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Abstract: We evaluated the impact of protein supplementation on adaptations to arduous concurrent
training in healthy adults with potential applications to individuals undergoing military training.
Peer-reviewed papers published in English meeting the population, intervention, comparison and
outcome criteria were included. Database searches were completed in PubMed, Web of science
and SPORTDiscus. Study quality was evaluated using the COnsensus based standards for the
selection of health status measurement instruments checklist. Of 11 studies included, nine focused
on performance, six on body composition and four on muscle recovery. Cohen’s d effect sizes
showed that protein supplementation improved performance outcomes in response to concurrent
training (ES = 0.89, 95% CI = 0.08–1.70). When analysed separately, improvements in muscle strength
(SMD = +4.92 kg, 95% CI = −2.70–12.54 kg) were found, but not in aerobic endurance. Gains in
fat-free mass (SMD = +0.75 kg, 95% CI = 0.44–1.06 kg) and reductions in fat-mass (SMD = −0.99,
95% CI = −1.43–0.23 kg) were greater with protein supplementation. Most studies did not report
protein turnover, nitrogen balance and/or total daily protein intake. Therefore, further research
is warranted. However, our findings infer that protein supplementation may support lean-mass
accretion and strength gains during arduous concurrent training in physical active populations,
including military recruits.

Keywords: protein supplementation; training; exercise; adaptations; concurrent training

1. Introduction

Concurrent training is defined as the combination of resistance and endurance training
as part of a periodised physical training model [1]. The simultaneous development of
strength, power and endurance is required by many athletic and exercising populations to
meet the physical demands of their chosen sporting discipline (e.g., soccer, rugby, hockey)
or exercise activity (e.g., circuits, cross-fit training) [2–6]. Similarly, recruits undergoing
arduous military training routinely engage in concurrent training so as to meet the training
and operational demands of military life [7–13]. Military recruit training programmes
are designed to transform civilians into trained soldiers, therefore, physical training is
necessarily arduous, involving a combination of aerobic training, strength and conditioning,
obstacle courses, swimming, circuit training and loaded marching [14,15]. Despite the
requirement of concurrent training in athletic and military recruit populations, and the
positive effects protein supplementation may have on training outcomes, the majority
of systematic reviews and meta-analyses have focused mainly on the effects of protein
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supplementation when either resistance or endurance training are studied in isolation with
no specific population in particular being studied [16–19].

In untrained individuals, a bout of endurance exercise upregulates muscle protein
synthesis (MPS) in mitochondrial and myofibrillar proteins, whereas, a bout of resistance
training elicits an increase primarily in myofibrillar protein synthesis [20]. Moreover, a
period of chronic (10 weeks) endurance or resistance training refines the MPS response fol-
lowing exercise in proteins specific to each mode of training. Resultantly, chronic endurance
training improves the oxidative capacity of muscle, which can increase whole-body oxygen
uptake, leading to a more fatigue-resistant muscle, whereas resistance training develops
muscle strength [21]. Both modes of exercise have been shown to increase the phosphory-
lation of protein in the protein kinase B-mammalian target of rapamycin-p70 ribosomal
protein S6 kinase (Akt-mTOR-p70S6K) pathway, leading to an increase of MPS [20]. Indeed,
studies have suggested an interference effect when both modes of training are conducted
concurrently within the same training programme [22–28], however, others have disputed
this interaction [29–31]. Mechanistically, endurance exercise stimulates a rise in adeno-
sine monophosphate-activated protein kinase (AMPK) [32], which may inhibit mTOR
through the activation of the tuberous sclerosis complex (TSC) [2]. This has the potential
to reduce the post-exercise MPS response, and subsequently attenuate muscle strength
adaptations [27] when individuals undertake concurrent endurance training [28].

MPS has been shown to be maximised when protein is consumed in 20–40 g doses
immediately-post resistance training [33]. Studies have also shown that concurrent resis-
tance and aerobic training stimulates myofibrillar protein synthesis to a similar degree
compared to when resistance training is performed in isolation [34]. This response is
further augmented when 25 g of protein is ingested in the immediate post-exercise pe-
riod [35]. Elevated levels of amino acids in the blood upregulate the localisation and
activation of mTOR by deactivating the TSC [27]. The concept of “nutrient sensing” has
also been suggested, whereby other proteins such as VPS34 may be key at stimulating
the mTOR pathway and myofibrillar protein synthesis in response to elevated blood
amino acid concentrations [27,36,37]. As such, an elevated protein intake during arduous
concurrent training may be an effective strategy for attenuating the interference effect
of endurance exercise [27,28], by maximising mTOR activity and the MPS response to
resistance training [33,38–43], thus supporting muscle strength adaptations. Moreover,
individuals undertaking arduous concurrent training with limited recovery time between
exercise sessions (i.e., military recruit training) may benefit further from strategies which
elevate the amount of energy and protein in the diet to support muscle adaptations [44]. In
addition to muscle endurance, military recruits are required to pass strength-based tests
during basic training [7,8]. Therefore, strategies which support the development of muscle
strength and/or attenuate the interference effect are likely to be advantageous, particularly
when considering strength is a key determinant of occupational performance [7].

To our knowledge, no study has systematically evaluated the literature to establish
the effects of protein supplementation on training adaptations during arduous concurrent
training. Therefore, the aim of this systematic review and meta-analysis was to evaluate the
literature on protein supplementation and its effects on adaptations to arduous concurrent
exercise training in healthy individuals with potential applications to recruits undergoing
military training.

2. Materials and Methods

This systematic review was completed in accordance with the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) statement [45].

2.1. Eligibility Criteria

This review sought peer-reviewed papers with human participants published in
English with the following Population, Intervention, Comparison and Outcome (PICO)
criteria being implemented to identify eligible studies [46]. The PICO was designed with



Nutrients 2021, 13, 1416 3 of 17

the aim of the findings of this review being applied to military recruits undertaking military
training. Military recruits are typically aged between 16–35 years [47], and are required to
meet aerobic fitness and muscular strength test standards such as maximal strength and
muscular endurance tests [8]. Studies that did not meet all the PICO were excluded from
this review.

Population: (a) stated as healthy active male or females; (b) aged between 16–35 years.
Intervention: (c) include both endurance/aerobic training and resistance/weight

training, circuit training, cross-fit training, military training but not high-intensity interval
training (HIIT); (d) daily protein supplementation included but not with vitamins and/or
antioxidants or through an increased intake of whole-food protein sources in the diet;
(e) studies assessing body composition and/or performance were required to have ≥two
sessions per week and be ≥four weeks in duration; (f) studies assessing muscle recovery
were required to be <one week in duration; (g) training sessions performed at moderate or
vigorous intensity (e.g., jogging, running, cycling, weight training) [17].

Comparison: (h) changes in outcome measures across repeated timepoints; (i) partici-
pants grouped by supplement condition.

Outcome: (j) change in primary variable(s): maximal oxygen uptake (
.

VO2max), time
trial (TT), one-repetition maximum (1RM), fat-free mass (FFM), fat mass, musculoskeletal
injury (MSKI) incidence, muscle function/soreness/damage.

2.2. Search Strategy and Study Selection

The final electronic database searches were completed in February 2021 in three
databases (PubMed, Web of science and SPORTDiscus) using the terms “protein” or “pro-
tein supplementation”, “training”, and “concurrent training”” either alone or concurrently.
The reference lists of all papers that met the inclusion criteria were interrogated to identify
additional studies not found in the electronic search, until no further studies could be iden-
tified [48]. First, the study title and abstract were screened by one reviewer (SC) followed
by the full text by the same reviewer. The characteristics that were extracted from each
study included: author, participant sample, total protein intake (g·kg−1·day−1), training
intervention, protein timing and dose. The study selection process is outlined in Figure 1.

2.3. Risk of Bias Assessment

Studies were evaluated for methodological quality according to the COnsensus based
standards for the selection of health status measurement instruments (COSMIN) checklist
by two separate reviewers (SC and HC) (Table 1). This review used the recommended
“worst score counts” method to obtain a total score for study quality. This was done by
obtaining a quality score per measurement by taking the lowest rating of any item in a
criteria box [49]. Each COSMIN item for all categories were scored from 4–1, where 4 was
low risk and 1 was high risk. Each study needed a mean score of ≥ 3 to be included in this
review [49].

2.4. Data Synthesis and Analyses

The analysis was conducted by first extracting the relevant information from all
study groups at baseline and at the end of the intervention. This included the number
of participants (n), p values, mean, standard deviation (SD) and 95% confidence inter-
vals (if available). To compare the effects of protein supplementation against placebo
conditions, pooling was used of the continuous data as standardized mean difference
(SMD) represented as Cohen’s d effect sizes (ES), standard error (SE) and 95% confidence
intervals calculated for each main outcome using the reported mean change differences
(delta scores), n and corresponding SDs [17,19]. If the mean change difference was not
reported this was calculated based on the reported pre-and-post mean and SDs in each
study. If a study used multiple protein-supplemented groups, we combined the data into
an overall protein-supplemented group for subsequent analyses [17]. When a study used
multiple performance outcome measures, the relative

.
VO2peak and lower body 1RM were
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prioritised for muscle strength and aerobic endurance [17]. Effect sizes were classed as
small (0.2), medium (0.5), and large effects (0.8) [50]. Effect size was calculated using the
following equations:

E1: Cohen’s d = (M2 −M1)/SDpooled

E2: SDpooled =
√

((SD1
2 + SD2

2)/2)
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A random-effects model was applied with heterogeneity across studies tested us-
ing I2 test. I2 values of 25%, 50%, and 75% were considered low, moderate and high,
respectively [17]. Each study was weighted (%) based on its inverse within study variance
and between study variance using the Meta-Essentials spreadsheet 1.4 (Microsoft Excel
2016, Washington, DC, USA). Meta-Essentials was used for the meta-analysis, creation of
forest and Egger’s funnel plots (including the trim and fill method) and running statistical
analysis, with alpha set at p ≤ 0.05.
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3. Results
3.1. Study Quality and Risk of Bias Assessment

Table 1 outlines the quality assessment scores for each study. All 11 studies were
considered eligible for this review based on their COSMIN quality assessments scores.

Table 1. The individual and mean reviewer quality assessment scores for each study.

Study Reviewer 1 Reviewer 2 Mean Included

McAdam et al. [51] 4.00 3.70 3.85 Y
Eddens et al. [52] 3.60 3.30 3.45 Y

Crowe, Weatherson and Bowden [53] 4.00 3.40 3.70 Y
Forbes and Bell [54] 3.80 3.20 3.50 Y
Ormsbee et al. [55] 3.80 3.40 3.60 Y

Taylor et al. [56] 4.00 4.00 4.00 Y
Longland et al. [57] 4.00 3.50 3.75 Y

Walker et al. [58] 4.00 3.90 3.95 Y
Jimenez-Flores et al. [59] 3.30 2.90 3.10 Y

Blacker et al. [60] 3.40 3.00 3.20 Y
Flakoll et al. [61] 4.00 3.80 3.90 Y

Yes = Y; 1 = poor, 2 = fair,3 = good,4 = excellent.

Egger’s regression analysis found asymmetries in the funnel plot (Figure 2) suggesting
that results might be influenced by biasing factors such as publication bias. One study was
particularly responsible for this asymmetry [57] as they showed the strongest beneficial
effects of the treatment group when compared with the placebo group. When this outlier
was removed the funnel plot was symmetric (p > 0.05). The funnel plot with this outlier
included can be seen in Supplementary Figure S1.
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effect size.

3.2. Participant Characteristics and Study Interventions

Details of the studies’ characteristics are provided in Tables 2 and 3. The sample sizes
ranged from 10 to 387 with a total participant sample size of 681 (645 men, 61 women)
for all studies. The reported mean age of participants ranged between 18 and 31 years.
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Intervention durations ranged from one day to six months with seven studies using
a standardised concurrent endurance and resistance training programme [53–58], two
studies using a military training programme [51,58] and two studies using an acute loaded
march protocol [59–61].

Table 2. The impact of protein on performance and body composition during concurrent exercise training.

Study Sample Age Total Protein Intake Intervention Supplement Type & Dose

McAdam et al. [51] 69 male U.S. Army
recruits. 19 ± 1 years 2.8 ± 0.5 & 1.6 ± 0.4

g·kg−1·d−1 in PRO and PLA.
8-week U.S. Army

Initial Entry Training.

38.6 g WP or isocaloric PLA
post-exercise in AM & prior

to sleep.
Crowe, Weatherson

and Bowden [53]
10 male, 3 female
trained canoeists. 32 ± 2 years

0.85 ± 0.06 & 0.85 ± 0.05
g·kg−1·day−1 in PRO &

PLA.
6-weeks endurance &

resistance training.
45 mg·kg−1·day−1 leucine or

PLA.

Ormsbee et al. [55] 26 sedentary men and
25 sedentary women.

21± 1 years & 20 ±
1 years in PRO &

PLA.

2.2 ± 0.1 & 1.1 ± 0.1
g·kg−1·day−1 for the PRO &

PLA groups.
6-month endurance &

resistance training.

42 g PRO or isocaloric PLA
consumed immediately

post-exercise & 8–12 h later.
Taylor et al. [56] 16 female intermittent

sport athletes. 20 ± 2 years Not measured. 8-week endurance &
resistance training. 24 g pre-and-post-exercise.

Longland et al. [57] 40 recreationally
active men. 23 ± 2 years 2.4 & 1.2 g·kg−1·day−1 for

the PRO & PLA groups.

4-weeks endurance &
resistance training with

an energy deficit

50 g WP or CHO drink given
post-exercise to PRO & PLA

groups.

Walker et al. [56] 30 U.S. Air force men. 26 ± 9 years Not measured. 8-week U.S. Air force
training.

20 g WP or isocaloric PLA
post-exercise.

Forbes and Bell [54] 15 healthy women &
16 men.

Women: 27 ± 4
years, men: 26 ± 3

years

PLA (men = 1.4 ± 0.4
g·kg−1·day−1, women= 1.2
± 0.2 g·kg−1·day−1), PRO

(men = 3.8 ± 0.4
g·kg−1·day−1, women= 3.2
± 0.3 g·kg−1·day−1).

6-weeks endurance &
resistance training.

2.0 and 2.4 g·kg−1·day−1 WP
for women & men.

Data reported as mean ± standard deviation where possible. U.S. = United states, g·kg−1·day−1 = grams per kilogram of body mass per
day, PLA = placebo, PRO = protein, WP = whey protein, CHO = carbohydrate, CON = control, AM = morning.

Table 3. Concurrent exercise training and the impact of protein on muscle recovery.

Study Sample Age Total Protein Intake Intervention Supplement Type & Dose

Eddens et al.
[52] 24 male cyclists.

PRO = 27 ± 3 years;
PLA = 28 ± 5 years;
CHO = 26 ± 5 years

PRO = 1.2 ± 0.6
g·kg−1·day−1; PLA =

1.2 ± 0.6 g·kg−1·day−1;
CHO = 1.2 ± 0.7

g·kg−1·day−1

Single concurrent
exercise event

(high-intensity cycling
followed by 100 box

jumps).

20 g WP, isocaloric CHO or
low-calorific PLA post-exercise.

Jimenez-Flores
et al. [59]

33 healthy men and
2 healthy women.

21 ± 1 years & 21 ± 1
years in PLA & PRO

groups
Not measured. 4-day loaded (13.2–26.4

kg) mountain skirmish.
25 g protein bar or isocaloric CHO bar

post-exercise.

Blacker et al.
[60] 10 healthy men. 28 ± 9 years

* 0.9 ± 0.3
g·kg−1·day−1, in the
PLA, CHO & PRO.

3 days post-load (25 kg)
carriage exercise.

36 g PRO, 32 g CHO or low-calorie
PLA post-exercise.

Flakoll et al.
[61]

387 male U.S.
Marine recruits. 19 ± 1 years Not measured. Single day loaded

march hike.

PLA = 0 g CHO, 0 g PRO, 0 g fat;
CON = 0 g PRO, 8 g CHO and 3 g fat;
PRO = 10 g PRO, 8 g CHO and 3 g fat.

Participants who weighed <81.8 kg
received one portion and those
weighing >81.8 kg received two

portions post-exercise.

Data reported as mean± standard deviation. U.S. = United States, g·kg−1·day−1 = grams per kilogram of body mass per day, PLA = placebo,
PRO = protein, WP = whey protein, CHO = carbohydrate, CON = control. * maximum across three timepoints.

3.3. Protein Dose and Timing

The majority of studies supplemented participants with whey protein in the form
of a beverage, except one which used a protein bar [59], with the most common strategy
being to provide an absolute bolus dose of protein ranging between 20–50 g. One study
provided an additional dose of whey protein relative to body mass (2.4 g·kg−1·day−1) [54].
Crowe et al. [53] provided participants with a leucine supplement (45 mg·kg−1·day−1).
In terms of timing, the majority of studies provided protein immediately (<1 h) post-
exercise [52,55–61]. Others also provided protein at breakfast [54] and some provided
protein both prior to sleep and immediately post-exercise [51]. Seven studies assessed and
reported total daily protein intake [51–55,57,60], whereas four studies did not [56,58,59,61].

3.4. Synthesis of Results

This review identified 11 individual studies; one focused only on performance [55],
six on performance and body composition [51,53,55–58] and four on muscle recovery
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adaptations only [52,59–61]. Four studies found a benefit on muscle strength, five studies
reported a benefit on body composition changes such as increasing FFM, reducing fat-mass
or both, and one study reported a benefit on muscle recovery. The characteristics of these
studies are outlined in Tables 2 and 3.

3.4.1. Performance Adaptations

McAdam et al. [51] observed a greater increase in muscle strength (push-up repetition
performance) with protein supplementation (+6.8, 95%CI: 2.9–10.7) compared to a placebo
(+2.6, −0.7–6.0 95% CI) during a two-minute maximal push-up test. There was no effect on
run time performance (protein: −48.3 s, −63.0–33.6 s 95%; placebo: −74.2 s, −95.5–51.9
95% CI) during a two-minute maximal time trial. Similarly, Ormsbee et al. [55] found a
greater increase in 1 RM bench press after six-months of concurrent training with protein
supplementation (+27.4 ± 2.4 kg vs. +15.9 ± 2.8 kg, p = 0.003) but not 1 RM hip sled
performance (protein: 72.3 ± 7.8 kg; placebo: 73.6 ± 9.0 kg). Both groups had a statistically
significant increase in

.
VO2peak at six months compared to baseline but no differences

between groups were reported. Taylor et al. [56] reported a statistically significant change
in 1 RM bench press performance with additional protein in female basketball players over
an eight-week period (protein = +4.9± 2.1 kg vs. placebo = +2.3± 1.4 kg, p = 0.046). Walker
et al. [58] reported a statistically significant increase in 1 RM bench press performance
(protein: +3.5 ± 5.2 kg; placebo: +1.3 ± 4.4 kg, p < 0.05) and the number of push-ups
(protein: +5.4 ± 6.8; placebo: +3.2 ± 6.8, p < 0.05) performed with protein supplementation
over eight weeks of recruit military training. There was, however, no effect of protein on run
time performance during a maximal three-mile time-trial (protein: −1.4 ± 0.4 s; placebo:
−0.9 ± 3.3 s, p > 0.05). The remaining study also observed a greater increase in rowing
time to exhaustion with leucine supplementation compared to a placebo (p = 0.008) [53].
The remaining three studies reported no statistical effects on exercise performance with
protein supplementation compared to a placebo or control condition [54,57]. For instance,
Longland et al. [57] reported no impact of protein supplementation on leg and bench
press 1 RM or cycling time trial performance. Similarly, no differences in men or women
were reported between groups for changes in

.
VO2peak, 2000 m rowing time trial, leg and

bench press 1 RM performance [54]. It was possible to include five and three studies in the
meta-analyses for muscle strength [54–58] and aerobic endurance adaptations [54,55,57],
respectively. One study was not included in the muscle strength analysis [51] whilst two
studies were not included in the aerobic endurance adaptations [51,53] due to no SD being
reported. Additionally, another study was removed from the

.
VO2peak meta-analysis due

to assessing time trial performance [58]. The results of the meta-analysis are reported as
SMD and showed that protein supplementation improved performance outcomes when
muscle strength and aerobic endurance parameters were analysed together (SMD = 0.89,
95% CI = 0.08–1.70). When performance outcomes were analysed independently, protein
supplementation was found to enhance muscle strength adaptations during concurrent
training compared to placebo (ES = 1.18, SMD = +4.92 kg, 95% CI = −2.70–12.54 kg)
(Figure 3). However, the meta-analysis found protein supplementation to not enhance
aerobic endurance adaptations (

.
VO2peak) with the analysis favoring placebo (ES = 0.79,

SMD = −0.37 ml·kg−1·min−1, 95% CI = −1.45–0.71) (Figure 4). The individual study effect
sizes for muscle strength and aerobic endurance adaptations can be found in Supplementary
Figures S2 and S3. There was substantial heterogeneity between studies for muscle strength
(I2 = 94%) and aerobic endurance adaptations (I2 = 95%).
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3.4.2. Body Composition Adaptations

Fat-free mass (FFM) was shown to increase to a greater extent with protein supple-
mentation over an eight-week training period in military recruits (protein: +0.7 ± 1.2 kg;
placebo 0.0 ± 0.9 kg, p < 0.05) [58]. Similarly, FFM was also shown to increase to a greater
extent in female basketball players over an eight-week period (protein: +1.4 kg; placebo:
+0.4 kg, p = 0.025) [56]. McAdam et al. [51] also observed greater reductions in fat-mass
over an eight-week period in military recruits with protein supplementation compared
to a placebo (protein: −4.5 kg; placebo: −2.7 kg, p = 0.04) after controlling for initial
fat-mass [51]. A trend for greater reductions in fat-mass (protein: −1.0 ± 0.3 kg; placebo:
−0.3 ± 0.4 kg, p > 0.05) and gains in FFM (protein: +2.4 ± 0.3 kg; placebo: +1.9 ± 0.3 kg,
p > 0.05) were reported by Ormsbee et al. [55]. However, significant differences were
observed only at three months into the six-month concurrent training intervention for
gains in FFM (protein:+2.6 ± 0.2 kg; placebo: 1.7 ± 0.3 kg, p = 0.02) in sedentary men and
women. Longland et al. [57] reported greater reductions in fat-mass (protein: −4.8 ± 1.6 kg;
placebo: −3.5 ± 1.4 kg, p < 0.05) and gains in FFM (+1.2 ± 1.0 vs. +0.1 ± 1.0 kg, p < 0.05)
with protein supplementation compared to a placebo over a four-week period. Conversely,
no effect of leucine supplementation was reported after six-weeks on fat mass (body fat
percentage) changes [53]. In total, five out of six studies reported a beneficial impact of pro-
tein supplementation on body composition adaptations. Four studies were included in the
meta-analysis for changes in FFM [51,55,57–59] whereas three studies were included in the
meta-analysis for fat-mass [51,57,58]. One study was excluded from the FFM adaptations
analysis due to no SD being reported [56] and one study was excluded from the fat-mass
adaptations analysis due to body fat percentage being reported [53]. The meta-analysis
found that protein supplementation enhanced gains in FFM (ES = 6.29, SMD = +0.75 kg,
95% CI = 0.44–1.06 kg) (Figure 5). The meta-analysis also found protein supplementation
to enhance reductions in fat-mass compared to placebo (ES = −0.99, SMD = 0.60 kg, 95%
CI = −1.20–0.45 kg) (Figure 6). The individual study effect sizes for FFM and fat-mass
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adaptations can be found in Supplementary Figures S4 and S5, respectively. There was
considerable heterogeneity between studies for FFM (I2 = 98%) and fat-mass adaptations
(I2 = 91%).
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3.4.3. Muscle Recovery Adaptations

Perceived muscle soreness after a six-mile hike was reduced by 7% with post-exercise
protein supplementation compared to increases of 10% and 16% in the placebo and con-
trol conditions, respectively (p < 0.05) [61]. The remaining studies found no significant
difference between protein and placebo conditions for the recovery of muscle function [60],
muscle damage [59] or both [52]. Blacker et al. [60] reported no effect of protein compared
to CHO on muscle function recovery. At 48 hours post-exercise, knee extensor isometric
force was reduced by 10 ± 10% for the low caloric placebo condition (p = 0.008) but had
returned to baseline in the CHO (p = 0.199) and protein condition (p = 0.099). At 72 h
post-exercise, participants in the placebo condition returned to baseline (p = 0.145), whereas
both the CHO (p = 0.457) and protein conditions (p = 0.731) remained at baseline at 48 h
post-exercise. Only one study assessed the impact of protein supplementation on markers
of exercise induced muscle damage and inflammation [59]. It was found that there were
no differences between protein and isocaloric placebo conditions for changes in blood
concentrations of cortisol (placebo: −0.79 ± 0.89; protein: 1.39 ± 1.08 µg·dL−1, p = 0.160),
C-reactive protein (placebo: 0.13 ± 0.77; protein: 0.99 ± 0.16 mg·L−1, p = 0.305), creatine
kinase (placebo: 278.65 ± 50.23; protein: 422.18 ± 149.87 U·L−1, p = 0.722) or aldolase
(placebo: 2.06 ± 0.46; protein: 1.98 ± 0.91 U·L−1, p = 0.704). Based on the limited number
of studies and available data, it was not possible to complete a meta-analysis of studies
assessing the effect of protein supplementation on muscle recovery adaptations. These
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limitations include the SD not being reported [61] and different outcome measures, such as
muscle damage [59], muscle function [52,60] and muscle soreness [61].

4. Discussion

This review identified 11 studies which investigated the effects of protein supplemen-
tation on exercise performance, body composition and muscle recovery adaptations to
concurrent exercise training compared to a placebo in healthy adults, confirming the need
for more work in this area. The key findings from the literature that met our inclusion crite-
ria demonstrated that protein supplementation had a large effect on muscle strength and
FFM adaptations to concurrent exercise training. There was limited evidence to suggest that
protein supplementation can support aerobic endurance and muscle recovery adaptations.

4.1. Muscle Strength and Body Composition Adaptations

Longland et al. [57] reported no impact of protein supplementation on muscle strength
adaptations despite a greater increase in FFM compared to a placebo condition. This was
the only study to purposely induce a negative energy balance while participants con-
sumed a total protein intake of 2.4 g·kg−1·day−1. The study duration (four weeks) may
have been too short for differences in strength development to be detected, particularly
as protein supplementation is suggested to promote gains in FFM and muscle strength
as the duration of training increases [62]. Forbes and Bell [54] also reported no effect of
an additional 2.0–2.4 g·kg−1·day−1 of protein on muscle strength and body composition
adaptations over a six-week period (Table 2). It may be that the findings were also con-
founded by the intervention duration, given that it was shorter than each study reporting
a positive effect of protein supplementation. The results were analysed by sex and the
small sample size (15 women and 16 men) may have also limited the statistical findings as
acknowledged by the study authors. Furthermore, the participants in the control condition
consumed 1.2–1.4 g·kg−1·day−1 of protein, which may have been adequate to meet the
demands of training, however, with no measure of nitrogen balance or protein turnover,
this cannot be confirmed. The final study which observed no effect of protein supple-
mentation on body composition adaptations may have had low total daily protein intakes
(0.85 g·kg−1·day−1) [53].

The studies that reported a positive effect of protein supplementation on muscle
strength and body composition adaptations provided protein to participants immedi-
ately post-exercise [51,55–58]. This likely maximised myofibrillar protein synthesis in
response to concurrent training [33,35,38,39] and modulated muscle strength and FFM
adaptations [63,64]. Promoting MPS post-exercise is an important factor at enhancing
skeletal muscle remodelling and adaptation [39,42,64,65]. Subsequently, this could have
attenuated the interference effect of endurance training on strength adaptations [35,66]
by promoting the activation of mTOR and inhibiting the activation of the tuberous scle-
rosis complex [27,28]. Skeletal muscle is sensitive to protein feeding for 24 hours post-
exercise and thus, consuming protein in 20–40 g doses evenly throughout the day is
recommended [64,67,68]. More recently, it has been shown that consuming protein prior
to sleep also augments MPS throughout the night [69]. Consuming protein prior to sleep,
and subsequently increasing total daily protein intake may be advantageous at optimising
MPS responses and supporting muscle strength and body composition adaptations when
undertaking concurrent training [70].Nevertheless, it should be acknowledged that acute
changes in MPS does not necessarily predict changes in muscle strength and FFM [71].
Instead it is likely the chronic and repetitive changes in MPS and muscle protein breakdown
(MPB) which contribute to these [65]. Two studies that reported a greater increase in muscle
strength reported a larger reduction in fat-mass with protein intakes ≥2.2 g·kg−1·day−1

compared to a placebo [51,55]. This suggests that individuals undergoing arduous concur-
rent training may benefit from protein intakes higher than the current recommendation of
1.8–2.2 g·kg−1·day−1 [72]. Mechanistically, it is speculative as to how an elevated protein
intake promoted a greater loss in fat-mass, but previous work suggests that the greater
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thermic effect of protein may play a key role [73]. However, despite similar daily energy
intakes between groups in both studies, neither included a measure of energy expenditure,
and therefore, it is unclear if participants were in energy balance. Consuming a protein
intake >2.2 g·kg−1·day−1 and possibly higher than 3.0 g·kg−1·day−1 while restricting
energy intake has been suggested to maximise the loss of fat-mass and promote the main-
tenance of FFM [72]. It is unclear if the greater reduction of fat-mass promoted greater
improvements in muscle strength performance in studies included in this review [51,55].
More work is needed to better determine the impact of protein intakes higher than the cur-
rent recommendations (1.7–2.2 g·kg−1·day−1) on body composition adaptations, and how
this may influence exercise performance in individuals undergoing arduous concurrent
training. The studies identified in this review suggest that protein supplementation may
be an effective strategy at augmenting muscle strength and body composition adaptations
in healthy adults undertaking concurrent training. It is likely that this effect is facilitated
by maximising the MPS post-exercise and attenuating the potential interference effect of
endurance training on muscle strength and FFM adaptations. However, more work which
includes measures of nitrogen balance or protein turnover are needed to confirm this.
Furthermore, future work should also consider factors such as the timing of protein intake
around exercise, energy intake/expenditure, and the duration of the training intervention.

4.2. Aerobic Adaptations

Protein requirements are elevated in endurance athletes to 1.6–1.8 g·kg−1·day−1 [74]
but may be higher (1.7–2.2 g·kg−1·day−1) during periods of intense and/or high volume
training [72]. Protein feeding has been shown to facilitate recovery and performance adap-
tations to endurance training [17,64]. Nonetheless, the effects of protein supplementation
on aerobic performance adaptations during an arduous concurrent training programme
are unknown. Similar improvements in run time performance was observed in military
recruits with total daily protein intake of 2.8± 0.5 and 1.6± 0.4 g·kg−1·day−1 in the protein
and placebo conditions, respectively [51]. As such, the dietary protein requirements to
facilitate endurance-based adaptations were likely met in both groups, therefore, between
groups differences were not observed. This suggests that to promote endurance-based
performance adaptations, additional protein intake is not warranted when total habitual
intake is ≥1.6 g·kg−1·day−1. Walker et al. [58] also observed no between group differ-
ences in run time performance in military recruits supplemented with whey protein or
CHO for eight-weeks. However, the total daily protein intakes were not reported, and
it is unknown if protein requirements were met. In contrast, one study found leucine
supplementation (45 mg·kg−1·day−1) for six-weeks improved exercise time to exhaustion
in canoeists [53]. The reported total daily protein intake was 0.85 ± 0.06 g·kg−1·day−1 and
0.85 ± 0.05 g·kg−1·day−1 in the protein and placebo groups, therefore, participants likely
benefited from the elevated leucine intake given that this amount of protein per day is
much lower than the recommended amount [72,74]. Leucine is the key amino acid which
stimulates MPS through the mTOR pathway [39,75], but given that the other essential
amino acids are required to support this process [36,39], it is unclear how leucine supple-
mentation improved exercise time to exhaustion. The results of the meta-analysis suggest
that there is limited evidence to support the use of protein supplementation for aerobic
endurance adaptations in response to concurrent training compared to placebo. However,
based on the limited number of studies identified, more work is needed to confirm this.

4.3. Muscle Recovery Adaptations

Protein supplementation has been shown to improve muscle function recovery fol-
lowing resistance training [19] and other modes of exercise including cycling, running,
eccentric exercise and resistance training [62], yet no review has evaluated the effects
following arduous concurrent exercise training specifically. Protein consumption in close
proximity to exercise prevents a decrease in myogenin messenger RNA expression, which
can accelerate the remodelling and recovery of skeletal muscle [76]. Specifically, leucine
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may be a key component at initiating this process post-exercise through the activation of
mTOR and MPS [39,75]. One study found post-exercise protein ingestion reduced muscle
soreness in U.S. Marines following a loaded march [61]. However, Flakoll et al. [61] failed
to provide the total daily protein intake, which therefore, limits our understanding of the
impact of protein supplementation specifically on recovery adaptations [77]. The remaining
studies all failed to find an effect of protein supplementation on muscle recovery in the days
following arduous concurrent exercise [52,59,60]. Specifically, no impact was observed on
markers of muscle damage [59], soreness [52] or function [52,60]. Jimenez-Flores et al. [59]
observed no differences in markers of muscle inflammation or damage between protein and
placebo conditions. However, some of the markers which were chosen may be questionable.
For example, cortisol is a stress hormone [78,79] which can indicate changes in whole-body
catabolism [79]. C-reactive protein is a marker of whole-body inflammation and is not
necessarily specific to skeletal muscle [78]. The data also suggest a large inter-participant
variability, which is a known limitation of such markers, particularly creatine kinase [79].

Eccentric exercise initiates a chain of events which leads to myofibrillar damage,
degradation of structural proteins and membrane damage, thus inhibiting muscle function
especially if individuals are unaccustomed to the exercise bout [80]. The participants in the
study by Eddens et al. [52] completed a bout of concurrent endurance and eccentric exer-
cise. The participants consumed a similar total daily protein intake, which corresponds to
current recommendations [64]. As such, it is possible that the additional protein consumed
post-exercise in the experimental group did not accelerate muscle recovery, due to protein
requirements already being met by the participants. It was acknowledged by Eddens
et al. [52] that the decrement in muscle function over the 24 h post-exercise was ~15%,
which is lower than that observed with other eccentric exercise protocols, with decrements
of between 10–65% reported elsewhere [81]. Therefore, it cannot be excluded that the
muscle damaging protocol may not have been arduous enough, which might explain the
lack of statistical difference between conditions [52]. Blacker et al. [60] found no statistically
significant difference between protein and placebo conditions on acute muscle function
recovery following arduous concurrent exercise. However, both supplement conditions
accelerated recovery of muscle function compared to the control condition. Similarly, par-
ticipants consumed a standardised total daily amount of protein (0.9 ± 0.3 g·kg−1·day−1)
across conditions. Although the amount of protein is lower than the current general recom-
mendations (1.2–2.0 g·kg−1·day−1) [64], no effect of protein supplementation post-exercise
was observed by Blacker et al. [60] when compared to an isocaloric placebo [60]. Jimenez-
Flores et al. [59] found no impact of protein supplementation compared to an isocaloric
placebo on markers of muscle damage following arduous concurrent exercise, however,
high-variability between study participants was observed and likely influenced the ability
to detect statistical differences [59]. However, unlike Blacker et al. [60], there was no
control group, therefore, it is unknown if the additional energy intake accelerated muscle
recovery [59]. The limited number of studies and the differences between methodologies
and outcome measures make it difficult to determine whether protein supplementation
does improve muscle recovery, thus warranting further research. Additionally, due to the
lack of women included in studies to date, future research is needed in women to examine
the impact of protein on muscle recovery, particularly given the known difference in the
rate of muscle function recovery post-exercise between men and women [82].

4.4. Limitations

Only one study identified in this review included a measure of protein balance or
turnover [57]. Therefore, it is unknown if participants were in a positive protein balance
before, during or after the interventions in the remaining studies. Including a measure of
protein requirements in future studies can allow for a better understanding of how much
additional protein is potentially needed during arduous concurrent training by estimating
changes in MPS and whole-body protein balance. The majority of studies failed to include
markers of skeletal muscle damage or inflammation when focusing on muscle recovery and
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therefore, the mechanisms of the effects observed are speculative. The control of dietary
intake is critical for comparison between studies involving nutritional interventions. Four
studies failed to report the total daily protein intake during the intervention [56,58,59,61],
making the comparisons between studies even more challenging, given that this is con-
sidered more important than the timing of protein intake [71,83]. It is recommended that
these methodological considerations be factored into future studies aimed at investigating
the influence of protein supplementation on arduous concurrent training adaptations. The
heterogeneity of the meta-analysis results should be acknowledged as this may make it
difficult to apply these findings to a specific population. Nonetheless, the findings of this
review infer that protein supplementation can support muscle strength, aerobic endurance,
and body composition adaptations during concurrent training. However, more population
specific randomised controlled trials (RCTs) are needed to build upon these findings.

4.5. Military Research Applications

Five of the eleven studies included in this review quantified the effects of protein sup-
plementation in those during military training, or in response to a military training-based
activity [51,58–61]. Given the potential for concurrent endurance training to inhibit muscle
strength adaptations [27,28], military recruits may be one population who can benefit
from strategies which aim to promote gains in FFM and muscle strength during arduous
concurrent military training. The findings of this systematic review suggest that protein
supplementation may be an effective strategy to support body composition and muscle
strength development. However, to better understand the effects protein supplementation
has on adaptation and performance outcomes of military recruits, additional population
specific RCTs are needed. Future RCTs should consider investigating the effects of elevated
protein intakes on training adaptations during arduous military training, including muscle
strength, body composition and muscle recovery. Additionally, future work may want to
consider adaptations not included in this review, such as bone adaptations, given that bone
health and stress fracture incidence are important areas of military research [84–86] and
which protein supplementation may be able to support [70,87]. The lack of women studied
to date in this area also highlights a gap in the current literature. Therefore, future work
should aim to include data in women since they now take-up more arduous (ground close
combat) roles in the military [88]. Furthermore, including measures of protein metabolism,
such as nitrogen balance and protein turnover, in future work should be considered as
a means of better understanding the effects of protein supplementation during military
recruit training.

5. Conclusions

This is the first systematic review and meta-analysis to investigate the effects of pro-
tein supplementation on arduous concurrent training adaptations. Based on the limited
number of studies identified, more work in this area is clearly warranted, particularly
given the importance of developing aerobic fitness and muscle strength concurrently in
many exercising populations. The findings of this review suggest that protein supplemen-
tation may be an effective strategy at supporting lean-mass accretion and muscle strength
adaptations in healthy adults, whilst considering the impact that training programme
duration, total energy and protein intake of participants has on outcome measures. From
the existing literature, it is reasonable to recommend that individuals aim for total daily
protein intakes between 1.7 and 2.2 g·kg−1·day−1 whilst ingesting 20–40 g of protein imme-
diately post-exercise to maximise MPS and support muscle strength and FFM adaptations.
However, the disassociation between MPS and chronic physiological adaptations should be
acknowledged. Based on the novel data included in this review, subsequent research may
consider investigating the potential benefits of higher total daily protein intakes during
arduous concurrent training on adaptation and performance outcomes.
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