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Machine learning ecological networks
Deep learning tools can help to construct historical, modern-day, and future food webs
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It is perhaps unsurprising that apex predators, such as whales, sharks, leopards, and tigers also tend to be the rarest species (1). This is largely because of the imperfect transfer of energy through each level in the food chain (2), which makes these carnivores more susceptible to starvation than herbivores, detritivores, or omnivores. Their survival also depends on having a large home range for them to roam far and wide to find the mates and resources needed to sustain their populations (3). These vulnerabilities make them particularly susceptible to human activities, such as habitat loss or being targeted by hunters for their trophy status. On page XXX, of this issue, Fricke et al. (4) adopt a network-based approach to establish how humans have disrupted apex predators and other mammalian fauna over the past 130,000 years.
Just as the poet John Donne mused that “no man is an island,” the same can be said for all animals on Earth–that none can exist in isolation and all are part of a complex tangle of interacting consumers, resources, and competitors (5). These ecological networks have been the focus of ecosystem ecologists for many decades, often requiring years of observation, stomach content analysis, and experiments to quantify their complex structures. Describing the interactions in ecological networks is crucial for understanding the ecological surprises that may occur in ecosystems following environmental change or human intervention. For example, the overhunting of sea otters led to an explosion of their sea urchin prey, whose overgrazing of kelp eliminated a swathe of other species that rely on these underwater forests for food and shelter (6). Such “trophic cascades” have been described in many ecosystems, as the loss of one species triggers biomass fluctuations across several trophic levels (6). Food webs are a central tool for tracking or anticipating changes along dominant pathways of energy flow, whilst network analysis helps to quantify the overall stability or resilience of an ecosystem, and to identify key hubs or vulnerabilities (7, 8).

Some of the findings by Fricke et al. (4) are unsurprising. For instance, their analysis shows that there are fewer mammal species today than there were in the Late Pleistocene around 130,000 years ago. However, some of their other findings are more transformative. They find that there has been a systematic demise of mammals with more connections in the food web, which can be explained by the greater susceptibility to extinction and range contraction of larger predators than smaller prey. This change has resulted in much less connected food webs than if the same number of species had been extinguished at random from the networks. Simpler food webs are typically shown to be less stable because they are more susceptible to further extinctions through energetic limitation (7) or a lack of redundancy in the choice of prey available (9). Furthermore, these food web “collapses” were particularly prominent after the arrival of humans to the region. Of further concern is the observation that currently endangered mammals share this same characteristic of being the most highly connected organisms in the network, which would lead to further food web collapses if they became extinct.

The authors (4) also provide a valuable template for studying ecological networks in the past, present, and future. The complexity of food webs and the laborious task of describing their underlying connections have prevented their widescale use in conservation and biomonitoring of ecosystems 
 ADDIN EN.CITE 
(5, 10)
. Recent calls for incorporating ecological networks into biomonitoring have proposed ways of circumventing this obstacle by taking the species lists obtained from routine sampling and inferring the links from established databases, filling the gaps with modelling approaches 
 ADDIN EN.CITE 
(10, 11)
. This “guesswork” is often built on the principle that body size is a key determinant of which species can interact with one another, or that predators will consume phylogenetically related prey or share the diet of a phylogenetically related predator. Fricke et al. (4) demonstrate how machine-learning techniques can be applied to a broad suite of traits to identify which species are likely to interact. Their deep learning algorithm outperforms the allometric and phylogenetic models in common use by increasing the accuracy with which feeding interactions can be predicted. Although utilizing machine-learning methods to study and model complex food web structures is not a new endeavor (8, 12), it is yet to become a standard tool within the field. 

Historical networks can no longer be observed, but their structure has been elucidated using ancient DNA, inferences from morphology, and models based on body size (13). Integration of machine-learning methods should progressively improve the reconstruction of paleo networks, enhancing the understanding of how ecosystems functioned in the past, how they differed from today, and how they responded to catastrophes. 

For studying modern-day ecosystems, automation of deep learning algorithms would increase the accessibility of network science for conservationists and monitoring agencies, helping to identify critical non-target species or bioindicators of harmful change to an ecosystem. The approach could also be used to detect “potential prey” that are underrepresented in current food webs (12). For instance, DNA analysis of fish diets has revealed that gelatinous salps (a tunicate) could be a key alternative resource to declining krill in Southern Ocean food webs, despite years of under-appreciation due to the rapid digestion of their soft bodies in fish stomachs (14).
Looking to the future, a major current limitation is the inability to accurately forecast network responses to species extinctions or climate change. Currently, it is typically assumed that a predator will go extinct if its primary prey disappear from the network, when it may in fact shift its diet to other resources (15). Machine learning opens avenues for anticipating how networks will rewire in response to global change by identifying resources with combinations of traits that would make certain prey suitable alternatives for predators. Similarly, knowledge of how a perturbation will alter the traits underpinning deep-learning algorithms would facilitate predictions of how the connections in the network, and not just the nodes, should respond. The accuracy and precision of these predictions may increase with the help of big data, transforming the power of network science for anticipating future ecological surprises from lofty aspiration to tangible reality.
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Figure 1. Animals with connections to many other species in the food web, such as apex predators, are found to be more vulnerable to extinction (4).
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