type
of approach would generously support new algorithms and applications that can detect and
avoid particular automotive accidents.
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An enormous amount of interest is being generated regarding the use of Virtual or
synthetic Worlds to test algorithms that will eventually make their way into the real world
applications [23]. Image-based detection of humans and automobiles is of vital importance
when it comes to AR and HUD development. The detection of non-occluded standing
humans has always remained a challenge for intensive research. One such approach involves
the training of data set that involves 3d animated humanoid models from a game engine [24].
The training dataset still requires a lot of human input to pave the way for Convolutional
Neural Networks to work effectively in identifying the humanoids. The results are quite
promising, the research presents a solution to a problem namely the acquisition at a low cost
of good samples to train. In short, subjects were instructed to play an open-world video game
which consisted of an urban environment full of cars, buildings and humanoid characters.
Whereas in the background vital data is being recorded, the captured data is then subjected to
a classifier which isolates humanoids from the background. As the data being used is virtual,
the game engine can automatically classify the humanoids from the background. Also later
the researchers introduce an active learning technique thereby using the virtual world data in

conjunction with the real-world data. They then also provide quantitative results showing the

validity of the approach.

Fig. 2.5 VR Simulator setup

Another crucial study was performed by Chen-Ruei et al [25]. The experiment proposes
a new methodology to carry out 3d pose estimation of an object by assuming a single lens

camera environment and then uses a synthetic virtual world dataset to assist the deep learning
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model. By using only the synthetic dataset to conduct the training the efficiency achieved
was close to 85% with 30 million parameters. The study increases the confidence in the
synthetic worlds by a huge margin as it provides insights into how virtual worlds can be used
to test and train deep learning models with plausible efficiency.

Tozman et al [26] A study was performed on a virtual simulator to understand the
relationship between flow and heart rate variability. 18 subjects took part in a driving
scenario that projected them to boredom, flow and anxiety. Heart rate variability or HRV
differed significantly between the three mental states.

Another study was performed by Yimen et all [27] studies the effects of driver vehicular
control switch between manual and autonomous driving systems. The subjects found it
challenging because they were not used to that system. the study proposes a robust controller
to assist human drivers in the handover scenarios. A virtual simulator was used equipped with
a VR headset.The results showed that the driver steering loads and vehicle lateral deviations
can be reduced by the designed controller hence improving the driver safety in the handover
process.

Virtual simulators can also be used in conjunction with the real world by using augmented
reality to overlay virtual information on top of the real one. We also have quite a lot of
examples relating to an effective AR in real-world scenarios, these include the use of AR
systems within Military equipment, like a fighter pilots visor display system. It effectively
helps the pilot to acquire targets on a battlefield by just looking in the direction of the target.
Examples like that can also be implemented within the automotive version of AR displays.
A typical scenario would involve the driver looking in a certain direction. By doing so
the AR systems would project data and information containing famous landmarks in the
bespoke direction, without having to need to stop on the side of the road or even the driver
taking out his phone to look for the required information, as a result making the driving
more effective and safer at the same time. Moreover, an effective design and composition
theory is also necessary for the projection of the above information. Because according
to a recent study from Toronto University, the HUD systems can have a negative effect
on the driving if the information being transmitted is too overwhelming. We believe such
problems can be overcome by using an effective design methodology while creating the AR
systems. The perfect example of such a scenario would be a driver being bombarded with
unwanted data and information at the wrong time. The design methodology may involve the
colour of the fonts as well as the contrast ratio with the background elements. This approach
is also beneficial to the psychological researchers as well, who are willing to see how a
driver responds to such scenarios. Which will result in a broader range of possible research

scenarios.



2.4 State-of-the-art Simulators 21

Tracking and Registration are also quite important in delivering an effective driving
experience; The importance of VANETS (Vehicular Ad Hoc Network Systems) is crucial
under such circumstances [28]. It is a system that allows cars on the road to share vital
information regarding their surroundings, effectively allowing information to be transmitted
from one edge of the road to the other. This can involve an accident alert down the road. This
system has the ability to make the roads much safer and less crowded by relaying accident
info the incoming cars and effectively giving diversions before the bespoke point on the road.

Another challenge for an effective ADAS system is to assist the driver in all weather
conditions. This can be quite challenging for the ADAS of the future. A particular system
would work just as well as it’s military counterpart. Armies around the world are using the
Thermal and night vision system vigorously in everyday combat situations. The same can be
true for an automotive display system, a system that can operate in varying weather helping
the driver to overcome nature’s constraints. The scenarios can involve driving in a heavy
storm, extreme fog or pitch-black night [29].

In this section, we have seen how the virtual simulators have a decisive edge over the
physical simulators and that they can save enormous amount of time and budget when
designing advanced driver assistance systems. Moreover, the virtual simulators that are
available do require enormous amount of setup time and hence can be improved further

specifically towards the area of driver vehicular interaction and visual place recognition.

2.4 State-of-the-art Simulators

As discussed in the previous section, simulators have been part of the research community
for a number of decades, it is a plausible proving ground for testing new systems but only
a decade ago the visual fidelity was quite far behind. With the advent of technology this
is rapidly changing and the simulations are becoming more reflective of their real-world
counterparts. The challenge is to bring the cost down and design better scenarios that can
reflect the real world problems as close as possible.

Another study used 30 drivers strapped with a heart rate sensor to detect the increase in
heart rate of drivers during a scenario that simulated a critical situation which as a result
increased the driver’s heart rate. the Wahoo Tickr X chest strap was used to measure the
heart rate. [30]

Alexander and Neville [31] did an experiment on 26 drivers in two different scenarios.
The subjects were asked to read a newspaper while waiting for the car to give back control
from an automated scenario. The results showed that the lane positioning was unaffected

in both automated and manual conditions. However, a significant increase in the standard
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Table 2.1 LEE General Comparison for PRT and Weather classification with State-of-the-art
Simulators

Costing | Learning Curve | Extendable | Visual Fidility
Our Work (LEE) Low Low High High
CARLA Low High Mid High
STISM High High Low Low

deviation of the steering wheel was noted. In short, drivers performed better in the self-
paced transfer as compared to system paced transitions. Another study showed that a
prior familiarization with takeover requests affected the driver’s takeover performance and
automation trust, hence the first take-over performance is the most relevant whereas it slowly
lowers driver’s automation trust [32]. Regarding the use of simulators to gather such scientific
results is concerned, it was found that the ADAS simulations contributed significantly to
enhance the data that would mean better ADAS for future auto-motives [33] [34].

Soleymanpour et al [4] performed a study by using a desktop driving simulator known
as STISIM Drive, the simulator was programmed with night driving for atleast 70 minutes
on a two way highway with no turns, fourteen healthy volunteers aged 18 were selected to
perform this experiment. The main purpose of the study was to detect drowsiness among the
drivers. The novel algorithm was able to show an accuracy of 78.79% and a detection rate of
95% by comparison with KSS based drowsiness. This shows that a lot of time can be saved
and iterations of experiments can be performed without the need to spend huge sums of time
and budget by using a virtual simulator. As shown in Table 2.1 STISIM is quite expensive
and requires special setup, and transporting issues can arise as well due to the bulky nature
of the hardware. Although the developer support is quite reasonable, the system still has a
steep learning curve which adds to the overall budget and time. The biggest issues if the Low
visual fidelity, STISIM is quite a respectable simulator when it comes to driver research but
for computer vision tasks it lacks the visual quality for efficient dataset generation.

Carla is another simulator which works really well in simulating an urban environment
for autonomous driving vision research, it is able to mimic Lidar camera outputs and also
generates dynamic weather conditions, but the issue is the setup which is quite cumbersome.
[3] Another extension of CARLA simulator came in the form of a bus modification. Xiang
et al [35] managed to modify the standard CARLA simulator to a Bus simulator. CARLA
is perhaps the only simulator that is closely comparable to LEE but the high learning curve
when it comes to accessing external hardware communication and scenario setups makes it
harder for researchers to adapt to it quickly. Same can be said for the extend-ability because

the users would need to access the API specifically for altering the virtual environment. The
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image quality is comparable to LEE as it provides a comparable visual fidelity especially
in the recent builds releases of CARLA. As we can see from the above that the gaps that
our approach can fill is in the area of affordability, easy usage and scalability which can
provide the researchers, a simulator that can provide the usage and feedback as efficiently and
accurately as the real-world counterparts. However the simulators discussed in this section
have one thing in common, although they are all significant in performance, but they lack in
setup times, plug and play and visual fidelity. Our approach will aim to solve these issues in
more detail in Chapter 3.

The above literature is enough to motivate that there is a plausible need for synthetic or
virtual simulator utilising synthetic worlds to help answer some of the problem statements
raised in the previous chapter. There is also a need for generating usable datasets that can
be used to test and train the next generation of deep learning models to assist in designing
better driver assistance systems. Chapter 3 introduces the development of a specialized
low-cost simulator called LEE that has proven to be beneficial in recording usable data and

experiments which have resulted in a publications of a journal paper as well as a conference

paper.

2.5 PRT: Perception Reaction Time
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Fig. 2.6 Perception Reaction Time

PRT of human drivers is an active research area within the driving performance domain,
where it plays an important role in road incidents [36] - [37]. Green [36] highlights that the
most important variable is the driver’s expectation. Jurecki [37] Confirms that reaction time
is approximately a linear function of Time To Collision (TTC). Svetina [38] concludes that
mean reaction time and inter-individual variability progressively increases with age. It is
worth mentioning here that all these studies are carried out on active users while actually
driving a real vehicle.

Regarding the average reaction times in emergency situations, it has been studies that the

average time is 5 seconds [39]. Another interesting study shows that human reaction time
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can increase by 40 to 87 percent due to increased fatigue levels. [40] The problematic side of
transferring control from autonomous to manual driving results in a jitter effect no matter
how smooth the transfer is, Takahiro [41] proposes a shared authority approach for this type
of control transfer which results in increased driving control during simulator trials.

Regarding driver distraction studies, Saifuzzaman et al [42] investigated the impact of
mobile phone use on drivers within a car following scenario, interestingly it was found that
drivers tend to select lower speeds, large vehicle spacing and longer time headways as risk
compensation behaviour, Cognitive distraction and visual distraction was also one of the
focus points in that study.

Perception Reaction Time (PRT) and mental workload have proven to be crucial in
manual driving [43-45]. Meanwhile, in highly automated cars, Take-Over Performance
(TOP) is an addition variable to take into account for road safety [46]. In these cases, the
mental workload is closely related to immersing the driver in NDR-tasks (s)he is performing
while the car is driving autonomously [47]. Previous studies found impairments in take-over
performance while engaged in NDR-tasks, but little is known about the impact of specific
task characteristics [48, 49].

To summarize the above literature review, Chapter 4 aims to explore how the immersion
in NDR-tasks affects the success of TOP of drivers in a highway critical situation and evaluate

the influence of several variables, such as PRT, on this success.

2.6 Classification of Weather
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Fig. 2.7 Weather Classification CNN

Weather is one of the most important variables that can affect the transportation industry as
a whole. If left unnoticed it can trigger car crashes, train derailments and numerous other

accidents that can cripple the logistics operations of a particular area. Numerous studies have
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been carried out which have tried to expose the vulnerability of transportation services due
to adverse weather conditions [50]. Current systems rely on expensive sensor arrays which
try to detect present weather [51]. Trying to get an autonomous car to detect weather is
quite a challenging endeavour on its own. the recent advancements in computing power have
paved the way for machine learning to classify images and features. Lu et al, [52] proposed a
two-class weather classifier which can differentiate between images based upon five features,
namely, Sky, Haze, Contrast, Reflection and Shadow.

There is a rise in the use of Convolutional Neural Networks for the purpose of image
classification. Works by Krizhevsky et al [53] consisted of a CNN architecture which takes
considerable advantage of the improved computing power to train and improve the overall
performance. The system utilises a built-in feature extractor based on supervised learning,
which is more efficient as compared to manual feature extraction used in other machine

learning systems.
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Fig. 2.8 Krizhevsky Weather classifier Architecture

Other CNN systems have been designed around Krizhevsky et al [54] model such as [55]
are a good example. Elhoseiny et al [53] network is designed around Krizhevsky’s weather
classifier and is able to categorize between two possible classes, proving that a technology
used for general-purpose categorization can be used for highly specific applications while
achieving exceptional results. [56] resulted in an architecture which is quite successful when
it comes to image classification known as GooglLeNet, which was further explored later [57].

Another study performed by Di Lin et al [58] proposed a deep learning framework named
region selection and concurrency model (RSCM)which used regional cues to predict the
weather conditions.

Recent study [59] proposes a new open-source dataset comprising of three classes namely

Rainy, Foggy and Snowy. Each class contains 1100 images and uses a novel algorithm which
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a) Rainy b) Foggy

Fig. 2.9 RFS Dataset

uses superpixels delimiting masks as a form of data augmentation, leading to reasonable
results with respect to ten convolutional neural network architectures.

A recent study performed by Mazin et al [60] which studies the detection efficiency of
road elements during a rainy weather, indicates that the performance of image detectors
trained on clear weather images can significantly degrade during rainy images. This implies
that better training datasets are required to overcome the issue of not enough images for a
particular weather class.

Most of the previous research includes the use of polarized and infrared cameras, the
use of these cameras can give some plausible data but the installation costs can easily be
substantial. [61] In order to combat this, the use of RGB cameras is much more simple and
cost-effective, hence making it viable for mass release.

Most of the studies aimed toward driver assistance systems have been performed towards
Rainy weather classifications [62] [63]. A study performed by Lu et al [64] deals with two
class weather classification which includes Sunny and Cloudy. In that study, the authors
proposed a new data augmentation scheme to substantially enrich the training data, which is
then used to train a latent SVM framework to make the solution insensitive to global intensity
transfer. Another study [65] deals with multi-class weather classification which only deals
with fixed camera point only.

The above literature review proves the fact that weather classification in autonomous
cars is a significant problem and needs to be solved in order for cars to provide a safe and
stable driving experience within any weather condition, especially for Level 3 to Level 5
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autonomous cars. Experiments and dataset generated in chapter 5 sheds more light into

probable solutions for the autonomous cars to classify the weather conditions more efficiently.
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2.7 Summary

In this chapter, readers were provided with an overview of the research being performed on
Advanced Driver Assistance Systems. Moreover, a detailed insight is provided into Driver
simulators, Perception Reaction times & Weather classification. A more in-depth literature
review is provided within each of the upcoming chapters as well. We also looked into the
different data sets that are currently available for Deep Learning model research which will
be explored in further detail in the next chapters and hence challenged. Our data sets are

further tested and analysed in later chapters as well.



Chapter 3

Driver Simulator

3.1 Background

The last few decades have seen a dramatic increase in the number of vehicles utilizing
ADAS, such as intelligent head- lights [12], lane change assistance [41], and even the first
attempts of automatic driving systems [66][67][6]. Although currently far from having
feasible completely automated driving systems, there are several intermediate levels of
driving automation for on-road vehicles, according to the SAE international standard J30164
[8], based on the system core functionality. Its level 3 specifies that the automated driving
system performs all aspects of dynamic driving task with the expectation that the driver will
recover the car’s control when required. Thus, the human driver can perform other activities
while the system is driving autonomously. This gives rise to an important question: At which
moment and how can the automated driving system return the control to the driver?

The answer to this question depends on several aspects, such as the activity of the driver,
his/her general state and possible reaction, the particular state of the environment and the
current state of the car. All these aspects should be carefully analyzed without compromising
road security, and hence require a simulated environment for research, development and
testing purposes so that greater number of iterations can be performed to get the most amount
of data without going on a real road.

This is where the idea of a custom built driver simulator comes into the picture. The
main objective of the driver simulator was to be light, inexpensive and portable means to test
different driving scenarios involving driver interactions and most importantly to generate
usable datasets for future research. The hardware assets that were re