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Multimodal Information Fusion for
High-Robustness and Low-Drift State Estimation of

UGVs in Diverse Scenes
Dongjie Wu , Xunyu Zhong , Xiafu Peng , Huosheng Hu , Life Senior Member, IEEE, and Qiang Liu

Abstract— Currently, the autonomous positioning of1

unmanned ground vehicles (UGVs) still faces the problems2

of insufficient persistence and poor reliability, especially in3

the challenging scenarios where satellites are denied, or the4

sensing modalities such as vision or laser are degraded. Based5

on multimodal information fusion and failure detection (FD),6

this article proposes a high-robustness and low-drift state7

estimation system suitable for multiple scenes, which integrates8

light detection and ranging (LiDAR), inertial measurement9

units (IMUs), stereo camera, encoders, attitude and heading10

reference system (AHRS) in a loose coupling way. Firstly, a state11

estimator with variable fusion mode is designed based on the12

error-state extended Kalman filtering (ES-EKF), which can13

fuse encoder-AHRS subsystem (EAS), visual-inertial subsystem14

(VIS), and LiDAR subsystem (LS) and change its integration15

structure online by selecting a fusion mode. Secondly, in order16

to improve the robustness of the whole system in challenging17

environments, an information manager is created, which judges18

the health status of subsystems by degeneration metrics, and19

then online selects appropriate information sources and variables20

to enter the estimator according to their health status. Finally,21

the proposed system is extensively evaluated using the datasets22

collected from six typical scenes: street, field, forest, forest-23

at-night, street-at-night and tunnel-at-night. The experimental24

results show our framework is better or comparable accuracy25

and robustness than existing publicly available systems.26

Index Terms— Error-state extended Kalman filter (ES-EKF),27

failure detection (FD) and handling, light detection and ranging28

(LiDAR)-inertial-visual-encoder odometry, multimodal informa-29

tion fusion, state estimation.30

I. INTRODUCTION31

UNMANNED ground vehicles (UGVs) have been widely32

deployed in various real world applications, such as33
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demining robots [1], transportation robots [2], reconnaissance 34

unmanned vehicles [3], etc. However, with the expansion of 35

motion range and the increase of task types, UGVs often 36

encounter more challenging environments that often lead to 37

significant degradation of certain sensing modalities, resulting 38

in the deterioration of the reliability and accuracy of the 39

positioning system. 40

The global navigation satellite system (GNSS) has been 41

widely deployed for the positioning of UGVs, which however 42

is extremely vulnerable to the blockage of high buildings and 43

malicious interference [4], [5] (such places are called satellite- 44

denied areas). The navigation system based on MEMS-inertial 45

measurement unit (IMU) or encoder is cheap and simple, 46

but the positioning errors accumulate rapidly with time and 47

distance [6], [7]. Recently, many state estimation algorithms 48

using camera or light detection and ranging (LiDAR) have 49

emerged, which can estimate pose with low drift over a 50

long range. However, when encountering degenerate scenes, 51

such as lack of texture [6], [8] for camera and scarcity of 52

geometrical structure for LiDAR [9], [10], these methods often 53

degenerate seriously or even fail. The systems based on a 54

single sensing modality often cannot meet the needs of reliable 55

positioning in complex environment. Fortunately, different 56

modalities are complementary to each other, so multimodal 57

fusion technology can be used to improve the performance of 58

the state estimation. 59

On the other hand, a large number of studies have shown 60

that, in a multimodal fusion system, one of the ways to 61

improve its resilience is to effectively detect and deal with 62

abnormal conditions, especially the failure problems caused 63

by environmental modal degradation. This requires giving the 64

whole architecture the abilities: can find the failed modality 65

according to certain metrics; can isolate it from the fusion 66

center to prevent it from deteriorating the whole system; can 67

add it to the fusion algorithm when the modality returns to 68

normal. Up to now, there are mainly three methods to handle 69

the problem of degeneracy: 1) switching to another system [9]; 70

2) predicting the state using a constant velocity model or 71

history data [11]; and 3) only predicting state in degenerate 72

directions [12]. However, none of them are satisfactory as the 73

first method requires a backup system that is not used most 74

of the time, and the latter two methods cannot deal with long- 75

term degradation. 76

Therefore, from the perspective of real-world application, 77

this article presents a high-robustness and low-drift state 78

estimation system suitable for multiple scenarios. The test 79

1557-9662 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ESSEX. Downloaded on November 25,2022 at 17:05:23 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1407-5209
https://orcid.org/0000-0002-3263-1486
https://orcid.org/0000-0003-2633-7712
https://orcid.org/0000-0001-5797-1412
https://orcid.org/0000-0001-7531-4459


8505115 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

Fig. 1. Our UGV, AGILEX SCOUT2.0, is equipped with a XSENS
MTi-G-710 for inertial data, a XSENS MTi-30 AHRS for 3-D atti-
tude, a STEREOLABS ZED2 for stereo camera images and inertial data,
a ROBOSENSE RS-LiDAR-16 for point cloud data, four encoders integrated
into the vehicle for motor speed data. M600mini-G real time kinematic (RTK)
system and XSENS MTi-G-710 GNSS/INS system do not participate in the
multimodal fusion, and they are only used for providing position reference
abbreviated as RTK data and GNSS data, respectively. The overall dimensions
of the testing vehicle are about 940 × 700 × 910 mm (length × width ×
height).

platform and its sensor configuration are shown in Fig. 1, and80

the system overview is shown in Fig. 2. It can effectively81

detect and handle the degradation of vision or laser modality,82

and continuously provide reliable and real-time state infor-83

mation for UGVs. To summarize, the main innovations and84

contributions of this article are as follows.85

1) A low drift, highly robust state estimation system suit-86

able for multiple typical scenarios, which can con-87

tinuously and reliably provide pose estimate even in88

extremely challenging environments, such as vision or89

laser significant degradation scenes. To the best of our90

knowledge, this is the first system fusing 3-D LiDAR,91

IMUs, stereo camera, encoders, and attitude and heading92

reference system (AHRS) in the open literature (see93

Section III).94

2) An error-state extended Kalman filtering95

(ES-EKF)-based state estimator with four fusion96

modes is designed to fuse encoder-AHRS subsystem97

(EAS), visual-inertial subsystem (VIS), and LiDAR98

subsystem (LS), in which each fusion mode represents99

a way that subsystems participate in fusion. And its100

fusion mode can be changed online according to the101

health status of the subsystems (see Section V).102

3) A novel failure detecting and handling strategy is pro-103

posed, which independently evaluates the health status104

of VIS and LS, and then with the cooperation of105

the variable fusion mode estimator, dynamically selects106

appropriate information sources and their variables to107

participate in the fusion (see Section VI).108

4) A comprehensive system evaluation was completed 109

on the datasets of six scenes, i.e., street, field, forest, 110

forest-at-night, street-at-night, and tunnel-at-night. 111

As far as we know, the scenes given in this article are 112

the most abundant and comprehensive in the research 113

of multimodal fusion state estimation (see Section VII). 114

The rest of the article is organized as follows. Section II 115

outlines some previous work related to multisensor fusion 116

for the state estimation of UGVs in challenging environ- 117

ments. In Section III, the proposed system architecture is 118

explained. The workflow of the three subsystems, EAS, VIS 119

and LS is introduced in Section IV. Section V describes the 120

proposed algorithm for data fusion, namely Variable Fusion 121

Mode State Estimator. Information manager is described in 122

Section VI, including timestamp alignment and failure han- 123

dling. Experimental results are given in Section VII to demon- 124

strate the feasibility and performance of the proposed system. 125

Finally, a brief conclusion and future work are presented in 126

Section VIII. 127

II. RELATED WORK 128

A. State Estimation Algorithm 129

In the field of robotics, state estimation algorithms mainly 130

include filtering-based method, such as extended Kalman 131

filtering (EKF) [5], [13] and unscented Kalman filtering 132

(UKF) [14], [15], and optimization-based method, such as 133

sliding-window graph optimization [10], [16] batch graph opti- 134

mization [17]. Generally, the former is suitable for applications 135

where lower computational cost is desired, and the latter is 136

suitable for computationally intensive tasks such as smoothing 137

and mapping. 138

In order to compromise the computational cost and the per- 139

formance of state estimation, in our system, a sliding-window 140

graph optimization method is used in the VIS and LS, and the 141

ES-EKF method is used in the final fusion stage. It is worth 142

mentioning that ES-EKF is a novel filtering algorithm designed 143

on 3-D rotation Lie groups, which was first used in the field 144

of aircraft [18]. From the perspective of the filter structure, 145

the traditional EKF directly estimates the state variable itself 146

(often called the full state), and ES-EKF estimates the error 147

between the true state and its estimate (often called error state). 148

The latter has some obvious advantages over the former [19]: 149

1) the attitude error can be expressed as a 3-D vector; 2) error 150

state is small, which can reduce the nonlinear complexity of 151

the system model; and 3) error state changes slowly, which is 152

beneficial to reduce the update frequency. 153

B. LiDAR-Inertial-Visual System 154

There is not much work on odometry using LiDAR, IMU, 155

and camera at the same time. In the early stage, its applications 156

were mainly limited by computing power, but in the recent 157

ten years, with the significant increase in computing power, 158

it has been becoming a hot research direction of unmanned 159

vehicle resilient navigation. From the perspective of system 160

architecture, existing multimodal fusion odometry systems 161

can be mainly divided into three categories: 1) centralized; 162

2) distributed-cascade; and 3) distributed-parallel. 163
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Fig. 2. System overview.

In a centralized system, raw data from multiple sensors is164

compressively processed to obtain certain features, such as165

corner and line features extracted from images, edge, and166

surface points extracted from point clouds, and then these167

features are sent to the fusion center to estimate the pose168

of a vehicle. For example, Zuo et al. [20] present a multi-169

state constraint Kalman filter (MSCKF)-based LiDAR-inertial-170

camera odometry, called LIC-Fusion, which fuses inertial data,171

extracted LiDAR points, and sparse visual features. The aver-172

age of average absolute trajectory error (ATE) is about 4.06 m173

on the outdoor dataset around 800 m in length. Soon after,174

LIC-Fusing 2.0 [21] is proposed on the basis of LIC-Fusion,175

which introduces a sliding-window plane-feature tracking for176

high-quality data association to make point cloud matching177

more robust. Lin and Zhang [23] successively propose two sys-178

tems, termed R2LIVE [22] and R3LIVE, based on error-state179

iterated Kalman filter (ESIKF) and composed of solid-state180

LiDAR, IMU and monocular camera. Evaluations for the two181

systems validate that they are able to run in challenging182

scenario, even in narrow tunnel-like environments. Although183

the codes of R2LIVE and R3LIVE have been open source,184

they are currently only applicable to solid-state LiDAR, and185

their code has not yet been adapted to mechanical LiDAR.186

In a distributed-cascade system, there are multiple sub-187

systems, and state estimates output by one subsystem will188

be used as the input of another subsystem, which will be189

carried out in turn to refine the system’s state estimation.190

For example, Zhang and Singh [24] proposed a sequential-191

processing system, in which the IMU mechanization pro-192

vides a rough prediction of motion at high frequency, then193

the visual-inertial odometry estimates the system state at194

an intermediate frequency, and finally, the subsystem for195

point cloud matching further refines the motion estimation196

at low frequency. Li [9] designed an optimization-based197

simultaneous localization and mapping (SLAM) system con- 198

sisting of LiDAR odometry, monocular visual-inertial odome- 199

try, odometry selection module, and mapping module. Among 200

these modules, the selection module is used to select one 201

appropriate odometry source for mapping, so as to alleviate 202

the possible accuracy drop caused by visual or laser modality 203

degradation. The overall mean translation error relative to 204

distance traveled is about 0.81% evaluated on the KITTI 205

odometry dataset [25], [26]. Palieri et al. [27] propose a 206

optimization-based LiDAR-centric robust odometry solution, 207

LOCUS, in which a health monitor module is created to select 208

the most appropriate one from subsystems (e.g., AHRS and 209

wheel-inertial odometry) as the initial guess of subsequent 210

point cloud registration. 211

A distributed-parallel system are usually composed of mul- 212

tiple subsystems and a fusion center, and the state estimates 213

output by each subsystem are sent to the fusion center for 214

further fusion at the pose or velocity level. For example, 215

Kubelka et al. [28] designed an EKF-based positioning system 216

for skid-steer vehicle for urban search and rescue missions, 217

which fuses LiDAR odometry, IMU odometry, omnidirectional 218

visual odometry and track odometry. Their system’s overall 219

median accuracy of about 1.2% and 1.4% of the total distance 220

traveled indoor and outdoor, respectively. In order to achieve 221

robust solution to general localization in challenging scenes, 222

Simanek et al. [29] added an anomaly detection module to 223

the same system, which can identify and reject the actual 224

abnormal data. Shan et al. [12] design a factor graph-based 225

LiDAR-visual-inertial state estimation framework, LVI-SAM, 226

whose subsystems can work independently when failure is 227

detected in one of them, or jointly when no failure occurs. 228

It is evident from the system overview in Fig. 2 that our 229

proposed system is also a distributed-parallel. From the point 230

of view of system reliability, distributed-parallel systems have 231
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the following advantages: 1) each subsystem is independent232

of each other and has high independence, which facilitates233

the isolation and addition of information sources and 2)234

a subsystem is usually constructed based on one modality,235

so an efficient failure detection (FD) method can be designed236

according to the characteristics of a single mode, and a reliable237

decision-making basis for failure handling can be provided.238

C. FD and Handling239

Studies have shown that vision and laser systems will240

degenerate in the absence of texture and geometric features,241

respectively, and such environmental degeneracy often leads242

to failure of estimation task [30]. Therefore, the FD and243

handling of subsystems or modules is an indispensable part244

to improve system reliability in practical applications of nav-245

igation systems. At present, there is no unified FD method,246

and most of the existing methods are specially designed for247

a certain modality because different modalities have different248

characteristics.249

Simanek et al. [29] trained a ternary Gaussian mixture250

model to detect anomalies for the EKF fusion algorithm so that251

the state estimator has good performance in multiple scenarios.252

But, the disadvantage of the data-based method is that it253

cannot guarantee that the classifier has good generalization254

ability for unknown environments. Zhang et al. [30] proposed255

a failure discrimination method based on eigenvalue analysis256

for the optimization-based state estimation system, and this257

method has been applied in many open-source laser odometry258

systems, such as LeGO-LOAM [31] and LIO-SAM [32].259

However, this eigenvalue analysis method is usually difficult260

to apply to visual or visual-inertial odometry systems with a261

lot of variables to be optimized. For systems based on visual262

modality, the common way to judge whether the system is263

normal is to check whether the output variables, such as the264

number of tracked features and the estimated IMU bias, are265

normal, and this output variables-based method is used in266

many classic visual positioning systems, e.g., visual-inertial267

navigation system (VINS)-Mono [16], VINS-Fusion [33].268

In LOCUS, a simple rate-check: if subsystem messages are at269

a sufficient rate (>1 Hz), then the source is healthy, is chosen270

as a health metric, and obviously, this health metric can only271

indicate whether there is data, but cannot measure the quality272

of the data.273

Once a failure event is detected, it needs to be dealt with274

to reduce the impact on the positioning performance of the275

whole system as much as possible. A common failure handling276

method is to isolate the failed subsystem source from the277

processing pipeline, and then add it to participate in the fusion278

once it returns to normal. For example, Zhang and Singh [24]279

design an automatic reconfiguration strategy for bypassing the280

failed subsystem to handle vision or laser degeneracy in their281

distributed-cascade system. In the system designed by Li [9],282

a subsystem selection module can select a subsystem without283

failure to provide the initial guess value for the next-level284

laser subsystem. A health monitor module is designed in285

the LOCUS [27], which plays a very similar function to the286

selection module in the system of Li.287

In our system, the eigenvalue analysis-based and the output 288

variables-based method are applied to detect the failure of 289

LS and VIS, respectively. Compared with the existing failure 290

processing strategies, the strategy proposed in this article 291

first selects the available subsystems according to the health 292

status of the subsystems, and then selects complementary 293

variables from their output variables to participate in the 294

fusion according to their characteristics, instead of sending 295

all output variables to the estimator. This can make full use of 296

the complementarity between different modalities and further 297

improve the performance of the system. For example, for VIS, 298

when LS is normal, its velocity estimation is fused, and its 299

pose increment estimation is fused otherwise. 300

III. SYSTEM OVERVIEW AND ATTITUDE REPRESENTATION 301

A. System Overview 302

Fig. 2 shows the system overview of our proposed fusion 303

framework, which consists of two parts: subsystem part and 304

fusion center part. The three subsystems are: EAS, VIS, and 305

LS. The EAS receives input from four encoders and an AHRS, 306

then outputs position and attitude increment (PAI) and global 307

vertical velocity (GVV) measurements. The VIS fuses stereo 308

images and inertial data to produce PAI and local velocity 309

(LV) measurements based on sliding-window factor graph 310

optimization [33]. The LS processes LiDAR point cloud data 311

to obtain the PAI measurements using LOAM-based matching 312

algorithm [34]. 313

The variable fusion mode estimator is a multimodal infor- 314

mation fusion algorithm based on ES-EKF: 1) firstly, it uses 315

IMU-driven kinematics to predict the full state of the system; 316

2) secondly, it uses the Kalman filter to directly estimate 317

the error of the system; and 3) finally, it composes the error 318

estimation with the predicted value of the full state to obtain 319

the full state estimation. The information manager is mainly 320

responsible for detecting and handling the subsystem failures 321

caused by the degeneracy problem of laser or vision modalities 322

and configuring an appropriate fusion mode for the estimator 323

according to the FD results, improving the robustness of the 324

whole system in a challenging environment. Among them, the 325

degeneration metrics are variables from VIS and LS, which 326

can online reflect whether they fail. See below for a detailed 327

description of each module in the figure. 328

B. Attitude Representation 329

The global coordinate frame is denoted as G, in which z-axis 330

is opposite to gravity, and x–z-axes conform to the right- 331

hand relationship, e.g., east-north-up frame. Local coordinate 332

frame are denoted as L, which is fixedly connected to the 333

robot, e.g., chassis frame. Let R
3 and SO(3) represent a 3-D 334

Euclidean space and a 3-D rotation group, respectively. For 335

a certain space attitude of L with respect to G, there are 336

various forms of parametric representation, such as rotation 337

matrix R ∈ SO(3), rotation vectors φ ∈ R
3 and Euler angles 338

θ ∈ R
3, etc. According to [19], R and φ satisfy the following 339

conversion relationship: 340

R = exp([φ]×) (1a) 341

φ = Log(R) (1b) 342
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where [ ]× represents skew-symmetric mapping, which maps343

φ = [φx, φy, φz]� ∈ R
3 to an skew-symmetric matrix344

[φ]× =
⎡
⎣ 0 −φz φy

φz 0 −φx

−φy φx 0

⎤
⎦. (2)345

When the rotation angle, ‖φ‖ � 1◦, the approximate relation-346

ship exists as follows [2]:347

R ≈ 13 + [φ]× (3)348

where, 13 is an 3-D identity matrix. Euler angles in this article349

are defined as the intrinsic z-y-x rotation order, i.e., θx, θy, θz350

represent yaw, pith, and roll angle, respectively, then having351

the following relationship between R and θ :352

R =
⎡
⎣cxcy cx sysz − czsx sx sz + cx czsy

cysx cx cz + sx sysz czsx sy − cxsz

−sy cysz cycz

⎤
⎦ (4)353

here, ci and si represent cos(θi ) and sin(θi), respectively354

(i = x, y, z).355

IV. SUBSYSTEM356

This section will introduce the workflow of the three sub-357

systems: EAS, VIS, and LS, respectively. For the convenience358

of description, it is assumed that all sensor coordinate frames359

coincide with L, which can be achieved by simply offline360

calibrating external parameters.361

A. Encoder-AHRS Subsystem362

1) Description: Four encoders are, respectively, installed on363

the shaft of each wheel to measure the rotational speed of the364

wheel in real-time. The forward kinematics module converts365

the speeds into the linear velocity vkin and angular velocity ωkin
366

of the robot. AHRS, composed of an accelerometer, gyroscope,367

magnetometer and on-board micro processor, is an orientation368

estimator providing attitude information of the robot, including369

yaw, pitch, and roll angle. The velocity decomposition module370

decomposes a velocity expressed in L into a velocity expressed371

in G by the following formula:372

v = R

⎡
⎣vkin

0
0

⎤
⎦. (5)373

Then, the velocity integration module integrates v to obtain374

the position of the robot, p ∈ R
3

375

p =
∫ t

0
vdt . (6)376

Due to measurement and other uncertainties, what is calculated377

above is actually estimates of position, attitude and global378

velocity at the time tk , denoted as { p̃eas
k , R̃

eas
k , ṽeas

k }.379

2) Output Model: In fact, rugged or slippery ground380

is likely to destroy certain assumptions of the robot’s381

kinematics [35], and magnetometer signals may be cor-382

rupted by some magnetic disturbances (e.g., ferromagnetic383

and permanent magnetic materials) [36]. These uncontrollable384

situations will inevitably lead to the accumulation of pose385

errors with time and driving distance. Therefore, in order to386

reasonably describe the uncertainty of the system output, 387

we choose to model the position increment (PI) and the attitude 388

increment (AI). Let the measurements of PI and AI during 389

time interval [tk−1, tk] (about 50 ms) be �̃
eas
p,k � R̃

eas�
k−1 ( p̃eas

k − 390

p̃eas
k−1) ∈ R

3 and �̃
eas
R,k � R̃

eas�
k−1 R̃

eas
k ∈ SO(3), respectively, and 391

their measurement process are modeled as follows: 392

�̃
eas
p,k = R�k−1( pk − pk−1)+ weas

�p,k (7a) 393

�̃
eas
R,k = exp

([
weas

�R,k

]
×
)

R�k−1 Rk (7b) 394

where measurement noises are assumed to be Gaussian white 395

noise, i.e., weas
�p,k
∼ N (03,�

eas
�p,k), weas

�R,k ∼ N (03,�
eas
�R ,k), 396

in which the covariance can be determined by experiments. 397

In addition, since the estimate of roll and pitch from AHRS 398

is obtained with reference to the gravity vector, it can be seen 399

from (4) and (5) that the third component of ṽeas, namely 400

GVV ṽeas
z , is drift-free and more in line with the Gaussian 401

white noise assumption than the first and second components 402

of ṽeas. The above analysis shows that in the fusion center, ṽeas
z 403

should be preferentially selected to participate in the fusion. 404

We model the GVV measurement process as follows: 405

ṽeas
z = vz +weas

vz
(8) 406

where, wvz ∼ N (0, σ eas2
vz

). To further model the uncertainty 407

that may be introduced by the tire slippage and rough ground, 408

the covariance σ eas2
vz

will be adaptively adjusted according to 409

the following adjustment strategy: 410

σ eas
vz
=

⎧⎪⎨
⎪⎩

s1σ0, if |ω̃kin − ω̃ahrs| < τ1

σ0, if τ1 ≤ |ω̃kin − ω̃ahrs| < τ2

s2|ω̃kin − ω̃ahrs|σ0, if |ω̃kin − ω̃ahrs| ≥ τ2

(9) 411

where, ω̃kin, ω̃ahrs are the angular velocity measurements from 412

kinematics and AHRS, respectively. τ1, τ2 are two different 413

thresholds (set to 0.03, 0.3 for us), and s1, s2 are two different 414

scale coefficients (set to 10−2, 102 for us). σ0 is the base value, 415

whose value is set to 0.05 in our experiments. 416

B. Visual-Inertial Subsystem 417

1) Description: We adapt the processing pipeline from [33] 418

for VIS. The feature tracking module detects the visual 419

features for each camera frame using corner detector [37], 420

and tracks features in the previous frame using Kanade– 421

Lucas–Tomasi algorithm [38], and matches features among the 422

left image and right image. The IMU pre-integration module 423

integrates inertial data between the previous frame and current 424

frame to obtain pre-integration measurement (i.e., relative 425

position, velocity, and rotation) and their uncertainties accord- 426

ing to the algorithm in [39]. The sliding-window optimization 427

module is responsible for constructing a factor graph using 428

the pinhole camera model and pre-integration measurement 429

model, and solving state variables using Ceres solver,1 and 430

the size of the factor graph is limited to a sliding window 431

(e.g., the size is set to 10). There are four types of factors 432

in the factor graph: re-projection factor between two frames, 433

the re-projection factor between the left and right camera, the 434

1http://ceres-solver.org/
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pre-integration factor and the marginalization factor, and their435

detailed definition and construction can be found at [16], [33].436

The state variables estimated in the factor graph are437

X = { pi , Ri , vi , b f,i , bω,i , d j }438

i = 0, . . . , M; j = 0, . . . , N (10)439

where M and N are the number of image frames in the sliding440

window and the number of observed features, respectively.441

pi , Ri , vi , b f,i , bω,i , respectively, represent the position, atti-442

tude, velocity, accelerometer bias and gyroscope bias at the443

time of the i th frame. d j represents the depth of the j th feature444

observed in the first frame. After solving the sliding-window445

factor graph, the outputs of VIS at time tk are the estimates of446

position, attitude, velocity, accel. bias, and gyro. bias, denoted447

as { p̃vis
k , R̃

vis
k , ṽvis

k , b̃
vis
f,k, b̃

vis
ω,k}.448

It should be noted here that, ṽvis is the estimate of global449

velocity, which drifts gradually with driving time and distance.450

The estimate of the velocity expressed in L, denoted as ṽvis,L,451

can be obtain using the following formula:452

ṽvis,L = R̃
vis�

ṽvis. (11)453

2) Output Model: Like EAS, we build the measurement454

model of PI and AI during time interval [tk−1, tk] (about455

100 ms) as follows:456

�̃
vis
p,k = R�k−1( pk − pk−1)+ wvis

�p,k (12a)457

�̃
vis
R,k = exp

([
wvis

�R ,k

]
×
)
R�k−1 Rk (12b)458

where wvis
�p,k

∼ N (03,�
vis
�p,k), wvis

�R ,k ∼ N (03,�
vis
�R ,k) in459

which the covariance can also be determined by experiments.460

For the LV, the measurement model of LV is built as follows:461

ṽvis,L = R�v + wvis,L
v (13)462

where, wvis,L
v ∼ N (03,�

vis,L
v ).463

C. LiDAR Subsystem464

1) Description: The LS is adapted from the processing465

pipeline of [31]. In the feature extraction module, motion466

compensation algorithm [21] based on IMU data is applied467

to a scan of raw points to remove the distortion caused by468

LiDAR own motion, next, the points are filtered and divided469

into ground points and the other large object points using470

the ground plane estimation method [40] and the fast range471

segmentation method [41], lastly, edge and plane feature points472

are extracted according to the roughness of each point. In the473

scan to scan module, point-to-edge-line and point-to-plane-474

patch matching are performed to estimate the LiDAR pose475

increment between two consecutive scans composed of edge476

and plane points. The process operates at a frequency of477

about 20 Hz, and the detailed procedures of scan-to-scan478

matching can be found in [42]. The scan to submap module479

matches the current scan to submap (i.e., the previous scans480

transformed into G whose sensor poses are within 150 m of481

the current position of the sensor) to further refine the pose482

estimates, and this procedure runs at a lower frequency of483

Fig. 3. Flowchart of variable fusion mode state estimator.

about 2 Hz. The scan-to-submap problem can be formulated 484

as the following minimization: 485

p̃ls, R̃
ls = arg min

p,R

1

2

⎧⎨
⎩

N e∑
i=1

re
i

2 +
N p∑
j=1

r p
j

2

⎫⎬
⎭ (14) 486

where Ne and N p are the number of the edge and plane points 487

in the current scan, respectively. re
i and r p

j are the point-to- 488

edge-line and point-to-plane-patch distance error, respectively, 489

defined as follows: 490

re
i = we

i

∥∥(
R p̃e

i + p − p̃e
u

)× (
R p̃e

i + p − p̃e
v

)∥∥∥∥ p̃e
u − p̃e

v

∥∥ 491

r p
j = w

p
j

∥∥∥∥∥
(

R p̃p
j + p − p̃p

w

)� (
p̃p

u − p̃p
w

)× (
p̃p

v − p̃p
w

)∥∥(
p̃p

u − p̃p
w

)× (
p̃p

v − p̃p
w

)∥∥
∥∥∥∥∥ 492

here, we
i and w

p
j are the weights. p̃e

i and p̃p
j are i th edge point 493

and j th plane point in the current scan, respectively. p̃e
u and 494

p̃e
v are the edge points in the submap, which define the edge 495

line associated with p̃e
i . p̃p

u , p̃p
v and p̃p

w are the plane points 496

in the submap, which define the plane patch associated with 497

p̃p
j . Finally, the output of LS at time tk are the estimates of 498

position, attitude, denoted as { p̃ls
k , R̃

ls
k }. 499

2) Output Model: Like EAS and VIS, we build the mea- 500

surement model of PI and AI during time interval [tk−1, tk] 501

(about 500 ms) as follows: 502

�̃
ls
p,k = R�k−1( pk − pk−1)+ wls

�p,k (15a) 503

�̃
ls
R,k = exp

([
wls

�R,k

]
×
)

R�k−1 Rk (15b) 504

where wls
�p,k

∼ N (03,�
ls
�p,k), wls

�R ,k ∼ N (03,�
ls
�R,k) in 505

which the covariance can also be determined by experiments. 506

V. VARIABLE FUSION MODE ESTIMATOR 507

Fig. 3 presents our designed variable fusion mode estimator 508

based on ES-EKF. It consists of three phases: prediction, 509

observation, and updating. 510

A. State Variables Definition 511

Table I lists all state variables and their symbols in the 512

proposed state estimator. Full state x and error state δx are 513

defined as follows: 514

x � { p, R, v, b f , bω} (16a) 515

δx �
[
δ�p δ�a δ�v δ�b f δ�bω

]�
(16b) 516

where the error of each variable is defined as 517

δ p � p − p̂ (17a) 518
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TABLE I

ALL STATE VARIABLES IN STATE ESTIMATOR WITH VARIABLE MODE

δa � Log(R R̂
�
) (17b)519

δv � v − v̂ (17c)520

δb f � b f − b̂ f (17d)521

δbω � bω − b̂ω. (17e)522

B. IMU-Driven State Kinematics523

1) True-State Kinematics: Based on the general524

MEMS-IMU measurement model [16], [19], in which525

the measurements of specific force and angular velocity,526

denoted as f m and ωm , are affected by accelerometer bias527

b f , gyroscope bias bω and addictive noise, the true-state528

kinematics are modeled as529 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṗ = v

Ṙ = R[ωm − bω − nω]×
v̇ = R

(
f m − b f − n f

)+ g

ḃ f = τ b f

ḃω = τ bω

(18)530

where, additive noise n f , nω in accelerometer and gyroscope531

measurements are assumed to be Gaussian white noise, i.e.,532

n f ∼ N (03×1, σ
2
f 13), nω ∼ N (03×1, σ

2
ω13). b f , bω are mod-533

eled as a random walk, whose derivatives are Gaussian white534

noise, i.e., τ b f ∼ N (03×1, σ
2
b f 13), τ bω ∼ N (03×1, σ

2
bω13). g is535

the gravitational acceleration constant in G.536

2) Estimate-State Kinematics: Neglecting Gaussian white537

noise in (18), the estimate-state kinematics are obtained as538

follows:539 ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂p = v̂
˙̂R = R̂

[
ωm − b̂ω

]
×˙̂v = R̂

(
f m − b̂ f

)+ g
˙̂b f = 03×1
˙̂bω = 03×1.

(19)540

3) First-Order Error-State Kinematics: According to the541

error state definition (17), comparing true-state kinematics (18)542

and estimate-state kinematics (19), the first-order kinematics543

of the error state are obtained544

δ̇x = Aδx + Bnsys (20)545

where 546

A =

⎡
⎢⎢⎢⎢⎣

03 13 03 03 03

03 03 03 03 −R̂
03 −[

R̂
(

f m − b f
)]
× 03 −R̂ 03

03 03 03 03 03

03 03 03 03 03

⎤
⎥⎥⎥⎥⎦ 547

B =

⎡
⎢⎢⎢⎢⎣

03 03 03 03

03 −R̂ 03 03

−R̂ 03 03 03

03 03 13 03

03 03 03 13

⎤
⎥⎥⎥⎥⎦, nsys =

⎡
⎢⎢⎣

n f

nω

τ b f

τ bω

⎤
⎥⎥⎦. 548

C. Prediction Using IMU Data 549

1) Full State Prediction: Suppose the posterior estimate of 550

x at time tk−1 is x̂k−1|k−1, then the prediction of x at time 551

tk(tk = tk−1 +�t), x̂k|k−1, can be obtained by integrating the 552

kinematics (19). The prediction equation is abbreviated as 553

x̂k|k−1 = f (x̂k−1|k−1, um,k) (21) 554

where um,k � [ f �m,k−1 ω�m,k−1]�, and the detailed formula is 555

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̂k|k−1 = p̂k−1|k−1 + v̂k−1|k−1�t

+ 1

2

(
R̂k−1|k−1

(
f m,k−1 − b̂ f,k−1|k−1

)+ g
)
�2

t

R̂k|k−1 = R̂k−1|k−1 exp
([

ωm,k−1 − b̂ω,k−1
]
×�t

)
v̂k|k−1 = v̂k−1|k−1

+ (
R̂k−1|k−1

(
f m,k−1 − b̂ f,k−1|k−1

)+ g
)
�t

b̂ f,k|k−1 = b̂ f,k−1|k−1

b̂ω,k|k−1 = b̂ω,k−1|k−1 .

556

2) Error State Prediction: According to the error-state 557

kinematics (20), a prediction model of δx is established below 558

δx,k = Fkδx,k−1 + wsys,k (22) 559

where Fk ∈ R
15×15 is error transition matrix; wsys,k ∈ R

15 is 560

the process noise subject to the assumption of Gaussian white 561

noise. i.e., 562

Fk = e Ak−1�t ≈ 115 + Ak−1�t + 1

2
(Ak−1�t)

2
563

wsys,k ∼ N (
015×1,�sys,k

)
564

�sys,k = Bk−1diag
(
σ 2

f 13, σ
2
ω13, σ

2
b f 13, σ

2
bω13

)
B�k−1. 565

Let the error estimate and its covariance at time tk−1 to be 566

δ̂x,k−1|k−1 and Pk−1|k−1 , respectively. Then, according to the 567

prediction formula of Kalman filtering, the predicted error and 568

its covariance at time tk , respectively, denoted as δ̂x,k|k−1 and 569

Pk|k−1, can be propagated as follows: 570

δ̂x,k|k−1 = Fk δ̂x,k−1|k−1 (23a) 571

Pk|k−1 = Fk Pk−1|k−1 F�k +�sys,k . (23b) 572
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D. Error Observation Models for Subsystems573

1) Position and Attitude Increment: For the convenience of574

description, the measurement models of PI and AI in (7), (12),575

and (24) are uniformly denoted as576

�̃p,k = R�k−1( pk − pk−1)+ w�p,k (24a)577

�̃R,k = exp([w�R ,k]×)R�k−1 Rk (24b)578

where w�p,k ∼ N (03,��p,k), w�R,k ∼ N (03,��R ,k).579

Consider the error definition (17) and the approximate rela-580

tionship (3), we have581

R�k−1( pk − pk−1)582

≈ R̂
�
k−1( p̂k − p̂k−1)+ R̂

�
k−1δ p,k − R̂

�
k−1δ p,k−1583

+ R̂
�
k−1[ p̂k − p̂k−1]×δa,k−1 (25a)584

exp([w�R ,k]×)R�k−1 Rk585

≈ exp
([

R̂
�
k−1

(
δa,k − δa,k−1

)+ w�R,k

]
×

)
R̂
�
k−1 R̂k . (25b)586

Then, the error observation model of PAI can be established587

as588

zPAI,k = HPAI,kδx,k + wPAI,k (26)589

where590

zPAI,k �
[

�̃R,k − R̂
�
k−1

(
p̂k − p̂k−1

)
Log

(
�̃R,k R̂

�
k R̂k−1

) ]
591

HPAI =
[

R̂
�
k−1 03 03 03 03

03 R̂
�
k−1 03 03 03

]
592

wPAI,k ∼ N (
06×1, diag(�11,k,�22,k)

)
593

�11,k = ��p,k + R̂
�
k− P p,k−1 R̂k−1594

× R̂
�
k−1[ p̂k − p̂k−1]×Pa,k−1[ p̂k − p̂k−1]× R̂k−1595

�22,k = ��p,k + R̂
�
k−1 Pa,k−1 R̂k−1596

here, P p,k−1 and Pa,k−1 are, respectively, position error covari-597

ance and attitude error covariance at time tk−1, extracted from598

total error covariance Pk−1.599

2) Global Vertical Velocity: Combining (8) and (17c), the600

following equation is obtained601

ṽeas
z = vz +weas

vz
= δvz + v̂z +weas

vz
. (27)602

Let zGVV,k � ṽeas
z,k − v̂z,k , the error observation model of GVV603

is established as604

zGVV,k = HGVV,kδx,k +weas
vz ,k (28)605

where606

HGVV,k =
[

01×8 1 01×6
]
.607

3) Local Velocity: Combining (13), (17), and (3), the fol-608

lowing approximate relationship is obtained:609

ṽvis,L − R̂
�
v̂ ≈ R̂

�[v̂]×δa + R̂
�
δv + wvis,L. (29)610

Let zLV,k � ṽ
vis,L
k − R̂

�
k v̂k , the error observation model of LV611

is established as612

zLV,k = HLV,kδx,k + w
vis,L
k (30)613

TABLE II

FOUR FUSION MODES AND THEIR CONFIGURATIONS

where 614

HLV,k =
[

03 R̂
�
k [v̂k]× R̂

�
k 03 03

]
. 615

E. Update Using Subsystem Outputs 616

When the observation information arrives, the estimator 617

will automatically call the corresponding error observation 618

model to update the state according to the current fusion 619

mode. The detailed configurations of four fusion modes are 620

listed in Table II, where each fusion mode represents a 621

way in which subsystem variables participate in fusion. For 622

example, in Mode 3, the estimator fuses GVV variable of EAS, 623

LV variable of VIS, and PAI variable of LS using GVV, LV, 624

and PAI error observation models, respectively. 625

1) Error State Update: For the convenience of representa- 626

tion, the error observation models of PAI, GVV, and LV are 627

uniformly expressed as 628

zk = Hkδx,k + wmeas,k (31) 629

where, zk is error observation value; Hk is error observation 630

matrix; wmeas,k ∼ N (0,�meas,k) is observation noise. The error 631

state update is completed as follows: 632

Sk = Hk Pk|k−1 H�k +�meas,k (32a) 633

K k = Pk|k−1 H�k S−1
k (32b) 634

δ̂x,k|k = δ̂x,k|k−1 + K k(zk − Hk δ̂x,k|k−1) (32c) 635

Pk|k = (115 − K k Hk)Pk|k−1(115 − K k Hk)
� (32d) 636

+ K k�meas,k K�k . (32e) 637

2) Full State Update: After obtaining the error posterior 638

estimate, δ̂x,k|k , it will be used to compensate the predicted 639

value of the full state, x̂k|k−1, according to the inverse formula 640

of (17). The full state update is abbreviated as 641

x̂k|k = x̂k|k−1 ⊕ δ̂x,k|k . (33) 642

The detailed calculation equation for each variable is as 643

follows: 644

p̂k|k = p̂k|k−1 + δ̂ p,k|k (34a) 645

R̂k|k = exp([δ̂a,k|k]×)R̂k|k−1 (34b) 646

v̂k|k = v̂k|k−1 + δ̂v,k|k (34c) 647

b̂ f,k|k = b̂ f,k|k−1 + δ̂b f,k|k (34d) 648

b̂ω,k|k = b̂ω,k|k−1 + δ̂bω,k|k . (34e) 649

It should be noted that, once the error compensation is 650

completed, δ̂x,k|k needs to be zeroed, and this operation is 651

noted as 652

δ̂x,k|k ← 015×1. (35) 653
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Fig. 4. Flowchart of information manager.

Fig. 5. Example demonstrating the delay and disorder problem. (a) Queues
for messages output by subsystems. (b) Queue obtained by sorting according
to the time order of fusion center receiving them (it only shows one possible
case). (c) Queue obtained by sorting according to the stamped order of the
messages themselves.

VI. INFORMATION MANAGER654

Fig. 4 presents the flowchart of our information manager.655

The FD module is designed to detect the significant degen-656

eration of vision and laser subsystems. The fusion mode of657

the estimator is dynamically adjusted by fusion mode selector658

(FMS) module according to the detection results of FD, so as659

to isolate invalid observation information. The sorting by660

timestamp and delay handling module are designed to solve661

disorder information and delay problem.662

A. Sorting Messages by Timestamp and Delay Handling663

Because three subsystems have very different output fre-664

quency and processing delay, if those messages are not sorted665

correctly, the time order of fusion center receiving messages is666

usually inconsistent with the timestamp order of the messages667

themselves. Fig. 5 vividly demonstrates a example of disorder668

information problem. Obviously, the timestamp order shown669

in Fig. 5(c) is expected to be used by our fusion algorithm.670

Our solution to overcome this problem is: firstly, sorting them671

according to the timestamps of messages; then, using them672

to finish filtering update state in chronological order; finally,673

integrating inertial data to obtain real-time pose estimates. The674

detailed steps are as follows.675

S1 (Queue Checking): If there is at least one data in every 676

subsystem buffer, entering S2; otherwise, waiting. 677

S2 (Timestamp Sorting): Sorting them according to their 678

timestamps and putting them into a queue for filtering 679

update. 680

S3 (State Update): Using data from update queue to update 681

the state in the chronological order; the latest time, 682

position estimate and attitude estimate of estimator are 683

recorded as tfilter
latest, p̂filter

latest and R̂
filter
latest, respectively. 684

S4 (Delay Compensating): Let the latest time of obtained 685

inertial data be t IMU
latest. Integrating inertial data from tfilter

latest 686

to t IMU
latest to get real-time pose estimates, p̂IMU

latest, R̂
IMU
latest, 687

using full state prediction equation (21). 688

S5 (Real-Time Outputting): Outputting real-time estimate, 689

and returning to S1. 690

B. FD and Handling 691

1) VIS Failure Detection: Aggression motion, texture-less 692

scene etc., may cause the nonlinear optimization in VIS to 693

fail. When the system fails, some quantities in modules of VIS 694

often show anomalies, such as insufficient number of tracked 695

features and large estimate of accelerometer or gyroscope bias. 696

Therefore, we choose the average value of the number of 697

tracked features, IMU bias, PI and AI in 1 s as degeneration 698

metrics of VIS, denoted as N̄ f , b̄
vis
f , b̄

vis
ω , �̄

vis
p and �̄

vis
R , 699

respectively. Based on the above analysis, the discriminant of 700

health status of VIS is designed as 701

γ vis =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if

N̄ f < αN or
∥∥b̄

vis
f

∥∥ > αb f

or
∥∥b̄

vis
ω

∥∥ > αbω or
∥∥�̄

vis
p

∥∥ > α�p

or
∥∥Log

(
�̄

vis
R

)∥∥ > α�R

0, otherwise

(36) 702

here, γ vis = 1, 0 represents failure and normal status of VIS, 703

respectively. αN , αb f , αbω, α�p , α�R are the thresholds, whose 704

values are set to 5, 2, 0.02, 0.25, 0.07 in our experiments. 705

2) LS Failure Detection: We adapt the eigenvalue-analysis 706

method [30] to detect failure of LS caused by encoun- 707

tering degraded scenes where scan-to-submap problem 708

will be ill-constrained. According to Gauss–Newton or 709

Levenberg–Marquardt algorithm [43] for nonlinear least- 710

squares problems, in each iteration process, the original min- 711

imization problem i.e., (14) will be linearized at the working 712

point, and the incremental equation of the following form will 713

be obtained 714

H�x = m (37) 715

where, symmetric H ∈ R
6×6 and m ∈ R

6 are obtained by 716

linearization at working point. �x ∈ R
6 is the increment of 717

variables used in the actual optimization process, and in this 718

article we choose �x = [�px,�py,�pz,�θx ,�θy,�θz]�. 719

According to Lemma 2 in [30], the minimum eigenvalue of H 720

is selected as the degradation metric of LS in this article. Once 721

it is less than the given threshold, the FD module considers LS 722

is severely degraded and the outputs of LS should not enter the 723

fusion center to participate in data fusion. The discriminant of 724
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Fig. 6. Six test scenes. For each scene, the red line in (a) represents the motion trajectory of the vehicle in Google Earth and (b) photograph at the starting
point. Note: at night, the forward LED light will be turned on.

health status of LS is designed as725

γ ls =
{

1, if λ̄min < αλ

0, if λ̄min ≥ αλ

(38)726

here, γ ls = 1, 0 represents failure and normal status of727

LS, respectively. λ̄min is the average value of the minimum728

eigenvalue of H in 1 s, and αλ is the given threshold, whose729

value is set to 130 for us.730

3) Failure Handing: If subsystem VIS or LS fails (i.e.,731

γ vis = 1 or γ ls = 1), it can be considered that the corre-732

sponding subsystem has a serious degradation problem. Next,733

FMS selects a new fusion mode for the estimator according734

to the fusion mode configuration table (see Table II) that does735

not use the failed subsystems. The process of online selecting736

fusion mode is vividly shown in the FMS module in Fig. 4.737

VII. EXPERIMENTAL RESULTS738

A. Experimental Setup and Datasets739

Fig. 1 presents our setup for data collecting, which consists740

of a vehicle base, multiple sensors and computer. In the741

figure, we list the technical details about the system hardware,742

down to specific component names and some of their high-743

level specifications. M600mini-G RTK system connect to RTK744

Networks infrastructure using mobile phone wireless networks745

to listen to GNSS correction information and use an antenna746

to receive GNSS observation information. Based on these747

two kinds of information, it provides the RTK positioning748

solution (abbreviated as RTK data), whose positioning accu-749

racy is about 10 mm + 1 ppm for the horizontal plane, and750

20 mm + 1 ppm for the vertical direction. XSENS MTi-G-710751

GNSS/INS system, based on GNSS single point positioning752

solution and IMU, provides the integrated positioning solution753

(abbreviated as GNSS data), whose horizontal positioning754

accuracy is about 2.5 m circular error probability (CEP).755

Extensive evaluations of the system are conducted using756

our six self-gathered dataset, named respectively: street, field,757

forest, forest-at-night, street-at-night, and tunnel-at-night. The758

reason for using our self-gathered datasets is that the current759

popular datasets, such as KITTI odometry datasets [44] and760

TABLE III

OVERALL MOTION INFORMATION OF OUR VEHICLE IN EACH SCENE

UrbanLoco datasets [25], do not contain encoder or wheel 761

speedometer data and are not suitable for our investigation. 762

Fig. 6 shows the motion trajectory and the photograph at 763

the starting point for each of five scenes. The overall motion 764

information of our vehicle in each scene is listed in Table III. 765

In the first five scenes, RTK data is used as the ground 766

truth. In the sixth scene where the length of the tunnel is 767

about 120 m, GNSS data is used as the reference outside the 768

tunnel as RTK system cannot work normally whether inside 769

or outside the tunnel. 770

B. Evaluation Metrics 771

In order to quantify the positioning accuracy of the system, 772

it is necessary to define appropriate metrics for quantitative 773

analysis. Suppose that during the experiment, time series are 774

ti ∈ R, i = 1, 2, . . . , N , where N ∈ N
+ is the total number 775

of time series. The estimate of the position at each time is 776

denoted as p̂i ∈ R
3, i = 1, 2, . . . , N , the position reference 777

is denoted as p̄i ∈ R
3, i = 1, 2, . . . , N , and the traversed 778

distance reference is recorded as Di ∈ R, i = 1, 2, . . . , N . 779

In the quantitative analysis, the ATE, ATEi , is used to eval- 780

uate the absolute positioning accuracy at time ti [45]. The 781

relative trajectory error (RTE), RTEi , is used to evaluate the 782

positioning accuracy relative to traversed distance Di at time 783

ti . Their mathematical definitions are 784

ATEi = ‖ p̂i − p̄i‖ (39a) 785

RTEi = ATEi

Di
× 100%. (39b) 786
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Fig. 7. Test results of first four scenes. For each scene, (a) trajectories in the horizontal plane, (b) curves of height over time, (c) curves of ATE over
distance, and (d) curves of RTE over distance (starting at 10 m).

TABLE IV

MODAL COMBINATION OF ALGORITHMS TESTED IN THE EXPERIMENT

C. Accuracy and CPU Usage Evaluation: Tests With Street,787

Field, Forest, and Forest-at-Night Datasets788

1) Accuracy Evaluation: In the experiments, we compare789

the proposed system against a variety of the publicly available790

state-of-the-art odometry systems, selected to cover the range791

of modal combinations, as shown in Table IV. Although we792

want to compare against R3LIVE [23], LOCUS [27] and793

LIC-Fusion 2.0 [21], the former is currently only available794

for solid-state LiDAR and the latter two are not open-source795

implementation.796

During the whole test process of each dataset, all modalities797

can work normally, there is no failure of VIS or LS. Fig. 7798

shows the positioning trajectories and error curves in the first799

four scenarios. From the figure it can be found that: 1) the800

horizontal positioning trajectories of the algorithms using the801

laser modality are very close, which may be due to the fact that802

they all use the LOAM-based point cloud matching method;803

2) the height change curve of our system is closer to RTK804

than the other algorithms; and 3) the change curve of ATE805

and RTE of our system is almost always closer to the time806

axis.807

The quantitative analyses are summarized in Table V, where808

mean, std, max, min represent the average value, standard809

deviation, maximum and minimum value of investigated data,810

respectively. Observing and comparing the mean and std value811

of ATE and RTE, it can be seen that in the first four scenes,812

the positioning error of our system is the smallest. It is 813

fully demonstrated that when VIS and LS work normally, our 814

system has better positioning accuracy than the other systems. 815

2) CPU Usage Evaluation: The consumption of computing 816

resources for system operation is also an important indicator 817

for evaluating its performance and engineering feasibility. 818

To this end, we performed a statistical analysis of the CPU 819

loads in the first 200 s of the forest dataset. The CPU usage 820

here refers to the number of CPU cores occupied by the 821

algorithm when the algorithm runs on an desktop computer 822

with Intel i7-8700K CPU @ 3.70 GHz × 12 and 16 RAM. 823

The quantitative statistics are listed in the last four columns 824

of Table V. The box plot drawn based on the original CPU 825

loads data is shown in Fig. 8. The quantitative comparison of 826

CPU usage shows that the computational consumption of our 827

system is higher than that of VINS-Fusion, LeGO-LOAM and 828

LIO-SAM, but about 13% less that LVI-SAM. 829

D. Robustness Evaluation: Test With Street-at-Night Dataset 830

In the street-at-night scene, the vehicle walks out of a 831

“w”-shaped trajectory, whose height change about 5.4 m. 832

There are relatively more street lights in the first half, and 833

fewer street lights in the second half. On this dataset, we test 834

various algorithms listed in Table IV, and the positioning tra- 835

jectory and error curves of each algorithm are shown in Fig. 9. 836

During testing we found that both our VIS and VINS-Fusion 837

fail (Ceres solver prompts that an infinite value appears in 838

the process of solving the nonlinear optimization problem). 839

In order to further verify the effectiveness and feasibility of 840

our FD method, we also tested the proposed system with the 841

FD function turned off, denoted as Our System (no FD), and 842

its results are also shown in Fig. 9. From the quantitative 843

analysis results of each algorithm listed in Table VI, it can 844

be seen that the mean value of ATE and RTE of Our System 845

is comparable to that of LIO-SAM and LVI-SAM, and our 846

std value is the smallest. Comparing the quantitative results of 847
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TABLE V

QUANTITATIVE COMPARISON OF FIRST FOUR DATASETS USING VARIOUS ALGORITHMS

Fig. 8. Boxplot visualization of the CPU usage computed for the different
algorithms in the first 200 s of the forest dataset.

TABLE VI

QUANTITATIVE COMPARISON OF STREET-AT-NIGHT DATASET

USING VARIOUS ALGORITHMS

Our System and Our System (no FD), it can be found that FD848

and FMS can effectively detect and handle VIS failure, and849

it also shows that timely isolation of failed visual information850

sources is necessary to improve system performance.851

In order to more clearly show the FD and handling process,852

during the test, we collect the degeneration metrics of VIS853

and LS, N̄ f , ‖b̄vis
f ‖, ‖b̄vis

ω ‖, ‖�̄vis
p ‖, ‖Log(�̄

vis
R )‖, λ̄min, and the854

health status of VIS and LS, γ vis, γ ls, as well as the fusion855

mode of the estimator, and plot them in Fig. 10. According to856

the health status discriminant of VIS and LS, (36) and (38),857

Fig. 10(a)–(e) tell us that the VIS begin to fail at about 300 s858

and Fig. 10(f) tells us that LS don’t fail during the whole859

movement. It can be seen from Fig. 10(g)–(i) that FD can860

effectively detect the failure of VIS, and the FMS correctly861

switches the fusion mode of the estimator from modes 3 to862

2 according to the FD results of FD.863

Fig. 9. Test results of street-at-night scene. (a) Trajectories in the horizontal
plane. (b) Curves of height over time. (c) Curves of ATE over distance.
(d) Curves of RTE over distance (starting at 10 m). (e) and (f) Gray image
from left camera and a point cloud from LiDAR, respectively, when VIS fails.

Fig. 10. Inside the FD and FMS module, variables change with time.
(a)–(e) Time-varying curves of VIS degeneracy metrics described in (36).
(f) Time-varying curve of LS degeneracy metric described in (38). (g) and
(h) Change of the health status of VIS and LS, respectively, here 1 and 0,
respectively, represents failure and normal status. (i) Fusion mode change
process of the estimator.

E. Robustness Evaluation: Test With Tunnel-at-Night Dataset 864

In the tunnel-at-night scene, our vehicle passed through 865

a tunnel about 120 m. Because the environmental geometry 866
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Fig. 11. Test results for tunnel scene. (a) Trajectories of different systems in
horizontal plane. Here, FD stands for FD introduced in Section VI-B. (b) and
(c) Gray photograph camera and the point cloud from LiDAR, respectively,
when laser modality occurs degeneracy. GNSS data is selected as reference.

Fig. 12. Inside the information manager module, each variable changes
with time. (a)–(e) show the time-varying curves of VIS degeneracy metrics
described in (36). (f) Time-varying curve of LS degeneracy metric described
in (38). (g) and (h) Change of the health status of VIS and LS, respectively,
here 1 and 0, respectively, represents failure and normal status. (i) Fusion
mode change process of the estimator.

of tunnel is too single, the laser modality degenerates and867

LS fails. Algorithms listed in Table IV and Our System (no868

FD) are tested on this dataset. The positioning trajectories of869

algorithms, an image and a point cloud in the tunnel are shown870

in Fig. 11. It can be seen from Fig. 11(a) that, the positioning871

accuracy of our system is second only to LVI-SAM, and is872

significantly better than the other algorithms. If the GNSS873

data is used as a reference at the endpoint, the horizontal874

positioning error of VINS-Fusion, LeGO-LOAM, LIO-SAM,875

LVI-SAM, Our System, Our System (no FD) are about 30.6 m876

(10.2%), 97.7 m (32.6%), 57.3 m (19.1%), 3.2 m (1.1%), 5.7 m877

(1.9%) and 33.3 m (11.1%), respectively. It should be noted878

that due to the multipath effects and nonline-of-sight [13]879

caused by the occlusion or reflection of the mountain near880

the tunnel, the GNSS data is likely to have systematic errors,881

so the quantitative results here are likely to deviate from the882

real situation to a certain extent.883

The change curves of the variables related to FD and FMS884

during the test are plotted in Fig. 12. According to failure885

Fig. 13. Test results on the semi-simulated street dataset. (a) Trajectories
in the horizontal plane. (b) Curves of height over time. (c) Curves of ATE
over distance. (d) Curves of RTE over distance (starting at 10 m). RTK data
is selected as reference.

TABLE VII

QUANTITATIVE ANALYSIS RESULTS FOR SEMI-SIMULATED

STREET DATASET

discriminant of VIS and LS, (36) and (38), Fig. 12(a)–(e) tell 886

us that the VIS does not fail and Fig. 12(f) tells us that LS 887

fails when the vehicle moves in the tunnel. It can be seen 888

from Fig. 12(g)–(i) that FD can effectively detect the failure 889

of LS, and the FMS correctly switches the fusion mode of the 890

estimator between modes 3 and 1 according to the FD results 891

of FD. 892

F. Robustness Evaluation: Test With Semi-Simulated 893

Street Dataset 894

In the street-at-night and tunnel-at-night test above, the 895

performance of the system is tested only when LS fails or 896

only when VIS fails, and there is a lack of testing for failure 897

of both VIS and LS. In order to further verify the robustness of 898

the system to more complex failure situations, semi-simulation 899

experiments are carried out on the street dataset. By artificially 900

setting the health status of VIS and LS, we create three failure 901

cases during [550, 650] s in street dataset: 1) only VIS fails; 902

2) only LS fails; and 3) both VIS and LS fail, and then 903

test our system for each situation. The estimated trajectories, 904

height and error change curves of each algorithm are shown 905

in Fig. 13. The quantitative analysis results listed in Table VII 906

show that our system can effectively detect and handle the 907

failure of VIS or LS. For example, when both VIS and LS fail, 908

FMS will set the estimator’s fusion mode to 0, and when both 909

VIS and LS return to normal, FMS will restore the estimator’s 910

fusion mode to 3. Despite the failure of 100 s, the system can 911

still provide continuous, relatively reliable output, and the ATE 912

and RTE will not change by order of magnitude. 913

VIII. CONCLUSION AND FUTURE WORK 914

This article proposed a low-drift and high-robustness state 915

estimation system for improving the persistence and reliability 916
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of UGV positioning in challenging environment, which inte-917

grates 3-D LiDAR, IMUs, stereo camera, encoders, and918

AHRS. It can effectively detect and isolate failed subsystems,919

and use the other ones to achieve good accuracy as much920

as possible. It has been evaluated in six scenarios: street,921

field, forest, forest-at-night, street-at-night and tunnel-at-night:922

1) when both VIS and LS work normally, the overall RTE of923

the system is about 0.5%; 2) in the scene where the vision924

subsystem fails, the system can continue to provide positioning925

information with about 0.5% accuracy level almost unaffected;926

3) in the tunnel scene with serious laser degeneracy, it can still927

maintain RTE about 1.9%; and 4) even if both VIS and LS928

fail for a short period of time, the relative positioning error929

does not change by orders of magnitude.930

Compared with the existing approaches, our system has931

the following significant advantages: 1) the proposed archi-932

tecture has generality and engineering convenience, i.e., its933

subsystems can easily be replaced with any available odometry934

or localization algorithm; 2) our system fuses more sensing935

modalities, and even when vision and laser modalities are936

serious degraded, the system can still rely on IMU and encoder937

to provide relative reliable positioning in a short period of938

time; 3) our system is more computationally efficient, e.g.,939

its CPU usage is reduced about 13% compared to LVI-SAM940

using IMU, vision and laser modalities; and 4) the scenes for941

testing is more rich, including street, forest, field, tunnel, day942

and night.943

Although the system has good positioning accuracy and944

robustness in typical scenes, there is still room for improve-945

ment: 1) further integrate GNSS positioning information when946

it is available, which is conducive to eliminate cumulative947

errors in large-scale autonomous movement and 2) in addi-948

tion to pursuing positioning performance, UGV autonomous949

navigation also hopes to build maps simultaneously to provide950

an environmental model for its path planning and obstacle951

avoidance planning. Therefore, our future research will focus952

on these issues and create a resilient navigation system that is953

independent of navigation satellites.954
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