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ABSTRACT 

A Fuzzy Cognitive Map (FCM) is a causal knowledge graph connecting concepts using directional 

and weighted connections making it an effective approach for reasoning and decision making. 

However, the modelling and reasoning capabilities of a conventional FCM for real world problems 

in the presence of uncertain data is limited as it relies on Type 1 Fuzzy Sets (T1FSs). In this work, 

we extend the capability of FCMs for capturing greater uncertainties in the interrelations of the 

modelled concepts by introducing a new reasoning algorithm that uses Type 2 Fuzzy Sets based 

on z slices for the modelling of uncertain weights connecting FCM’s concepts. These Type 2 Fuzzy 

Sets are generated using interval valued data from surveyed participants and aggregated using the 

Interval Agreement Approach method. Our algorithm performs late defuzzification of the FCM’s 

values at the end of the reasoning process, preserving the uncertainty in values for as long as 

possible. The proposed algorithm is applied to the evaluation of the performance of modules of an 

undergraduate Mathematical programme. The results obtained show a greater correlation to 

domain experts’ subjective knowledge on the modules’ performance than both a corresponding 

FCM with weights modelled using T1FS and a statistical method currently used for evaluating the 

modules’ performance. Sensitivity analysis conducted demonstrates that the new algorithm 

effectively preserves the propagation of uncertainty captured from input data. 

Keywords: Fuzzy Cognitive Map (FCM), reasoning algorithm, Interval Agreement Approach 

(IAA), Type 2 Fuzzy Sets (T2FSs), sensitivity analysis 
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1. Introduction 

Fuzzy Cognitive Maps (FCMs) are fuzzy directed graphs that represent information about causal 

relations among interrelated concepts of a modelled system. They were introduced by Bart Kosko 

[1] as an extension of Cognitive Maps [2] that introduced fuzziness in causal relations and concepts 

for modeling real world systems. The rationale for this was the existence of data uncertainties in 

assigning the values of concepts and causal relations, which could be handled more effectively 

using fuzzy sets. In the last few decades, there has been a noticeable research trend towards 

applying FCMs in various domain areas [3]. The literature reveals the success of FCMs in 

reasoning and modelling in Engineering [4], [5], Medicine [6], Business [7], Software Engineering 

[8] and Politics [9]. FCMs have gained momentum in these fields due to their simplicity and strong 

mathematical structure that enhances their prediction, analysis and reasoning capabilities. 

Although the effectiveness of conventional FCMs were demonstrated in prior work, they had some 

drawbacks regarding their reasoning and modelling abilities. Conventional FCMs cannot be 

effectively used in applications requiring a high level of uncertainty and/or where relations within 

the modelled domain are nonlinear and/or non-monotonic. Typically, FCMs rely on crisp values 

generated by defuzzification of the fuzzy sets that represent weights between concepts. In this way, 

an FCMs’ ability to represent and control knowledge with high randomness and uncertainties 

between the concepts is hindered. Moreover, conventional FCMs cannot handle more than one 

relation between the concepts, and it cannot model a grey domain environment (an environment 

with multi-meaning). To overcome these shortcomings, several extensions to conventional FCMs 

have been proposed, which are classified into three categories, based on the types of drawbacks 

they aim to overcome [10]: 1) overcoming the drawbacks of modelling uncertainty and handling 

more relationships between the concepts, 2) dynamicity and 3) drawbacks related to a rule-based 

knowledge representation. 

Most of these proposed extensions focused on improving the representation of the weight 

associated with causal relations between FCM concepts as the weights play a crucial role for 

knowledge representation and uncertainty propagations while reasoning. For example, 

Intuitionistic fuzzy sets (IFSs) [11] were used to model causal edges of a FCM in [12, 13] and thus 

the iterative reasoning algorithm was modified to be compatible with the introduced IFSs. In IFSs, 

the concept of hesitancy was modelled by assigning not just a degree of belonging of an element 



to an IFS, but the degree of the element’s non-belongingness to the set as well. Thus, Intuitionistic 

Fuzzy Cognitive Maps (iFCMs) were introduced to capture the hesitancy of experts in modelling 

of interrelations between the concepts using If-Then rules. Although, the iFCM was less affected 

by missing input data compared to the conventional FCM, incorporating IFSs made the reasoning 

process for each iteration much more complex. 

A Fuzzy Grey Cognitive Map (FGCM), proposed in [14], was based on Grey Systems to represent 

domains with a high level of uncertainty, which included limited and incomplete data. In the 

FGCM, the weights of causal links are represented by grey intervals, which enhance the capability 

of the FGCM to represent the uncertain relationships of the domain. Grey Intervals measure both 

the intensity of existing causal relationships between two concepts and absent relations between 

any two concepts with partially or completely unknown intensity. Although the FGCM is adapted 

for handling uncertainty using the grey intervals, it is incapable of modelling dynamic and 

nonlinear relations. The conventional FCM was extended to the Triangular Fuzzy Cognitive Map 

in [15] by representing uncertain interrelations among the concepts using triangular fuzzy 

numbers. As a further step offering additional expressiveness and flexibility in representing values 

of concepts and weights of causal relationships, the approach proposed in [16] represented the 

concepts and edges of the FCM using intervals. In this approach, the membership degrees of an 

element’s belonging to the concept and the edge’s weight were given as intervals whose widths 

were understood as a measure of uncertainty. In [17], edges in FCMs were modelled using fuzzy 

If-Then rules that considered standard semantics of fuzzy sets, where the qualitative representation 

of the knowledge about causal relations was represented using T1FSs. 

Although the former extensions of FCMs have achieved noticeable success in reasoning in the 

presence of imprecise or missed information, the weights of their causal relations rely on T1FSs, 

which limit their ability to capture higher levels of uncertainties associated with real world 

applications. This deficiency of the T1FS is due to its crisp membership function that hinders the 

modelling ability of the T1FS in domains that involve a high level of uncertainty. This shortcoming 

of the T1FS led to the extension of T1FSs through the introduction of a higher level of fuzzy sets, 

where the grade of the membership is uncertain. 

Type 2 Fuzzy Sets (T2FSs) are fuzzy sets that represent the membership’s grades of elements, 

called the secondary membership grades, using T1FSs. The T2FSs were defined to handle higher 



levels of uncertainty that were present in many real-world problems [18] and to handle uncertain 

membership functions. Thus, T2FSs can model a high level of uncertainty, where determining the 

precise membership of the fuzzy set is difficult or even impossible. Although T2FSs are shown to 

outperform T1FSs in modelling uncertainties, the complexities of computation with the T2FSs are 

increased due to the existence of an additional two dimensions required for the T1FS membership 

grades. To overcome these complexities, some novel representations of T2FSs were proposed; for 

example, Interval Type 2 Fuzzy Sets (IT2FSs) were introduced in [18], where domains of fuzzy 

sets were intervals. IT2FSs were used in different applications, for example, to model the words 

and hence capture more linguistic uncertainties in [19], and [20], or to design a fuzzy fault 

detection filter for Markov jump systems in [21] and [22].  

Although the success of IT2FSs in the former applications was acknowledged, as they offered a 

wide scope for capturing and accurately representing input uncertainties, several studies have 

suggested the necessity of moving to an alternative representation of T2FS, where the third 

dimension can be exploited to capture more uncertainties. In that respect, zT2FS were defined to 

reduce complexities of representation and calculations for general T2FSs [23] to fully utilise their 

third dimension. Whilst in IT2FSs the degree of the secondary membership grade of each element 

is fixed to be 1 in the third dimension, in zT2FSs it is a value between 0 and 1, inclusively. The 

approach based on the zT2FS supports the smooth transition from a fuzzy logic system relying on 

IT2FSs to a fuzzy logic system relying on zT2FSs. zT2FSs were used in various applications, for 

example, in [24] and [25], where the use of T1FSs and IT2FSs was not possible due to a high level 

of uncertainty; however, it was well captured by zT2FSs. 

As demonstrated, the weights of the casual relations in FCMs are crucial for the propagation of 

uncertainty and T2FSs and their representations, such as IT2FSs and zT2FSs, are more capable 

than T1FSs for capturing more uncertainties and hence enhancing the decision modelling. Some 

methods were proposed to enhance FCMs by introducing T2FSs to the modelling of their edges’ 

weights. For example, in [26], two Interval Type 2 Fuzzy Cognitive Maps (IT2FCMs) for a flight 

control system were proposed, one for stabilizing the attitude and altitude dynamics and one for 

tracking trajectories. Weights of the causal relations between the concepts were represented by 

IT2FSs to capture the inter uncertainty of the experts’ opinions about the assigned weights. 

Subsequently, these fuzzy weights were defuzzified to scalar values to be used in the FCM’s 



reasoning algorithm. A comparison between the IT2FCM and the FCM which relied on T1FSs 

weights (the T1FCM), showed that the IT2FCM performed better than the T1FCM in the presence 

of noise and imperfect conditions, as the IT2FSs capture more uncertainties compared to the 

T1FSs. 

In [27], a methodology for modelling weights of a FCM edges using zT2FSs was proposed, 

creating a zT2FCM for an autism diagnosis in toddlers. The proposed zT2FCM had 20 concepts 

that had casual relations, with one decision concept that predicted the autistic disorder. Weights 

were generated using the Interval Agreement Approach (IAA) [28] to capture high level 

uncertainties in the presence of imprecise interval valued data acquired from different doctors in a 

hospital. The results presented were more accurate and consistent with doctors’ opinions compared 

with those of a conventional FCM presented in [29], using the same data. 

In both these studies, the reasoning method applied in the proposed IT2FCM and zT2FCM, 

respectively, was iterative, where the value of a decision concept was calculated using an 

arithmetic function and then defuzzified into a scalar value in each iteration. This suggests a loss 

of information captured in the weights pertaining to the Type 2 Footprint of Uncertainties [18] and 

secondary membership values (z slices), that can no longer propagate to influence the selected 

decision concept.  

The research presented in this paper is motivated by two important complex issues identified from 

the previous works. Firstly, representation of weights of FCM’s edges using a particular type of 

fuzzy set is crucial for the knowledge capture, modelling and its propagation through the FCM. 

Initially, the weights were represented using T1FSs. However, to overcome some of the identified 

drawbacks when using this modelling tool, several other approaches were proposed, such as 

zT2FSs. Second, the reasoning algorithm used in all the previous work was iterative and required 

defuzzification of the weights in the FCMs that could inevitably have led to the loss of some 

information. 

Therefore, this research proposes an extension of FCMs and their reasoning algorithm to overcome 

the drawbacks of modelling and reasoning in the presence of uncertainty in relationships between 

the concepts. The main contributions of this research are as follows: 



1) Interval Agreement Approach (IAA) is applied to aggregate both intra and inter uncertainty of 

experts to model the FCM’s weights using zT2FSs that are kept in the reasoning algorithm in their 

fuzzy set forms until the end of the reasoning process.  

2) A new non-iterative reasoning algorithm is developed that uses zT2FSs rather than their 

defuzzified values; the output value of a decision concept is only defuzzified at the very end of the 

reasoning process. This late defuzzification reduces the chance of losing information and 

uncertainties captured in the modelled system compared to using the conventional reasoning 

process. 

3) The accuracy of the proposed reasoning algorithm is examined using the case study of a real-

world problem of evaluating the performance of 30 modules taught on an undergraduate 

Mathematical programme. A novel FCM is generated for this problem by collecting experts’ 

opinions. Results obtained by applying the new reasoning algorithm are compared with those 

generated by a method based on statistics, currently used in the Department of Mathematics and 

Applied Sciences under consideration, a standard FCM with weights represented using T1FSs and 

subjective opinions of lecturers in the Department. The comparison is performed using a statistical 

measure of correlation. 

4) Sensitivity analysis carried out provides new insights into the impact of an FCM structure on 

uncertainty propagation. Experiments demonstrate that the new reasoning algorithm preserves the 

propagation of uncertainty across weighted connections in the FCM during the reasoning process. 

The rest of this paper is organised as follows. Section 2 provides an essential background about 

the main concepts related to this paper, including FCMs, zT2FSs and IAA that generates z slices. 

Section 3 presents the new proposed reasoning algorithm. Section 4 describes a case study related 

to the evaluation of module performance using different methods and reasoning algorithms, 

including the reasoning algorithm proposed. Section 5 presents results obtained using these 

different methods and their comparison. The sensitivity analysis is presented in Section 6. Finally, 

Section 7 includes the conclusion and future work. 

 

 



2. Background 

In this section, we present background concepts relevant to the proposed reasoning algorithm, 

including FCMs, zT2FSs and IAA. 

2.1. FCM 

An FCM’s structure comprises of a set of nodes, a set of weighted and directed edges (links) 

between the nodes [1]. The nodes represent the main concepts of the modelled system and the 

weighted edges represent the causal relations among the nodes. The mathematical structure of the 

FCM, as shown in Fig. 1, consists of m concepts 𝐶𝑖, 𝑖 = 1,2, … ,𝑚, linked by the weighted and 

directed edges 𝑒𝑖𝑗, where each edge 𝑒𝑖𝑗 has weight 𝑊𝑖,𝑗 of a causal relation from concept j which 

affects concept 𝑖, 𝑖 = 1,… ,𝑚  and 𝑗 =  1, … ,𝑚 − 1. 

All weights 𝑊𝑖,𝑗 can be arranged in a connection matrix as follows: 

[

𝑊1,1   𝑊1,2   … 𝑊1,𝑚−1
𝑊2,1   𝑊2,2   … 𝑊2,𝑚−1

…
𝑊𝑚,1   𝑊𝑚,2   … 𝑊𝑚,𝑚−1

] (1) 

 

 

 

Fig. 1. Structure of the FCM 

 



The concepts are classified into the following groups: 

• Input, representing concepts that impact other concepts, but are not influenced by other 

concepts; 

• Intermediate, representing concepts that impact other concepts and are influenced by other 

concepts; 

• Decision, representing the concept that is only influenced by other concepts, but which does 

not impact other concepts and represents the output of the modelled system. 

When determining FCM’s weight 𝑊𝑖,𝑗 , the following rules apply: 

• If 𝐶𝑗   is an input concept, then 𝑊1,𝑗, 𝑊2,𝑗, … ,𝑊𝑚,𝑗 are weights from input concept 𝑗 to 

concepts 𝐶1 , 𝐶2 , … , 𝐶𝑚 , respectively, and 𝑊𝑗,1 = 𝑊𝑗,2 = …  =  𝑊𝑗,𝑚 = 0; this means that 

there is no impact on input concept 𝐶𝑗  . 

• If concept 𝐶𝑗 does not affect concept  𝐶𝑖  then 𝑊𝑖,𝑗 = 0. 

• For all  𝑖 = 1,2, … ,𝑚, 𝑊𝑖,𝑖 = 0, as concept 𝐶𝑖 does not affect itself. 

The process of designing an FCM for a specific problem is tackled by experts who have experience 

on the aspects of the modelled system alongside related historical data [30]. The experts determine 

the number of concepts and the causal relations among them. After the construction of the FCM 

and inputting initial values to the concepts, the concepts of the FCM interact with each other to 

produce the value of the decision concept 𝐶𝑚, which determines the required decision. The 

following iterative reasoning algorithm [4] is used: 

    𝐶𝑖
(𝑘+1) = 𝑓

(

 
 
𝐶𝑖
(𝑘)
+ ∑ 𝐶𝑗

(𝑘) ∗ 𝑊𝑖,𝑗

𝑚−1

𝑗=1
𝑖≠𝑗 )

 
 

 (2) 

where 𝐶𝑖
(𝑘+1)

 is the value of the concept 𝐶𝑖 at time 𝑘 + 1, 𝐶𝑖
(𝑘)

 is the value of concept 𝐶𝑖 at time 𝑘 

of the iterative reasoning process, 𝑊𝑖,𝑗 is the weight of the edge from the concept  𝐶𝑗 to the concept 

 𝐶𝑖 and 𝑓 is the sigmoid threshold function which is calculated as follows: 

𝑓(𝑥) =
1

1 + 𝑒−𝜆𝑥
 (3) 



 

where 1 ≤ 𝜆 ≤ 5 is typically determined empirically and 𝑓(𝑥) has a value between 0 and 1. The 

iterative reasoning process reaches an equilibrium state when the values of the concepts stop 

changing. Different variations of the original reasoning algorithm and threshold functions have 

been proposed [4].  

FCMs have been extensively developed and applied due to their simplicity in construction and 

their flexibility that allow them to add and/or remove concepts when required to enhance the model 

representation and obtain the outputs values [31]. A method for determining four hyperparameters 

for construction of a FCM, including: 1) the FCM ‘s number of concepts, 2) the window size for 

the moving-window technique for using available data, 3) the number of epochs used for training 

and 4) the learning training rate, was proposed in [32]. In order to decrease the error that was 

accumulated in iterations, an adaptive FCM for forecasting was proposed in [33], where causal 

interrelationships between concepts were changing over time depending on the state of the 

concept. 

2.2. zT2FSs 

Fuzzy Sets theory provides various methods and tools for dealing with uncertainties and 

imprecisions. The literature reveals that there is a progression in the development of fuzzy sets 

since it was proposed in 1965 (known as a T1FS). Since then, different types of FSs for modelling 

various types of uncertainty and imprecisions have been defined, such as T1FSs and T2FSs. 

T1FS is a set which is characterised by a membership function that has grade values between 0 

and 1. An extension to a T1FS is a T2FS characterized by a fuzzy membership function, where the 

membership value for each element of the set is itself a T1FS set in [0, 1], enabling T2FSs to 

capture and handle uncertainties about the degree of membership of an element in the fuzzy set. 

The existence of this third dimension, i.e., membership degrees of the membership function of a 

T2FS complicates the process of determining parameters of the T2FSs, as they are characterised 

by a three-dimensional fuzzy membership function. To reduce this difficulty, different 

representations of T2FSs were introduced, including IT2FSs and zT2FSs. 

An IT2FS provides the membership grade u within an interval J, where the third dimension is fixed 

to 1. 



Given the universe of discourse E, the IT2FS 𝐴̃ is defined in three dimensional space as a set of 

ordered pairs as follows: 

𝐴̃  = {((𝑥, 𝑢𝑖 (𝑥)), 1) | 𝑥 ∈ 𝐸, 𝑢𝑖 (𝑥) ∈ 𝐽𝑥, 𝐽𝑥 ⊆ [0,1] } 

 

(4) 

A zT2FS is generated by slicing the third dimension 𝑧 of a T2FS into a vertical slice 𝑍𝑖 (referred 

to as a z slice), each at level 𝑧𝑖. Each slice is an IT2FS where the amplitude of the third dimension 

is 𝑧𝑖, rather than 1. Formally, given the universe of discourse E, the zT2FS is a collection of an 

infinite number of z slices 𝑍𝑖, where: 

𝑍𝑖 = {((𝑥, 𝑢𝑖(𝑥)), 𝑧𝑖) | 𝑥 ∈ 𝐸 , 𝑢𝑖(𝑥) ∈ 𝐽𝑥 , 𝐽𝑥 ⊆ [0,1] } (5) 

 

and hence 

𝑧𝑇2𝐹𝑆 = ∫  𝑍𝑖 ,
0≤𝑖≤𝐼

𝐼 → ∞ (6) 

 

In case of a discrete and finite universe of discourse, this is expressed as: 

𝑧𝑇2𝐹𝑆 = ∑  𝑍𝑖   
0≤𝑖≤I

 (7) 

 

Note that ʃ and ∑ both represent operations of union on the zT2FS, for continuous and discrete 

cases of slices 𝑍𝑖, respectively. The work in [23], provides further definitions of the z slices 

operations. 

2.3. IAA 

Zadeh’s concept of Computing With Words (CWW) [34] led to the conclusion that there was a 

need to operate with a fuzzy set able to capture semantic uncertainties of words. Advantages of 

using T2FSs with CWW have been extended to capture the word’s uncertainties inherent in 

peoples’ opinions collected through interval valued surveys. Various techniques have been 

developed for accurately capturing people’s opinions about words and concepts using interval 

survey tools to create a fuzzy-based model. The rationale for the design of an interval based survey 



is to capture uncertainties of the responses using interval valued data. The study in [35] emphasised 

the potential significance of collecting the responses in the form of intervals as they were efficient 

in handling of uncertainties that might be inherent in individual responses. These uncertainties 

may arise from a variety of factors, including different levels of knowledge or information 

available to the respondent, inherent randomness, variability or vagueness in the answer due to 

different points of view or context. Miller et al. [36] proposed an approach for using interval-

valued data obtained from a survey to construct zT2FSs. This approach, named IAA, captures both 

uncertainties in fuzzy sets, intra and inter uncertainties, without losing any information either by 

reprocessing data or by removing outliers. Here, the inter uncertainty refers to the opinion variation 

between a group of experts and intra uncertainty refers to the variation that a given expert has in 

his/her opinions over time and in different contexts. The resulting zT2FS includes all the 

information obtained from the data and, hence, it is well suited for reasoning and decision-making. 

Further, the proposed approach provides a distinction between intra and inter uncertainties 

represented in two different axes compared to other proposed methods, as in [37] [38], where all 

the uncertainties are captured in the Footprint of Uncertainty and the third dimension is ignored 

[39]. IAA reduces the need for pre-assuming the type of membership function during the creation 

of the model. Instead, it generates the desired fuzzy sets from the available data. Consequently, 

the resultant fuzzy set captures more uncertainties and can include more information [40]. The 

literature review reveals that several applications have used IAA as an approach to accurately 

model uncertainties that were captured as interval valued data and reflected the opinions and 

perceptions of survey participants, for example, [41] and [42].  

The application of IAA for generating zT2FSs from intervals of survey’s responses includes the 

following two phases [28]: 

Phase 1. Intra response uncertainty of each participant surveyed 𝑁 times is represented using a 

T1FS. Each T1FS is generated as the union of all the participant’s response intervals with 

membership 𝑦1 =
1

𝑁
, union of all 2-tuple intersections of the response intervals with associated 

membership degree  𝑦2 =
2

𝑁
, union of all the 3-tuple intersections of response intervals with 

associated membership degree  𝑦3 =
3

𝑁
, generalising to the union of i-tuple intersections with the 

membership degree 𝑦𝑖 =
𝑖

𝑁
, where 𝑖 ∈ {1,2, … , 𝑁} and 𝑁 is the number of surveys [28]. Hence, the 



generated T1FS, 𝐴, resulting from this phase has membership function 𝑢(𝐴) obtained as union of 

intervals associated with membership degrees 𝑦𝑖, 𝑖 =  1, 2, …  𝑁. 

Phase 2. The T1FSs, created in Phase 1 for all surveyed participants, are aggregated based on the 

level of agreement among each tuple of the surveyed participants, generating a zT2FS. A similar 

process to Phase 1 is used to generate z slices [28]. Note that the number of slices is equivalent to 

the number of participants 𝑃. Each slice 𝑍𝑗, 𝑗 ∈ {1,2, … , 𝑃}  has a membership degree  𝑧𝑗 = 𝑗/𝑃 on 

z axis. It is worth noticing that 𝑧𝑗  represents the level of agreement among 𝑃 participants.  The 

resulting zT2FS represents both intra and inter responses in 𝑦 and 𝑧 axes.  

After the former phases, the fuzzy agreement model 𝑍 is generated as follows: 

Z=⋃ Zj 

P

j=1

 (8) 

For further details about using IAA method for generating z slices from crisp interval valued data, 

where the intervals have endpoints obtained from survey responses, the reader is referred to [28]. 

 

3. Non- Iterative Type 2 Fuzzy Reasoning Algorithm with Late Defuzzification (NILD) 

This research proposes a new reasoning algorithm for zT2FCMs where the weights of the edges 

among the concepts are represented by zT2FSs. This new reasoning algorithm is called Non-

Iterative Type 2 Fuzzy Reasoning Algorithm with Late Defuzzification (NILD). The weights are 

obtained using IAA described in Section 2.3. It is worth noting that the structure of zT2FCM used 

here is the same as the structure of FCM mentioned in Section 2.1 (see Fig.1). Furthermore, the 

same symbols  𝐶𝑖, 𝑖 = 1,… ,𝑚 are used to represent concepts and their values. The concepts’ 

values, which are initially singletons, are special cases of T2FSs where both primary and secondary 

membership functions equal to 1, as there is no uncertainty in their initial values. These singleton 

values may be extended to fuzzy sets during the process of reasoning, as will be shown later in this 

section. In a given relation from 𝐶𝑗 to 𝐶𝑖, the value of 𝐶𝑗 (which may be crisp or a T2FS) is used 

to determine the value of 𝐶𝑖 after it is affected by 𝐶𝑗 relation with weight 𝑊𝑖,𝑗. The decision concept 

is 𝐶𝑚 and its initial value is set to zero.  



Considering the structure of zT2FCM illustrated in Fig. 1, NILD comprises three phases to 

accommodate the use of zT2FSs for representing the values of concepts and weights of the 

zT2FCM, as follows: 

Phase 1. The values of all causally linked concepts, with the exception of decision concept 𝐶𝑚, 

are evaluated by considering the concepts’ input values and zT2FSs weights between the concepts. 

Reasoning starts from input concepts 𝐶𝑗, 𝑗 = 1…  𝑚 − 1, to the affected concept 𝐶𝑖, 𝑖 = 1,… ,𝑚. 

The reasoning is carried out by calculating pre- and post values of concept  𝐶𝑖 as follows: 

   𝐶𝑖
(𝑝𝑜𝑠𝑡  )

=    𝐶𝑖
(𝑝𝑟𝑒 )

+∑ (𝐶𝑗  ⋆ 𝑊𝑖,𝑗)
(𝑚−1)

𝑗=1
𝑗≠𝑖

 (9) 

where    𝐶𝑖
(𝑝𝑟𝑒 )

 is the pre value of concept 𝐶𝑖   before it is affected by concepts 𝐶𝑗   and    𝐶𝑖
(𝑝𝑜𝑠𝑡 )

 is 

the post value of concept 𝐶𝑖  after it is affected by concepts 𝐶𝑗, 𝑗 = 1, … ,𝑚 − 1, 𝑗 ≠ 𝑖. Note that 

∑ indicates the aggregation (union) considering the impact of all causal concepts 𝑗 = 1, … , 

𝑚 − 1,  𝑗 ≠ 𝑖 on affected concept i. The union operator used in NILD is defined as follows: 

Let two zT2FSs, 𝐴 and 𝐵, be given, where each of them is generated using IAA. The number of 

slices of 𝐴 and 𝐵 is dependent on the number of the surveyed’ participants and the number of 

survey iterations. For the purpose of this definition, let us assume that 𝐴 and 𝐵 are generated using 

IAA based on responses in the form of intervals from three participants surveyed twice. Hence, 𝐴 

and 𝐵 can be represented as presented in Table 1 and the union (𝐴 + 𝐵) is defined as presented in 

Table 2. 

 

Table 1 

T2FSs A and B 

Slice of 

set A 

Level of 

the slice 
𝑦1 = 0.5 𝑦2 = 1  

Slice of 

set B 

Level of 

the slice 
𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 =
1

3
 [𝑎1, 𝑏1] [𝑐1, 𝑑1]  𝑍1 𝑧1 =

1

3
 [𝑎2, 𝑏2] [𝑐2, 𝑑2] 

𝑍2 𝑧2 =
2

3
 [𝑒1, 𝑓1] [𝑔1, ℎ1]  𝑍2 𝑧2 =

2

3
 [𝑒2, 𝑓2] [𝑔1, ℎ2] 

𝑍3 𝑧3 = 1 [𝑖1, 𝑗1] [𝑘1, 𝑙1]  𝑍3 𝑧3 = 1 [𝑖2, 𝑗2] [𝑘2, 𝑙2] 



 

Table 2  

T2FS A+B 

Slice Level of the slice 𝒚𝟏 = 𝟎. 𝟓 𝒚𝟐 = 𝟏 

𝒁𝟏 𝑧1 =
1

3
 [𝑎1, 𝑏1] ∪ [𝑎2, 𝑏2] [𝑐1, 𝑑1] ∪ [𝑐2, 𝑑2] 

𝒁𝟐 𝑧2 =
2

3
 [𝑒1, 𝑓1] ∪ [𝑒2, 𝑓2] [𝑔1, ℎ1] ∪ [𝑔2, ℎ2] 

𝒁𝟑 𝑧3 = 1 [𝑖1, 𝑗1] ∪ [𝑖2, 𝑗2] [𝑘1, 𝑙1] ∪ [𝑘2, 𝑙2] 

 

A new operator denoted by ⋆  is defined to represent the compatibility of causal node value 𝐴  with 

causal weight 𝐵, which is also a zT2FS, as presented in Table 3. 

 

Table 3 

T2FS 𝐴 ⋆ 𝐵 

Slice Level of the slice 𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 = 1/3 [𝑎1, 𝑏1] ∩ [𝑎2, 𝑏2] [𝑐1, 𝑑1] ∩ [𝑐2, 𝑑2] 

𝑍2 𝑧2 = 2/3 [𝑒1, 𝑓1] ∩ [𝑒2, 𝑓2] [𝑔1, ℎ1] ∩ [𝑔2, ℎ2] 

𝑍3 𝑧3 = 1 [𝑖1, 𝑗1] ∩ [𝑖2, 𝑗2] [𝑘1, 𝑙1] ∩ [𝑘2, 𝑙2] 

 

When 𝐶𝑖  is an input concept, then   𝐶𝑖
(𝑝𝑜𝑠𝑡 ) =    𝐶𝑖

(𝑝𝑟𝑒 )
, because 𝑊𝑖,𝑗 =  0  for all  𝑗 = 1…  𝑚 − 1 

(see the definition of input concept given in Section 2.1). 

To find  𝐶𝑖
(𝑝𝑜𝑠𝑡) in (9), the following steps are performed: 

Step 1:  Find   𝐶𝑗  ⋆ 𝑊𝑖𝑗 (find the impact of causal node 𝐶𝑗 on node 𝐶𝑖 where the weight between 

the two nodes is 𝑊𝑖𝑗) 

For 𝑗 = 1,… ,𝑚 − 1, where 𝐶𝑗 affects 𝐶𝑖 



If 𝐶𝑗  is singleton  Then 

If 𝐶𝑗  ∈ 𝑊𝑖𝑗 Then 

(this means that value 𝐶𝑗   belongs to any 𝑥-interval of 𝑊𝑖𝑗  slices, see Fig. 2 (a)) 

𝑆 = (𝐶𝑗   ⋆ 𝑊𝑖𝑗)  

(where the resultant 𝑆  is a zT2FS that includes those intervals of  𝑊𝑖𝑗 that include 𝐶𝑗  ) 

  Else 𝑆 = 0  (see Fig. 2 (b)) 

  End if 

Else If 𝐶𝑗 is zT2FS Then 

𝑆 = 𝐶𝑗   ⋆ 𝑊𝑖𝑗 (S is calculated as defined in Table 3 when both 𝐶𝑗 and  𝑊𝑖𝑗 are zT2FSs) 

End If 

End for 

Step 2: Find  𝐶𝑖
(𝑝𝑟𝑒) + 𝑆 (Find the value of node, 𝐶𝑖

(𝑝𝑜𝑠𝑡) , considering its value before and after 

the impact of other nodes. Note that + indicates the union, i.e. the aggregation of impacts). 

This step depends on the resultant zT2FS S calculated in Step 1, as considered in the following 

two cases: 

Case 1: S has a slice where 𝑦 = 1 and 𝑧 = 1  

If  𝐶𝑖
(𝑝𝑟𝑒)  belongs to 𝑥-interval of S where 𝑦 = 1 and 𝑧 = 1 Then (see Fig. 2 (c)) 

𝑆 = 𝐶𝑖
(𝑝𝑟𝑒) + 𝑆  

𝐶𝑖
(𝑝𝑜𝑠𝑡) = 𝑆  

Else 𝑥-interval of S where 𝑦 = 1 and 𝑧 = 1 is extended to include 𝐶𝑖
(𝑝𝑟𝑒)  as follows: 

Let us assume that 𝑥-interval of S where 𝑦 = 1 and  𝑧 = 1 is an interval (𝑎, 𝑏): 

If 𝐶𝑖
(𝑝𝑟𝑒) < 𝑎 Then 

𝑥-interval of S becomes 𝑆 = (𝐶𝑖
(𝑝𝑟𝑒) , 𝑏) (see Fig. 2 (d)) 

Else If 𝐶𝑖
(𝑝𝑟𝑒) > 𝑏 Then 

𝑥-interval of S becomes 𝑆 = (𝑎, 𝐶𝑖
(𝑝𝑟𝑒) ) 



            End If  

 𝐶𝑖
(𝑝𝑜𝑠𝑡) = 𝐶𝑖

(𝑝𝑟𝑒) + S 

      End If 

Note that in Case 1, 𝐶𝑖
(𝑝𝑜𝑠𝑡) becomes zT2FS. 

Case 2: 𝑆 does not have a slice where 𝑦 = 1 and 𝑧 = 1  

Add to S a slice ((𝐶𝑖
(𝑝𝑟𝑒) , 𝐶𝑖

(𝑝𝑟𝑒 )), 1, 1) 

(this means to add a singleton 𝐶𝑖
(𝑝𝑟𝑒)  with y = 1 and z = 1) 

𝐶𝑖 
(𝑝𝑜𝑠𝑡) = 𝐶𝑖

(𝑝𝑟𝑒) 
+ 𝑆, (where 𝐶𝑖 

(𝑝𝑜𝑠𝑡) is a zT2FS, and  𝐶𝑖
(𝑝𝑟𝑒) + 𝑆 is calculated as the union 

of two zT2FSs, as defined in Table 2) 

The former steps, Step 1 and Step 2, show that after 𝐶𝑗 impacts 𝐶𝑖, the value of  𝐶𝑖
(𝑝𝑜𝑠𝑡) is either a 

singleton (crisp), or a zT2FS. Note that in (9) when  𝐶𝑖
(𝑝𝑟𝑒 )

 is crisp and ∑ (𝐶𝑗  ⋆ 𝑊𝑖,𝑗)
(𝑚−1)
𝑗=1
𝑗≠𝑖

= 0, 

 𝐶𝑖
(𝑝𝑜𝑠𝑡) becomes crisp also. 

In Phase 1, the post values of all concepts except the decision concept are calculated.  

 

Phase 2. The result of the reasoning algorithm in Phase 1 is used to determine the value of the 

decision concept 𝐶𝑚 as follows (note that the initial value of  𝐶𝑚 = 0). The value of the decision 

concept 𝐶𝑚 is determined based on the weights  𝑊𝑚𝑖  of the edges from the concepts 𝐶𝑖 , 

𝑖 = 1,2, … ,𝑚 − 1, with values  𝐶𝑖
(𝑝𝑜𝑠𝑡)

determined in Phase 1, to decision concept 𝐶𝑚. Therefore, 

it is calculated as: 

𝐶𝑚
(𝑝𝑜𝑠𝑡) = 𝐶𝑚

(𝑝𝑟𝑒)  
⏟  
=0

+∑ (𝐶𝑖
(𝑝𝑜𝑠𝑡)

⋆ 𝑊𝑚𝑖)
(𝑚−1)

𝑖=1
 (10) 

where (𝐶𝑖
(𝑝𝑜𝑠𝑡)

⋆ 𝑊𝑚𝑖) is calculated as in Phase 1, Step 1 and ∑ of z2TFSs is defined in Table 2. 

Therefore, 𝐶𝑚
(𝑝𝑜𝑠𝑡)

 is also a zT2FS. 



 

Fig. 2. Phase 1 of NILD algorithm 

 

Phase 3. The zT2FS that represents the post value of 𝐶𝑚, 𝐶𝑚
(𝑝𝑜𝑠𝑡)

, is defuzzified at the end of the 

reasoning by using the centroid defuzzification method for z slices as presented in [23]; hence 

𝐶
 𝐶𝑚
(𝑝𝑜𝑠𝑡) =∑𝑧𝑖 ∗ 𝐶𝑍𝑖

𝑁

𝑖=1

 (11) 



 

where 𝐶
 𝐶𝑚
(𝑝𝑜𝑠𝑡) is the centroid of  𝐶𝑚

(𝑝𝑜𝑠𝑡)
  and 𝐶𝑍𝑖 is the centroid of each 𝑍𝑖 slice in 𝐶𝑚

(𝑝𝑜𝑠𝑡)
. 

It can be noted that by applying Phase 1 and Phase 2 of NILD, the uncertainty of both concepts 

and weights is captured by postponing any defuzzification until the end of the reasoning. This is 

the novelty of this algorithm compared to the conventional reasoning of FCMs where the values 

of weights and concepts are crisp due to their early defuzzification, and, therefore, most of the 

information captured in zT2FSs may be lost. Therefore, the NILD reasoning algorithm supports 

preservation and propagation of information and input uncertainties, which affect the value of the 

decision outcome, till the end of the reasoning process to. 

 

4. Evaluation of NILD Effectiveness 

To evaluate the effectiveness of the proposed NILD algorithm in processing uncertainties in human 

decision making, a real-world problem of evaluating a module performance (MP) was considered. 

In every academic institution, the MP is a very important indicator that influences students’ 

progression on a course. In most institutions, the decision about the MP relies on simple statistics 

of the modules, such as marks average and marks’ standard deviation. This may not capture the 

importance and causal influence of different factors affecting the MP as well as account for the 

subjective decision makers (lecturers) points of view related to it. FCMs have the potential to 

capture the interplay of these factors. 

We conducted experiments using real data of 30 mathematical modules offered in the Department 

of Mathematics and Applied Sciences (MASC) at Middle East College (MEC), Oman. MP results 

were obtained by using different methods for evaluating MPs, including: 

1) the Student Information System (SIS) and the Traffic Light System (TLS), currently used at 

MEC to calculate MPs, based on a statistical approach, 

2) a zT2FCM and NILD algorithm proposed; we explain how the data on the 30 modules were 

collected and used to construct the zT2FCM and how the NILD algorithm was applied for 

reasoning and generating the MPs for the modules, 



3) a T1FCM constructed using the collected data with the iterative reasoning algorithm given in 

(2), 

4) using MEC’s lecturers’ subjective opinions of the MP of the selected modules. 

 

4.1. Student Information System and Traffic Light System in MEC 

In MEC, the results that students achieved in each of their taught modules at the end of each 

semester were recorded in the SIS and the following statistical summaries were calculated: CW - 

the total result for the coursework, ESE – the total end semester examination result, MP - the 

average of both CW and ESE, SD - standard deviation of the results, PP - pass percentage, and 

ATT - the attendance of students in each module. The MPs were evaluated using the TLS that 

relied on the statistical attributes PP and SD only to appraise the performance of the module. The 

TLS classified MP into three colour codes: Green, Amber and Red using the ranges for PP and 

SD, as given in Table 4. 

Table 4  

TLS colour code 

Colour PP SD MP 𝑆1 

Green ≥ 90% 8 − 12 66.6 ≤ MP ≤ 100 0.833 

Amber 80%− 89% 5 − 8  or 12 − 16 33.33 < MP < 66.6 0.5 

Red < 80% < 5  or > 16 0 ≤ MP ≤ 33.33 0.1667 

 

As per the practice at MEC, the colour code assignment of a module was based on the results 

falling within both the PP and SD ranges of the colour. In case the result did not fall in both ranges 

of the colour, the SD was considered to assign the performance colour code to the module. For 

example, if a module had PP of 72% and SD of 27.49, then both conditions were satisfied, and the 

performance classification of the module was Red. However, if a module had a PP of 81.25% and 

SD of 16.55, then the performance colour code of the module was still classed as Red, due to its 

SD value, rather than Amber.  



To compare the results obtained from the TLS with results obtained by using the zT2FCM and 

NILD with the T1FCM using the reasoning method given in (2), the scale of the MP score, from 

0 to 100, was split into three equal length intervals for the three possible colour codes. The colour 

of each module was mapped into a corresponding interval as shown in Table 4. Centroid 𝑆1 of 

each interval was obtained as the midpoint of the interval. 

For testing purposes, data was collected from the SIS for 30 randomly selected modules including 

the modules’ ATT, CW and ESE. After collecting data, the modules’ colours that reflected MPs 

were determined using the TLS. They were mapped into the corresponding intervals and their 

centroids 𝑆1 were obtained as shown in Table 11. 

4.2. Construction of MPFCM - a zT2FCM for evaluating module performance 

4.2.1. Nodes 

The zT2FCM for evaluating module performance, named Module Performance FCM – MPFCM, 

was constructed as follows. The process of constructing MPFCM started with determining the 

nodes that represented the main concepts required for evaluating MP. Thus, three lecturers from 

MEC discussed and agreed on factors that impacted MP. Consequently, these factors were used as 

concepts in the MPFCM. The resulting concepts were identified as follows: ATT - attendance, 

CW – total coursework result and ESE – total end semester examination result, as causal concepts, 

and MP as the decision concept. The lecturers then decided on how the concepts casually 

interrelated within the MPFCM based on their domain experiences. In this way, the MPFCM, 

which consisted of four nodes that represented the identified concepts and four edges representing 

the interrelations among these concepts, was constructed (see Fig. 3). 



 

Fig. 3.  MPFCM 

 

4.2.2. Weights 

To determine the weights of the interrelation edges among the four identified concepts, an interval-

valued survey of four questions was designed, one for each of the four interrelations among the 

MPFCM’s concepts. Each question, given in Appendix A, was related to the identified edge among 

each two concepts. The survey was administered, where for each question, the three lecturers were 

asked to represent their opinions about the impact of causal concept 𝐶𝑗 to affected concept 𝐶𝑖. For 

instance, in Question 1, they were asked how ATT impacted ESE and their replies were used to 

determine the weight  𝑊𝐸𝑆𝐸,𝐴𝑇𝑇. Lecturers answered each question by drawing an ellipse on a 

Likert scale ranging from 0 to 100. This ellipse represented their uncertainty about the weight of 

the edge between the two concepts. An example of answering a question on the impact of 

Attendance on the Total End Semester Examination result is shown in Fig. 4, where the response 

of one of the lecturers was given as interval [30, 65]. 

 

Fig. 4. Example of responses on a Likert scale 

 



The survey was repeated after a period of four weeks when the same lecturers were surveyed again 

to capture their intra uncertainty about their assigned weights among the concepts. The literature 

reveals that repeatedly surveyed people may provide differing responses as they may have better 

information or details about the issue or increased/decreased uncertainty resulting in differing 

ellipse endpoints (intervals) derived from their responses [28], [36]. As such, it was expected that 

the lecturers might have provided differing evaluations of the weights among the concepts.  

The obtained intervals for each question were extracted from the survey and aggregated to capture 

intra and inter uncertainties of the lecturers in assigning the weight between each two causally 

linked concepts in MPFCM. The intervals were aggregated using IAA as detailed in Section 2.3, 

when 𝑃 = 3 and  𝑁 = 2, as three lecturers were surveyed twice. Hence, the generated weights 

between each of two concepts were represented as zT2FSs.  The weights among the concepts in 

the defined MPFCM structure (see Fig. 3), namely 𝑊CW,𝐴𝑇𝑇,  𝑊ESE,𝐴𝑇𝑇 , 𝑊𝑀𝑃,𝐶𝑊 and  𝑊𝑀𝑃,𝐸𝑆𝐸  as 

zT2FSs were obtained by using IAA, and are presented in Table 5.  

 

Table 5  

Weights of MPFCM 

Weight Slice Level 𝑦1 = 0.5 𝑦2 = 1 

𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 

𝑍1 𝑧1 = 1/3 [0.15,0.75] [0.15,0.35] ∪ [0.40,0.75] 

𝑍2 𝑧2 = 2/3 [0.37,0.72] [0.40,0.70] 

𝑍3 𝑧3 = 1 [0.38,0.45] 𝜙 

𝑊𝐶𝑊,𝐴𝑇𝑇 

𝑍1 𝑧1 = 1/3 [0.05, 0.42] ∪ [0.47, 0.82] [0.12, 0.40] ∪ [0.50, 0.80] 

𝑍2 𝑧2 = 2/3 [0.20, 0.40] [0.28. 0.38] 

𝑍3 𝑧3 = 1 𝜙 𝜙 

𝑊𝑀𝑃,𝐶𝑊 

𝑍1 𝑧1 = 1/3 [0.33, 0.88] [0.40, 0.80] 

𝑍2 𝑧2 = 2/3 [0.38, 0.75] [0.45, 0.65] 

𝑍3 𝑧3 = 1 [0.60, 0.72] [0.60, 0.65] 

𝑊𝑀𝑃,𝐸𝑆𝐸 

𝑍1 𝑧1 = 1/3 [0.38, 0.90] [0.55, 0.80] 

𝑍2 𝑧2 = 2/3 [0.50,0.85] [0.65, 0.75] 

𝑍3 𝑧3 = 1 [0.58, 0.77] [0.68, 0.72] 

 



After constructing MPFCM, the data collected from the SIS for the 30 selected modules were used 

as initial values of the concepts of MPFCM. The new NILD reasoning algorithm was applied with 

the data of each of the 30 modules to calculate the values of the decision concept MP. The decision 

concept values were in the form of zT2FSs, which were defuzzified as given in formula (11), to 

obtain their centroids 𝑆2, (see Table 11). 

4.2.3. Example of reasoning in MPFCM 

In this section, an example of calculating MP for one of the modules using the new reasoning 

NILD algorithm is presented.  Data collected from the SIS for Module 22 were as follows: 𝐶𝑊 =

0.796, 𝐸𝑆𝐸 = 0.72 and 𝐴𝑇𝑇 = 0.81.  

Note that these values represented the pre values of the MPFCM’s concepts CW, ESE and ATT, 

respectively. Using the MPFCM shown in Fig. 3 and the NILD phases detailed in Section 3, we 

obtained post values 𝐴𝑇𝑇 (𝑝𝑜𝑠𝑡), 𝐶𝑊 (𝑝𝑜𝑠𝑡), 𝐸𝑆𝐸 (𝑝𝑜𝑠𝑡),  and 𝑀𝑃 as follows: 

𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) = 𝐴𝑇𝑇(𝑝𝑟𝑒) = 0.81, as 𝐴𝑇𝑇 was the input concept that was not affected by other 

concepts (Phase 1 of NILD algorithm) and, thus, its post value was equal to its pre value. 

𝐶𝑊(𝑝𝑜𝑠𝑡) = 𝐶𝑊(𝑝𝑟𝑒) + (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇), where 𝐶𝑊(𝑝𝑟𝑒) = 0.796. As 𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) ∈

𝑊𝐶𝑊,𝐴𝑇𝑇, i.e., belonged to 𝑍1 slice, with degree 𝑦1 = 0.5, based on Phase 1, Step 1 of NILD, 

(𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇) became the zT2FS, as given in Table 6. As 

(𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐶𝑊,𝐴𝑇𝑇) does not have a slice where y = 1 and z = 1, using Step 2, Case 2 in 

Phase 1, slice ((0.796, 0.796), 1, 1,) was added and  𝐶𝑊(𝑝𝑜𝑠𝑡) became zT2FS as presented in 

Table 7. 

𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) was calculated as follows: 

𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) = 𝐸𝑆𝐸(𝑝𝑟𝑒) + (𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇)  

As 𝐴𝑇𝑇(𝑝𝑜𝑠𝑡) ∉ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 based on Phase 1, Step 1 of the NILD algorithm, 

𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇  = 0 and, therefore, 𝐸𝑆𝐸(𝑝𝑜𝑠𝑡) = 0.72 + 0 = 0.72. 

 



Table 6 

𝐴𝑇𝑇(𝑝𝑜𝑠𝑡)  ⋆𝑊𝐶𝑊,𝐴𝑇𝑇 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 = 1/3 [0.47, 0.82] 𝜙 

𝑍2 𝑧2 = 2/3 𝜙 𝜙 

𝑍3 𝑧3 = 1 𝜙 𝜙 

 

Table 7 

𝐶𝑊(𝑝𝑜𝑠𝑡) 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 = 1/3 [0.47, 0.82] 𝜙 

𝑍2 𝑧2 = 2/3 𝜙 𝜙 

𝑍3 𝑧3 = 1 𝜙 [0.796, 0.796] 

 

Following Phase 2 of the reasoning algorithm, MP of Module 22 was calculated as follows: 

𝑀𝑃(𝑝𝑜𝑠𝑡) = 𝑀𝑃(𝑝𝑟𝑒) + ((𝐶𝑊(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝑀𝑃,𝐶𝑊) + (𝐸𝑆𝐸
(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝑀𝑃,𝐸𝑆𝐸)) 

where 𝑀𝑃(𝑝𝑟𝑒) = 0.  

By following Phase 1, Step 1 of the reasoning algorithm, the z slices of (𝐶𝑊(𝑝𝑜𝑠𝑡)  ⋆ 𝑊(𝑀𝑃,𝐶𝑊)) 

and (𝐸𝑆𝐸(𝑝𝑜𝑠𝑡)  ⋆ 𝑊(𝑀𝑃,𝐸𝑆𝐸)) were obtained as presented in Table 8 and Table 9, respectively. 

Following Phase 2 and Phase 3 of the reasoning algorithm, MP was calculated and then defuzzified 

to a crisp value using centroid of z slices, as presented in Table 10.  

Hence, 𝑀𝑃(𝑝𝑜𝑠𝑡) = 0.6869. 

Therefore, the performance of the Module 22 is MP = 68.69% 



Table 8 

𝑇2𝐹𝑆 𝐶𝑊(𝑝𝑜𝑠𝑡)  ⋆ 𝑊𝑀𝑃,𝐶𝑊 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 = 1/3 [0.47,0.82] 𝜙 

𝑍2 𝑧2 = 2/3 𝜙 𝜙 

𝑍3 𝑧3 = 1 𝜙 𝜙 

 

Table 9 

𝑇2𝐹𝑆 𝐸𝑆𝐸(𝑝𝑜𝑠𝑡)  ⋆𝑊𝑀𝑃,𝐸𝑆𝐸 

Slice Level 𝑦1 = 0.5 𝑦2 = 1 

𝑍1 𝑧1 = 1/3 [0.38,0.9] [0.55, 0.8] 

𝑍2 𝑧2 = 2/3 [0.5,0.85] [0.65, 0.75] 

𝑍3 𝑧3 = 1 [0.58, 0.77] [0.68, 0.72] 

 

Table 10 

MP 

Slice 
Level of 

the slice 
𝑦1 = 0.5 𝑦2 = 1 

Centroid 

of the slice 

Overall 

centroid 
 

𝑍1 𝑧1 =
1

3
 [0.38,0.9] [0.55,0.8] 

1

3
/0.6633 

 

 

0.6869 

 

 

 

𝑍2 𝑧2 =
2

3
 [0.5,0.85] [0.65,0.75] 

2

3
/0.6917  

𝑍3 𝑧3 = 1 [0.58,0.77] [0.68,0.72] 1/0.6917  

 

 

 



4.3. T1FCM 

As mentioned earlier, to test the effectiveness of the proposed reasoning algorithm for zT2FCMs, 

it was compared with a T1FCM using the standard iterative reasoning algorithm given in (2). 

Therefore, a T1FCM was created for evaluating MP of modules and then compared with MPFCM. 

This T1FCM had the same structure as the MPFCM (see Fig. 3). It consisted of the same four 

concepts and four causal relations. However, the weights were represented by T1FSs which were 

defuzzified to crisp values that can be used in the reasoning algorithm given in (2). To obtain the 

weights of the T1FCM, the intervals obtained from the second iteration of the original survey were 

used to generate T1FSs, as it was assumed that by this time lecturers had a better understanding 

about the survey’s context. The obtained response intervals of the three lecturers for each causal 

relation were aggregated using IAA. A T1FS for each causal relation was determined in such a 

way that the intersection of all three response intervals had a membership degree of 1, the union 

of intersections of each 2 response intervals had a membership degree of 2/3 and the union of all 

three response intervals had a membership degree of 1/3. The created T1FS for each causal relation 

modelled the agreement between the lecturers and represented its weight. The derived weights 

were defuzzified to obtain crisp weights and by doing this, the T1FCM was prepared for reasoning 

using the iterative reasoning algorithm given in (2). The T1FCM used the concept values obtained 

from the SIS for all the modules that had been considered for reasoning in MPFCM. The iterative 

reasoning algorithm was run in eight iterations, i.e., until the value of MP converged. The value 

 𝑆3 of decision concept MP in the T1FCM was obtained as a singleton between 0 and 1, for each 

of the 30 modules, as shown in Table 11. 

 

4.4. Lecturers’ opinions about the modules’ performance 

As there is no ground truth data for determining MP, to evaluate the effectiveness of the MPFCM, 

and hence demonstrate the effectiveness of the NILD algorithm proposed for zT2FCMs, the MPs 

generated by the methods using MPFCM, T1FCM and the TLS were compared with the MPs 

evaluated subjectively by lecturers. For this reason, an interval-valued survey designed for 

generating the zT2FSs (see Appendix B) was used to survey the same three lecturers from MEC 

to represent their opinions based on experiences, about the performance of the 30 modules under 

consideration, given the module’s statistics: MP, SD and ATT. As in the former survey, the 



lecturers represented their opinions by drawing an ellipse on a Likert scale in the range from 0 to 

100. After collecting the opinions from the lecturers, given as a percentage, they were converted 

into values between 0 and 1 to make them suitable for being represented as fuzzy sets. After 

extracting the intervals from each lecturer, IAA was applied to create a fuzzy agreement model of 

the three lecturers, as explained in Section 2.3. After applying IAA on the lecturers’ opinions for 

each module, the centroid 𝑆4 was calculated by defuzzifying the resulting fuzzy set for each 

module, as presented in Table 11. Therefore, in this experiment the lecturers acted as both the 

experts who designed MPFCM and who evaluated the performance of each of the modules based 

on the module’s results. The rationale for this was to determine to what extent the newly proposed 

zT2FCM’s reasoning algorithm NILD produced outputs that corresponded to that of the decision 

makers and to validate its ability to mimic human reasoning within this application domain.  

 

5. Comparison of the results 

The lecturers’ evaluations of MPs were used as the benchmark for comparison between the other 

methods used to evaluate MPs, namely MPFCM, T1FCM and the TLS. The rationale of this was 

to determine which of the methods used had the highest correlation with the lecturers (decision 

makers) opinions, and hence was more capable of processing uncertainties in the human reasoning 

process. The correlation of the results obtained from each of the compared methods was calculated 

using the coefficient of Pearson correlation (𝜌) . The value of 𝜌 reflects the strength/association 

of the relation between two variables as follows; 0 < 𝜌 < 0.3  represents a small correlation, 

 0.3 ≤ 𝜌 < 0.5  represents medium correlation and 0.5 ≤ 𝜌 ≤ 1 represents high correlation [43]. 

For this purpose, the defuzzified outputs (centroids) 𝑆1,  𝑆2,  𝑆3 and 𝑆4 of the 30 modules were 

obtained for the four methods, namely TLS, MPFCM, T1FCM and lecturers’ outputs, respectively, 

as shown in Table 11. The lecturers’ evaluation outputs  𝑆4  were used as the benchmark for the 

comparison. 

 

 

 



Table 11 

Defuzzified outputs of the methods applied 

Module 
𝑆1 
TLS 

𝑆2 
MPFCM 

𝑆3 
T1FCM 

𝑆4 
Lecturers 

1 0.1667 0.4363 0.8636 0.6773 

2 0.1667 0.4513 0.8592 0.6793 

3 0.1667 0.6697 0.8584 0.6708 

4 0.1667 0.2728 0.8584 0.5774 

5 0.1667 0.6350 0.8585 0.6421 

6 0.1667 0.1083 0.8576 0.6165 

7 0.1667 0.4431 0.8582 0.7151 

8 0.5000 0.4514 0.8596 0.7938 

9 0.1667 0.2906 0.8584 0.5571 

10 0.1667 0.2808 0.8588 0.7021 

11 0.5000 0.2875 0.8586 0.7395 

12 0.1667 0.2371 0.8576 0.5529 

13 0.1667 0.1622 0.8599 0.5349 

14 0.1667 0.4364 0.8587 0.6813 

15 0.5000 0.4365 0.8587 0.6976 

16 0.1667 0.2875 0.8570 0.8038 

17 0.1667 0.2783 0.8582 0.7751 

18 0.1667 0.6089 0.8583 0.6920 

19 0.1667 0.2850 0.8583 0.4592 

20 0.1667 0.4142 0.8579 0.5869 

21 0.5000 0.2783 0.8582 0.6448 

22 0.1667 0.6869 0.8575 0.7573 

23 0.1667 0.2783 0.8585 0.6132 

24 0.1667 0.2783 0.8578 0.5882 

25 0.1667 0.4879 0.8574 0.6064 

26 0.1667 0.6350 0.8577 0.6372 

27 0.5000 0.2808 0.8582 0.6508 

28 0.1667 0.1828 0.8571 0.6361 

29 0.5000 0.4514 0.8586 0.6361 

30 0.1667 0.2906 0.8578 0.5412 

 

Pearson correlation 𝜌 between outputs  𝑆4 and outputs  𝑆1,  𝑆2, and 𝑆3 of the TLS, MPFCM and 

T1FCM results, respectively, were calculated, as presented in Table 12.  

 



Table 12  

Correlation results between lecturers’ evaluations and 

the results of the TLS, MPFCM and T1FCM 

𝜌(𝑆4,𝑆1) 𝜌(𝑆4,𝑆2) 𝜌(𝑆4,𝑆3) 

0.28 0.34 0.08 

 

The results indicated that the correlation between the lecturers’ evaluations and MPFCM was 

moderate with a value of 0.34, which was higher than the correlation between the lecturers and 

the TLS and T1FCM with 𝜌 values of 0.28 and 0.08, respectively. The 𝜌 values show that the 

proposed MPFCM had a greater agreement with the lecturers’ evaluations due to a higher 

correlation with their decisions as compared to the other methods. Accordingly, we concluded that 

the zT2FCM with NILD algorithm had a greater agreement with human evaluations compared to 

the conventional FCM (T1FCM) and the statistical approach (the TLS). 

To further investigate the ability of NILD in preserving and propagating uncertainties derived from 

the changes in uncertainty of participants’ responses, a sensitivity analysis was conducted as 

discussed in Section 6. 

 

6. Sensitivity Analysis 

There are papers reported in the literature that have analysed propagation of uncertainty within 

models in general. For example, [44] compared six methods for uncertainty propagation used to 

estimate the distribution of model outputs, assuming that input parameters had specific probability 

distributions. Furthermore, [45] considered propagation of uncertainty modelled as intervals. Here 

authors provided a theoretical study on the relation between the widths of the input intervals and 

the output interval, proposing operations on interval-valued data. However, to the best of our 

knowledge, there are no papers that focus on uncertainty propagations in FCMs. 

We decided to conduct a practical examination on uncertainty propagation in FCMs to obtain 

insights on how NILD algorithm propagates uncertainty in weights. To better understand how a 

change in the weights of a zT2FCM affects the value of the decision concept when using NILD 



algorithm, we performed sensitivity analysis by changing the uncertainty of each weight in 

MPFCM by 𝛿, where 𝛿 = 0.01, 0.025, 0.05, 0.07, and 0.1. This meant that the response intervals 

for each question from each lecturer was extended by the above values of 𝛿 and then aggregated 

to produce the corresponding weights in the form of zT2FSs using IAA, as described in Section 

2.3. This emulated increasing uncertainty of each weight as the widths of the response intervals 

were increased [35],[36]. These experiments aimed to analyse if there was a relationship between 

uncertainty changes of MPFCM’s weights and the output value of the decision concept MP. Hence 

the weights represented the independent variables, and the decision concept represented the 

dependent variable. 

 

Table 13  

Output values of MP after changing the uncertainty in 𝑊𝑀𝑃,𝐶𝑊 by  𝛿 

Module 

Output of MP 

with original 

values of 

weights 

Output of MP 

when the 

uncertainty of 

WMP,CW was 

changed by 

δ = 0.01 

Output of MP 

when the 

uncertainty of 

WMP,CW was 

changed by 

δ = 0.025 

Output of MP 

when the 

uncertainty of 

WMP,CW was 

changed by 

δ = 0.05 

Output of MP 

when the 

uncertainty of 

WMP,CW was 

changed by 

δ = 0.07 

Output of MP 

when the 

uncertainty of 

WMP,CW was 

changed by 

δ = 0.1 

1 0.4363 0.4350 0.4340 0.4305 0.4294 0.6027 

2 0.4513 0.4510 0.4420 0.4425 0.4425 0.4277 

3 0.6697 0.6680 0.6670 0.6638 0.6077 0.6027 

4 0.2727 0.2720 0.2720 0.6027 0.6027 0.6027 

5 0.6350 0.6330 0.6420 0.6055 0.6077 0.6027 

6 0.1105 0.1105 0.1105 0.1105 0.3483 0.3483 

7 0.4430 0.4427 0.4544 0.4305 0.4294 0.4277 

8 0.4513 0.4511 0.4508 0.4508 0.4425 0.4425 

9 0.2905 0.6080 0.6069 0.6055 0.6044 0.6027 

10 0.2808 0.2800 0.2784 0.6055 0.6044 0.6027 

11 0.2875 0.2870 0.2866 0.2775 0.2738 0.2722 

12 0.2393 0.2390 0.2393 0.2393 0.2393 0.2393 

13 0.1622 0.1622 0.1622 0.2722 0.2722 0.6027 

14 0.4363 0.4355 0.4340 0.4305 0.6077 0.6027 

15 0.4363 0.4355 0.4340 0.6111 0.6077 0.6027 

16 0.2952 0.2952 0.2952 0.2952 0.2997 0.2952 

17 0.2783 0.2725 0.2763 0.2750 0.6044 0.6027 

18 0.6088 0.6080 0.6069 0.6055 0.6044 0.6027 

19 0.2850 0.2847 0.2844 0.2844 0.2844 0.6027 

20 0.4141 0.4122 0.4094 0.4052 0.4019 0.6027 

21 0.2783 0.2775 0.2763 0.2750 0.6044 0.6027 

22 0.6869 0.6869 0.6869 0.6869 0.6869 0.6869 

23 0.2783 0.2775 0.6069 0.6055 0.6044 0.6027 

24 0.2783 0.2775 0.6069 0.6055 0.6044 0.6027 

25 0.5068 0.5068 0.5068 0.5068 0.5068 0.5068 

26 0.6350 0.6330 0.6423 0.6144 0.6077 0.6027 

27 0.2808 0.2800 0.2784 0.6055 0.6044 0.6027 

28 0.1827 0.1833 0.1827 0.1827 0.1827 0.4287 

29 0.4513 0.4511 0.4508 0.4425 0.4425 0.4302 

30 0.2905 0.2897 0.2886 0.6055 0.6044 0.6027 



 

The method developed for conducting the sensitivity analysis of MP for each module included the 

following steps: 

Step 1: The uncertainty of response intervals of each question, given by the lecturers, were changed 

by extending interval boundaries by 𝛿, while keeping the centres of the intervals the same. 

Step 2: The intervals produced in Step 1 were aggregated using IAA to generate the zT2FS for 

each MPFCM weight. 

Step 3: The value of the decision concept MP for each module was determined by considering one 

changed weight while keeping the remaining weights the same and using NILD algorithm. 

Step 4: Steps 1, 2 and 3 were repeated for all the MPFCM weights. 

For example, the output values of the decision concept MP for each module after changing the 

uncertainty of the weight 𝑊𝑀𝑃,𝐶𝑊 by corresponding 𝛿 values are presented in Table 13. 

Based on the analysis of the obtained results, the following conclusions were made: 

1) The change of uncertainty of 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 by 𝛿 = 0.01  and 0.025 did not affect the value of MP. 

Changing its uncertainty by 𝛿 = 0.05, 0.07 and  0.1 changed the value of MP only for a small 

number of modules (6 out of 30). The Pearson correlation coefficient between the original values 

of MP and its values after changing the uncertainty of 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 was 1 when 𝛿 = 0.01  and 0.025 , 

which represented a strong association. It started declining slightly when 𝛿 = 0.05, 0.07 and 0.1, 

from 0.97 to 0.9, as these changes affected a small number of modules. 

2) The change of uncertainty of 𝑊𝐶𝑊,𝐴𝑇𝑇 by 𝛿 = 0.01 affected the value of MP for some modules. 

With higher increases of 𝛿, from 0.025 to 0.1, the values of MP were changed for almost 90% of 

the modules. The Pearson correlation coefficient between the original values of MP and its values 

after changing the uncertainty of 𝑊𝐶𝑊,𝐴𝑇𝑇 was 0.98 when δ = 0.01 and this started declining 

when 𝛿 was increased; however, this still reflected a high association. 

Although the weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇 linked the input concept and the intermediate 

concepts, it could be observed that the impact of changing uncertainty of 𝑊𝐶𝑊,𝐴𝑇𝑇 was a fraction 

higher than the impact when  𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 was changed. The reason for this could be that the level of 



agreement (overlapped intervals) in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 was a fraction higher than the agreement in 𝑊𝐶𝑊,𝐴𝑇𝑇 

(see Table 5). Hence, the influence of increasing uncertainty of 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 was smaller.  

3) The change of uncertainty of 𝑊𝑀𝑃,𝐶𝑊 by 𝛿 = 0.01  and 0.025  slightly affected the value of 

MP for some modules. However, by increasing  𝛿 further, there was a noticeable change in MP 

values for most modules. The Pearson correlation coefficient between the original values of MP 

and its values after changing the uncertainty of 𝑊𝑀𝑃,𝐶𝑊 was 0.93, when δ = 0.01. This declined by 

increasing δ to reach 0.32, when δ = 0.1. Hence, the correlation between the values declined from 

a high (0.93) to a medium (0.32) correlation.  

4) The change of uncertainty of 𝑊𝑀𝑃,𝐸𝑆𝐸 affected the value of MP for most modules. By increasing 

δ, the Pearson correlation coefficient between the original values of MP and its values after the 

changes declined from 0.91 to 0.69. Thus, it could be concluded that this association was still high. 

However, the impact of changing uncertainty of 𝑊𝑀𝑃,𝐶𝑊 was higher than the impact when 

uncertainty of 𝑊𝑀𝑃,𝐸𝑆𝐸 was changed. This could be explained as follows. There was more 

uncertainty originally in the agreement in 𝑊𝑀𝑃,𝐶𝑊 than in 𝑊𝑀𝑃,𝐸𝑆𝐸  (as widths of the intervals 

in 𝑊𝑀𝑃,𝐶𝑊 were higher than in 𝑊𝑀𝑃,𝐸𝑆𝐸). Hence, increasing the uncertainty of 𝑊𝑀𝑃,𝐶𝑊 led to more 

overlaps with other intervals generated from intersection and union of the concept CW 

(CW (post)) and weight 𝑊𝑀𝑃,𝐶𝑊. Consequently, there was a greater effect on the value of MP. 

5) The impact of changing uncertainty of weights of direct edges to MP, such as 𝑊𝑀𝑃,𝐶𝑊 and 

𝑊𝑀𝑃,𝐸𝑆𝐸 , was higher than the impact of changing the uncertainty in the weights of edges between 

the input and intermediate concepts, such as weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇. However, the effect 

of changing uncertainty of 𝑊𝐶𝑊,𝐴𝑇𝑇 (where there was less agreement in its zT2FS and, therefore, 

more uncertainty) was combined with the effect of changing uncertainty of  𝑊𝑀𝑃,𝐶𝑊, hence the 

value of MP was seen to be affected more. 

We also calculated the coefficient of determination  𝑅2 [46], for determining the level to which 

outputs were affected by changes in input uncertainties, based on linear regression. The coefficient 

of determination 𝑅2 was calculated between the original values of MP, when there were no changes 

in the MPFCM weights, and its values when there was a change of δ in a weight, as presented in 

Table 14. The value of 𝑅2 was used to determine the percentage of modules that were not affected 



by changing the uncertainty of a specific weight. Consequently, the percentage of the affected 

modules was (1 − 𝑅2). For example, 𝑅2 between the original values of MP and its values when 

there was a change in the weight 𝑊𝐶𝑊,𝐴𝑇𝑇 by δ = 0.05, was 0.845, as presented in Table 14. This 

indicated that with a change in uncertainty of weight 𝑊𝐶𝑊,𝐴𝑇𝑇 by 5%, MP of 84.5% of the 30 

modules (around 25 modules) remained the same, while it was changed for 15.5% modules (5 

modules). 

 

Table 14  

Values of 𝑅2 

𝛿 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 𝑊𝐶𝑊,𝐴𝑇𝑇 𝑊𝑀𝑃,𝐶𝑊 𝑊𝑀𝑃,𝐸𝑆𝐸  

0.01 1 0.958 0.869 0.824 

0.025 1 0.908 0.659 0.74 

0.05 0.952 0.845 0.369 0.54 

0.07 0.789 0.747 0.227 0.53 

0.1 0.814 0.747 0.105 0.476 

 

From Table 14, we can observe the following:  

1) As δ increased, 𝑅2 decreased, i.e., 1 − 𝑅2 increased. Therefore, as the uncertainty of the weights 

increased, the number of modules with changes in MP values increased too.  

2) When the uncertainty of 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇  and 𝑊𝐶𝑊,𝐴𝑇𝑇 was changed by δ, from 0.01 to 0.1 (this 

represented a change of uncertainty from 1% to 10%), there was a slight change in the output value 

of MP, but the regression was still high; the values of 𝑅2 decreased from 1 to 0.814 and from 0.958 

to 0.747, when these uncertainties in 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 𝑊𝐶𝑊,𝐴𝑇𝑇 were applied, respectively. Therefore, 

we can conclude that MP was less sensitive to changes in uncertainty of the weights 𝑊𝐸𝑆𝐸,𝐴𝑇𝑇 and 

 𝑊𝐶𝑊,𝐴𝑇𝑇.  

3) By increasing uncertainty of 𝑊𝑀𝑃,𝐶𝑊  and 𝑊𝑀𝑃,𝐸𝑆𝐸 , there was a considerable change in the 

output values of MP. The values of 𝑅2 dropped from 0.869 to 0.105 and from 0.824 to 0.476, when 

uncertainty changes in 𝑊𝑀𝑃,𝐶𝑊 and 𝑊𝑀𝑃,𝐸𝑆𝐸  were increased from 1% to 10%, respectively. Hence, 



we can conclude that the value of MP was more sensitive to the changes in uncertainty of the 

weights 𝑊𝑀𝑃,𝐶𝑊  and  𝑊𝑀𝑃,𝐸𝑆𝐸. 

The previous observations showed that the proposed NILD algorithm propagated well the 

uncertainty in weights and the decision concept values obtained were sensitive to changes in 

uncertainty of FCM’s weights. Greater sensitivity to uncertainty changes in weights of a direct 

edge to the decision concept was observed. It was also observed that a considerable change in the 

value of the decision concept could occur when the cause concept was intermediate. In this case, 

the intermediate concept was also affected by other concepts and uncertainty was propagated 

between other affected concepts and then finally to the decision concept.  

 

7. Conclusion and Future Work 

This paper proposes a new approach to reasoning in FCMs that uses zT2FSs to represent weights 

of edges between concepts. The zT2FSs are produced by applying IAA to interval valued data. 

The new NILD algorithm is developed for FCMs with weights represented using zT2FSs. New 

operations in the proposed reasoning algorithm are defined in such a way as to make the reasoning 

compatible with zT2FSs. The proposed reasoning algorithm preserves the captured uncertainties 

throughout the causal reasoning process by delaying the defuzzification to the end of the process. 

This makes the new reasoning algorithm more robust in comparison to the conventional iterative 

reasoning approaches where uncertainties of information may be lost due to early defuzzification. 

To evaluate the effectiveness of the proposed reasoning algorithm, a real-world problem of 

evaluating module performance was considered. Experiments were conducted using real data 

about module performance obtained from a higher education institution in the Middle East and 

used to construct the zT2FCM for evaluating module performance. The results obtained by 

applying the new reasoning algorithm demonstrated the ability of the algorithm to evaluate module 

performance that were more correlated to experts’ decisions. This demonstrates the ability of the 

zT2FCM using the NILD reasoning algorithm to better mimic human reasoning in the presence of 

intra and inter uncertainties in the opinions of domain subjects, when compared to an FCM with a 

standard iterative reasoning method. To further validate NILD and analyse its ability to propagate 

input uncertainties within the FCMs structure and its impact on the decision concept, sensitivity 



analysis was conducted. It was observed that both changes in uncertainties of zT2FS based 

weighted edges from intermediate concepts to the decision concept and from input to intermediate 

concepts impacted the value of the decision concept to different degrees. The results demonstrated 

that the NILD algorithm enabled a propagation of uncertainty which affected outcome decisions. 

Future work on the proposed zT2FCM with NILD algorithm could be carried out in different 

directions such as representing concepts’ values using zT2FSs and applying zT2FCMs with the 

NILD algorithm in different domains. 

 

Appendix A. Questions to determine the weight of the interrelation among the concepts in 

MPFCM 

1. What is the impact of Attendance on the End semester result? 

2. What is the impact of Attendance on Course work result? 

3. What is the impact of Course work result on the review of Module performance? 

4. What is the impact of End semester result on the review of Module performance? 

 

Appendix B. A question to determine the module performance based on teachers 

experiences 

How do you evaluate the module performance, if the result summary of a module at the end of the 

semester is given as follows: 

1. End Semester Examination result 

2. Course Work result and  

3. Attendance percentage. 
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