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Feature Extraction Method Based on Filter
Banks and Riemannian Tangent Space in

Motor-Imagery BCI
Hua Fang , Jing Jin , Senior Member, IEEE, Ian Daly , and Xingyu Wang

Abstract—Optimal feature extraction for multi-category
motor imagery brain-computer interfaces (MI-BCIs) is a
research hotspot. The common spatial pattern (CSP) algo-
rithm is one of the most widely used methods in MI-BCIs.
However, its performance is adversely affected by variance
in the operational frequency band and noise interference.
Furthermore, the performance of CSP is not satisfactory
when addressing multi-category classification problems. In
this work, we propose a fusion method combining Filter
Banks and Riemannian Tangent Space (FBRTS) in mul-
tiple time windows. FBRTS uses multiple filter banks to
overcome the problem of variance in the operational fre-
quency band. It also applies the Riemannian method to the
covariance matrix extracted by the spatial filter to obtain
more robust features in order to overcome the problem of
noise interference. In addition, we use a One-Versus-Rest
support vector machine (OVR-SVM) model to classify multi-
category features. We evaluate our FBRTS method using
BCI competition IV dataset 2a and 2b. The experimental
results show that the average classification accuracy of
our FBRTS method is 77.7% and 86.9% in datasets 2a and
2b respectively. By analyzing the influence of the different
numbers of filter banks and time windows on the perfor-
mance of our FBRTS method, we can identify the optimal
number of filter banks and time windows. Additionally, our
FBRTS method can obtain more distinctive features than
the filter banks common spatial pattern (FBCSP) method
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in two-dimensional embedding space. These results show
that our proposed method can improve the performance of
MI-BCIs.

Index Terms—Motor imagery, brain-computer interfaces
(BCI), filter banks, Riemannian Tangent Space.

I. INTRODUCTION

BRAIN computer interfaces (BCIs) can generate control
commands through the recognition of brain activity to help

people with disabilities of movement control external devices
such as wheelchairs and exoskeletons [1]–[3]. The electroen-
cephalogram (EEG) is widely used because of its high time res-
olution, convenience, and low cost [4]. Current state-of-the-art
BCI systems, exploit a few key properties of the EEG including
event-related potentials [5], steady-state visual evoked potentials
[6], and motor imagery [7]–[9]. Motor imagery has attracted
attention because it is intuitive and can be performed without
reliance on external cues [10], [11]. When people perform motor
imagery, there is a localized suppression of synchronous EEG
activity over the motor cortex [12], [13]. Specifically, the energy
of EEG rhythm in the contralateral motor-sensory area of the
cerebral cortex is significantly reduced, while the energy of the
EEG in the ipsilateral motor-sensory area is increased [14]. This
phenomenon is called event-related desynchronization (ERD)/
event-related synchronization (ERS) [15]. According to this
rule, different control commands can be generated by classifying
the EEG signals from the different parts of the brain that control
individual limbs [16], [17].

The nonstationary, low amplitude and low signal-to-noise
ratio of the EEG bring great challenges to the stability of MI-BCI
systems [18]. To overcome these challenges, it is very impor-
tant to extract effective features for use in EEG recognition.
The common spatial patterns (CSP) algorithm is one of the
most frequently used feature extraction methods that has been
proposed to address this problem. It extracts effective features
by constructing an optimal spatial filter that differentiates two
conditions. However, the performance of the traditional CSP
method depends largely on the specific operational frequency
band; the frequency band that contains the majority of the useful
information in the EEG during the BCI control task. Inter-trial
or inter-category variance in this operational frequency band can
reduce the effectiveness of CSP [18], [19]. Furthermore, the co-
variance matrix constructed by the CSP method is vulnerable to
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noise interference, resulting in poor generalization performance
of CSP.

To solve the problem of variance in the operational frequency
band, the Sub-band Common Spatial Pattern (SBCSP) method
[20] was proposed and achieved good results on public datasets.
SBCSP uses Gabor filter banks to decompose EEG measure-
ments into multiple sub-bands, it then uses discriminant analysis
to extract SBCSP features. Then, the SBCSP features are input
into linear discriminant analyzers (LDA) to identify the scores
reflecting the classification ability of each band. The sub-band
scores are then fused by recursive band elimination or via a
classification algorithm [20].

An alternative method that has been proposed to solve the
problem of operational frequency band variance is called Filter
Banks Common Spatial Pattern (FBCSP) [19]. The FBCSP algo-
rithm calculates the corresponding features from the participant-
specific spatiotemporal filters to classify the EEG on a single
trial basis [21]. The FBCSP method first filters the EEG into
multiple frequency bands and then extracts CSP features from
each frequency band. It then uses a feature selection algorithm
to automatically select the corresponding CSP features. Finally,
it uses a classification algorithm to classify the CSP features.

To solve the problem of noise interference, A. Barachant
et al. [22], [23] proposed the use of Riemannian methods to
improve the robustness of the CSP algorithm and to reduce noise
interference. The first method they proposed was to directly
process the spatial covariance matrix of the EEG in the original
space by making use of the robustness of Riemannian distance
and Riemannian mean [22]. Because the spatial information
about the EEG is embedded in the spatial covariance matrix,
spatial filtering is no longer needed. Another method is to map
the covariance matrix to the Riemannian tangent space [23]. In
Riemannian tangent space, the matrices can be vectorized and
treated as Euclidean objects. Similarly, the concepts of Rieman-
nian distance and mean value are also used in this method. The
results show that the first method has comparable performance to
the traditional CSP method, while the second method has better
performance than the CSP method.

Although the above method has achieved satisfactory results
to a certain extent, it does not solve the two problems of variance
in the operational frequency and interference from noise at the
same time. In this work, we propose a fusion method combining
multiple filter banks and Riemannian tangent space (FBRTS) to
solve the two aforementioned problems at the same time. First,
the original EEG is band-pass filtered into multiple frequency
bands, and then the covariance matrix of the EEG is calculated
to identify spatial filters in each frequency band. Because the
Riemannian distance and mean value are robust to noise in the
Riemannian tangent space, the covariance matrix is vectorized
and treated as a set of Euclidean features. In addition, to account
for inter-participant differences, we divide the motor imagery
process into multiple time windows and use the fusion method
to extract the covariance features in each time window.

The rest of this paper is organized as follows: the second
section describes related theories and the system framework of
our proposed method. The third section introduces the dataset
and experimental setup used in this paper. The fourth section

introduces the results of our experiments and comparative stud-
ies. The fifth section discusses the proposed method and looks
forward to the future research direction. Finally, the sixth section
puts forward the conclusion.

II. METHODS

A. Filter Bank Common Spatial Patterns

The FBCSP algorithm is a machine learning method for EEG
data processing [21]. The key to the traditional FBCSP algorithm
is frequency filtering and spatial filtering [19]. The frequency
filtering step filters the EEG into multiple frequency bands. The
CSP algorithm is then used for spatial filtering to extract features.

Within CSP, the EEG is transformed linearly by using (1)

Si,j = WT
i Zi,j (1)

where Zi,j ∈ Rc×κ is the EEG of the j-th single-trial obtained
by the i-th band-pass filter; Si,j ∈ Rc×κ is the obtained from
Zi,j after spatial filtering, and Wi is the CSP projection matrix.
T is transpose operator; c is the number of channels and κ is the
number of the EEG samples for each channel.

The CSP algorithm calculates the transformation matrix by
solving the eigenvalue decomposition problem

Di,1Wi = (Di,1 +Di,2)WiΛi (2)

where Di,1 and Di,2 represent the estimation of the i-th band-
pass filtered EEG covariance matrices for different motor im-
agery categories; Λi represents the diagonal matrix containing
the eigenvalues of the covariance matrix Di,1.

The spatial filtering signal Si,j in (1) is replaced by Wi in eq
(2), so that the variance difference of the different categories of
the band-pass filtered EEG signals is the largest [21]. (3) gives
the m-pair CSP characteristics of the EEG signals obtained from
the i-th band-pass filter

fi,j = log

[
diag

(
W̄T

i Zi,jZ
T
i,jW̄i

)
tr

[
W̄T

i Zi,jZT
i,jW̄

] ]
(3)

where fi,j ∈ R1×2m and W̄i represents the first m columns and
the last m columns of the transformation matrix Wb; diag(·)
represents the diagonal elements of the square matrix, and tr(·)
represents the sum of the diagonal elements of the square matrix.

Then (4) is used to construct the FBCSP eigenvector of the
i-th trial

fi = [f1,i, f2,i, . . . , fk,i] (4)

where fi ∈ R1×(k×2m) and k is the number of the frequency
bands.

Some methods to extend the CSP algorithm to multi-category
problems have been proposed [24]. A successful technique is
to perform two types of CSP for all possible combinations of
different categories. In the case of λ categories, this results in at
least T spatial filters

T =
λ (λ − 1)

2
, (λ ≥ 2, λ ∈ N ∗) (5)

where N ∗ is a positive integer. In the case of λ categories, we
take m = 2, that is, from each band-pass filtered EEG signal,
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Algorithm 1: Iterative gradient descent algorithm for find-
ing the Riemannian mean.

Input: N covariance matrices {Di}ni=1 ∈ RN×N ,
iteration threshold ε > 0.

Output: The Riemannian mean of n covariance matrices.
Begin

Initialize a zero matrix D̄0 = 0 ∈ RN×N ;
Identity a matrix D̄0 = I ∈ RN×N ;
while δR(D̄, D̄0) = ‖logm(D−1

1 D2)‖F > ε
The matrix D̄ is assigned to D̄0, that is D̄0 = D̄;

Calculate the mean D̃ =
[
∑n

i=1 LogD̄0
(Di)]

n of n
covariance matrices projected into the tangent space;

Obtain a new mean D̄ by projecting D̄ on the tangent
space back to sub-manifold via (10).

End

Fig. 1. Manifold of reference points and corresponding local tangent
space.

we get a pair of CSP features through spatial filtering, producing
a total of 2T features. Therefore, for a participant’s EEG data,
the total number of features we can get is

Nfeature (λ) = NT ×NB × 2T (6)

where NT and NB represent the number of time windows [25]
and frequency bands.

B. Riemannian Geometry

In MI-BCIs, Riemannian methods are typically applied to
the covariance matrix of the EEG [23], [26]. These covariance
matrices are real symmetric positive definite, which can form a
differentiable Riemannian manifold with dimension R(R+1)/2,
and allow mapping between the manifold and its corresponding
local tangent space [27], where R is the row number of the
covariance matrix.

We can select a fixed reference point θ̄ ∈ Ω and the corre-
sponding tangent space is denoted as Tθ̄Ω, as shown in Fig. 1.
According to the principle of Riemannian geometry, we use
logarithmic mapping to project the vector from the Sub-manifold
Ω to its tangent space [23] and use exponential mapping [28] to

project the points on the tangent space back to the Sub-manifold

θ̃n = Logθ̄ (θn) = θ̄1/2 logm
(
θ̄−1/2θnθ̄

−1/2
)
θ̄1/2 (7)

θn = Expθ̄

(
θ̃n

)
= θ̄1/2 expm

(
θ̄−1/2θ̃nθ̄

−1/2
)
θ̄1/2 (8)

where logm(·) and expm(·) are the logarithmic function and
the exponential function of the matrix [29].

Generally, the covariance matrices D1 and D2 constructed by
the CSP spatial filters are real matrices [30], so the Euclidean
distance between two different covariance matrices can be ex-
pressed as

δE (D1, D2) = ‖D1 −D2‖F (9)

where δE(·) is the distance between the matrices and ‖ · ‖F
is the Frobenius norm [30]. The Riemannian distance of two
covariance matrices can be expressed a

δR (D1, D2) =
∥∥logm (

D−1
1 D2

)∥∥
F

(10)

The difference between the two distances is that the Euclidean
distance represents the shortest distance along a straight-line
path, while the Riemannian distance represents the shortest path
along with a geodesic (curve) search [31], [32].

However, in the case of multiple categories, the number of
covariance matrices may be more than two, so we need to
consider the measurement between multiple covariance matrices
from the perspective of the mean. Suppose that {Di}ni = 1 is a set
of n covariance matrices, then in Euclidean space, its arithmetic
mean is

μ (D1, D2, . . . , Dn) =
1

n

n∑
i=1

Di (11)

In the Riemannian manifold, the Riemannian mean value [33]
of n covariance matrices can be defined as a matrix minimizing
the sum of squares of Riemannian distances

D̄ = ϑ (D1, D2, . . . , Dn) = argmin
D

n∑
i=1

δ2R (D,Di) (12)

It should be noted that there is no closed-form solution for this
mean. However, the iterative gradient descent algorithm [34] can
be used to solve this problem, as shown in algorithm 1.

C. Feature Extraction Based on Filter Bank and
Riemannian Tangent Space

In our work, we propose the FBRTS method to extract co-
variance features. The framework of this method is shown in
Fig. 2. First, we divide the EEG epoch recorded during the
motor imagery period from the experimental paradigm in order
to construct multiple time windows. We then preprocess the
original EEG signals in each time window. Specifically, we
decompose the EEG into multiple frequency bands, and then
use the Riemannian method to extract the covariance features
specific to each of the different frequency bands; finally, all the
features are vectorized and fed into a classifier in the feature
fusion stage.
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Fig. 2. The system block diagram of our proposed method.

In order to apply Riemannian features in MI-BCIs, we first
need to use band-pass filters to get the filtered EEG signals from
every single trial. We then estimate its covariance matrix via

Dν =
1

NS
ZT
i,jZi,j , i, j, ν= 1, 2, . . . , n (13)

where Ns is the number of sampling points. The process is
described further in part A of Section II. Considering the per-
formance of the classifier, we vectorize the covariance matrix as
features

�Dν = vect (Dν)

=
[
Dν(1,1);

√
2Dν(1,2); · · ·Dν(NC ,NC)

]
∈ R(NC+1)NC/2

(14)

‖Dν‖F = ‖vect (Dν)‖2 (15)

where Nc is the number of channels. Because the covariance
matrix is symmetric, its non-diagonal elements need to be scaled
to maintain the standard [35], as shown in eq (14).

Then, we use the Riemannian mean to calculate the Rie-
mannian distance between multiple covariance matrices. The
Riemannian feature extraction process is shown in algorithm 2.

As mentioned in part A of section II, under the joint action of
multiple time windows and filter banks, for a single participant’s
EEG data, the total number of features we can get is

Nfeature (R) = NT ×NB ×NC (NC + 1) /2 (16)

D. Support Vector Machine

The Support vector machine (SVM) is a classical classifica-
tion method [36], which is widely used in MI-BCIs. The princi-
ple of the SVM is to find an optimal hyperplane, which can max-
imize the distance between training data points between two cat-
egories. In addition, the SVM has a strong generalization ability
for new unknown data objects and has a flexible decision bound-
ary. Therefore, we use the SVM as the classifier in this paper.

Algorithm 2: The Riemannian feature extraction method.
Input: The filtered EEG signal

Zi,j ∈ RNC×NS , i, j, ν= 12, . . . , n.
Output: NC(NC + 1)/2 Riemannian features.
Begin

Calculate the covariance matrix Dv of the EEG Zi,j via
eq (13);

Use the iterative gradient descent algorithm to calculate
the Riemannian mean between n covariance matrices;

Calculate NC(NC + 1)/2 Riemannian features via eq
(14) and eq (15);

End

In addition, through the experimental analysis, we select the
linear kernel as the kernel function of the SVM model.

The SVM identifies the optimal separating hyperplane defined
by f (x) = ωT x+ b, where b is the deviation and ω is the
weight vector. The hyperplane of the SVM maximizes the class
separation and minimizes the classification error. The edge dis-
tance is the sum of the distances calculated to the nearest positive
sample and the nearest negative sample. In other words, the
hyperplane maximizes the edge distance. Therefore, the SVM
model can be expressed in the following form

min
ω,b,ξi

1

2
‖ω‖2︸ ︷︷ ︸

Regularized

+C ·
n∑

i=1

ξi︸ ︷︷ ︸
Loss

s.t.yi
(
ωTxi + b

) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n (17)

where ξ is the relaxation variable, and the eigenvector has a
corresponding relaxation variable, which indicates the degree
that the eigenvector does not meet the constraint; C is the penalty
parameter of the error term (C > 0). Support vector machines
try to strike a balance between minimizing the regularization
term and minimizing the classification error.
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Fig. 3. The time flow and time windows division of each trial.

III. EXPERIMENTAL STUDY

A. Data Set Description

BCI competition IV dataset 2a: This dataset [37] contains
EEG data recorded from 9 healthy participants that performed
four motor imagery tasks: left-hand, right-hand, feet, and tongue
imaginary movement. Each participant completed two sessions,
one for training and the other for evaluation [38]. A total of 25
measurement channels were used to record the dataset, including
22 EEG channels and 3 monopolar electrooculograms (EOG)
channels.

BCI competition IV dataset 2b: This dataset [38] included
EEG data of 9 healthy participants. All participants were re-
quired to complete two different types of motor imagery tasks
(left hand and right hand). Each participant has five sessions.
The first two sessions are completed without feedback, and the
other three sessions are completed with feedback. In addition,
among the five sessions, the first three are used for training and
the last two are used for testing. The dataset uses 3 electrodes to
collect EEG data.

For our evaluation, we only used 22 EEG channels in dataset
2a and 3 EEG channels in dataset 2b. These were recorded with
a sampling frequency of 250Hz and were band-pass filtered
between 0.5 to 100Hz. The time flow of each trial is shown in
Fig. 3. In dataset 2a, at the beginning of each trial, a fixation cross
was displayed on a black screen and a short warning beep was
issued. Then, a cue in the form of an arrow pointing left, right,
down, or up appeared on the screen (corresponding to the four
tasks: left-hand, right-hand, feet, and tongue motor imagery).
The participants performed the corresponding motor imagery
tasks in response to the given cue until the second fixation cross
disappeared from the screen. In dataset 2b, at the beginning of
each trial, a fixed cross will appear on the screen. Then, a cue
in the form of an arrow pointing left or right appeared on the

TABLE I
DIVISION OF FILTER BANKS AND BANDWIDTH SELECTION

Note: Bandwidth = 2n Hz; step size = 2 Hz.

screen (corresponding to the two tasks: left-hand and right-hand
motor imagery), and then the participants need to perform cor-
responding MI tasks according to the arrow direction.

B. Experiment Setting

In this study, we extracted the data from an epoch lasting
from 0.5s before each motor imagery cue until the end of the
motor imagery period (2.5s ∼ 6s). We then divided this epoch
of between 2.5s ∼ 6s into six different time windows, as shown
in Fig. 3. To select the number of filter banks, we consider the
mixed-use of different bandwidths and select 2n(n = 5) Hz as
the bandwidth. To search for the optimal frequency window, we
use a step size of 2 Hz. We use a 5th order Butterworth filter to
construct the filter bank in the range of 4∼40 Hz, as shown in
Table I.

The time window should first include the execution time of the
motor imagery tasks, and the length of the time window should
not be too short. Too short time windows will increase the num-
ber of time windows. According to eq (16), the number of time
windows will increase the dimension of the feature, resulting
in a significant increase in the calculation time. Therefore, we
select the period from 0.5s before the start of the motor imagery
tasks to the end of the motor imagery tasks as the time window
division range (2.5s ∼ 6s), that is, T1, and the length of other
time windows shall not be less than 1s. In addition, according to
the short before long and bisection symmetry rules, T2 and T3

choose 2s and 2.5s respectively, and T4 ∼ T6 choose 1s, 1.5s,
and 1s respectively. Similarly, six time windows (TB1 ∼ TB6)
corresponding to dataset 2b can be obtained.

Since the BCI competition dataset 2a has four categories of
motor imagery tasks, we consider using the One-Versus-Rest
(OVR) method [39] to solve the multi-category classification
problem. The idea of the OVR method is to transform multiple
categories into two categories. In the training phase, for the
sample data of λ categories, it is necessary to train λ SVM
binary classifiers. The sample data belonging to the i-th SVM
sub classifier is marked as the positive category, and the other
sample data not belonging to the i-th category is marked as the
negative category. The values of each discriminant function are
calculated for the test data in the test phase. If only one classifier
outputs a positive value, then the result can be directly judged
as the corresponding classifier number. Otherwise, the category
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TABLE II
CLASSIFICATION ACCURACY (MEAN AND STANDARD DEVIATION IN PERCENTAGE) ACHIEVED WITH THE FBRTS METHOD AND OTHER MI CLASSIFICATION

METHODS ON DATASET 2A

corresponding to the maximum value of the discriminant func-
tion is selected as the category of the test data. In addition, it
should be noted that all experiments used a tenfold cross-fold
validation scheme.

IV. EXPERIMENT RESULTS

A. Comparison With Other State-of-the-Art Methods

In order to evaluate the performance of the FBRTS method, we
use BCI competition datasets 2a and 2b to compare the classifi-
cation accuracy of the FBRTS method with other state-of-the-art
methods.

1) HSS-ELM: A hierarchical semi-supervised extreme learn-
ing machine (HSS-ELM) method, which uses the deep
structure of a hierarchical ELM to learn features auto-
matically [40].

2) WaSF ConvNet: Wavelet spatial filter convolution net-
work (WaSF ConvNet). This method uses the space-
time-frequency joint features of EEG data based on time-
frequency and spatial filters [41].

3) TSLDA: Tangent space linear discriminant analysis
(TSLDA). In this method, the covariance matrix is
mapped to tangent space and vectorized as a Euclidean
object. [22].

4) CSP-LCD: A method combining CSP and local
characteristic-scale decomposition (CSP-LCD). The
method builds a functional brain network from EEG
signals and fuses the features extracted by CSP and LCD
algorithms in the frequency and spatial domains [42].

Table II shows the accuracies achieved by our FBRTS method
and each of the other methods we compare it to in dataset
2a. Compared with the traditional FBCSP method, our FBRTS
method has significantly improved accuracy with all participants
(p<0.05, paired t-test), and the average classification accuracy is
8.6% higher than the FBCSP method. In addition, compared with
other state-of-the-art methods, our FBRTS method performs the
best in most participants. Our FBRTS method achieved better
classification accuracy than the WaSF ConvNet method for all
participants (p < 0.05, paired t-test). However, for participants
A04 and A06, our FBRTS method still needs to be improved.
Our results show that our FBRTS method can make good use

of the characteristics of the Riemannian method to improve
the performance of the algorithm. Furthermore, the addition
of multiple time windows and filter banks not only solves the
problem of frequency band dependence but also effectively
expands the number of features so that the data can be classified
more accurately. Besides, we also calculated the kappa value of
each method in all participants. Kappa value [43] is a consistency
test index, which can measure the effect of classification and
judge whether the predicted results of the model are consistent
with the actual classification results. The results show that the
kappa value of the FBRTS method is 0.71, which is better
than other methods, which shows that the FBRTS method can
indeed obtain a better classification effect. For dataset 2b, the
FBRTS method also achieved significant results in classification
accuracy (86.9% ± 6.03) and kappa value (0.7) compared with
other state-of-the-art methods (p < 0.05, paired t-test), as shown
in Table III. These experimental results show that the FBRTS
method is not only effective for four classification problems in
the MI-BCI system but also shows good performance for two
classification problems.

The training time is very important when evaluating our pro-
posed FBRTS method. The training time of each method affects
its performance to a certain extent. Therefore, we calculated the
training time of each method on datasets 2a and 2b. As shown in
TableⅣ, the training time of the FBRTS method on datasets 2a
and 2b is 18.67s and 14.46s respectively. Although the FBRTS
method requires less training time than the latter three methods
(WaSF ConvNet, TSLDA, and CSP-LCD), compared with the
first two methods (FBCSP and HSS-ELM), the training time
of the FBRTS method is longer. It may be caused by the high-
dimensional features extracted by FBRTS, which needs further
experimental analysis. The above experimental results show that
the training time of the FBRTS method is at the medium level
among similar methods, and needs further improvement.

In recent years, deep learning technology has achieved good
results in the field of MI-BCI, especially in multi-classification
problems. Zhang et al. [44] proposed a hybrid depth network
framework (CNN-LSTM) to improve the classification accuracy
of four types of MI-EEG signals. CNN-LSTM obtained 83%
classification accuracy and 0.8 kappa value on dataset 2a. Chen
et al. [45] proposed a deep spatiotemporal feature learning
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TABLE III
CLASSIFICATION ACCURACY (MEAN AND STANDARD DEVIATION IN PERCENTAGE) ACHIEVED WITH THE FBRTS METHOD AND OTHER

MI CLASSIFICATION METHODS ON DATASET 2B

TABLE IV
TRAINING TIME (SECOND) CONSUMED USING THE FBRTS METHOD AND OTHER MI CLASSIFICATION METHODS ON DATASET 2A AND 2B

method based on MI-BCI (FBSF-TSCNN), which achieved
72% classification accuracy and 0.627 kappa value on dataset
2a. Compared with these deep learning methods, our proposed
FBRTS method has certain competitive advantages in classifi-
cation accuracy (77.7%) and kappa value (0.7), but it may not
achieve the best effect. However, in terms of training time, the
training time required by CNN-LSTM and FBSF-TSCNN on
dataset 2a is 28s and 24.37s respectively, which is more time
consumed than FBRTS method. These results show that FBRTS
method still has a good competitive advantage compared with
deep learning method.

B. Optimal Numbers of Time Windows and Filter Banks

We now consider the influence of the number of filter banks
and time windows on the performance of the FBRTS method. We
also attempt to identify the most suitable number of filter banks
and time windows for the FBRTS method. It should be noted that
the number of filter banks will change as the bandwidth changes.
Therefore, it is meaningless to simply compare the impact of
the number of filter banks on performance under different band-
widths. Instead, we consider the way of accumulating filter banks
for analysis. Specifically, when we analyze the performance
using filter banks with a bandwidth of 2 Hz, we do not replace
the filter banks but add a filter bank with the bandwidth of 4
Hz onto the basis of the original filter bank, and then carry out
the experiment. We iterate this process until all filter banks with
different bandwidths are added to the experiment. In this way,
with the progress of each group of experiments, the number of
filter banks always keeps increasing. The results are shown in
Fig. 4.

Fig. 4 illustrates that, as the number of filter banks in differ-
ent time windows increases, the classification accuracy of the
FBRTS method also increases. Therefore, we measure Pearson
correlation coefficients between the number of filter banks and

TABLE V
RESULT OF PEARSON CORRELATION ANALYSIS BETWEEN THE NUMBER OF

FILTER BANKS AND CLASSIFICATION ACCURACY IN DIFFERENT
TIME-WINDOWS

Note: ∗∗ denotes a significance of p < 0.01.

the classification accuracy. The results are listed in Table V.
There is a significant positive correlation between the number
of filter banks and the classification accuracy (p < 0.01) under
each of the different time windows.

This shows that increasing the number of filter banks has
a positive impact on the FBRTS method. However, with the
increase in the number of time windows, the accuracy of the
FBRTS method under different filter banks first increases and
then decreases. One possible reason is that the increase in the
number of time windows introduces redundancy in the fea-
ture set, which makes the performance of the system decline.
However, with a continuous increase in the number of time
windows, the performance of the system improves as the number
of features increases and achieves optimal performance in three
time windows (T1, T2, T3).

C. Comparison With the FBCSP Method

1) The number of filter banks and time windows: In order to
further analyze the FBRTS method, we observe the performance
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Fig. 4. The influence of different time-windows and filter banks on classification accuracy (Bw denotes Bandwidth).

of the FBRTS and the FBCSP methods under different numbers
of filter banks and time windows. These results are shown in
Fig. 5. Please note that the filter bank in Fig. 5 also adopts the
mode of accumulation filter banks, as described in part B of
section IV.

From the comparison of the two methods, it can be seen that
the accuracy of the FBRTS is better than that of the traditional
FBCSP method. This effect is particularly strong for participant
A05. For this participant, the FBRTS method achieves an ac-
curacy of more than 60% under a range of different numbers
of filter banks and time windows, but the performance of the
traditional FBCSP is mostly about 50%, or even lower.

Overall, the FBRTS method produces better performance
than the FBCSP method. However, this improvement is not as
obvious for other participants as for participant A05. The above
results also confirm the performance seen for participants A05
and A07 in Table II. The accuracy achieved for participant A05
is 52.9% and 75.6% respectively under the FBRTS and FBCSP
methods. The accuracy achieved for participant A07 is 86.6%
and 91.1% respectively under the two methods. Taken together,
this indicates that the FBRTS method can improve both the best
and the worst performing participants when compared to the
FBCSP method. Furthermore, it can be seen that the FBRTS
method can achieve or even surpass the best performance of the
FBCSP method by using fewer filter banks and time windows
(as shown in Fig. 5). This further demonstrates the superiority
of the FBRTS method.

2) Features distribution: We use the visualization method to
display the features extracted by the two methods, as shown in
Fig. 6. It should be noted that due to the use of more filter banks
and time windows, the dimensionality of the features extracted
by the two methods is relatively high. Therefore, we use the t-
distributed stochastic neighbor embedding (t-SNE) method [46]
to visualize the features extracted by two different methods in
two-dimensional space.

The t-SNE method integrates dimensionality reduction and
visualization. It is based on the SNE visualization method.
The t-SNE method solves the problems of crowded sample
distributions and unobvious boundaries in SNE visualization.
Consequently, it is a better method of dimension reduction and
visualization. In Fig. 6, for participant A05, the features of
“feet” and “tongue” obtained by the FBCSP method are highly
fused, which makes it difficult for the classifier to distinguish
them in the process of classification, resulting in low accuracy.
The FBRTS method can better separate the features into four
categories. Therefore, it can obtain better performance com-
pared with the FBCSP method. Similarly, the FBCSP features
during the “left-hand” and “feet” imagery tasks performed by
participant A07 are also partially fused, while the four features
identified by the FBRTS method are more distinctive. Therefore,
the classification performance achieved with the FBRTS method
is better than the FBCSP method, but there is still interference
from outliers.

V. DISCUSSION

Identifying an optimal feature extraction method is a key
problem in the research of MI-BCIs [18]. How to extract the most
effective features for discrimination of multi-category motor
imagery tasks is also a highly relevant and challenging research
problem. The CSP algorithm is one of the most widely used
feature extraction methods in MI-BCIs. It shows excellent per-
formance for the problem of binary classification, but it still has
significant limitations when applied to the field of multi-category
classification. The traditional CSP method is also limited by
variability in the operational frequency band of the EEG and by
noise interference [18], [19], which leads to poor generalization
performance of CSP.

Both SBCSP [20] and FBCSP [21] have been proposed as
solutions to improve the CSP method. However, they are both
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Fig. 5. The performance comparison for all participants using the FBRTS and the FBCSP methods under different numbers of filter banks and
time-windows (Filter bank: n represents 2n, n = 1, 2, …, 5).

Fig. 6. Comparison of features distributions for participants A05 and A07 under the two methods.
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limited by variability in the operational frequency band of the
EEG. They are also susceptible to the same problem that the
covariance matrix of the traditional CSP method is susceptible
to, namely noise interference. Thus, some Riemannian methods
have been proposed to extract more robust features and have
achieved improved results. In this work, we propose to use the
FBRTS method to solve the problem of variability in the oper-
ational frequency band and noise interference in multi-category
classification problems. The FBRTS method combines filter
banks with a Riemannian method in multiple time windows to
attempt to extract optimal features. After combining with a linear
SVM classifier, the method shows good results.

The FBRTS method uses the Riemannian method to construct
robust features and expands the dimensionality of multiple cat-
egory features through using multiple time windows and filter
banks. In addition, we use the classic OVR strategy. This strategy
shows significant advantages compared with other methods, as
shown in Table II. We find that the number of filter banks has
a positive impact on the performance of the FBRTS method,
and the increase in the number of time windows may introduce
redundancy characteristics, which will reduce the performance
of the FBRTS method. In Fig. 4, we illustrate how the optimal
number of filter banks and time windows can be found.

In addition, we compare the FBRTS method with the tra-
ditional FBCSP method. The results show that the FBRTS
method achieves or even exceeds the best performance of the
FBCSP method with only a few filter banks and time windows.
On the other hand, we use the t-SNE method to visualize the
features obtained by the two methods in two-dimensional space.
The results show that the FBRTS method can achieve better
performance than the FBCSP method. This further demonstrates
the effectiveness of the FBRTS method.

Although the FBRTS method has achieved better performance
in all our metrics, there are still some areas in which it can be
further improved. First, the FBRTS method still exhibits poor
performance with a small number of participants in our test
dataset, such as participants A04 and A06. In addition, due to
the introduction of multiple filter banks and time windows, the
dimensionality of the features extracted by the FBRTS method
is relatively high. In this study, we do not use any additional
feature selection methods to further select sub-sets of features.
Consequently, when the dimensionality of the selected features
is high the classification problem is considerably more challeng-
ing. To attempt to resolve this, we choose relevant parameters
for the classifier (such as regularization parameters and penalty
terms) according to the empirical method. However, this does
not necessarily result in optimal parameters for SVM classifiers,
as used with the FBRTS method. Therefore, the dimensionality
of the selected features has an impact on the performance of the
system. In the future, we will consider introducing a further fea-
ture selection method to select a subset of features extracted by
the FBRTS method in order to further reduce the dimensionality
of features and reduce the burden on the classifiers. On the other
hand, we will consider introducing a parameter optimization
method to automatically select the optimal classifier parameters
to further improve the performance of the FBRTS method in the
MI-BCI system.

The proposed FBRTS method is an exploration in the field
of machine learning and has made certain advantages compared
with other state-of-the-art methods in the same field. However,
in recent years, deep learning technology and transfer learn-
ing [47] methods have made great development in the field
of brain-computer interface. Especially in the MI-BCI system
of multi-classification problems, deep learning technology, and
transfer learning method have been used by more scholars and
researchers, and achieved remarkable results. Therefore, the
FBRTS method integrating deep learning technology or transfer
learning method will be a new direction worthy of thinking and
researching in the future.

VI. CONCLUSION

Feature extraction is one of the key steps to improve the
performance of MI-BCIs. However, traditional feature extrac-
tion methods cannot completely overcome the problems of
variability in the operational frequency band of the EEG and
noise interference. Methods such as CSP and FBCSP suffer
degraded system performance due to these problems.

In this study, we propose a novel FBRTS method, which
combines multiple filter banks and the Riemannian tangent
space. First, we band-pass filter the original EEG into several
frequency bands. In each frequency band, we use a spatial filter
to get the covariance matrix of the original signal. This allows us
to solve the problem of variability in the operational frequency
band of the EEG. Then, we use the Riemannian method to map
the covariance matrix to the Riemannian tangent space. In the
Riemannian tangent space, the covariance matrix is vectorized
and treated as a Euclidean object. Finally, we use the OVR
classification strategy to generate the result through the linear
kernel SVM classifier.

Experimental results on the BCI IV dataset 2a and dataset
2b demonstrate that the average classification accuracy of our
FBRTS method is 77.7% and 86.9% in datasets 2a and 2b
respectively. Furthermore, the FBRTS method can obtain more
distinctive features than the FBCSP method in two-dimensional
embedding space. However, the FBRTS method needs to be
further improved in terms of feature selection and parameter
optimization in future work. In conclusion, the FBRTS method
can effectively aid the research and development of MI-BCI
systems.
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