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Metabolic plasticity can amplify ecosystem
responses to global warming
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Organisms have the capacity to alter their physiological response to warming through
acclimation or adaptation, but the consequence of this metabolic plasticity for energy flow
through food webs is currently unknown, and a generalisable framework does not exist for
modelling its ecosystem-level effects. Here, using temperature-controlled experiments on
stream invertebrates from a natural thermal gradient, we show that the ability of organisms
to raise their metabolic rate following chronic exposure to warming decreases with increasing
body size. Chronic exposure to higher temperatures also increases the acute thermal sen-
sitivity of whole-organismal metabolic rate, independent of body size. A mathematical model
parameterised with these findings shows that metabolic plasticity could account for 60%
higher ecosystem energy flux with just +2 °C of warming than a traditional model based on
ecological metabolic theory. This could explain why long-term warming amplifies ecosystem
respiration rates through time in recent mesocosm experiments, and highlights the need to
embed metabolic plasticity in predictive models of global warming impacts on ecosystems.
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crucial, but currently unresolved, question in climate
change research is how the functioning of complex eco-
systems will respond to long-term warming. This chal-
lenge has typically been approached using general relationships
for the size- and temperature-dependence of species-level meta-
bolic rates in ecosystem-scale mathematical models'2. Most of
these studies assume, based on the Metabolic Theory of Ecology
(MTE), that whole-organism metabolic rate increases with size
(typically measured as body mass) raised to the three-quarter
power, and with temperature according to the Boltzmann-
Arrhenius equation with an activation energy of ~0.65 eV3. The
assumed universality of these specific values has been questioned
more recently, however, given that they vary both within and
across species®®, Furthermore, species may have the capacity to
alter their metabolic traits through acclimation, evolutionary
adaptation or both®-10. We refer to this flexibility in species-level
thermal responses henceforth as ‘metabolic plasticity’, which can
be thought of simply as a group of similar organisms altering
their metabolic rate in a similar way when the environment
changes. Metabolic plasticity should ultimately have con-
sequences for ecosystem functioning by altering energy flow
through the food web!l, but evidence for such changes across
species and trophic levels in natural systems is still lacking.

To address this knowledge gap, we measured oxygen con-
sumption rates (a standard measure of metabolic ratel?) of
freshwater invertebrates in a large-scale natural warming
experiment. Our study site, the Hengill catchment in Iceland!3-18,
consists of multiple streams, each with a characteristic tempera-
ture regime (Supplementary Fig. 1), resulting from long-term
geothermal heating of the underlying bedrock. The invertebrate
populations in each stream have been exposed to a distinct
thermal regime over many generations, and thus provide an ideal
natural experiment for elucidating the effects of chronic warming
on physiology across trophic levels in the food web. This space-
for-time substitution allows us to glimpse the potential impacts of
centennial-scale warming!?, with previous research in the Hengill
system revealing effects of temperature on biodiversity!314,
community structurel”:!8 and ecosystem functioning!>16.

Our central hypothesis was that metabolic plasticity con-
sistently declines with body size, given that smaller organisms
tend to have faster rates of acclimation?? and adaptation®!. To
test this, we collected thousands of invertebrates from nine dif-
ferent streams spanning mean annual temperatures of 5-20°C
(Supplementary Figs. 1-2). Invertebrates are the dominant pri-
mary and secondary consumers in the streams!3, and therefore
central to energy fluxes through the food web!718. We measured
the individual-level routine metabolic rate (i.e., organisms
exhibited some activity!2) under acute exposure (experiments
lasting 10-60 min) to temperatures of 5, 10, 15, 20 or 25 °C in the
laboratory (see Methods). This response of metabolic rate to
short-term temperature change is a fundamental measure of
organismal physiology and also governs the daily effects of
temperature on energy fluxes through ecosystems!. Metabolic
rate was only quantified for each individual at one acute tem-
perature, after which we measured its body mass and confirmed
its species identity via microscopy. After quality-control proce-
dures (see Methods), this yielded data on 1359 individuals from
16 species representing 44 different populations (Supplementary
Table 1). Note that these species were not found in every stream,
but there were still multiple populations of each species, whereby
a population is a unique species x stream combination.

Results and discussion
We found that chronic exposure to warmer environments (i.e.,
stream temperatures) altered both the size- and (acute)

temperature-dependence of metabolic rate in two fundamental
ways (Table 1a). First, higher temperatures reduced the allometric
scaling exponent of metabolic rate because smaller organisms had
a more elevated metabolism after long-term warming than larger
ones (Fig. la, b). This key finding suggests that metabolic plas-
ticity can be modelled mechanistically, irrespective of species
identity, through its relationship with body mass. Second, chronic
warming raised the activation energy (thermal sensitivity) of
metabolic rate, whereby organisms from warmer streams had a
more elevated metabolism under acute warming (Fig. 1lc, d).
Higher metabolic rates can provide organisms with greater scope
for faster growth or improved performance through increased
activity, foraging, and competitive ability®22-23, However, there is
also a greater energy cost, and higher metabolism becomes dis-
advantageous if resource supply cannot keep pace?3?4. These
changes in two fundamental features of thermal physiology across
multiple species exposed to chronic warming indicate a degree of
metabolic plasticity that has never been documented before. This
may have significant implications for ecosystem-level responses
to climate change, such as altering total energy flux through the
food web, or the amount of carbon emitted to the atmosphere
through ecosystem respiration. Supplementary Analyses indicated
no influence of spatial autocorrelation on these results, i.e., warm
and cold streams are sufficiently mixed in the landscape (Sup-
plementary Fig. 3). In addition, the optimal model describing our
data (Table la) remained the same after accounting for phylo-
genetic information, suggesting that both evolutionary and
acclimatory processes play important roles in shaping metabolic
plasticity (Supplementary Tables 2-3; Supplementary Figs. 4-5;
see Supplementary Analyses).

We used a general mathematical model of ecosystem energy
fluxes to explore the potential implications of these empirical
findings>>. We parameterised the model with previously pub-
lished empirical biomass and dietary data!® from the study sys-
tem and physiological rates that incorporated either metabolic
plasticity (our new finding; Table 1a) or fixed thermal responses
(the classical MTE assumption; Table 1b; see Methods). Note that
the size-dependent nature of the model makes it independent of
species identity and enables it to span multiple trophic levels6,
which should make it generally applicable to other ecosystems.
Our estimates of energy flux reflected measurements of ecosystem

Table 1 Statistical output of models exploring the key
drivers of metabolic rate.

Model Parameter Value SE t value p value
(a) With lo —11.03 0.1558 —70.80 <0.001
plasticity In(M) 0.6307 0.0461 13.70  <0.001
Ta 0.7217  0.0319 2261 <0.001
Te —0.1709 0.0647  —2.641 0.008
IN(M):T¢ —0.0741 0.0205  —3.619 <0.001
TaTc 01124  0.0230 4.881 <0.001
(b) Without 1o —~11.00 01595 —6896 <0.001
plasticity In(M) 0.6518  0.0481 13.54  <0.001
Ta 0.7015  0.0282 2488 <0.001

The estimated coefficients (value) for size- and temperature-dependence parameters are shown
with standard errors (SE), t values, and p values, obtained from linear mixed-effects models
fitted to metabolic rate data on 44 invertebrate populations from nine streams of different
temperature (Fig. 1). In both models, log metabolic rate [In(/) in J h—"] was the dependent
variable and the random effects structure included a random intercept for species identity and
random slopes for each of the main effects. (a) The most parsimonious model included an
intercept [In(/)], main effects of log body mass [In(M) in mg], acute temperature exposure [T
in K1, and chronic temperature exposure [T¢ in KI, and interactive effects of Tc on In(M) and Tx.
(b) An alternative model without metabolic plasticity contains only an intercept and main effects
for In(M) and T, in line with the general MTE prediction of a universal size-scaling and
activation energy (but with AAIC > 31 (see Supplementary Table 7), indicating significantly
weaker explanatory power than the model with metabolic plasticity.
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Fig. 1 Chronic exposure to warmer conditions alters the size- and temperature-dependence of metabolic rate. a Temperature-corrected metabolic rates
are elevated for smaller organisms and suppressed for larger organisms after chronic exposure to warmer conditions, seen as (b) a decline in their
allometric scaling exponent. The dashed line is the three-quarter scaling expected from MTE. ¢ Mass-corrected metabolic rates are suppressed at lower
acute temperatures and elevated at higher acute temperatures after chronic exposure to warmer conditions, seen as (d) an increase in their activation
energy (thermal sensitivity). The dashed line is the typical activation energy of 0.65 eV expected from MTE for heterotrophic metabolism. The bars in
(b) and (d) represent standard error around the mean from partial residual analysis of linear mixed-effects models fitted in (a) and (c), respectively (see
Table 1a for model parameters and the Supplementary Note for underlying R code). Colours of points and lines in all panels indicate the environmental
temperature to which species have been chronically exposed (see graphical legends). Source data are provided as a Source Data file.

respiration taken from the same streams!® (r2>0.70; Supple-
mentary Fig. 6), showing that individual-level metabolic rate
measurements can be used to predict ecosystem functioning.

Next, we used both models to estimate the change in energy
flux under a global warming scenario of +2 °C, predicted for the
end of the century under intermediate IPCC scenarios of green-
house gas emissions!®. We expected higher energy flux in the
model with metabolic plasticity due to the greater scope for ele-
vated metabolism following long-term warming by smaller
organisms near the base of the food web (Fig. 1). We found that
warming always increased energy flux from resources to con-
sumers, and this was greater by 59 + 9% (mean * standard error)
for the model that included metabolic plasticity (Wilcoxon test:
V =12, p=0.004; Fig. 2a, b). This was largely driven by increased
energy flux from primary producers to herbivores (Wilcoxon test:
V=11, p=0.003; Fig. 2c), with no significant differences
between the models for detritivorous (Wilcoxon test: V=33,
p=0.121; Fig. 2d) or predatory fluxes (Wilcoxon test: V=155,
p =0.572; Fig. 2e).

These results indicate that current predictive models that
ignore metabolic plasticity may substantially underestimate the
changes in ecosystem fluxes under future warming. The asso-
ciated increase in respiratory losses could help to reconcile the
apparent paradox of amplified ecosystem respiration after 7 years

of warming in a pond mesocosm experiment, relative to the
effects after just 1 year of warming?’. If organisms were adapting
to mitigate the effects of warming over longer timescales, then
ecosystem respiration should converge with the controls in this
experiment. The amplification of ecosystem respiration is thus
surprising and should lead to greater carbon emissions to the
atmosphere?’. Our model predictions for amplified ecosystem
fluxes following chronic exposure to warmer conditions thus
highlight the value of using size-dependent metabolic plasticity to
predict these surprising long-term warming effects on ecosystems.
More generally, accounting for different rates of metabolic plas-
ticity among species could provide a better understanding of how
species-specific responses to global warming may sum up to alter
ecosystem functioning.

To the best of our knowledge, this is the first study to identify
consistent effects of chronic warming on the allometric scaling and
activation energy of metabolic traits across trophic levels, and
determining the mechanistic basis is an important area for future
research. It is important to note that our study system is near the
Arctic region, where organisms are more likely to be energetically
constrained by the colder environment, and thus have greater scope
for elevating their metabolism to increase foraging and growth rates
as temperature increases (i.e., maximising their energy gain). In
contrast, tropical organisms may find it more beneficial to
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Fig. 2 Effect of metabolic plasticity on the predicted impact of global warming on ecosystem-wide energy fluxes. a Visualisation of changes in modelled
energy fluxes through a food web in the study system after a simulated +2 °C of warming. Thicker lines (trophic links) between species populations
(nodes) indicate a greater predicted increase in energy flux using the model with metabolic plasticity compared to the one without. b Using empirical data
from our 14 study sites, the model with metabolic plasticity predicts a significantly greater increase in total energy flux through the networks following
+2 °C of warming than the model without metabolic plasticity. This increase is driven by (¢) flux to herbivores, with no significant contributions of
increasing flux to (d) detritivores or (e) predators. Tukey box and whisker plots are shown, with the thick black line as the median, limits as the 1st and 3rd
quartiles, whiskers as 1.5 times the interquartile range, and outliers as individual points. One-sided paired Wilcoxon tests were performed on the data in
panels (b-e); n =14 for every individual boxplot; **p < 0.01; ns no significant difference. Source data are provided as a Source Data file.

downregulate their metabolism to minimise energy loss and avoid
heat stress?$, highlighting the potential for local climate to interact
with metabolic plasticity. Our findings may thus be most relevant
for high latitude ecosystems, with temperate and tropical com-
parisons a priority for further studies on the topic. Our modelling
framework should also be tested against ecosystems with different
distributions of body sizes and trophic interactions to test the
generality of our findings beyond our focal study system.

The levels of metabolic plasticity we report here (Fig. 1) are
likely due to a combination of acclimation to warmer conditions
(non-heritable changes within an organism’s lifetime) and evo-
lutionary adaptation (heritable changes over many generations).
We did not empirically quantify the relative contribution of these
two types of change, which is unfeasible to disentangle for mul-
tiple species in complex natural ecosystems. However, an

exploration of phylogenetic structure in our data suggests that
evolutionary processes explain approximately half of the varia-
bility in metabolic rate (Supplementary Fig. 4). Most of the
organisms in our study (13 of 16 species; see Supplementary
Table 1) are larval invertebrates with an aerial adult phase, so
genetic mixing between populations of the same species across
streams is likely given that all the streams lie within 2 km of each
other!4. This suggests that thermal adaptation plays a weaker role
in driving metabolic plasticity in our space-for-time study than
might occur in response to long-term warming. Our results may
thus be a conservative estimate of future change if genetic
adaptation further increases the scope for metabolic plasticity
over time.

Activity levels can be an important source of variation in
estimates of temperature effects on metabolic rate?®. Organisms
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in our experiments were confined to small glass vials, and thus
their activity was constrained during the experiments compared
to normal activity. As such, our measurements are much closer to
resting than maximum metabolic rate, and temperature effects
are thus likely to indicate differences in energy allocated to
growth, rather than activity. Nevertheless, quantification of
activity levels and/or measurement of resting and maximum
metabolic rates would be needed to disentangle the relative
contributions of behavioural and physiological plasticity to the
observed changes in rates of energy expenditure. Follow-up stu-
dies should prioritise this research gap.

Our findings have important implications for top predators,
which are widely predicted to decline due to global warming!1-30.
Previous research in our study streams has shown that this is not
necessarily the case and that larger organisms can thrive in
warmer conditions if the production of resources is sufficient to
meet their higher energy demands'®!7. Thus, the scope for
metabolic plasticity to increase energy flux from the base of the
food web could help sustain large predators at higher trophic
levels in the face of global warming. Understanding all these
effects will require timescales of observation sufficient to disen-
tangle adaptation from acclimation via decadal-scale warming
experiments! 131 and meta-analyses of time series data that
incorporate long-term temperature changes®2. In the meantime,
embedding metabolic plasticity in individual-to-ecosystem pro-
jections of climate change impacts may improve realism and help
to account for some of the ecological surprises in response to
warming that have been reported recently!1,16:17:27,

Methods

Study system & organisms. The study was conducted in the Hengill valley,
Iceland!3-18 (N 64°03; W 21°18), which contains many streams of different tem-
perature due to geothermal heating of the bedrock or soils surrounding the springs
(Supplementary Fig. 1). The streams have been heated in this way for centuries>?
and are otherwise similar in their physical and chemical properties!>!8, providing
an ideal space-for-time substitution in which to measure species responses after
chronic exposure to different temperatures®>4. Fieldwork was performed in the
summers of 2015-2018, between May and July. Stream temperatures were logged
every 4 h using Maxim Integrated DS1921G Thermochron iButtons submerged in
each stream (Supplementary Fig. 2). The average stream temperature over this
study period was used as a measure of chronic temperature exposure, encom-
passing at least the lifetime of every invertebrate species under investigation (and
potentially multiple generations®3%).

Invertebrates were collected from nine streams spanning a temperature gradient
of 5-20 °C across the entire study system (Supplementary Figs. 1-2). The streams
exhibit some differences in the annual variability of their thermal regimes, but there
are examples of both cold and warm streams that have high (IS12 and IS2) and low
(IS13 and IS8) variability throughout the year. Our main finding is also robust to
the inclusion of stream temperature variability as a random effect in our modelling
framework (Supplementary Table 4; Supplementary Fig. 7). Note that we present
temperature data from 15 streams in Supplementary Fig. 2, but it was not
logistically feasible to study acute thermal responses of invertebrates collected from
all of them, thus we focused on a subset of nine streams that best spanned the
temperature gradient. The remaining six streams were included in other studies
from the system, quantifying the biomass of all the constituent species!”, describing
food web structure!8, and measuring whole-stream respiration!” (described in
detail below).

Individual organisms were stored in containers within their ‘home stream’ until
the end of each collection day, when they were transported within 1h to the
University of Iceland and then transferred into 2 L aquaria filled with water from
the main river in Hengill, the Hengladalsd. The water was passed through a 125 ym
sieve to ensure no organisms or filamentous algae entered the aquaria, and thus
limiting the potential food available to the study organisms. The aquaria were
continuously aerated in temperature-controlled chambers set to the home stream
temperature of the organisms during sampling, which were maintained without
food for at least 24 h to standardise their digestive state prior to metabolic
measurements®0. While we did not observe any cannibalism or organisms feeding
on dead bodies in the laboratory, we cannot rule out the possibility that organisms
fed on fine algal or detrital particles in the water, thus increasing variability in our
metabolic measurements due to differences in digestive state.

Quantifying metabolic rates. Experiments were carried out to determine the
effects of body mass, acute temperature exposure (5, 10, 15, 20 and 25 °C), and

chronic temperature exposure (i.e., average stream temperature) on oxygen con-
sumption rates as a measure of metabolic rate>!2. Before each experiment, indi-
vidual organisms were confined in glass chambers in a temperature-controlled
water bath and slowly adjusted to the (acute) experimental temperature over a
15 min period to avoid a shock response. Glass chambers ranged in volume from
0.8-5ml and scaled with the size of the organism. The glass chambers were filled
with water from the Hengladalsd, which was filtered through a 0.45 um Whatman
membrane after aeration to 100% oxygen saturation. A magnetic stir bar was
placed at the bottom of each chamber and separated from the organism by a mesh
screen. In each experiment, one individual organism was placed in each of seven
chambers and the eighth chamber was used as an animal-free control to correct for
potential sensor drift. The chambers were sealed with gas-tight stoppers after the
15 min acclimatisation period, ensuring there was no headspace or air bubbles.

Oxygen consumption by individual organisms was measured using an oxygen
microelectrode (MicroRespiration, Unisense, Denmark), fitted through a capillary
in the gas-tight stopper of each chamber?’. A total of 330 s measurement periods
were recorded for each individual, where dissolved oxygen was measured every
second. Oxygen consumption rate was calculated as the slope of the linear
regression through all the data points from a single chamber, corrected for
differences in chamber volume and the background rate measured from the control
chamber (which was never >5% of the measured metabolic rates). We converted
the units of this rate (umol O, h™1) to energetic equivalents (J h~!) using atomic
weight (1 mol O, = 31.9988 g), density (1.429 g L~!), and a standard conversion®3
(I ml O, =20.17]). Organisms generally exhibited some activity during
experiments, thus these measurements can be classified as routine metabolic
rates'?, which are more reflective of energy expenditure in field conditions.
Nevertheless, activity levels were minimal due to the space constraints of the
chambers (volume equal to 5-100 times the mass of the measured organism),
indicating that the measured rates were likely to be closer to resting metabolic rates.
Oxygen concentrations were never allowed to decline below 70% to minimise stress
and avoid oxygen limitation. The system was cleaned with bleach at the end of each
measurement day to avoid accumulation of microbial organisms on the insides of
glass chambers and the water bath. In total, oxygen consumption rates were
measured for 1819 individuals, none of which were ever reused in another
experiment, thus every data point in the analysis corresponds to a single new
individual (see below for details of how this dataset was curated to the final
analysed subset of 1359 individuals based on quality-control procedures).

Following each experiment, individuals were preserved in 70% ethanol and later
identified to species level under a dissecting microscope, except for Chironomidae,
which were identified by examining head capsules under a compound
microscope3. A linear dimension was precisely measured for every individual
using an eyepiece graticule and converted to dry body mass using established
length-weight relationships (Supplementary Table 1).

Statistical analysis. All statistical analyses were conducted in R 4.0.2 (see the
Supplementary Note for full details of statistical R code). According to the Meta-
bolic Theory of Ecology? (MTE), metabolic rate, I, depends on body mass and
temperature as:

I=I,MbefaTa, o)

where I is the intercept, M is dry body mass (mg), b is an allometric exponent, E4
is the activation energy (eV), and T, is a standardised Arrhenius temperature:

Tacute — TO

Ty=——7".
4 kTacule TO

(@)
Here, T, is an acute temperature exposure (K), Ty sets the intercept of the
relationship at 283.15 K (i.e., 10 °C), and k is the Boltzmann constant (8.618 x 10~>
eV K~1). We performed a multiple linear regression (‘Im’ function in the ‘stats
package) on the natural logarithm of Eq. (1) to explore the main effects of
temperature and body mass on the metabolic rate of each population (i.e., species x
stream combination) in our dataset®. Following these analyses, we excluded
populations where n < 10 individuals, 7% < 0.5, and p > 0.05 for any term in the
model (see Supplementary Table 5, Supplementary Figs. 8-9). This excluded any
poor quality species-level data and resulted in 1359 individuals from 44
populations for further analysis. Note that we find the same overall conclusion if we
analyse the entire dataset (Supplementary Table 6, Supplementary Fig. 10).

To determine whether chronic temperature exposure alters the size- and acute
temperature-dependence of metabolic rate, we added a term for chronic
temperature exposure to Eq. 1. We began our analysis by considering the natural
logarithm of all possible combinations of the main and interactive effects in this
model:

Il =Inly+ blnM + E Ty + EcT + byn MT, 4 bln MT + Eo o To T

(©)
+ by InMT,T.

Here, Tc is a standardised Arrhenius temperature with Tj,op;c as a chronic
temperature exposure (K) substituted for T, in Eq. (2). To determine the
optimal random effects structure for this model, we compared a generalised least
squares model of Eq. 3 with linear mixed-effects models (‘gls’ and ‘/me’ functions in
the ‘nlme’ package) containing all possible subsets of the following random effects
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structure?;

random = ~1+ In M + T, + T|species. (4)

Here, we are accounting for the possibility that metabolic rate could be different
for each species (i.e., a random intercept) and that the effect of body mass, acute
temperature exposure, or chronic temperature exposure on metabolic rate could
also be different for each species (i.e., random slopes).

The full random structure (Eq. 4) was identified as the best model using Akaike
Information Criterion (AAIC > 31.2; see Supplementary Table 7). We used this
random structure in subsequent analyses, set ‘method = ‘ML” in the ‘Ime’ function,
and performed AIC comparison on all possible combinations of the fixed-effect
structure?? (i.e., Equation 3). The optimal model was identified as follows:

Inl=Inly+binM+E,T),+E;Tc+bclnMTc+E T Te. (5)

Note that while the model with an additional interaction between In(M) and T,
performed similarly (AAIC = 0.2; see Supplementary Table 8), that term was not
significant (¢ = —1.645; p = 0.1002). We set ‘method = ‘REML” before extracting
model summaries and partial residuals from the best-fitting model*’. Note that the
models were always fitted to the raw metabolic rate data, with residuals only extracted
for a visual representation of the best-fitting models, excluding the noise explained by
the random effect of species identity (see R code in the Supplementary Note).

Exploration of spatial autocorrelation. A Mantel test (‘mantel’ function in the
‘vegan’ R package) was used to test for spatial autocorrelation in the temperature
gradient, by comparing pairwise temperature difference between streams to the
pairwise distance between streams. Pairwise distances were calculated from GPS
coordinates taken at the confluence of each stream with the main river and the
‘earth.dist’ function in the ‘fossil’ R package. This analysis revealed no significant
relationship between pairwise temperature and pairwise distance between sites
(Mantel r = —0.1293, p = 0.780).

In addition, we explored for spatial autocorrelation in the residuals of our
optimal model (Table 1a) by generating an empirical semivariogram cloud,
illustrating the squared difference between all pairwise residual data points as a
function of the distance between the two points. We also calculated Moran’s I as a
measure of spatial autocorrelation in the model residuals. The semivariogram
indicated no clear patterns in the residuals as a function of the distance between
data points (Supplementary Fig. 3) and there was no statistical evidence for spatial
autocorrelation in the model residuals (Moran’s I =0.1187, p = 0.453).

Exploration of phylogenetic structure. To examine the influence of evolutionary
relatedness on metabolic rate measurements, we reconstructed a time-calibrated
phylogeny of the 16 species in our final dataset (Supplementary Table 1). To this
end, we combined: (i) nucleotide sequences of the 5’ region of the cytochrome ¢
oxidase subunit I gene (COI-5P) from the Barcode of Life Data System database*!;
(ii) tree topology information from the Open Tree of Life*? (OTL; v. 13.4); and (jii)
previously reported divergence time estimates between pairs of genera from the
TimeTree database3. More precisely, we were able to obtain COI-5P nucleotide
sequences for 15 out of 16 species (Supplementary Table 2), which we aligned using
the G-INS-i algorithm of MAFFT#4 (v. 7.490). To constrain the topology of our
phylogeny based on the results of previous studies, we queried the OTL via the
‘rotl R package®® (v. 3.0.11). This yielded topological information for all 16 species.
Finally, we manually queried the TimeTree database to obtain node age estimates.
We only used three such estimates that (a) were based on more than five previous
studies and (b) did not force any tree branches to have a length of zero.

We next used MrBayes?0 (v. 3.2.7a) to obtain a time-calibrated phylogeny based
on the sequence alignment, the OTL topology, and the node ages from TimeTree.
For this, we first determined the most appropriate nucleotide substitution model
using ModelTest-NG#7 (v. 0.1.7). This was the General Time-Reversible model
with Gamma-distributed rate variation across sites and a proportion of invariant
sites. To allow branches of the phylogeny to differ in their rate of sequence
evolution, we specified the Independent Gamma Rates model*8 and used a normal
distribution with a mean of 0.00003 and a standard deviation of 0.00001 as the
prior for the mean clock rate. Finally, we executed four MrBayes runs with two
chains per run for 100 million generations, sampling from the posterior
distribution every 500 generations. Samples from the first ten million generations
were treated as burn-in and were discarded. We examined the remaining samples
to ensure that the four MrBayes runs had converged on statistically
indistinguishable posterior distributions (i.e., all potential scale reduction factor
values were below 1.1) and the parameter space was sufficiently explored (i.., all
effective sample size values were higher than 200). We summarised the sampled
trees into a single time-calibrated phylogeny by calculating the median age estimate
for each node (Supplementary Fig. 4).

To investigate the influence of evolutionary and acclimatory processes on
metabolic rate, we first estimated the phylogenetic heritability of metabolic rate, i.e.,
the extent to which closely related species have more similar trait values than
species chosen at random*®. This metric takes values from 0 (trait values are
independent of the phylogeny) to 1 (trait values evolve similarly to a random walk
in the parameter space), with intermediate values indicating deviations from a pure
random walk. To estimate phylogenetic heritability, we fitted a generalised linear
mixed-effects model using the ‘MCMCglmm’ R package™® (v. 2.32). We set the

natural logarithm of metabolic rate as the response variable and only an intercept
as a fixed effect. We also specified a phylogenetic species-level random effect on the
intercept, using the phylogenetic variance-covariance matrix obtained from our
time-calibrated phylogeny. We used the default (normal) prior for the fixed effect,
an uninformative Cauchy prior for the random effect, and an uninformative
inverse Gamma prior for the residual variance. We then executed four independent
runs for 500,000 MCMC generations each, with parameter samples being obtained
every 50 generations after the first 50,000. We verified that sufficient convergence
was reached, based on potential scale reduction factor and effective sample size
values, as described earlier. Phylogenetic heritability was calculated as the ratio of
the variance captured by the species-level random effect to the sum of the random
and residual variances. The mean posterior phylogenetic heritability estimate of the
natural logarithm of metabolic rate was 0.48. This means that nearly half (48%) of
the variation can be explained by the evolution of metabolic rate along the
phylogeny (Supplementary Fig. 4), with the other half arising from other sources
including (but not necessarily limited to) acclimation and measurement error.

To describe the remaining unexplained variation, we fitted a series of models
using MCMCglmm in R with all possible combinations of log body mass, acute
temperature exposure, and chronic temperature exposure (fixed effects, as in Eq. (3)
of the main text) and species-level random effects on the intercept and slopes (as in
Eq. (4) of the main text). Furthermore, we specified both phylogenetic and non-
phylogenetic variants of each model to understand if such a correction is warranted
when the fixed effects are included. We determined the most appropriate model based
on the Deviance Information Criterion®! (DIC). The optimal model (ADIC > 19;
Supplementary Table 3; Supplementary Fig. 5) was found to include the full random
effects structure (Eq. 4), the main effects of log body mass, acute temperature
exposure, and chronic temperature exposure, the interaction between log body mass
and chronic temperature exposure, and the interaction between acute temperature
exposure and chronic temperature exposure (as for Eq. 5 in the main text), i.e., the
same optimal model as that containing only species-level, rather than phylogenetic,
information (Table la; Fig. 1). We calculated the marginal and conditional
coefficients of determination to report the amounts of variance explained by the fixed
and random effects, or left unexplained®2. We found that the unexplained variation
dropped from 52% to 8%, indicating that metabolic rate is strongly influenced by
acclimatory processes in addition to evolutionary processes (see above).

It should be noted, however, that a definitive empirical quantification of the
relative strength of evolutionary and acclimatory processes would require
population genetics (to determine evolutionary divergent populations among
streams), transcriptomics (to identify the expression of genes associated with
thermal adaptation), and exhaustive common garden experiments (to disentangle
acclimation from adaptation in all populations). Such an undertaking was
logistically unfeasible in this study, but should be a focus for follow-up research on
this topic.

Modelling ecosystem-level energy fluxes. We used a recently proposed
approach for inferring energy fluxes through trophic links to predict the effects of
climate warming on ecosystem-level energy fluxes. We began by assuming that
each stream ecosystem is at energetic steady state, i.e., for all # consumer species in
the system:

G =1L,i=12 ..,n (6)

where G; and L; are the energy gain and loss rates [J h—1], respectively, of the ith
species in that stream. All basal species are implicitly assumed to be at energy
balance. The two terms in Eq. (6) can be specified in a general way as

Gx‘ = kg{’ ekiwkiFkiﬂ and (7)

L=2 +j€ZC‘ w;Fy. ®)

Here, for the ith species, R; and C; are the sets of its resource and consumer
species respectively, and Z; is its population-level energy loss rate stemming from
mortality and metabolic expenditure on various activities realised over the
timescale of the system’s dynamics. For the jth species feeding on the ith species, F;;
is the maximum population-level feeding rate, e;; is the assimilation efficiency
(expressed as a proportion), and w;; is the consumer’s preference for that species
(all preferences for a given consumer sum to 1). Thus, the effective flux through a
trophic link is e,;w; F;;. Next, assuming the energy balance condition in Eq. 6 holds
for all species, there are n linear equations (corresponding to the n consumer
species) of the form:

G—Li= % ewgF— (Zi + X WijFij> =0, ©)
keR; jeG
which can be solved iteratively to obtain the unknown fluxes F;;.; of all consumer
species, provided all the Zs, e;’s, and w;’s are known.

For this, we used the ‘fluxing’ function in the ‘fluxweb’ R package, parameterised
with: (1) binary predation matrices for 14 stream food webs, characterised by
49,324 directly observed feeding interactions!®; (2) biomasses for every species in
each food web, characterised by 13,185 individual body mass measurements!’; (3)

assimilation efficiencies (e;;’s) based on an established temperature-dependence and
resource type (ie., plant, detritus, or invertebrate)>%; (4) preferences (w;’s)
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depending on resource biomasses; and (5) metabolic rates estimated using Eqs. (1)
and (5) (assuming that I approximates Z). We treated T, in Eqgs. (1) and (5) as the
short-term temperature of the streams during food web sampling!”!8 and T in
Eq. (5) as the long-term average temperature of the streams measured over the
current study (Supplementary Fig. 2). It is important to note that the energy
balance assumption (Eq. 6) implies that Z; in Eq. (8) is a combination of basal,
routine, and active metabolic rates, stemming from the combination of activities
realised over the timescale of the system’s dynamics. Therefore, our use of routine
metabolic rate I is an underestimate of Z, which in turn means that the fluxes
(which must balance the losses) are an underestimate.

Biomass and food web data were sampled in August 2008, with extensive
protocols described in previous publications!”-18. Briefly, this involved three stone
scrapes per stream for benthic diatoms, five Surber samples per stream for
macroinvertebrates, and three-run depletion electrofishing for fish. All individuals
in the samples were identified to species level where possible and counted. Linear
dimensions were measured for at least ten individuals of each species in each
stream, with body masses estimated from length-weight relationships!”. The
population biomass of each species in each stream was calculated as the total
abundance [individuals m~2] multiplied by the mean body mass [mg dry weight].
Food web links were largely assembled from gut content analysis of individual
organisms collected from the streams (>87% of all links in the database), but
additional links were added from the literature when yield-effort curves indicated
that the diet of a consumer species was incomplete!8.

Validation of the ecosystem flux model using field data. To test whether our
model of energy fluxes through trophic links was empirically meaningful, we cal-
culated the sum of all energy fluxes through each stream food web to get the total
energy flux, F (i.e., the sum of all e;;w;;F;;’s in Eq. 7). This quantity is a measure of
multitrophic functioning and is expected to be positively correlated with the total
respiration of each stream?3. To evaluate this, we compared F to whole-ecosystem
respiration rates measured in the same study streams!>. The ecosystem respiration
estimates were based on a modified open-system oxygen change method using two
stations corrected for lateral inflows®»%. Essentially, this was an in-stream mass
balance of oxygen inflows and outflows along stream reaches (17-51 m long).
Oxygen concentrations were measured during 24- to 48 h periods from 6th to 16th
August 2008, i.e., the exact same time period during which biomass and food web
data were sampled to parameterise the energy flux model!®. Dissolved oxygen
concentrations were measured every minute with optic oxygen sensors
(TROLL9500 Professional, In-Situ Inc. and Universal Controller SC100, Hach
Lange GMBF). Hourly ecosystem respiration was calculated from the net meta-
bolism at night, i.e., when no primary production occurs due to lack of sunlight.

Modelling the consequences of metabolic plasticity for global warming
impacts on ecosystem-level energy flux. In addition to total energy flux, F, we
also calculated a modified total energy flux, F", for each food web after considering
a global warming scenario, where we added 2 °C to T, in Eq. (1) and to both T4
and T¢ in Eq. (5). We calculated the change in total energy flux as a result of the
global warming scenario as AF=F" - F. We tested whether the (statistically
optimal) model with metabolic plasticity (Eq. 5) predicted a greater AF across the
14 empirical stream food webs from the Hengill system than the model without
metabolic plasticity using paired Wilcoxon tests (since the data did not conform to
homogeneity of variance). To determine whether our results were consistent for all
major trophic groupings in the system, we repeated the analysis after calculating
the change in energy flux to herbivores (AFy =F, w" - Fy), detritivores (AFp = Fp"
- Fp), and predators (AFp= Fp" - Fp) in each stream.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data generated in this study have been deposited with the University of Essex
Research Data Repository at https://doi.org/10.5526/ERDR-00000148. Source data for all
figures are also provided with this paper.

Code availability
The R code generated in this study has been deposited with the University of Essex
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