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Abstract— Currently, the autonomous positioning of
unmanned ground vehicles (UGVs) still faces the problems
of insufficient persistence and poor reliability, especially in
the challenging scenarios where satellites are denied, or the
sensing modalities such as vision or laser are degraded. Based
on multimodal information fusion and failure detection (FD),
this article proposes a high-robustness and low-drift state
estimation system suitable for multiple scenes, which integrates
light detection and ranging (LiDAR), inertial measurement
units (IMUs), stereo camera, encoders, attitude and heading
reference system (AHRS) in a loose coupling way. Firstly, a state
estimator with variable fusion mode is designed based on the
error-state extended Kalman filtering (ES-EKF), which can
fuse encoder-AHRS subsystem (EAS), visual-inertial subsystem
(VIS), and LiDAR subsystem (LS) and change its integration
structure online by selecting a fusion mode. Secondly, in order
to improve the robustness of the whole system in challenging
environments, an information manager is created, which judges
the health status of subsystems by degeneration metrics, and
then online selects appropriate information sources and variables
to enter the estimator according to their health status. Finally,
the proposed system is extensively evaluated using the datasets
collected from six typical scenes: street, field, forest, forest-
at-night, street-at-night and tunnel-at-night. The experimental
results show our framework is better or comparable accuracy
and robustness than existing publicly available systems.

Index Terms— Error-state extended Kalman filter (ES-EKF),
failure detection (FD) and handling, light detection and ranging
(LiDAR)-inertial-visual-encoder odometry, multimodal informa-
tion fusion, state estimation.

I. INTRODUCTION

NMANNED ground vehicles (UGVs) have been widely
deployed in various real world applications, such as
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demining robots [1], transportation robots [2], reconnaissance
unmanned vehicles [3], etc. However, with the expansion of
motion range and the increase of task types, UGVs often
encounter more challenging environments that often lead to
significant degradation of certain sensing modalities, resulting
in the deterioration of the reliability and accuracy of the
positioning system.

The global navigation satellite system (GNSS) has been
widely deployed for the positioning of UGVs, which however
is extremely vulnerable to the blockage of high buildings and
malicious interference [4], [5] (such places are called satellite-
denied areas). The navigation system based on MEMS-inertial
measurement unit (IMU) or encoder is cheap and simple,
but the positioning errors accumulate rapidly with time and
distance [6], [7]. Recently, many state estimation algorithms
using camera or light detection and ranging (LiDAR) have
emerged, which can estimate pose with low drift over a
long range. However, when encountering degenerate scenes,
such as lack of texture [6], [8] for camera and scarcity of
geometrical structure for LIDAR [9], [10], these methods often
degenerate seriously or even fail. The systems based on a
single sensing modality often cannot meet the needs of reliable
positioning in complex environment. Fortunately, different
modalities are complementary to each other, so multimodal
fusion technology can be used to improve the performance of
the state estimation.

On the other hand, a large number of studies have shown
that, in a multimodal fusion system, one of the ways to
improve its resilience is to effectively detect and deal with
abnormal conditions, especially the failure problems caused
by environmental modal degradation. This requires giving the
whole architecture the abilities: can find the failed modality
according to certain metrics; can isolate it from the fusion
center to prevent it from deteriorating the whole system; can
add it to the fusion algorithm when the modality returns to
normal. Up to now, there are mainly three methods to handle
the problem of degeneracy: 1) switching to another system [9];
2) predicting the state using a constant velocity model or
history data [11]; and 3) only predicting state in degenerate
directions [12]. However, none of them are satisfactory as the
first method requires a backup system that is not used most
of the time, and the latter two methods cannot deal with long-
term degradation.

Therefore, from the perspective of real-world application,
this article presents a high-robustness and low-drift state
estimation system suitable for multiple scenarios. The test
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Fig. 1. Our UGV, AGILEX SCOUT2.0, is equipped with a XSENS
MTi-G-710 for inertial data, a XSENS MTi-30 AHRS for 3-D atti-
tude, a STEREOLABS ZED2 for stereo camera images and inertial data,
a ROBOSENSE RS-LiDAR-16 for point cloud data, four encoders integrated
into the vehicle for motor speed data. M600mini-G real time kinematic (RTK)
system and XSENS MTi-G-710 GNSS/INS system do not participate in the
multimodal fusion, and they are only used for providing position reference
abbreviated as RTK data and GNSS data, respectively. The overall dimensions
of the testing vehicle are about 940 x 700 x 910 mm (length x width x
height).

platform and its sensor configuration are shown in Fig. 1, and
the system overview is shown in Fig. 2. It can effectively
detect and handle the degradation of vision or laser modality,
and continuously provide reliable and real-time state infor-
mation for UGVs. To summarize, the main innovations and
contributions of this article are as follows.

1) A low drift, highly robust state estimation system suit-
able for multiple typical scenarios, which can con-
tinuously and reliably provide pose estimate even in
extremely challenging environments, such as vision or
laser significant degradation scenes. To the best of our
knowledge, this is the first system fusing 3-D LiDAR,
IMUs, stereo camera, encoders, and attitude and heading
reference system (AHRS) in the open literature (see
Section III).

2) An error-state extended Kalman filtering
(ES-EKF)-based state estimator with four fusion
modes is designed to fuse encoder-AHRS subsystem
(EAS), visual-inertial subsystem (VIS), and LiDAR
subsystem (LS), in which each fusion mode represents
a way that subsystems participate in fusion. And its
fusion mode can be changed online according to the
health status of the subsystems (see Section V).

3) A novel failure detecting and handling strategy is pro-
posed, which independently evaluates the health status
of VIS and LS, and then with the cooperation of
the variable fusion mode estimator, dynamically selects
appropriate information sources and their variables to
participate in the fusion (see Section VI).

4) A comprehensive system evaluation was completed
on the datasets of six scenes, i.e., street, field, forest,
forest-at-night, street-at-night, and tunnel-at-night.
As far as we know, the scenes given in this article are
the most abundant and comprehensive in the research
of multimodal fusion state estimation (see Section VII).

The rest of the article is organized as follows. Section II
outlines some previous work related to multisensor fusion
for the state estimation of UGVs in challenging environ-
ments. In Section III, the proposed system architecture is
explained. The workflow of the three subsystems, EAS, VIS
and LS is introduced in Section IV. Section V describes the
proposed algorithm for data fusion, namely Variable Fusion
Mode State Estimator. Information manager is described in
Section VI, including timestamp alignment and failure han-
dling. Experimental results are given in Section VII to demon-
strate the feasibility and performance of the proposed system.
Finally, a brief conclusion and future work are presented in
Section VIII.

II. RELATED WORK
A. State Estimation Algorithm

In the field of robotics, state estimation algorithms mainly
include filtering-based method, such as extended Kalman
filtering (EKF) [5], [13] and unscented Kalman filtering
(UKF) [14], [15], and optimization-based method, such as
sliding-window graph optimization [10], [16] batch graph opti-
mization [17]. Generally, the former is suitable for applications
where lower computational cost is desired, and the latter is
suitable for computationally intensive tasks such as smoothing
and mapping.

In order to compromise the computational cost and the per-
formance of state estimation, in our system, a sliding-window
graph optimization method is used in the VIS and LS, and the
ES-EKF method is used in the final fusion stage. It is worth
mentioning that ES-EKF is a novel filtering algorithm designed
on 3-D rotation Lie groups, which was first used in the field
of aircraft [18]. From the perspective of the filter structure,
the traditional EKF directly estimates the state variable itself
(often called the full state), and ES-EKF estimates the error
between the true state and its estimate (often called error state).
The latter has some obvious advantages over the former [19]:
1) the attitude error can be expressed as a 3-D vector; 2) error
state is small, which can reduce the nonlinear complexity of
the system model; and 3) error state changes slowly, which is
beneficial to reduce the update frequency.

B. LiDAR-Inertial-Visual System

There is not much work on odometry using LiDAR, IMU,
and camera at the same time. In the early stage, its applications
were mainly limited by computing power, but in the recent
ten years, with the significant increase in computing power,
it has been becoming a hot research direction of unmanned
vehicle resilient navigation. From the perspective of system
architecture, existing multimodal fusion odometry systems
can be mainly divided into three categories: 1) centralized;
2) distributed-cascade; and 3) distributed-parallel.
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Fig. 2. System overview.

In a centralized system, raw data from multiple sensors is
compressively processed to obtain certain features, such as
corner and line features extracted from images, edge, and
surface points extracted from point clouds, and then these
features are sent to the fusion center to estimate the pose
of a vehicle. For example, Zuo et al. [20] present a multi-
state constraint Kalman filter (MSCKF)-based LiDAR-inertial-
camera odometry, called LIC-Fusion, which fuses inertial data,
extracted LiDAR points, and sparse visual features. The aver-
age of average absolute trajectory error (ATE) is about 4.06 m
on the outdoor dataset around 800 m in length. Soon after,
LIC-Fusing 2.0 [21] is proposed on the basis of LIC-Fusion,
which introduces a sliding-window plane-feature tracking for
high-quality data association to make point cloud matching
more robust. Lin and Zhang [23] successively propose two sys-
tems, termed R*LIVE [22] and R’LIVE, based on error-state
iterated Kalman filter (ESIKF) and composed of solid-state
LiDAR, IMU and monocular camera. Evaluations for the two
systems validate that they are able to run in challenging
scenario, even in narrow tunnel-like environments. Although
the codes of R?LIVE and R3LIVE have been open source,
they are currently only applicable to solid-state LiDAR, and
their code has not yet been adapted to mechanical LiDAR.

In a distributed-cascade system, there are multiple sub-
systems, and state estimates output by one subsystem will
be used as the input of another subsystem, which will be
carried out in turn to refine the system’s state estimation.
For example, Zhang and Singh [24] proposed a sequential-
processing system, in which the IMU mechanization pro-
vides a rough prediction of motion at high frequency, then
the visual-inertial odometry estimates the system state at
an intermediate frequency, and finally, the subsystem for
point cloud matching further refines the motion estimation
at low frequency. Li [9] designed an optimization-based

simultaneous localization and mapping (SLAM) system con-
sisting of LIDAR odometry, monocular visual-inertial odome-
try, odometry selection module, and mapping module. Among
these modules, the selection module is used to select one
appropriate odometry source for mapping, so as to alleviate
the possible accuracy drop caused by visual or laser modality
degradation. The overall mean translation error relative to
distance traveled is about 0.81% evaluated on the KITTI
odometry dataset [25], [26]. Palieri et al. [27] propose a
optimization-based LiDAR-centric robust odometry solution,
LOCUS, in which a health monitor module is created to select
the most appropriate one from subsystems (e.g., AHRS and
wheel-inertial odometry) as the initial guess of subsequent
point cloud registration.

A distributed-parallel system are usually composed of mul-
tiple subsystems and a fusion center, and the state estimates
output by each subsystem are sent to the fusion center for
further fusion at the pose or velocity level. For example,
Kubelka et al. [28] designed an EKF-based positioning system
for skid-steer vehicle for urban search and rescue missions,
which fuses LiDAR odometry, IMU odometry, omnidirectional
visual odometry and track odometry. Their system’s overall
median accuracy of about 1.2% and 1.4% of the total distance
traveled indoor and outdoor, respectively. In order to achieve
robust solution to general localization in challenging scenes,
Simanek et al. [29] added an anomaly detection module to
the same system, which can identify and reject the actual
abnormal data. Shan et al. [12] design a factor graph-based
LiDAR-visual-inertial state estimation framework, LVI-SAM,
whose subsystems can work independently when failure is
detected in one of them, or jointly when no failure occurs.

It is evident from the system overview in Fig. 2 that our
proposed system is also a distributed-parallel. From the point
of view of system reliability, distributed-parallel systems have



the following advantages: 1) each subsystem is independent
of each other and has high independence, which facilitates
the isolation and addition of information sources and 2)
a subsystem is usually constructed based on one modality,
so an efficient failure detection (FD) method can be designed
according to the characteristics of a single mode, and a reliable
decision-making basis for failure handling can be provided.

C. FD and Handling

Studies have shown that vision and laser systems will
degenerate in the absence of texture and geometric features,
respectively, and such environmental degeneracy often leads
to failure of estimation task [30]. Therefore, the FD and
handling of subsystems or modules is an indispensable part
to improve system reliability in practical applications of nav-
igation systems. At present, there is no unified FD method,
and most of the existing methods are specially designed for
a certain modality because different modalities have different
characteristics.

Simanek et al. [29] trained a ternary Gaussian mixture
model to detect anomalies for the EKF fusion algorithm so that
the state estimator has good performance in multiple scenarios.
But, the disadvantage of the data-based method is that it
cannot guarantee that the classifier has good generalization
ability for unknown environments. Zhang et al. [30] proposed
a failure discrimination method based on eigenvalue analysis
for the optimization-based state estimation system, and this
method has been applied in many open-source laser odometry
systems, such as LeGO-LOAM [31] and LIO-SAM [32].
However, this eigenvalue analysis method is usually difficult
to apply to visual or visual-inertial odometry systems with a
lot of variables to be optimized. For systems based on visual
modality, the common way to judge whether the system is
normal is to check whether the output variables, such as the
number of tracked features and the estimated IMU bias, are
normal, and this output variables-based method is used in
many classic visual positioning systems, e.g., visual-inertial
navigation system (VINS)-Mono [16], VINS-Fusion [33].
In LOCUS, a simple rate-check: if subsystem messages are at
a sufficient rate (> 1 Hz), then the source is healthy, is chosen
as a health metric, and obviously, this health metric can only
indicate whether there is data, but cannot measure the quality
of the data.

Once a failure event is detected, it needs to be dealt with
to reduce the impact on the positioning performance of the
whole system as much as possible. A common failure handling
method is to isolate the failed subsystem source from the
processing pipeline, and then add it to participate in the fusion
once it returns to normal. For example, Zhang and Singh [24]
design an automatic reconfiguration strategy for bypassing the
failed subsystem to handle vision or laser degeneracy in their
distributed-cascade system. In the system designed by Li [9],
a subsystem selection module can select a subsystem without
failure to provide the initial guess value for the next-level
laser subsystem. A health monitor module is designed in
the LOCUS [27], which plays a very similar function to the
selection module in the system of Li.

In our system, the eigenvalue analysis-based and the output
variables-based method are applied to detect the failure of
LS and VIS, respectively. Compared with the existing failure
processing strategies, the strategy proposed in this article
first selects the available subsystems according to the health
status of the subsystems, and then selects complementary
variables from their output variables to participate in the
fusion according to their characteristics, instead of sending
all output variables to the estimator. This can make full use of
the complementarity between different modalities and further
improve the performance of the system. For example, for VIS,
when LS is normal, its velocity estimation is fused, and its
pose increment estimation is fused otherwise.

ITII. SYSTEM OVERVIEW AND ATTITUDE REPRESENTATION
A. System Overview

Fig. 2 shows the system overview of our proposed fusion
framework, which consists of two parts: subsystem part and
fusion center part. The three subsystems are: EAS, VIS, and
LS. The EAS receives input from four encoders and an AHRS,
then outputs position and attitude increment (PAI) and global
vertical velocity (GVV) measurements. The VIS fuses stereo
images and inertial data to produce PAI and local velocity
(LV) measurements based on sliding-window factor graph
optimization [33]. The LS processes LiDAR point cloud data
to obtain the PAI measurements using LOAM-based matching
algorithm [34].

The variable fusion mode estimator is a multimodal infor-
mation fusion algorithm based on ES-EKF: 1) firstly, it uses
IMU-driven kinematics to predict the full state of the system;
2) secondly, it uses the Kalman filter to directly estimate
the error of the system; and 3) finally, it composes the error
estimation with the predicted value of the full state to obtain
the full state estimation. The information manager is mainly
responsible for detecting and handling the subsystem failures
caused by the degeneracy problem of laser or vision modalities
and configuring an appropriate fusion mode for the estimator
according to the FD results, improving the robustness of the
whole system in a challenging environment. Among them, the
degeneration metrics are variables from VIS and LS, which
can online reflect whether they fail. See below for a detailed
description of each module in the figure.

B. Attitude Representation

The global coordinate frame is denoted as G, in which z-axis
is opposite to gravity, and x—z-axes conform to the right-
hand relationship, e.g., east-north-up frame. Local coordinate
frame are denoted as £, which is fixedly connected to the
robot, e.g., chassis frame. Let R3 and SO(3) represent a 3-D
Euclidean space and a 3-D rotation group, respectively. For
a certain space attitude of £ with respect to G, there are
various forms of parametric representation, such as rotation
matrix R € SO(3), rotation vectors ¢ € R and Euler angles
0 € R?, etc. According to [19], R and ¢ satisfy the following
conversion relationship:

R = exp((¢])
¢ = Log(R)

(1a)
(1b)



where [ ]« represents skew-symmetric mapping, which maps
& = [, Py, d.1"7 € R? to an skew-symmetric matrix

0 _¢z ¢y
(@], = o 0 —¢x |- 2)
—¢y b 0

When the rotation angle, ||¢|| < 1°, the approximate relation-
ship exists as follows [2]:

where, 15 is an 3-D identity matrix. Euler angles in this article
are defined as the intrinsic z-y-x rotation order, i.e., 6y, 6y, 0,
represent yaw, pith, and roll angle, respectively, then having
the following relationship between R and 0:

CxCy  CxSyS; — CzS8x  SxSz + CxC;Sy
R = |cysy  crco+ 5.8y, C85:8) — Cys; 4)
=Sy CyS; Cye,

here, ¢; and s; represent cos(d;)
(i =x,y,2).

and sin(6;), respectively

IV. SUBSYSTEM
This section will introduce the workflow of the three sub-
systems: EAS, VIS, and LS, respectively. For the convenience
of description, it is assumed that all sensor coordinate frames
coincide with £, which can be achieved by simply offline
calibrating external parameters.

A. Encoder-AHRS Subsystem
1) Description: Four encoders are, respectively, installed on
the shaft of each wheel to measure the rotational speed of the
wheel in real-time. The forward kinematics module converts
the speeds into the linear velocity »*™ and angular velocity "
of the robot. AHRS, composed of an accelerometer, gyroscope,
magnetometer and on-board micro processor, is an orientation
estimator providing attitude information of the robot, including
yaw, pitch, and roll angle. The velocity decomposition module
decomposes a velocity expressed in £ into a velocity expressed
in G by the following formula:
Ukin
v=R| 0 |. 5)
0

Then, the velocity integration module integrates v to obtain
the position of the robot, p € R?

p:/ vdr. (6)
0

Due to measurement and other uncertainties, what is calculated
above is actually estimates of position, attitude and global
velocity at the time #, denoted as { pi™, R;as, Y.

2) Output Model: In fact, rugged or slippery ground
is likely to destroy certain assumptions of the robot’s
kinematics [35], and magnetometer signals may be cor-
rupted by some magnetic disturbances (e.g., ferromagnetic
and permanent magnetic materials) [36]. These uncontrollable
situations will inevitably lead to the accumulation of pose

errors with time and driving distance. Therefore, in order to

reasonably describe the uncertainty of the system output,
we choose to model the position increment (PI) and the attitude
increment (AI). Let the measurements of PI and Al during

.. ~ ~easT , _
time interval [#;_1, #x] (about 50 ms) be A‘Zi £ Riajl (P —

- < ~easT 7 eas .
PE)) € R? and A;&,Sk = Riajl Riaq € SO(3), respectively, and
their measurement process are modeled as follows:

2 €as

A= R \(py— pioi) + Wiy (7a)

Agy = exp ([, ] )R R, (7b)

where measurement noises are assumed to be Gaussian white
noise, i.e., w"A“zjk ~ N(0s, E?ﬁ,k)» wis o~ N(©03, Z5 ),
in which the covariance can be determined by experiments.

In addition, since the estimate of roll and pitch from AHRS
is obtained with reference to the gravity vector, it can be seen
from (4) and (5) that the third component of 9°*, namely
GVV %, is drift-free and more in line with the Gaussian
white noise assumption than the first and second components
of °*. The above analysis shows that in the fusion center, 55'“
should be preferentially selected to participate in the fusion.
We model the GVV measurement process as follows:

b = v, + w® @®)

where, w,. ~ N(0,55*?). To further model the uncertainty
that may be introduced by the tire slippage and rough ground,
the covariance ¢%? will be adaptively adjusted according to
the following adjflstment strategy:

5100, if |@kin — @ahrs| < ¢,
o,"* = {00, if 7 < @K — o™ <1 (9)
S2|5)kin _ d)ahr5|0.0, if |5)kin _ a)ahrsl > 1,

where, @, @™ are the angular velocity measurements from
kinematics and AHRS, respectively. 7, 7, are two different
thresholds (set to 0.03, 0.3 for us), and sy, s, are two different
scale coefficients (set to 1072, 102 for us). oy is the base value,
whose value is set to 0.05 in our experiments.

B. Visual-Inertial Subsystem

1) Description: We adapt the processing pipeline from [33]
for VIS. The feature tracking module detects the visual
features for each camera frame using corner detector [37],
and tracks features in the previous frame using Kanade-
Lucas—Tomasi algorithm [38], and matches features among the
left image and right image. The IMU pre-integration module
integrates inertial data between the previous frame and current
frame to obtain pre-integration measurement (i.e., relative
position, velocity, and rotation) and their uncertainties accord-
ing to the algorithm in [39]. The sliding-window optimization
module is responsible for constructing a factor graph using
the pinhole camera model and pre-integration measurement
model, and solving state variables using Ceres solver,! and
the size of the factor graph is limited to a sliding window
(e.g., the size is set to 10). There are four types of factors
in the factor graph: re-projection factor between two frames,
the re-projection factor between the left and right camera, the

Thttp://ceres-solver.org/



pre-integration factor and the marginalization factor, and their
detailed definition and construction can be found at [16], [33].
The state variables estimated in the factor graph are

X ={p;,Ri,vi,bsi, b,;,d;}

i=0,...,M; j=0,...,N (10)

where M and N are the number of image frames in the sliding
window and the number of observed features, respectively.
Di> Ri,vi,bys;, b, ;, respectively, represent the position, atti-
tude, velocity, accelerometer bias and gyroscope bias at the
time of the ith frame. d; represents the depth of the jth feature
observed in the first frame. After solving the sliding-window
factor graph, the outputs of VIS at time #; are the estimates of
position, attitude, velocity, accel. bias, and gyro. bias, denoted
as (P, R, 9%, b, b, ).

It should be noted here that, 9" is the estimate of global
velocity, which drifts gradually with driving time and distance.
The estimate of the velocity expressed in £, denoted as pyisL,
can be obtain using the following formula:

ﬁvis,[l — RViSTi}vis.

(1)

2) Output Model: Like EAS, we build the measurement
model of PI and AI during time interval [f;_;, ] (about
100 ms) as follows:

< Vis

A= R (p—piy) + w\gi,k (12a)
(12b)

~ vis

Ag =exp ([wvAii,k] X)le—l Ry

where w‘gi,k ~ N(03, ):VAii’k), wVAifhk ~ N(03, VAii,k) in
which the covariance can also be determined by experiments.
For the LV, the measurement model of LV is built as follows:

ﬁvis,ﬁ — RTU 4 w:}/is,ﬁ (13)

where, w)£ ~ N(05, ZV5),

C. LiDAR Subsystem

1) Description: The LS is adapted from the processing
pipeline of [31]. In the feature extraction module, motion
compensation algorithm [21] based on IMU data is applied
to a scan of raw points to remove the distortion caused by
LiDAR own motion, next, the points are filtered and divided
into ground points and the other large object points using
the ground plane estimation method [40] and the fast range
segmentation method [41], lastly, edge and plane feature points
are extracted according to the roughness of each point. In the
scan to scan module, point-to-edge-line and point-to-plane-
patch matching are performed to estimate the LiDAR pose
increment between two consecutive scans composed of edge
and plane points. The process operates at a frequency of
about 20 Hz, and the detailed procedures of scan-to-scan
matching can be found in [42]. The scan to submap module
matches the current scan to submap (i.e., the previous scans
transformed into G whose sensor poses are within 150 m of
the current position of the sensor) to further refine the pose
estimates, and this procedure runs at a lower frequency of

u,
"k Full State Update Error Observation Model
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Fig. 3. Flowchart of variable fusion mode state estimator.

about 2 Hz. The scan-to-submap problem can be formulated
as the following minimization:

RS NP
~ =1s . 2
P, R = argmin 3 E rfz—}— E rf
PR i=1 =1

where N¢ and N7 are the number of the edge and plane points
in the current scan, respectively. r{ and rj’-’ are the point-to-
edge-line and point-to-plane-patch distance error, respectively,

defined as follows:
(Rp; +p— P) x (RB; + p — ) |

(14)

il

re
;= |5, — 5

) N\ (P2 —BL) x (p? — pD)
rl =’ (Rpj-’—l—p—l’ff}) (B2 — BL) x (B2 — B2)|

here, w{ and w? are the weights. p{ and p are ith edge point
and jth plane point in the current scan, respectively. p¢ and
p; are the edge points in the submap, which define the edge
line associated with pf. pZ, pP and p? are the plane points
in the submap, which define the plane patch associated with
i)j-’ . Finally, the output of LS at time #; are the estimates of
position, attitude, denoted as {p¥, R}:}.

2) Output Model: Like EAS and VIS, we build the mea-
surement model of PI and AI during time interval [f;_, #]
(about 500 ms) as follows:

~1 s
A, =R (pe—py) +wh (15a)
~1s
exp ([wh, ], )Ri_ R (15b)

Ag i
Is ~ Is Is ~ Is .
where wy N@O3, 23 1) w3, x N0, 23 ;) in
which the covariance can also be determined by experiments.

V. VARIABLE FUSION MODE ESTIMATOR

Fig. 3 presents our designed variable fusion mode estimator
based on ES-EKF. It consists of three phases: prediction,
observation, and updating.

A. State Variables Definition

Table I lists all state variables and their symbols in the
proposed state estimator. Full state x and error state §, are
defined as follows:

x = {p, R, v, by, b,} (16a)
8. 2 (5] 8] 8. 8,85, (16b)

where the error of each variable is defined as
5, Ep—p (17a)



TABLE I
ALL STATE VARIABLES IN STATE ESTIMATOR WITH VARIABLE MODE

l Magnitude [ True [ Estimate [ Space [ Frame ‘

l Full state [ k4 [ z [ [ ‘
Position P D R3 G
Attitude (Rotation matrix) R R SO(3) G
Velocity v D R3 G
Accelerometer bias by by R3 L
Gyroscope bias by, I;w R3 L
Error state ‘ O ‘ 31 ‘ R15 ‘ ‘
Position error op 5y R3 G
Attitude error 0a 8«1 R3 G
Velocity error oy 31, R3 G
Accelerometer bias error 1Y 3;, f R3 L
Gyroscope bias error Ope Ope R3 L

A Pl T

8, = Log(RR ) (17b)
8, 2v—19 (17¢)
Sy 2 by —by (17d)
8bw 2 by — by, (17e)

B. IMU-Driven State Kinematics
1) True-State  Kinematics: Based on the general
MEMS-IMU measurement model [16], [19], in which

the measurements of specific force and angular velocity,
denoted as f, and w,,, are affected by accelerometer bias
by, gyroscope bias b, and addictive noise, the true-state
kinematics are modeled as

p=v
R=R[wm_bw_nw]><

V=R(f,—b;—ns)+g (18)
bf = Tpf
bw = Tho

where, additive noise n s, n,, in accelerometer and gyroscope
measurements are assumed to be Gaussian white noise, i.e.,
ng ~ N(03X1, 0']2»13),nw ~ N(03><1, 0'6313). bf, bw are mod-
eled as a random walk, whose derivatives are Gaussian white
IlOiSC, i.e., Tpr ™ N(03><1, O'bzfl_;), Thro ™ N(03><1, O'bzwl_g). g is
the gravitational acceleration constant in G.

2) Estimate-State Kinematics: Neglecting Gaussian white
noise in (18), the estimate-state kinematics are obtained as
follows:

p=1

R = R[w, —b.,).

d=R(f, —bs)+g (19)
by =05,

b., = 035

3) First-Order Error-State Kinematics: According to the
error state definition (17), comparing true-state kinematics (18)
and estimate-state kinematics (19), the first-order kinematics
of the error state are obtained

8, = A8, + Bngy, (20)

where
0, 1; 0; 0; 05
0; 0; 0; 0; —R
A=|0s —[R(f,—bs)], 05 —R 05
0; 0; 0; 0; 05
| 03 03 0; 03 0
[0 0 05 0
0; —R 0; 0 nr
B = —R 05 0; 05 |, Rgys = _:_lw
0; 0, 15 05 be
L 0; 05 0; 1; be

C. Prediction Using IMU Data

1) Full State Prediction: Suppose the posterior estimate of
x at time #;_; is Xx—1jk—1, then the prediction of x at time
te(te = ti—1 + Ay), Xik—1, can be obtained by integrating the
kinematics (19). The prediction equation is abbreviated as

Xik—1 = [ Ri—1k—1> Um,k) 2D

where u,, i 2 f ; 1 wl kfl]T, and the detailed formula is

[ Dot = Pripor + dxo1p1 A,
+ %(kk—uk—l (Foser = braip—1) +8)A?
Ryp—1 = Ry CXp([wm,k_l - IAJw,k_l]X A,)
D1 = Dp—1j—1
": (kk—l\k—l (fm,kq - bf,k—l\k—l) + g)A,
Soklk=1 = I:f,k71|k—1

SO

by kk—1 = bok—1jk—1-

2) Error State Prediction: According to the error-state
kinematics (20), a prediction model of §, is established below

sx,k = Fk(sx,k—l + Wsys, k (22)

where Fy € R is error transition matrix; weysx € R' is
the process noise subject to the assumption of Gaussian white
noise. i.e.,

1
Fp=eM "%~ 15+ Ay A, + E(Ak—l A)?

Wsys,k ™ N(OISXIa 2:sys,k)
_ . 2 2 2 2 T
Esys,k = kaldlag((ffl% 05013’ O'bf13, ahw13)Bk—l‘

Let the error estimate and its covariance at time #;,_; to be
Sx,k,”k,l and Py_jx—1, respectively. Then, according to the
prediction formula of Kalman filtering, the predicted error and
its covariance at time #;, respectively, denoted as Sx,k\k—l and

Pji—1, can be propagated as follows:

(23a)
(23b)

Oy k-1 = Fdy p—1ji—1
.
Pri—1 = FiPr_qp1 Fp + Ty x.



D. Error Observation Models for Subsystems

1) Position and Attitude Increment: For the convenience of
description, the measurement models of PI and Al in (7), (12),
and (24) are uniformly denoted as
(24a)
(24b)

Ay =R/ (py—pi) + WA,k
Ari = exp((wa, 1<) R]_ Ry

where wAp,k ~ N(0372Ap,k)’ wAR,k ~ N(03,EAR,1{).
Consider the error definition (17) and the approximate rela-
tionship (3), we have
R (py — Pioy)
AT R AT AT
~ Ry (b — Pr) + Ry 8p0 — Ry _18p 51
AT N ~
+ Ry [Pr — Pr—1]x8ai-1
exp((wa i) R Re
AT AT =&
~ exp([Rk,l(sa,k — Sai) + wAR,k]X)Rk,IRk. (25b)

(25a)

Then, the error observation model of PAI can be established
as

ZpaLk = Hparx8xx + Wpark (26)
where
~ A T ~ ~
. a | Ark— Rk_1T(Pk — D)
PALK = < e T
LOg AR kRk Rk,1

0; R,, 05 03 0
WpALL ™~ N(Osxl, diag(Z 14, Zzz,k))
AT N
Yip=Za,x+ R _Ppi1 Ry
AT N N ~ ~ N
X Rk_1 [Py — Proilx Pag—1[Dr — Pr_11xRi—1
AT N
Yok =Za,k+ R Poj1 R
here, P, ;1 and P, ;_; are, respectively, position error covari-
ance and attitude error covariance at time f;,_;, extracted from
total error covariance P;_;.

2) Global Vertical Velocity: Combining (8) and (17c), the
following equation is obtained

B = v, + w0 = 8, + b, + Wi, 27)

Let zgvv.x £ 5?,: — 0.k, the error observation model of GVV
is established as

zovvk = Hov i8x i + 0, (28)
where

Hovvi=[0ixs 1 0ix6].

3) Local Velocity: Combining (13), (17), and (3), the fol-
lowing approximate relationship is obtained:

2

9L~ R'o~ R [91.8, + RS, + w0~

Let zry « £ T)ZIS’C

is established as

(29)

AT, .
— R, 9y, the error observation model of LV

2y = Hivides +w)™*° (30)

TABLE 11
FOUR FUSION MODES AND THEIR CONFIGURATIONS

Fusion Mode | EAS Update | VIS Update | LS Update
Mode 0 PAI — —
Mode 1 GVV PAI —
Mode 2 GVV — PAI
Mode 3 GVV LV PAI
where
AT AT
HLV,k = [03 Rk [vk]x Rk 03 03]

E. Update Using Subsystem Outputs

When the observation information arrives, the estimator
will automatically call the corresponding error observation
model to update the state according to the current fusion
mode. The detailed configurations of four fusion modes are
listed in Table II, where each fusion mode represents a
way in which subsystem variables participate in fusion. For
example, in Mode 3, the estimator fuses GVV variable of EAS,
LV variable of VIS, and PAI variable of LS using GVV, LV,
and PAI error observation models, respectively.

1) Error State Update: For the convenience of representa-
tion, the error observation models of PAI, GVV, and LV are
uniformly expressed as

T = Hkax,k + Wmeas,k 3D

where, z; is error observation value; H is error observation
matrix; Wmeas x ~ N (0, Tmeas &) is observation noise. The error
state update is completed as follows:

Sk = HiPrj—1 H + Zineas (32a)
Ky = Py H S (32b)
Stk = Suhor + Ki(zi — Hiboap) (32¢)
Py = (is — K H) Py (Lis — K H) T (32d)
+ K Zieas kK| - (32e)

2) Full State Update: After obtaining the error posterior
estimate, 0 xk, it will be used to compensate the predicted
value of the full state, £4x—1, according to the inverse formula

of (17). The full state update is abbreviated as
Rik = Xt ® Sxik- (33)

The detailed calculation equation for each variable is as
follows:

Puk = Prjp—1 + 8k (34a)
Ry = exp([8aipil) Ruk—1 (34b)
Dik = Drpo1 + ok (34¢)
b = brrnor + 8pran (34d)
boy ik = Doy pik—1 + Sbw k- (34e)

It should be noted that, once the error compensation is
completed, 6, needs to be zeroed, and this operation is
noted as

~

Oy ik < 01551. (35)
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Fig. 4. Flowchart of information manager.
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Fig. 5. Example demonstrating the delay and disorder problem. (a) Queues
for messages output by subsystems. (b) Queue obtained by sorting according
to the time order of fusion center receiving them (it only shows one possible
case). (¢) Queue obtained by sorting according to the stamped order of the
messages themselves.

VI. INFORMATION MANAGER

Fig. 4 presents the flowchart of our information manager.
The FD module is designed to detect the significant degen-
eration of vision and laser subsystems. The fusion mode of
the estimator is dynamically adjusted by fusion mode selector
(FMS) module according to the detection results of FD, so as
to isolate invalid observation information. The sorting by
timestamp and delay handling module are designed to solve
disorder information and delay problem.

A. Sorting Messages by Timestamp and Delay Handling

Because three subsystems have very different output fre-
quency and processing delay, if those messages are not sorted
correctly, the time order of fusion center receiving messages is
usually inconsistent with the timestamp order of the messages
themselves. Fig. 5 vividly demonstrates a example of disorder
information problem. Obviously, the timestamp order shown
in Fig. 5(c) is expected to be used by our fusion algorithm.
Our solution to overcome this problem is: firstly, sorting them
according to the timestamps of messages; then, using them
to finish filtering update state in chronological order; finally,
integrating inertial data to obtain real-time pose estimates. The
detailed steps are as follows.

S1 (Queue Checking): If there is at least one data in every
subsystem buffer, entering S2; otherwise, waiting.

S2 (Timestamp Sorting): Sorting them according to their
timestamps and putting them into a queue for filtering
update.

S3 (State Update): Using data from update queue to update
the state in the chronological order; the latest time,
position estimate and attitude estimate of estimator are
recorded as £kt philer anqg IA{F;::; respectively.

S4 (Delay Compensating): Let the latest time of obtained

. . MU . : . filter
inertial data be #,,;.,. Integrating inertial data from #,, &

IMU : : SIMU - pIMU
t0 fes tO get real-time pose estimates, Pijess Rigeses

using full state prediction equation (21).
(Real-Time Outputting): Outputting real-time estimate,
and returning to S1.

B. FD and Handling

1) VIS Failure Detection: Aggression motion, texture-less
scene etc., may cause the nonlinear optimization in VIS to
fail. When the system fails, some quantities in modules of VIS
often show anomalies, such as insufficient number of tracked
features and large estimate of accelerometer or gyroscope bias.
Therefore, we choose the average value of the number of
tracked features, IMU bias, PI and Al in 1 s as degeneration
metrics of VIS, denoted as N 1 B}ls, BZ;S, A;ls and &‘,’;S,
respectively. Based on the above analysis, the discriminant of
health status of VIS is designed as

Ny < ay or HI_J}ISH > apy
1, if or ”I_JCV:S’ > Gpo OF HA

or HLog(K,gs) H > 0,
0, otherwise

vis
vis

y =

here, y ¥ = 1, 0 represents failure and normal status of VIS,
respectively. ay, opf, Opw, Ga,, &, are the thresholds, whose
values are set to 5, 2, 0.02, 0.25, 0.07 in our experiments.

2) LS Failure Detection: We adapt the eigenvalue-analysis
method [30] to detect failure of LS caused by encoun-
tering degraded scenes where scan-to-submap problem
will be ill-constrained. According to Gauss—Newton or
Levenberg—Marquardt algorithm [43] for nonlinear least-
squares problems, in each iteration process, the original min-
imization problem i.e., (14) will be linearized at the working
point, and the incremental equation of the following form will
be obtained

HAx =m (37)

where, symmetric H € R%® and m € R® are obtained by
linearization at working point. Ax € R® is the increment of
variables used in the actual optimization process, and in this
article we choose Ax = [Ap,, Ap,, Ap., AO,, AO,, AG]T.
According to Lemma 2 in [30], the minimum eigenvalue of H
is selected as the degradation metric of LS in this article. Once
it is less than the given threshold, the FD module considers LS
is severely degraded and the outputs of LS should not enter the
fusion center to participate in data fusion. The discriminant of
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Fig. 6. Six test scenes. For each scene, the red line in (a) represents the motion trajectory of the vehicle in Google Earth and (b) photograph at the starting

point. Note: at night, the forward LED light will be turned on.

health status of LS is designed as

1, if Zmin <o)
Oa if zmin > a

Is

Y= (38)
here, y' = 1,0 represents failure and normal status of
LS, respectively. Jimin is the average value of the minimum
eigenvalue of H in 1 s, and «; is the given threshold, whose
value is set to 130 for us.

3) Failure Handing: If subsystem VIS or LS fails (i.e.,
y¥$ = 1 or ' = 1), it can be considered that the corre-
sponding subsystem has a serious degradation problem. Next,
FMS selects a new fusion mode for the estimator according
to the fusion mode configuration table (see Table II) that does
not use the failed subsystems. The process of online selecting
fusion mode is vividly shown in the FMS module in Fig. 4.

Vv

VII. EXPERIMENTAL RESULTS
A. Experimental Setup and Datasets

Fig. 1 presents our setup for data collecting, which consists
of a vehicle base, multiple sensors and computer. In the
figure, we list the technical details about the system hardware,
down to specific component names and some of their high-
level specifications. M600mini-G RTK system connect to RTK
Networks infrastructure using mobile phone wireless networks
to listen to GNSS correction information and use an antenna
to receive GNSS observation information. Based on these
two kinds of information, it provides the RTK positioning
solution (abbreviated as RTK data), whose positioning accu-
racy is about 10 mm + 1 ppm for the horizontal plane, and
20 mm + 1 ppm for the vertical direction. XSENS MTi-G-710
GNSS/INS system, based on GNSS single point positioning
solution and IMU, provides the integrated positioning solution
(abbreviated as GNSS data), whose horizontal positioning
accuracy is about 2.5 m circular error probability (CEP).

Extensive evaluations of the system are conducted using
our six self-gathered dataset, named respectively: street, field,
forest, forest-at-night, street-at-night, and tunnel-at-night. The
reason for using our self-gathered datasets is that the current
popular datasets, such as KITTI odometry datasets [44] and

TABLE III
OVERALL MOTION INFORMATION OF OUR VEHICLE IN EACH SCENE

Scene Total time [s] | Total distance [m] Reference
Street 1180 1460 RTK Data
Field 208 175 RTK Data
Forest 660 380 RTK Data
Forest-at-night 393 242 RTK Data
Street-at-night 542 666 RTK Data
Tunnel-at-night 256 305 GNSS Data

UrbanLoco datasets [25], do not contain encoder or wheel
speedometer data and are not suitable for our investigation.
Fig. 6 shows the motion trajectory and the photograph at
the starting point for each of five scenes. The overall motion
information of our vehicle in each scene is listed in Table III.
In the first five scenes, RTK data is used as the ground
truth. In the sixth scene where the length of the tunnel is
about 120 m, GNSS data is used as the reference outside the
tunnel as RTK system cannot work normally whether inside
or outside the tunnel.

B. Evaluation Metrics

In order to quantify the positioning accuracy of the system,
it is necessary to define appropriate metrics for quantitative
analysis. Suppose that during the experiment, time series are
tieR,i =1,2,...,N, where N € NT is the total number
of time series. The estimate of the position at each time is

denoted as p; € R*,i = 1,2,..., N, the position reference
is denoted as p; € R3,i = 1,2,..., N, and the traversed
distance reference is recorded as D; € R,i = 1,2,...,N.

In the quantitative analysis, the ATE, ATE,, is used to eval-
uate the absolute positioning accuracy at time #; [45]. The
relative trajectory error (RTE), RTE;, is used to evaluate the
positioning accuracy relative to traversed distance D; at time
t;. Their mathematical definitions are

ATE; = ||p; — p;l
ATE;

(39a)

RTE,; = x 100%. (39b)

i
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Fig. 7. Test results of first four scenes. For each scene, (a) trajectories in the horizontal plane, (b) curves of height over time, (c) curves of ATE over

distance, and (d) curves of RTE over distance (starting at 10 m).

TABLE IV
MoODAL COMBINATION OF ALGORITHMS TESTED IN THE EXPERIMENT

Algorithm LiDAR | IMU | Camera | Encoder | AHRS
VINS-Fusion [33] - v v - -
LeGO-LOAM [31] v — — — —
LIO-SAM [32] v v - - -
LVI-SAM [12] v v v - -
Our System v v v v v

C. Accuracy and CPU Usage Evaluation: Tests With Street,
Field, Forest, and Forest-at-Night Datasets

1) Accuracy Evaluation: In the experiments, we compare
the proposed system against a variety of the publicly available
state-of-the-art odometry systems, selected to cover the range
of modal combinations, as shown in Table IV. Although we
want to compare against R3LIVE [23], LOCUS [27] and
LIC-Fusion 2.0 [21], the former is currently only available
for solid-state LiDAR and the latter two are not open-source
implementation.

During the whole test process of each dataset, all modalities
can work normally, there is no failure of VIS or LS. Fig. 7
shows the positioning trajectories and error curves in the first
four scenarios. From the figure it can be found that: 1) the
horizontal positioning trajectories of the algorithms using the
laser modality are very close, which may be due to the fact that
they all use the LOAM-based point cloud matching method;
2) the height change curve of our system is closer to RTK
than the other algorithms; and 3) the change curve of ATE
and RTE of our system is almost always closer to the time
axis.

The quantitative analyses are summarized in Table V, where
mean, std, max, min represent the average value, standard
deviation, maximum and minimum value of investigated data,
respectively. Observing and comparing the mean and std value
of ATE and RTE, it can be seen that in the first four scenes,

the positioning error of our system is the smallest. It is
fully demonstrated that when VIS and LS work normally, our
system has better positioning accuracy than the other systems.

2) CPU Usage Evaluation: The consumption of computing
resources for system operation is also an important indicator
for evaluating its performance and engineering feasibility.
To this end, we performed a statistical analysis of the CPU
loads in the first 200 s of the forest dataset. The CPU usage
here refers to the number of CPU cores occupied by the
algorithm when the algorithm runs on an desktop computer
with Intel i7-8700K CPU @ 3.70 GHz x 12 and 16 RAM.
The quantitative statistics are listed in the last four columns
of Table V. The box plot drawn based on the original CPU
loads data is shown in Fig. 8. The quantitative comparison of
CPU usage shows that the computational consumption of our
system is higher than that of VINS-Fusion, LeGO-LOAM and
LIO-SAM, but about 13% less that LVI-SAM.

D. Robustness Evaluation: Test With Street-at-Night Dataset

In the street-at-night scene, the vehicle walks out of a
“w”-shaped trajectory, whose height change about 5.4 m.
There are relatively more street lights in the first half, and
fewer street lights in the second half. On this dataset, we test
various algorithms listed in Table IV, and the positioning tra-
jectory and error curves of each algorithm are shown in Fig. 9.
During testing we found that both our VIS and VINS-Fusion
fail (Ceres solver prompts that an infinite value appears in
the process of solving the nonlinear optimization problem).
In order to further verify the effectiveness and feasibility of
our FD method, we also tested the proposed system with the
FD function turned off, denoted as Our System (no FD), and
its results are also shown in Fig. 9. From the quantitative
analysis results of each algorithm listed in Table VI, it can
be seen that the mean value of ATE and RTE of Our System
is comparable to that of LIO-SAM and LVI-SAM, and our
std value is the smallest. Comparing the quantitative results of



TABLE V
QUANTITATIVE COMPARISON OF FIRST FOUR DATASETS USING VARIOUS ALGORITHMS

Street Field Forest Forest-at-night CPU Usage*
Algorithm | ATE [m] | RTE [%] | ATE [m] | RTE (%] | ATE [m] | RTE [%] | ATE [m] | RTE [%] Num. of Cores
mean| std [mean| std [mean| std [mean| std |mean| std |mean| std |mean| std |mean| std |[[mean| std | max | min
VINS-Fusion |14.81| 4.90 | 2.71 | 1.46 | 3.40 | 2.68 | 3.08 | 1.12 | 2.85 | 2.03 | 1.86 | 0.94 | 1.74 | 0.88 | 2.00 | 0.98 || 1.45 | 0.13 | 1.72 | 1.04
LeGO-LOAM | 5.80 | 4.57 | 0.77 | 0.52 | 1.64 | 1.10 | 1.60 | 0.36 | 0.28 | 0.18 | 0.33 | 0.40 | 0.27 | 0.14 | 0.35 | 0.20 || 0.72 | 0.07 | 0.88 | 0.51
LIO-SAM | 7.09 | 4.09 | 1.09 | 0.66 | 2.32 | 1.53 | 2.24 | 0.53 | 0.82 | 0.57 | 0.72 | 0.59 | 0.57 | 0.33 | 0.74 | 0.45 || 1.48 | 0.15 | 2.11 | 1.08
LVI-SAM | 7.19 | 4.10 | 1.10 | 0.66 | 2.26 | 1.66 | 2.13 | 0.61 | 0.81 | 0.56 | 0.72 | 0.60 | 0.56 | 0.32 | 0.74 | 0.46 || 3.27 | 0.45 | 4.01 | 1.50
Our System | 2.78 | 2.82 | 0.30 | 0.16 | 1.49 | 0.93 | 1.43 | 0.33 | 0.24 | 0.14 | 0.16 | 0.07 | 0.14 | 0.06 | 0.22 | 0.24 || 2.85 | 0.26 | 3.32 | 2.12
*Usage of CPU is computed from the forest dataset.
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algorithms in the first 200 s of the forest dataset.

TABLE VI

QUANTITATIVE COMPARISON OF STREET-AT-NIGHT DATASET
USING VARIOUS ALGORITHMS

. ATE [m] RTE [%]

Algorithm mean std mean std
VINS-Fusion 519.60 | 878.49 | 9594 | 142.64

LeGO-LOAM 2.45 2.54 0.60 0.36

LIO-SAM 1.05 1.01 0.32 0.21

LVI-SAM 1.67 1.82 0.46 0.30

Our System 1.12 0.87 0.45 0.18

Our System (no FD) 6.83 10.93 1.55 1.74

Our System and Our System (no FD), it can be found that FD
and FMS can effectively detect and handle VIS failure, and
it also shows that timely isolation of failed visual information
sources is necessary to improve system performance.

In order to more clearly show the FD and handling process,
during the test, we collect the degeneration metrics of VIS
and LS, Ny, 165", 15,11, 1A}, [Log(AR") . Zmin, and the
health status of VIS and LS, yViS, yls, as well as the fusion
mode of the estimator, and plot them in Fig. 10. According to
the health status discriminant of VIS and LS, (36) and (38),
Fig. 10(a)—(e) tell us that the VIS begin to fail at about 300 s
and Fig. 10(f) tells us that LS don’t fail during the whole
movement. It can be seen from Fig. 10(g)—(i) that FD can
effectively detect the failure of VIS, and the FMS correctly
switches the fusion mode of the estimator from modes 3 to
2 according to the FD results of FD.

plane. (b) Curves of height over time. (c) Curves of ATE over distance.
(d) Curves of RTE over distance (starting at 10 m). (e) and (f) Gray image
from left camera and a point cloud from LiDAR, respectively, when VIS fails.
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Fig. 10. Inside the FD and FMS module, variables change with time.

(a)—(e) Time-varying curves of VIS degeneracy metrics described in (36).
(f) Time-varying curve of LS degeneracy metric described in (38). (g) and
(h) Change of the health status of VIS and LS, respectively, here 1 and 0,
respectively, represents failure and normal status. (i) Fusion mode change
process of the estimator.

E. Robustness Evaluation: Test With Tunnel-at-Night Dataset

In the tunnel-at-night scene, our vehicle passed through
a tunnel about 120 m. Because the environmental geometry
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when laser modality occurs degeneracy. GNSS data is selected as reference.
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Fig. 12. Inside the information manager module, each variable changes
with time. (a)-(e) show the time-varying curves of VIS degeneracy metrics
described in (36). (f) Time-varying curve of LS degeneracy metric described
in (38). (g) and (h) Change of the health status of VIS and LS, respectively,
here 1 and 0, respectively, represents failure and normal status. (i) Fusion
mode change process of the estimator.

of tunnel is too single, the laser modality degenerates and
LS fails. Algorithms listed in Table IV and Our System (no
FD) are tested on this dataset. The positioning trajectories of
algorithms, an image and a point cloud in the tunnel are shown
in Fig. 11. It can be seen from Fig. 11(a) that, the positioning
accuracy of our system is second only to LVI-SAM, and is
significantly better than the other algorithms. If the GNSS
data is used as a reference at the endpoint, the horizontal
positioning error of VINS-Fusion, LeGO-LOAM, LIO-SAM,
LVI-SAM, Our System, Our System (no FD) are about 30.6 m
(10.2%),97.7 m (32.6%), 57.3 m (19.1%), 3.2 m (1.1%), 5.7 m
(1.9%) and 33.3 m (11.1%), respectively. It should be noted
that due to the multipath effects and nonline-of-sight [13]
caused by the occlusion or reflection of the mountain near
the tunnel, the GNSS data is likely to have systematic errors,
so the quantitative results here are likely to deviate from the
real situation to a certain extent.

The change curves of the variables related to FD and FMS
during the test are plotted in Fig. 12. According to failure

of FD.

F. Robustness Evaluation: Test With Semi-Simulated
Street Dataset

In the street-at-night and tunnel-at-night test above, the
performance of the system is tested only when LS fails or
only when VIS fails, and there is a lack of testing for failure
of both VIS and LS. In order to further verify the robustness of
the system to more complex failure situations, semi-simulation
experiments are carried out on the street dataset. By artificially
setting the health status of VIS and LS, we create three failure
cases during [550, 650] s in street dataset: 1) only VIS fails;
2) only LS fails; and 3) both VIS and LS fail, and then
test our system for each situation. The estimated trajectories,
height and error change curves of each algorithm are shown
in Fig. 13. The quantitative analysis results listed in Table VII
show that our system can effectively detect and handle the
failure of VIS or LS. For example, when both VIS and LS fail,
FMS will set the estimator’s fusion mode to 0, and when both
VIS and LS return to normal, FMS will restore the estimator’s
fusion mode to 3. Despite the failure of 100 s, the system can
still provide continuous, relatively reliable output, and the ATE
and RTE will not change by order of magnitude.

VIII. CONCLUSION AND FUTURE WORK

This article proposed a low-drift and high-robustness state
estimation system for improving the persistence and reliability



of UGV positioning in challenging environment, which inte-
grates 3-D LiDAR, IMUs, stereo camera, encoders, and
AHRS. It can effectively detect and isolate failed subsystems,
and use the other ones to achieve good accuracy as much
as possible. It has been evaluated in six scenarios: street,
field, forest, forest-at-night, street-at-night and tunnel-at-night:
1) when both VIS and LS work normally, the overall RTE of
the system is about 0.5%; 2) in the scene where the vision
subsystem fails, the system can continue to provide positioning
information with about 0.5% accuracy level almost unaffected;
3) in the tunnel scene with serious laser degeneracy, it can still
maintain RTE about 1.9%; and 4) even if both VIS and LS
fail for a short period of time, the relative positioning error
does not change by orders of magnitude.

Compared with the existing approaches, our system has
the following significant advantages: 1) the proposed archi-
tecture has generality and engineering convenience, i.e., its
subsystems can easily be replaced with any available odometry
or localization algorithm; 2) our system fuses more sensing
modalities, and even when vision and laser modalities are
serious degraded, the system can still rely on IMU and encoder
to provide relative reliable positioning in a short period of
time; 3) our system is more computationally efficient, e.g.,
its CPU usage is reduced about 13% compared to LVI-SAM
using IMU, vision and laser modalities; and 4) the scenes for
testing is more rich, including street, forest, field, tunnel, day
and night.

Although the system has good positioning accuracy and
robustness in typical scenes, there is still room for improve-
ment: 1) further integrate GNSS positioning information when
it is available, which is conducive to eliminate cumulative
errors in large-scale autonomous movement and 2) in addi-
tion to pursuing positioning performance, UGV autonomous
navigation also hopes to build maps simultaneously to provide
an environmental model for its path planning and obstacle
avoidance planning. Therefore, our future research will focus
on these issues and create a resilient navigation system that is
independent of navigation satellites.
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