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a b s t r a c t 

In the last decade, fNIRS has provided a non-invasive method to investigate neural activation in developmental populations. Despite its increasing use in developmental 
cognitive neuroscience, there is little consistency or consensus on how to pre-process and analyse infant fNIRS data. With this registered report, we investigated 
the feasibility of applying more advanced statistical analyses to infant fNIRS data and compared the most commonly used baseline-corrected averaging, General 
Linear Model (GLM)-based univariate, and Multivariate Pattern Analysis (MVPA) approaches, to show how the conclusions one would draw based on these different 
analysis approaches converge or differ. The different analysis methods were tested using a face inversion paradigm where changes in brain activation in response to 
upright and inverted face stimuli were measured in thirty 4-to-6-month-old infants. By including more standard approaches together with recent machine learning 
techniques, we aim to inform the fNIRS community on alternative ways to analyse infant fNIRS datasets. 
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. Introduction 

The last 50 years have seen major advances in the development of
ethods and techniques that allow researchers to investigate the cog-
itive abilities of human infants, such as electroencephalography (EEG)
nd event-related potential (ERP), functional magnetic resonance imag-
ng (fMRI) and more recently, functional near-infrared spectroscopy
fNIRS). This opportunity to investigate the functional brain develop-
ent of infants in the first year of life, has led to significant progress

n our understanding of infants’ perceptual and cognitive abilities. One
f the most promising new methods is fNIRS. This technique uses near-
nfrared light to detect changes in oxygenated (oxyHb; HbO 2 ) and de-
xygenated (deoxyHb; HHb) haemoglobin concentrations ( Lloyd-Fox,
lasi, & Elwell, 2010 ), which are a consequence of the increase in oxy-
en demand and are taken to indirectly reflect functional brain acti-
ation. Changes in concentration in HbO 2 and HHb during functional
rain activation can be derived through light absorption measurements.

As with any other neuroimaging method, fNIRS is characterized by
dvantages as well as drawbacks. Over the last 20 years, its widespread
se in infancy research can be attributed to the fact that this baby-
riendly method is relatively cheap and easy to use, is less susceptible to
ovement artefacts compared to EEG, and allows for the spatial inves-

igation of cerebral cortex activation in response to a variety of sensory
timuli (for reviews see Gervain et al., 2011 ; Issard & Gervain, 2018 ;
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loyd-Fox, Blasi, & Elwell, 2010 ), thus providing valuable insight into
nfants’ neurodevelopment. 

While the first uses of NIRS-based technology mainly involved clin-
cal applications such as monitoring cerebral oxygenation in neonates
NIRS oximetry) (e.g. Brazy, Lewis, Mitnick, & Jöbsis vander Vliet, 1985 ;
razy & Lewis, 1986 ; Bucher, Edwards, Lipp, & Duc, 1993 ; Elwell et al.,
005 ; Wyatt, Delpy, Cope, Wray, & Reynolds, 1986 ), later, researchers
tarted applying fNIRS to investigate functional brain activation in in-
ancy ( Meek et al., 1998 ; for a review see Gervain et al., 2011 ; Lloyd-
ox et al., 2010 ). This more recent research focused on the investiga-
ion of complex cognitive processes, such as speech processing and lan-
uage development (e.g. Gervain, 2014 ; Gervain, Macagno, Cogoi, Peña,
 Mehler, 2008 ; Issard & Gervain, 2017 ; Lloyd-Fox, Széplaki-Köll ő d,
in, & Csibra, 2015 ), the social brain network (e.g. Lloyd-Fox et al.,
015 ) and face processing (see Lloyd-Fox, Blasi, & Elwell, 2010 for a re-
iew of studies; Otsuka et al., 2007 ), and multisensory cues ( Emberson,
ichards, & Aslin, 2015 ; Filippetti, Lloyd-Fox, Longo, Farroni, & John-
on, 2015 ; Kersey & Emberson, 2017 ). 

Despite its increasing use in developmental cognitive neuroscience,
here is still little consensus on how to pre-process ( Pinti, Scholkmann,
amilton, Burgess, & Tachtsidis, 2019 ) and analyse fNIRS data. Indeed,

he variety of NIRS systems, as well as the heterogeneity of statistical
oftware and in-built data analyses scripts across infant laboratories,
ake it difficult if not impossible to establish the presence of consis-
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ent and reliable findings across experiments (although see Lloyd-Fox et
l., 2017 for replication of social brain activation across different lab-
ratories, populations, and set-ups; Benavides-Varela & Gervain, 2017 ;
or replication of word learning; May, Gervain, Carreiras, & Werker,
018 for replication of Gervain et al., 2008 ’s rule learning paradigm).
o this aim, the main purpose of the current study is to present the
esults of three fNIRS data analysis approaches: baseline-corrected av-
raging approach, GLM-based univariate analyses, and MVPA analyses,
nd discuss how the conclusions one would draw based on these differ-
nt analysis approaches converge or differ. 

Traditionally, fNIRS data has been analysed with baseline-corrected
veraging techniques, which involve averaging together the neural re-
ponse of blocks belonging to a given condition and performing a
aseline-correction. The processed fNIRS data is then analysed using
NOVAs and/or paired sample channel-by-channel t-tests to compare
xperimental conditions ( Lloyd-Fox, Blasi, & Elwell, 2010 ). In this sce-
ario, the time course data is first segmented into different time win-
ows (i.e., baseline and conditions): the mean HbO 2 and HHb con-
entrations during the pre-experimental window (baseline) are then
ubtracted from the experimental trial window, to compute the mean
aemodynamic concentration changes. The derived signals are then av-
raged across trials for each channel and condition and repeated mea-
ure analyses are conducted. Post hoc comparisons can then be made
o control for false-positive activation using different multiple compari-
on methods. For example, fNIRS studies have used the False Discovery
ate (FDR) ( Benjamini & Hochberg, 1995 ; Singh & Dan, 2006 ), Bon-

erroni correction ( Dunn, 1961 ), spatially contiguous activation ( Lloyd-
ox, Blasi, Everdell, Elwell, & Johnson, 2011 ; Southgate, Begus, Lloyd-
ox, di Gangi, & Hamilton, 2014 ), and Monte Carlo simulation ( de Klerk,
ulgarelli, Hamilton, & Southgate, 2019 ). While the baseline-corrected
veraging method is relatively easy to implement with fNIRS infant data,
nd avoids assumptions about the shape of the haemodynamic signal
nd its time course, it also disregards important timing information ( Tak
 Ye, 2014 ). Conversely, the General Linear Model (GLM) considers the
hole-time course, thus proving a more powerful approach to the anal-
sis of fNIRS data by making use of its good temporal resolution ( Pinti et
l., 2017 ). However, it is important to acknowledge that this timing in-
ormation can partially be lost in the context of noisy infant data, where
arge segments of data sometimes have to be discarded due to infants’
nattention or fussiness. While the GLM approach was originally imple-
ented with fMRI data ( Friston et al., 1996 ) it has been adapted for use
ith optical data (e.g., the NIRS-SPM toolbox; Ye, Tak, Jang, Jung, &

ang, 2009 ), based on the similarities between fMRI and NIRS designs
nd their reliance on the haemodynamic response. The GLM approach
onsists of modelling pre-specified regressors, which are then convolved
ith the expected haemodynamic response function (HRF) and fitted to

he data ( Pinti et al., 2017 ; Tak & Ye, 2014 ). However, the disadvan-
age of the GLM is that it assumes a predefined HRF, which e.g., can
iffer both within- and between- subjects and is not well established in
ewborns and young infants. 

More recently, sophisticated techniques developed for fMRI data,
uch as multivariate methods like the multivoxel/multivariate pattern
nalysis (MVPA), have also been used to analyse fNIRS data. MVPA al-
ows for the analysis of brain activity patterns that are distributed across
ortical regions ( Haxby, Connolly, & Guntupalli, 2014 ), by considering
he relationship between multiple variables. For example, MVPA tech-
iques allow researchers to investigate whether a pattern of fNIRS ac-
ivation can discriminate between two or more conditions ( Emberson,
inszer, Raizada, & Aslin, 2017 ). In their recent work Emberson and
olleagues (2017) applied MVPA to infant fNIRS data and successfully
ecoded channels that were responsive to their conditions of interest us-
ng a correlation-based decoding method to the recorded hemodynamic
ignals from an event-related design. Compared to standard univariate
ests, MVPA has the potential to provide substantial details on aspects
f the hemodynamic signal that could otherwise be missed using classic
nivariate tests ( Emberson et al., 2017 ). First, the MVPA method can
2 
etect patterns of neural activation that are unique to the observation
f one condition compared to another, hereby providing a higher level
f analytic sophistication compared to standard univariate analyses. In-
eed, compared to univariate tests which provide information about sig-
ificant differences in activation between two conditions, MVPA can de-
ode pattern of relatively subtle brain activity (for a discussion see Todd,
ystrom, & Cohen, 2013 ; Emberson et al., 2017 ). For example, both

MRI ( Kok, Failing, & de Lange, 2014 ; Raizada & Kriegeskorte, 2010 )
nd fNIRS ( Emberson et al., 2017 ) studies have found multivariate meth-
ds to succeed in finding significant differences in distributed activation
atterns and channels’ contributions where univariate tests could not.
econd, this method can reduce the effect of noise in observations by
ssimilating multiple noisy signals (hence resulting in a more powerful
nalysis than univariate tests) ( Davis et al., 2014 ). Nevertheless, a prob-
ematic aspect of MVPA is that this type of approach does not account
or certain types of confounds, which are appropriately addressed using
ore standard analyses (e.g. GLM; Todd et al., 2013 ). For example, be-

ause MVPA detects a brain signal that is individual-specific, the unique
attern of neural activity decoded in one condition might be due to a
ariety of individual confounds (e.g. individual differences on task per-
ormance) – rather than the condition itself. As a consequence, discrimi-
ation success from MVPA analysis could lead to false positives ( Todd et
l., 2013 ). However, some of the limitations associated with MVPA can
e overcome by following certain procedures, such as avoiding overlap-
ing of training and testing sets with data from the same run to reduce
alse positives ( Mumford, Davis, & Poldrack, 2014 ). Overall, and con-
idering the widespread use of a variety of analyses methods among the
NIRS community, comparing different approaches to analyse the same
NIRS dataset could give insight into the pitfalls and advantages of each
ethod for exploring brain responses in infants. 

. Our study 

With this registered report, we aimed to make an initial step towards
stablishing more robust fNIRS methods and data analysis, by compar-
ng the results of three fNIRS data analysis approaches. 

Aim: Advance the statistical analysis of infant fNIRS data by illustrating

nd discussing the results of three fNIRS data analysis approaches: baseline-

orrected averaging, GLM-based univariate analyses, and MVPA analyses.

e investigated these different analysis methods in the context of a paradigm

nvolving upright and inverted faces (i.e., face inversion effect). 

Specifically, thirty 4-to-6-month-old infants were presented with up-
ight and inverted face stimuli in a block design. We relied on previ-
us procedures used with infant fNIRS data to perform our baseline-
orrected averaging ( de Klerk, Hamilton, & Southgate, 2018 ) and GLM-
ased analyses ( de Klerk et al, 2019 ; Pinti et al., 2017 ; Tak & Ye, 2014 ).
or the multivariate analysis we used the MVPA method combined with
achine learning techniques (by making use of support vector machine;

VM – a supervised learning model) which are frequently employed in
ultivariate analysis of adult fNIRS ( Ichikawa et al., 2014 ) and fMRI
ata ( Norman, Polyn, Detre, & Haxby, 2006 ). Within the fNIRS commu-
ity, so far machine learning techniques have not been the standard data
nalysis approach. Therefore, this study implements different methods
f analysis on the same infant fNIRS data, and discuss how results across
hese approaches might converge or differ. 

The different analysis methods described above were tested us-
ng a face inversion paradigm. As shown in the adult literature (e.g.,
innebusch, Keune, Suchan, & Daum, 2010 ; Minnebusch, Suchan,
öster, & Daum, 2009 ; Tanaka & Farah, 1993 ), stimulus orientation ef-

ects measure configural structural representations of certain classes of
timuli. Such representations are thought to be the hallmark of func-
ional specialisation for social stimuli such as faces. Previous infant
EG studies have found clear face-inversion effects (e.g. larger N290
n response to inverted faces compared to upright faces) suggesting that
aces are processed configurally from birth and throughout the first year
f life (e.g., Buiatti et al., 2019 ; de Haan, Pascalis, & Johnson, 2002 ;
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alit, de Haan, & Johnson, 2003 ). Just a handful studies however, have
xamined the haemodynamic response to the inversion effect in infants
 Ichikawa, Kanazawa, Yamaguchi, & Kakigi, 2010 ; Kobayashi et al.,
012 ; Otsuka et al., 2007 ), thus leaving the neural basis of face pro-
essing in young infants a critical point of investigation. Specifically,
tsuka et al. (2007) examined the classic face inversion effect by pre-

enting static upright and inverted faces. Face stimuli were presented
n alternating trials and images of vegetables were presented during
he inter-trial intervals and used as baseline. Five- to eight-month-old
nfants showed some effect of face inversion; in the right lateral area of
he infant brain the concentration of HbO 2 increased in response to up-
ight faces (but not to inverted faces) compared to the vegetable baseline
timuli. 

More generally, social stimuli such as faces or voices have been found
o elicit canonical fNIRS responses earlier in development than non-
ocial stimuli (e.g., Emberson et al., 2017 ; Grossmann, 2008 ; Lloyd-Fox
t al., 2009 ; but see also Kobayashi et al., 2011 ), suggesting that these
timuli can be reliably contrasted to investigate the suitability of more
ensitive and powerful analysis techniques for the use with infant fNIRS
ata. As the fNIRS infant literature on the face inversion effect is scarce,
sing the face inversion contrast in our study can provide further insight
nto the neural basis of face processing in young infants. 

Within the temporal lobes, the superior temporal sulcus (STS) has
een implicated in social perception in many previous studies ( Allison,
uce, & McCarthy, 2000 ). Importantly, the perception of faces as well
s eye gaze in static facial images has been shown to activate the STS
egion ( Hoffman & Haxby, 2000 ; Itier & Taylor, 2004 ; Passarotti, Smith,
eLano, & Huang, 2007 ). Indeed, source localisation studies point to-
ards the STS as one of the sources of the N170 component, showing

arger intensities for faces compared to objects ( Itier & Taylor, 2004 ).
n our study, we minimise the inherent complexity of social stimuli (i.e.
y using simple static human faces instead of complex dynamic social
cenes), to target our STS area of interest. 

It is not within the scope of this study to statistically assess simi-
arities and differences among the three different analysis approaches
ere. Nevertheless, this investigation illustrates and discusses how re-
ults across different fNIRS analysis methods converge or differ. Given
he large body of evidence suggesting that infants aged 6 months
nd under show enhanced activation to static social, face-like stim-
li ( Carlsson, Lagercrantz, Olson, Printz, & Bartocci, 2008 ; de Haan
t al., 2002 ; Nakato et al., 2009 ; Otsuka et al., 2007 ), our study fo-
uses on this age range (4-6 months) and uses simple visual stimuli,
hus the outcome is specific to this protocol. The protocol associated
ith this Registered Report received in-principle acceptance (IPA) on
9 July 2019, prior to data collection and analysis. The approved Stage
 manuscript, unchanged from the point of IPA, may be downloaded
rom https://osf.io/9u7xg . 

. Predictions 

Based on the existing literature ( Grossmann, Parise, & Friederici,
010 ; Issard & Gervain, 2018 ; Lloyd-Fox et al., 2018 ), we expected the
nfants in our study to show a larger canonical hemodynamic response
o upright human faces compared to inverted human faces. In particu-
ar, we expected that the STS area would show a significant difference in
ctivation in response to upright, compared to inverted faces. Because
hanges in HHb signals in infants are generally smaller than changes in
bO 2 and do not always show the expected decrease over the course of
 trial, a significant increase in HbO 2 in the absence of a significant de-
rease in HHb would be considered a positive result. Similarly, we would
onsider a positive result a significant decrease in HHb even if not ac-
ompanied by a concurrent significant increase in HbO 2 (cf. Lloyd-Fox
t al., 2010 ). 

Specifically, our hypotheses for the different analysis approaches are:
Quality check (positive controls) for all our analyses (i.e. baseline-

orrected averaging, GLM and MVPA) : 
3 
Sub-H 0 : Absence of significant differences in the hemodynamic re-
ponse between inverted faces and images of vegetables (baseline con-
ition) over the bilateral temporal arrays – and in particular over the
TS. Our results would show no significant increase in HbO 2 and no
ignificant decrease in HHb in response to inverted faces compared to
aseline. 

Sub-H 1 : Significant differences in the hemodynamic response be-
ween upright face stimuli and images of vegetables (baseline condition)
ver the bilateral temporal arrays – and in particular over channels over-
ying STS areas. Our results would show a significant increase in HbO 2 
nd/or significant decrease in HHb in response to upright faces com-
ared to baseline. 

Main hypotheses to test: 

H 0UNIVARIATE : In both baseline-corrected averaging and GLM analy-
es, channels over STS would not show a significant difference in activa-
ion in response to upright compared to inverted faces. This means that
e expected no significant differences in HbO 2 or in HHb in response to
pright compared to inverted faces over the bilateral temporal arrays. 

H 1UNIVARIATE : In both baseline-corrected averaging and GLM anal-
ses, channels over STS would show significantly greater activation in
esponse to upright compared to inverted faces. This means that we ex-
ected a significantly greater increase in HbO 2 and/or a significantly
reater decrease in HHb in response to upright compared to inverted
aces over the bilateral temporal arrays. 

H 0MVPA : Channels over STS would not differentiate between upright
nd inverted faces. This means that, we expected non-significant dis-
riminatory patterns in HbO 2 and HHb in response to upright compared
o inverted faces over the bilateral temporal arrays. 

H 1MVPA : Channels over STS would differentiate between upright and
nverted faces. This means that we expected significant canonical dis-
riminatory patterns of activation (increase in HbO 2 and/or decrease in
Hb) in response to upright compared to inverted faces over the bilat-
ral temporal arrays. 

While a right hemisphere dominance for processing of faces has been
eported in previous fNIRS infant studies ( Osaka et al., 2007 ), consider-
ng their very small sample sizes (ten babies) and the absence of clear
ateralization effect for faces in infant EEG studies ( de Haan et al., 2002 ;
alit et al., 2003 ), we did not have specific hypotheses with regard to
emispheric differences in face processing in our study. 

. Participants 

Based on power analysis, we calculated that our sample size would
eed to comprise of 26 infants (please see details of power analyses
n the Sample Size Justification section). Thirty-nine full-term, healthy
our-to-six-month-old infants were recruited to participate in the study.
ccording to the data exclusion criteria (please see Data Exclusion sec-

ion), eight participants were excluded due to failure to look at the min-
mum 3 trials per experimental condition and one participant was ex-
luded based on the NIRS data pre-processing (more than 30% of chan-
els rejected by enPruneChannels function). Thus, the final sample was
omposed of 30 participants (13 female; M age = 162.03 days, SD = 21.40
ays). 

Infants were recruited through the database of interested partici-
ants from the Essex Babylab and were born no more than a month
efore their due date, had no birth complications or major health prob-
ems, and no known hearing or vision difficulties. Caregivers were com-
ensated with a £5 voucher for their visit and were given a token gift
e.g. a Babylab bodysuit/t-shirt, bib or tote bag). 

.1. Sample size justification 

Justification of the sample size focused on demonstrating that the
roposed Multivariate Pattern Analysis (MVPA; please see Data Analysis
ection) was able to provide a satisfactory performance in terms of over-
ll accuracy to classify the patterns corresponding to each condition. The

https://osf.io/9u7xg
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Fig. 1. Illustrative representation of the risk of error for the multivariate decoding of our MVPA approach using a regularised linear SVM-based method of Emberson’s 
data ( Emberson et al., 2017 ). The red solid line depicts an inverse power law curve with an increasing trend. The accuracy is defined as (True positives + True 
Negatives) / (True positives + True Negatives + False Positives + False Negatives) and for Emberson’s study (dataset 1) with 23 subjects is 0.8696 (value displayed 
with a crossing black stripped line across both axes). 
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alidity of our proposed analysis approach was determined using an ef-
ective pattern classification of a related developmental cognitive neu-
oscience fNIRS dataset where MVPA has been previously applied using
orrelation-based decoding approach ( Emberson et al., 2017 ). The relia-
ility of the MVPA analysis in our approach depends on the performance
f a supervised learning model (linear SVM) with inputs consisting of
ctivations patterns. The linear SVM classifier seeks a set of weights that
est classify the activation patterns corresponding to each condition by
he largest separative margin between them. For this, we have made
se of the sample data of the original study by Emberson and colleagues
 Emberson et al., 2017 ). This study investigated 5-6-month-old infants’
eural processing of audiovisual stimuli (e.g. human faces and dimmed
reworks). Based on their results, Emberson and colleagues found dif-

erential informativeness of individual channels, and demonstrated that
t is possible to use MVPA for decoding neural patterns as measured by
NIRS in developmental populations ( Emberson et al., 2017 ). 

To predict the sample size required for satisfactory performance
f the MVPA in the current study, we used the method suggested
y Figueroa and colleagues ( Figueroa, Zeng-Treitler, Kandula, & Ngo,
012 ). In this work, the required sample size estimated for each per-
ormance value (accuracy) was based on inverse power law model of
he classifier’s accuracies trend from a small annotated training set. The
esults of this analysis using Emberson’s data are reported in Fig. 1 . 

From the analysis in Fig. 4 , we concluded that our MVPA based
ethodology is robust for the number of participants previously con-

idered in related works and for our study (N = 26; see Participants sec-
ion). The balance between the number of trials in Emberson’s study is
0% for each condition. Our design also considered a 50-50% balanced
umber of trials for each condition for the sake of uniformity. 

. Stimuli and procedure 

The stimuli for the baseline period consisted of full-colour photo
mages of 5 vegetables, and those for the test period consisted of full-
olour photo images of 5 female faces with a neutral facial expression,
ither in the upright or inverted position. The face stimuli were selected
rom the NimStim Face stimulus set ( Tottenham et al., 2009 ); avail-
ble at http://www.macbrain.org/resources.htm) . To increase the like-
4 
ihood of visual discrimination of stimuli (based on luminance, spatial
requency and colour), faces of multiple races and ethnicities were cho-
en ( Emberson et al., 2017 ). The faces were cropped right below the
eck. The LED monitor was 23.6 ” in size and located 90 cm from the
articipant’s eyes. 

The session began with a short, animated movie displaying animals,
hich we used to attract the infant’s attention to the screen. As soon as

he infant fixated on the monitor, trial presentation began. If necessary,
ccasional alerting sounds were played to draw the infant’s attention
ack to the screen. To ensure that these sounds were balanced during the
xperimental session, each time the sound was used during the baseline
rial, the following experimental trial also included a sound ( Filippetti
t al., 2015 ). 

In each trial the five face images were shown in pseudo-random order
t the rate of 1 Hz, to ensure that a given face image would not be
resented more than twice within the same trial or in a row ( Fig. 2 ).
pright faces were displayed in half of the trials, and inverted faces in

he other half of the trials. We used a pseudo-randomised order to ensure
hat a given condition was not presented more than three times in a row.
timulus presentation continued until the infant became fussy or bored
r until 30 trials had been presented as assessed by an experimenter who
as monitoring their behaviour. The duration of the trials was fixed for
 s. During the baseline trials, 5 images of vegetables were presented
wice in random order at a rate of 1 Hz, for 10 s. 

Infants were tested in a dimly lit and sound attenuated room, and
ere sitting on their parent’s lap. Infants were encouraged to watch the

timuli displayed on the monitor. Parents were asked to refrain from
alking and interacting with the infant during the stimuli presentation
nless the infant became fussy. The computer played the stimuli through
-prime, and an HP laptop computer recorded the NIRS signal. The NIRS
achine used pulsated LED emitters (NIRScout system, NIRx, Brain-
roducts). The whole testing session lasted about 10 minutes. 

. Data exclusion 

The decision to exclude a participating infant in subsequent analyses
as made based on the following criteria: 

http://www.macbrain.org/resources.htm\051
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Fig. 2. Illustrative example of the block design adopted in our study. The experimental visual stimuli in both upright and inverted face conditions were presented 
in pseudo-random order for 8 s at a rate of 1Hz. In between trials, baseline stimuli were presented for 10 s and each of the 5 images were randomly displayed at a 
rate of 1Hz. Please note that this figure is for illustrative purpose only. 
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• Refusing to wear the NIRS cap (none excluded in the study); 
• Showing signs of distress (heavily fussing or crying) (none excluded

in the study); 
• Parental interference (e.g. talking and interacting with the infant

during the stimuli presentation) that led to fewer than the required
number of valid trials (none excluded in the study); 

• Signal quality problems (due to pulling on the NIRS headgear, ex-
cessive movement or poor contact with the scalp; objective criterion:
30% of channels excluded) (one participant excluded based on this
criterion); 

• Experimental error, such as failing to record the fNIRS data or video,
or misplacement of the source-detector montage arrangement (none
excluded in the study); 

• Looking time (eight participants excluded based on this criterion):
Infants’ looking behaviour was coded offline to ensure that trials
were only included in the analysis if infants had watched at least
60% of the time in each trial as well as 30% of the pre- and post-
stimuli baseline ( Braukmann et al., 2018 ; Lloyd-Fox et al., 2013 ).
The coder was blind to the study hypotheses. 

. fNIRS recording and pre-processing 

fNIRS data was recorded using the NIRx NIRScout machine (source-
etector separation: 2.5 cm; two wavelengths of 760 nm and 850 nm;
ampling rate: approximately 10 Hz). The optical probe cap was placed
n infants’ heads targeting the temporal lobe areas of both hemispheres
left; LH, right; RH). Previous research using co-registration of fNIRS and
RI using a similar source-detector montage has demonstrated that it

ermits measurement of brain responses in cortical regions correspond-
ng to IFG, STS, and TPJ areas ( Lloyd-Fox et al., 2014 ). 

The optical sensors were inserted into a stretchy EEG cap (Quick-cap,
ompumedics Neuroscan) and were placed bilaterally on the infants’
ead using surface anatomical landmarks (inion, nasion, vertex and the
ilateral preauricular points; see Fig. 3 for approximate source-detector
ocations). 

We used two different cap sizes (42 cm and 44 cm) depending on
he participant’s head circumference. We used a source-detector mon-
age in line with previous research using co-registration of fNIRS and
5 
RI ( Lloyd-Fox et al., 2014 ). That is, for both caps we used two lat-
ral arrays to form a total of 20 channels ( Fig. 3 ). We identified the
ocation of responses from two measurements: 1) identification through
xternal landmarks – photographs of the infant’s head while wearing
he headgear and 2) measurements of the infant’s head circumference
nd distance between glabella, ears, vertex, pre-auricular points, and
nion ( Lloyd-Fox, Blasi and Elwell, 2010 ). In our sample, the average
ead circumference was 43.28 cm (SD = 1.29), and the average distance
rom the glabella to the ear above the pre-auricular point (T3/T4) was
1.35 cm (SD = 0.68 cm). The position of the channels over T3/T4 var-
ed no more than 1 cm along the axial plane across infants. We deter-
ined the approximate location of cortical regions based on previous

o-registration research using a similar array with infants around the
ame age ( Lloyd-Fox et al., 2014 ). 

Data were pre-processed using Homer2, a Matlab software pack-
ge (MGH-Martinos Center for Biomedical Imaging, Boston, MA, USA;
uppert, Diamond, Franceschini, & Boas, 2009 ). Data from the exper-

mental session is automatically saved into “.nirs ” format, compatible
ith Homer2. We followed a processing stream recommended for noisy
ata with few trials (typical of infant fNIRS data) ( Brigadoi et al., 2014 ).
ight intensity data was first converted to optical density and channels
ith raw intensities smaller than 0.001 V or bigger than 10 V were

ejected ( enPruneChannels function). Additionally, we checked that all
hannels with more than 20% of ‘NaN’ values (automatically selected
egments of saturated data) were excluded from analyses and that all
eriods of ‘NaN’ values were excluded from the session. We manu-
lly excluded trials in which the infants were not attending and/or
he caregivers were influencing the infants’ looking behaviour (e.g. by
alking– see exclusion criteria). Following the recommendations made
y Brigadoi et al. (2014) motion artefacts were corrected using wavelet
nalyses with 0.5 times the interquartile range. To attenuate slow drifts
nd high frequency noise, we then band-pass filtered the data (high-pass:
.01 Hz, low-pass: 0.80 Hz) using the default filtering options provided
n HomER ( Huppert et al., 2009 ). Infants for whom more than 30% of
he channels were excluded due to weak or noisy signal were excluded
rom analysis. Finally, the data were converted to relative concentra-
ions of oxygenated (HbO 2 ) and deoxygenated haemoglobin (HHb) us-
ng the modified Beer-Lambert law ( Duncan et al., 1996 ) with a path-
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Fig. 3. Illustrative example of the source-detector configura- 
tion for the current study. The red dots represent the approxi- 
mate source locations, whereas the blue dots represent the ap- 
proximate detector locations. The white circles represent chan- 
nels. 
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ength factor of 5.1 ( Delpy et al., 1988 ). As in previous infant fNIRS
tudies, a total minimum number of 6 trials (3 trials per condition) was
equired to carry out the baseline-corrected averaging and GLM analy-
es (e.g. Lloyd-Fox et al., 2009 , 2014 ; Southgate et al., 2014 ). For the
VPA approach, the total minimum number of trials for each subject
as set to 16 (8 trials per condition). 1 

. Data analysis 

Even though we are mainly expecting differences over STS areas,
he array we used is slightly different from previous coregistration work
e.g. Lloyd-Fox et al., 2014 ), which makes it difficult to know exactly
hich channels to include in potential ROI analyses. Therefore, in the
resent study we performed whole-array analyses. 

.1. Baseline-corrected averaging approach 

We computed relative changes in HbO 2 and HHb for 18 s long epochs
tarting 3 s before the onset of each trial and ending 7 s after trial
ffset. The mean HbO 2 and HHb concentrations during the 3 s pre-
xperimental window (baseline) was subtracted from the concentrations
n the 15 s analysis period. The signals were then averaged across tri-
ls for each channel and condition. Following Lloyd-Fox et al. (2015) ,
e first quantified the mean haemodynamic concentration changes dur-

ng five 3 s sub-epochs following trial onset. Then, we performed re-
eated measures analyses on these five sub-epochs with the two condi-
ions (upright face vs. inverted face) as within subjects factors to identify
hannels that showed a significant HbO 2 increase and/or a significant
Hb decrease from baseline when both conditions were considered to-
ether (as indicated by a main effect of time). To assess whether there
ere differences in the haemodynamic response between the two condi-

ions (upright face vs. inverted face), we conducted repeated-measures
nalyses on each of these pre-selected channels that showed a signif-
cant haemodynamic response. Multiple comparisons corrections were
one by controlling for the false discovery rate using the Benjamini-
ochberg procedure ( Benjamini & Hochberg, 1995 ). We reported both
ncorrected and corrected results, if at least the former was significant
t p < 0.05. If the uncorrected result was significant, but the corrected
ne was marginal, we reported exact p values for the marginal result. 
1 We originally planned to include 26 participants with at least 8 trials per 
ondition. Unfortunately, the COVID-19 pandemic greatly disrupted the study 
nd prevented further data collection. Therefore, we ran the MVPA both with 
ur full sample of 30 participants who had a minimum 3 good trials per con- 
ition (N = 22 had at least 6 trials per condition), and with the 13 participants 
hat had at least 8 good trials per condition. This change in data analysis was re- 
uested after data collection and pre-processing but before any further analysis 
r hypothesis-testing. The change received editorial approval on 5 May 2022. 
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.2. General Linear Model (GLM) analysis 

Data analysis was conducted using a combination of custom Matlab
cripts (code is available via GitHub ) and the SPM-NIRS toolbox ( Ye et
l., 2009 ). For each infant, we constructed a design matrix with three
egressors. The first regressor modelled the upright face trials (8 s), the
econd regressor modeled the inverted face trials (8 s), and the third
egressor modeled the baseline trials (10 s). We set excluded trial pe-
iods to zero, thus effectively removing them from the analyses. These
egressors were convolved with the standard canonical haemodynamic
esponse function without derivatives to make the design matrix ( Penny,
riston, Ashburner, Kiebel, & Nichols, 2011 ), which we then fitted to
he data using the general linear model as implemented in the SPM-
IRS toolbox ( Ye et al., 2009 ). For each of the regressors and for each

nfant, we obtained beta parameters that were then used to calculate a
ontrast between the conditions of interest for each infant. To ensure
tatistical reliability of channel activation, we used FDR correction us-
ng the Benjamini-Hochberg procedure ( Benjamini & Hochberg, 1995 )
s detailed in the baseline-corrected averaging approach. 

.3. Multivariate pattern analysis (MVPA) 

Data analysis was conducted using custom in-house scripts (code is
vailable via GitHub ). Multivariate decoding accuracy was estimated
s basis of the prediction of the SVM that was trained with the follow-
ng target labels for each vector: 1) upright vs. baseline; 2) inverted vs.
aseline; 3) upright vs. inverted. The multichannel vector of 1st level
LM 𝛽 coefficients for each condition was used as features (i.e. using

he output from the GLM with one regressor per condition and chan-
el) in our subsequent MVPA analysis. In order to validate the gener-
lization of the MVPA results, testing and training sets were generated
n a subject-wise repeated 5-fold cross-validation procedure with non-
verlapping subjects and outcome values were reported as the average
cross cross-validation test. The values of β from the missing channels
ere estimated by applying the Bayesian Principal Component impu-

ation method, using as reference the β value of the non-missing chan-
els within the same area ( Audigier, Husson, & Josse, 2016 ). A support
ector machine (SVM) was used as binary classifier as applied before
n MVPA analysis and with fNIRS signals ( Andreu-Perez, Leff, Shetty,
arzi, & Yang, 2016 ; Mourão-Miranda, Friston, & Brammer, 2007 ). Us-

ng SVM with a linear kernel is a recommended approach for MVPA
s this simpler model is less prone to overfitting (i.e. modelling noise
long with relevant information). Additionally, we also fitted the SVM
ith L2 (ridge) regularization that aims to keep the model weights small,
ence reducing its complexity and avoiding overfitting. A search guided
y a genetic algorithm ( Katoch, Chauhan, & Kumar, 2021 ) was used to
nd the subset of the most determinant channel betas that maximises
he MVPA accuracy. Parametrization for the SVM was estimated from
he cross-validation procedure within the training set only. We applied a

https://github.com/jandreu/dcnmethods
https://github.com/jandreu/dcnmethods
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Fig. 4. Schema of the data processing stack including all steps towards the three analysis methods (baseline-corrected averaging: Method 1; GLM: Method 2; MVPA: 
Method 3). Intensity data were filtered and converted to concentration of each haemoglobin chromophore. The haemodynamic data were then transferred to a GLM 

process to estimate the beta regression coefficients for each channel and stimulus condition. The regression coefficients corresponding to each condition were used 
as input features for feature selection via Recursive Feature Elimination with cross-validation (RFECV) and MVPA analysis, all encapsulated within a repeated k-fold 
cross-validation process to split between the training and test sets. 

Table 1 

Results of the preregistered analyses . Summary of data analyses results across the baseline-averaging, GLM, and MVPA methods. 

Preregistered analyses 

Baseline-averaging GLM (Anova) MVPA with beta (GLM) 

Pass quality check? (Sub-H 0 /Sub-H 1 ) Sub-H 1 Neither Neither 
H 1 (upright vs inverted) Yes Yes No 
Significant channels (upright vs inverted) Channel 18 (HbO 2 ) 

[not surviving multiple comparison correction] 
Channel 8 (HbO 2 ) and channel 1 (HHb) [not 
surviving multiple comparison correction] 

None 

d  

g  

f  

m  

o  

r  

T  

t  

c  

(

9

9

 

i  

b  

i  

s  

t  

6  

=  

s  

H  

F  

U  

d
r  

H  

F  

t

9

 

t  

i  

o  

o  
ataset resampling procedure via randomization approach (Monte Carlo
uided permutation) to perform group level analysis with a nested 5-
old cross validation ( Etzel, 2015 ). The classification analysis was run
ultiple times with the permuted labels to obtain a null distribution

r chance performance distribution, and significance of the observed
esults was assessed by the empirical p-value for the null distribution.
he same procedure was performed for the sensitivities, i.e., scores of
he classifier for each feature. A schematic representation of all the pro-
essing steps leading to the MVPA analysis from the raw light intensity
Volts) measures, is presented in Fig. 4 . 

. Results 

.1. Baseline-corrected averaging results 

The initial analyses identified three channels that showed a signif-
cant haemodynamic response during the trial period compared to the
aseline period when both conditions were considered together (as ev-
denced by a significant main effect of time). These channels showed a
ignificant haemodynamic response through an increase in HbO be-
2 

7 
ween the baseline period and the trial period: channel 8, F (1.976,
1.655) = 5.567, p = .0006, channel 18, F (1.671, 34.184) = 7.448, p

 .003, channel 20, F (2.249, 52.135) = 3.092, p = .046. Channel 8 also
howed a significant haemodynamic response through a decrease in
Hb between the baseline and trial, F (2.285, 57.395) = 4.638, p = .010.
or channel 18, there was a significantly greater HbO 2 response to the
pright compared to the Inverted face condition (main effect of con-
ition, F(1,29) = 4.838, p = .036; see Fig. 5 ) indicating a greater HbO 2 
esponse to the Upright face condition throughout the analysis period.
owever, this channel did not survive multiple comparisons correction,
DR-corrected p = .108. Please see Table 1 for a summary of preregis-
ered results. 

.2. General Linear Model (GLM) results 

t Tests on the betas for the contrasts between the individual condi-
ions and baseline showed no significant increase in HbO 2 and/or signif-
cant decrease in HHb in response to upright faces compared to baseline
r in response to inverted faces compared to baseline. Thus, our GLM
utput data did not pass the initial quality check. t Tests on the betas

https://www.sciencedirect.com/topics/psychology/hemodynamic-response
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Fig. 5. Hemodynamic response to the upright (solid line) and inverted (dashed line) face conditions for channels 18 (top left), 17 (top right), 9 (bottom left), and 
11 (bottom right). These channels are also highlighted in yellow in the array image. In the baseline-corrected analysis, channel 18 (in bold) was the only channel 
that displayed a main effect of time and a main effect of conditions. The significant responses are illustrated in red (HbO 2 ) and blue (HHb). 
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or the contrast between the upright and inverted condition revealed
wo channels that were sensitive to face orientation - one channel over
he left temporal parietal cortex (channel 8) and one channel over the
eft inferior frontal cortex (channel 1). Channel 8 showed a significantly
reater hemodynamic response (based on HbO 2 ) for the Upright com-
ared to the Inverted face condition, t(28) = 2.268, p = .031. However,
his channel did not survive multiple comparisons correction, FDR cor-
ected p = .56. Channel 1 showed a significantly greater hemodynamic
esponse (based on HHb) for the Upright compared to the Inverted face
ondition, t(26) = 2.335, p = .028. However, this channel did not survive
ultiple comparisons correction, FDR corrected p = .62. No channels

howed a significantly greater response in the Inverted condition com-
ared to the Upright face condition. Please see Table 1 for a summary
f preregistered results. 

.3. Multivariate pattern analysis (MVPA) results 

We ran the MVPA with both the full sample of 30 participants with
 minimum of 3 trials per conditions (dataset 1 thereafter), and with
he 13 participants that had at least 8 trials per condition (dataset 2
hereafter). For dataset 1, decoding accuracy (50%) was not statisti-
ally significant for HbO 2 during the trial period compared to the base-
ine period; upright vs baseline: p = .55; inverted vs baseline: p = .50.
imilarly, decoding accuracy (58%) was not statistically significant for
bO 2 between upright vs inverted conditions, p = .13. Decoding accu-

acy was also not statistically significant for HHb in all comparisons:
pright vs baseline: accuracy = 55%, p = .29; inverted vs baseline: ac-
uracy = 50%, p = .50; upright vs inverted: accuracy = 56.67%, p = .23.
hus, while these accuracy scores were numerically above 50%, they
id not exceed chance level. 
8 
For the HbO 2 decoding of Upright vs Inverted condition, we also ex-
racted channel decoding relevancy ( Fig. 6 ) as revealed by the absolute
alue of the coefficients of the linear SVM-based method used for the
VPA analysis. Channels 15 and 17 on the left hemisphere displayed

arger coefficients than the rest of the channels on both hemispheres.
owever, these channels were not significantly more relevant than the
thers, thus suggesting that the decoding of 58% accuracy is achieved
onsidering the whole multivariate set of channels. Please see Table 1 for
 summary of preregistered results. 

We found similar results for dataset 2. Decoding accuracy was
ot statistically significant for HbO 2 during the trial period com-
ared to the baseline period; upright vs baseline: accuracy = 46%,
 = .65; inverted vs baseline: accuracy = 61%, p = .16. The group model
or HbO 2 in the comparison upright vs inverted yielded 61% accu-
acy. However, this accuracy score did not robustly exceed chance,
 = .16. Decoding accuracy was also not statistically significant for HHb
n all comparisons: upright vs baseline: accuracy = 58%, p = .28; in-
erted vs baseline: accuracy = 49%, p = .41; upright vs inverted: ac-
uracy = 50%, p = .45. Overall, we therefore found that the model
id not manage to establish an accurate decoding whether the in-
ants in our sample were watching either an upright or inverted face
timulus. 

For the HbO 2 decoding of Upright vs Inverted condition we also ex-
racted channel decoding relevancy ( Fig. 7 ) as revealed by the absolute
alue of the coefficients of the linear SVM-based method used for the
VPA analysis. Channel 7 on the right hemisphere displayed a larger

oefficient than the rest of the channels on both hemispheres. However,
his channel was not significantly more relevant than the others, thus
uggesting that the decoding of 61% accuracy is achieved considering
he whole multivariate set of channels. 
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Fig. 6. Channel decoding relevancy revealed by the coefficients of the base model Linear SVM for MVPA with dataset 1. Each channel is grouped by side of side of 
the array. 

Fig. 7. Channel decoding relevancy revealed by the coefficients of the base model Linear SVM for MVPA with dataset 2. Each channel is grouped by side of the 
array. 
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0. Exploratory analyses 

0.1. Baseline-corrected averaging results 

The requirement of the preregistered univariate analysis was for the
hannels to display a main effect of time, that is to show a significant
aemodynamic response during the trial period compared to the base-
ine period when both conditions were considered together. We set this
rerequisite to reduce the number of comparisons, however it is likely
hat some channels were sensitive to face orientation despite not show-
ng evidence of a significant hemodynamic response when both condi-
ions were considered together. Therefore, we also report the results on
ain effect of condition (as indexed by an increase in HbO 2 or a de-

rease in HHb). 
Three additional channels overlying the posterior temporal areas bi-

aterally (channel 9 and channel 17) and the right anterior temporal area
channel 11) showed a significant effect of condition based on HbO 2 ,
ndicating a greater response to the Upright compared to the Inverted
ondition. However, these channels did not show a significant effect of
ime or an interaction between time and condition; channel 9: F (1,29) =
.317, p = .047, FDR corrected p = .235; channel 11: F (1,27) = 7.541, p
 .011, FDR corrected p = .22; channel 17: F (1,28) = 7.242, p = .012, FDR
orrected p = .12). None of the channels showed a significant effect of
ondition based on HHb. For a summary of exploratory results, please
ee Table 2 . 

0.2. General Linear Model (GLM) results 

The GLM-based univariate analysis did not find evidence for a sig-
ificant hemodynamic response between the individual experimental
onditions and baseline. Given that the HRF is not well established in
oung infants, it is possible that the estimation of beta coefficients from
his approach lacked sensitivity. Therefore, we ran an exploratory GLM
nalysis using time and dispersion derivatives when modelling the HR,
9 
hus taking into account variability in the onset time and shape of the
emodynamic response that are common in infant data (see Table 2 for
 summary of exploratory results). t Tests on the betas for the contrasts
etween the individual conditions and baseline showed a significant in-
rease in HbO 2 in response to baseline compared to the upright faces
n channel 12 (t(29) = -2.359, p = .025, FDR corrected p = .50). There
as also a significant increase in HbO 2 in response to baseline com-
ared to inverted faces in channels 12 (t(29) = -2.494, p = .019, FDR cor-
ected p = .19) and 14 (t(28) = -2.735, p = .011, FDR corrected p = .22).
hannel 5 showed a significant decrease in HHb for the Upright com-
ared to the baseline condition, t(29) = 2.759, p = .010, FDR corrected
 = .20), as well as for the Inverted compared to the baseline condition,
(29) = 2.162, p = .039, FDR corrected p = .39. Additionally, channel 1
howed a significant decrease in HHb in response to baseline compared
o the inverted faces, t(29) = -3.281, p = .001, FDR corrected p = .06.
lease note that none of the above effects survived FDR correction. t
ests on the betas for the contrast between the upright and inverted
ondition revealed that channel 8 and channel 17 were sensitive to
ace orientation – although these effects did not survive FDR correction.
oth channels showed a significantly greater hemodynamic response
based on HbO 2 ) for the Upright compared to the Inverted face condi-
ion, channel 8: t(28) = 2.105, p = .044, FDR corrected p = .44; channel
7: t(28) = 2.293, p = .030, FDR corrected p = .60. No channel showed
 significantly greater response in the Inverted condition compared to
he Upright face condition. No channel showed a significant decrease in
Hb in the contrasts between Upright and Inverted face condition. 

0.3. Multivariate pattern analysis (MVPA) results 

Our GLM analysis did not pass the initial quality checks, showing
o significant increase in HbO 2 and/or significant decrease in HHb in
esponse to upright faces compared to baseline. This suggests that our
LM model and, consequently our beta-based MVPA, may have lacked

ensitivity and may not have been optimal for the analysis of the current

https://www.sciencedirect.com/topics/psychology/hemodynamic-response
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Table 2 

Results of the exploratory analyses. Summary of data analyses results for the baselin-averaging, GLM using time and dispersion as derivatives, baseline- 
corrected MVPA, and MVPA using betas derived from GLM with derivatives. 

Exploratory analyses 

Baseline-averaging GLM with derivatives Baseline-corrected MVPA MVPA with beta (GLM with derivatives) 

Pass quality check? (Sub-H 0 /Sub-H 1 ) Sub-H 1 Sub-H 0 n/a Yes 
H 1 (upright vs inverted) Yes Yes Yes Yes 
Significant channels (upright vs inverted) Channels 9, 11, and 17 

(HbO 2 ) 
Channels 8 and 17 (HbO 2 ) 
[not surviving multiple 
comparison correction] 

Channel 17 (HbO 2 ) and 
channel 11 (HHb) 

Channels 5, 13, 15, 18, 19, 20 (HbO 2 ), 
and channel 16 (HHb) 
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ataset. Therefore, we ran additional (non-preregistered) MVPAs using
) baseline-corrected responses instead of beta coefficients and 2) beta
oefficients derived from the GLM using time and dispersion derivatives
see Table 2 for a summary of exploratory results). 

If our MVPA was affected by the estimation of betas, then we should
bserve that MVPA using baseline-corrected responses would provide
esults in line with our baseline-corrected univariate approach. The
VPA approach used was similar to the beta-based approach that we

reregistered (please see Multivariate Pattern analysis (MVPA) section)
ith the exception that in this model our features were the multichannel
ector of baseline-corrected averages for each condition over the time
indow 0 s - 12 s of each block. In addition, the MVPA was configured

o select best multivariate combinations with a minimum of 2 chan-
els. Data analysis was conducted using custom in-house scripts (code
s available via GitHub https://github.com/jandreu/dcnmethods ). 

We ran the MVPA with the full sample of 30 participants. The group
odel for HbO 2 in the comparison upright vs inverted yielded 72% ac-

uracy. This accuracy score was statistically significant, p = .009, with
he multivariate combination of channels 8 (decoding relevancy, p = .07)
nd 17 (decoding relevancy, p = .009) producing high decoding power,
lthough only the decoding relevancy of channel 17 was significant.
ecoding accuracy was also statistically significant for HHb, with a de-
oding accuracy of 75%, p = .009. The model showed that a larger set of
hannels contributed to the high decoding power, although only chan-
el 11 relevancy was consistently significant ( p = .03). Overall, these
esults show the expected significant canonical discriminatory patterns
f activation (increase in HbO2 and/or decrease in HHb) in response to
pright compared to inverted faces over the bilateral temporal arrays. 

To examine whether decoding accuracy would benefit from betas
erived from a GLM approach that uses time and dispersion deriva-
ives, we ran an additional (non-preregistered) MVPA with dataset 1
N = 30 participants). In this model, the set of best channel’s beta-
oefficients is selected by means of recursive feature elimination (REF).
his method starts with a base model ‘linear-SVM’ including all chan-
els’ beta-coefficients (‘feature’) and recursively prunes features and
hecks for the improvement or deterioration of the decoding accuracy
pon removal of the features ( Guyon et al, 2002 ). The automatic selec-
ion of the length of the optimal feature set is achieved by wrapping REF
ith a cross-validation procedure, where at every step of removal a de-

oding score is computed based on cross-validation. The step that yields
he higher score is considered the best number of features. A subsequent
FE is ran in order to select the best set of features of that number. With

he based model trained with the best set of features, a permutation test
s performed to estimate the empirical p-value of decoding accuracy
‘score’), and feature importance (‘coefficients’). 

Using this model, we found that decoding accuracy was statistically
ignificant for HbO 2 during the trial period compared to the baseline pe-
iod; upright vs baseline: accuracy = 70%, p = < .01; inverted vs base-
ine: accuracy = 67%, p = < .01. Similarly, decoding accuracy was sta-
istically significant for HHb for the contrast upright vs baseline: accu-
acy = 66%, p = .0198 – but not for the contrast inverted vs baseline:
ccuracy = 58%, p = .089. 

The group model for HbO 2 in the comparison upright vs inverted
ielded 80% accuracy. The model showed that a large set of channels
10 
ontributed to the high decoding power, with channels 5 ( p = 0.0218),
3 ( p = < .01), 15 ( p = < .01), 18 ( p = < .01), 19 ( p = < .01), and 20
 p = < .01) being consistently significant. Decoding accuracy was also
tatistically significant for HHb, with a decoding accuracy of 72%, p
 < .001, with the multivariate combination of channels 16 (decoding

elevancy, p = < .01) and 18 (decoding relevancy, p = 1.941) producing
igh decoding power, although only the decoding relevancy of channel
6 was significant. The results of this MVPA using beta coefficients from
he GLM with derivatives show significant discriminatory patterns in
esponse to upright compared to inverted faces over the right temporal
rray. 

1. Discussion 

Over the last few decades fNIRS research has been growing rapidly in
he field of developmental cognitive neuroscience. Possibly partially as
 result of the rapid developments in this field, there are many different
pproaches to the analysis of developmental fNIRS data. In the current
egistered report we aimed to compare and contrast three fNIRS data
nalysis approaches, namely baseline-corrected averaging, GLM-based
nivariate analyses, and MVPA analyses, in the context of a paradigm
nvolving upright and inverted faces (i.e., the classic face inversion ef-
ect) with infants. We discuss the results of each approach separately
efore considering how these converge or differ. 

The baseline-corrected averaging approach showed that only chan-
el 18, approximately overlying the right posterior STS region (based on
he standardised scalp surface fNIRS map from Lloyd-Fox et al., 2014 ),
isplayed a significantly greater HbO 2 response to the Upright compared
o the Inverted face condition while also showing a significant main ef-
ect of time. While the FDR used in the present study is considered to
e highly conservative for infant fNIRS analyses ( Filippetti et al., 2015 ;
loyd-Fox et al., 2017 ), it is important to note that channel 18 did not
urvive multiple comparisons correction and thus this result should be
reated with caution. We also identified three channels situated over
he posterior bilateral region of the array (channels 17 and 9) and one
hannel situated over the right anterior region (channel 11) that were
ensitive to face orientation but that did not show evidence of a sig-
ificant hemodynamic response (as indexed by an increase in HbO 2 or
 decrease in HHb) when both conditions were considered together (a
rerequisite we set to reduce the number of comparisons). We identified
he location of these channels as lying over bilateral posterior STS re-
ion and the right inferior frontal gyrus ( Lloyd-Fox et al., 2014 ). Overall,
hese results are in line with Otsuka et al. (2007) who found that five-to-
ight-month-old infants’ brains showed a significant increase in HbO 2 
ver the right temporal lobes in response to upright (but not inverted)
aces. 

The GLM-based univariate analyses revealed that one channel situ-
ted over the left posterior region of the array (channel 8; correspond-
ng to the left posterior STS region) displayed a significantly greater
bO 2 response to the Upright compared to the Inverted face condi-

ion. This result corroborates previous research pointing to the STS as
 key brain region implicated in social perception ( Allison, Puce, & Mc-
arthy, 2000 ). However, given that this effect did not survive correc-
ion for multiple comparisons, and that a significant difference over a

https://github.com/jandreu/dcnmethods
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ingle channel (in the absence of significant effects over adjacent chan-
els) may lack statistical reliability ( Lloyd-Fox, Blasi, Everdell, Elwell,
 Johnson, 2011 ), this could be a false positive finding. Additionally,
iven that we did not find evidence for a significant hemodynamic re-
ponse to the upright condition compared to baseline, we have reason
o question the sensitivity of the GLM analyses. As outlined in the In-
roduction, the GLM methods makes assumptions about the shape and
iming of the HRF ( Tack & Ye, 2014 ). Given that the HRF is not well
stablished in young infants, assumptions about the HRF are suscepti-
le to model misspecification ( Yücel et al., 2021 ). A potential solution
s to use time and dispersion derivatives when modelling the HR, which
akes into account variability in the onset time and shape of the hemo-
ynamic response. Our exploratory GLM analysis using time and disper-
ion derivatives showed that channel 8 and channel 17, approximately
verlying the posterior bilateral region of the array, were sensitive to
ace orientation – although these effects did not survive FDR correction.
verall and despite the potential lack of sensitivity of our GLM model,

hese results are in line with the baseline-corrected analysis and point
owards channels lying over the STS region of the infant brain being
ensitive to face orientation. 

Unsurprisingly given these potential issues with the GLM approach,
he MVPA analysis using beta coefficients was not able to distinguish
etween the two stimulus conditions in our fNIRS data with the antici-
ated level of accuracy ( Fig. 1 ) . Higher decoding accuracy was achieved
y the MVPA based on baseline-averaging and the MVPA based on beta
oefficients derived from the GLM with derivatives that we ran as ex-
loratory (non-preregistered) analyses. The MVPA based on baseline-
veraging showed some convergent results with the baseline-averaging
nivariate approach, thus reinforcing the idea that our GLM model, and
onsequently our beta-based MVPA, may have lacked sensitivity and
ay not have been optimal for the analysis of the current dataset. The
VPA approach based on beta coefficients derived from the GLM with

erivatives yielded 80% decoding accuracy for the face orientation con-
rast. This model showed that a large set of channels lying over the right
TS region of the infant brain jointly contributed to the high decoding
ower. These results suggest that beta-based MVPA approaches should
ot rely on a priori estimation of beta coefficients unless the experimen-
al design and/or population are conducive to eliciting a clear canonical
R. Other multivariate methods not dependent on beta-weight regres-

ion or HRF fitting may also be helpful ( Emberson et al., 2017 ; Kiani et
l., 2020 ). 

The main aim of the present study was to analyse our fNIRS data
sing three different approaches and discuss how these results would
onverge or differ. The preregistered univariate analyses (baseline-
veraging and GLM-based approaches) provided some convergent re-
ults. While no single channel showed a significantly greater response
o the Upright compared to the Inverted face condition in both analy-
is approaches, these analyses did seem to point towards channels lying
ver the STS region of the infant brain being sensitive to face orienta-
ion. This finding suggests that there are univariate differences between
pright and inverted face conditions. 

Our preregistered multivariate analysis was not able to distinguish
mong conditions and thus these results diverge from the baseline-
veraging and GLM-based univariate approaches. This is in contrast with
mberson and colleagues (2017) ’s study which also used a MVPA ap-
roach and reported significant decoding of unimodal and bimodal (au-
iovisual) stimuli with smaller sample size and trial numbers (N = 25
nd 6.9 trials in Dataset 1; N = 26 and 4.9 trials in Dataset 2; Emberson
t al., 2017 ) than the one employed in the current study (N = 30, 8.2
rials). However, Emberson’s study presented two important differences
ompared to our study: 1) it used a multivariate approach relying on
orrelations among trials rather than beta coefficients and 2) it involved
 perceptual discrimination between distinct visual and auditory stim-
li whereas the present study examined configural structural represen-
ations of faces, which could arguably be considered a more subtle
ontrast. Nonetheless, our MVPA exploratory analysis using baseline-
11 
orrected data (instead of betas) and using betas derived from GLM with
erivatives, found significant decoding, thus converging with Emberson
t al. (2017) ’s findings that a MVPA approach to fNIRS infant data can be
mplemented even with more subtle stimulus contrasts. Another consid-
ration in relation to Emberson et al. (2017) ’s work is that their MVPA
odel focused on a subset of 10 channels whereas our model consid-

red the whole fNIRS array of 20 channels. Indeed, in their study, the
uthors found greater decoding accuracy for subsets of small number
f channels (2 to 10 channels). However, we think it is unlikely that
ocusing on a subset of channels in our MVPA would have significantly
mproved the model given that a feature selection pipeline was already
mplemented in the MVPA analysis and that the absolute values of the
inear SVM coefficient intrinsically determine feature relevance ( Guyon
 Elisseeff, 2006 ). That is, the MVPA SVM-based method we employed
utomatically weighs the contribution of the channels for decoding so
ny low-weighted input would have had a minimal impact on the model.

From the observations made thus far it is possible to outline some
onsiderations that developmental researchers may wish to take into
ccount when designing, and planning data analysis of a fNIRS study.
irst, although the GLM approach may not have been suited for the
nalysis of the current dataset, it does provide clear benefits for fNIRS
tudies in which the researcher wants to control for additional regres-
ors (e.g., other physiological measures, behavioural responses, etc.). A
enefit of GLM approaches is that these variables can be added to the
odel to estimate their effect in the fNIRS signal – which is not possible
hen employing a baseline-corrected averaging approach. In addition,
LM may also be particularly suitable for data collected with slightly
lder developmental populations (i.e., children) when the HRF becomes
ore similar to the canonical response. With younger infants, GLM ap-
roaches that take into account HRF variability should be considered.
ur GLM using time and dispersion derivatives proved promising, but

here are other methods that can extract intricate hemodynamic func-
ions from fNIRS (e.g., using a Finite Impulse Response Filter (FIR) ap-
roach ( Huppert, 2016 ; Pinti, Scholkmann, Hamilton, Burgess, & Tacht-
idis, 2019 )). However, the high uncertainty in the shape of the HRF in
evelopmental populations ( Gemignani & Gervain 2021 ), vasoconstric-
ion dynamics and non-stationarities of neurovascular coupling, render
nalysis standards sustained in waveform fitting an open question. This
eport also shows that assumption-free analysis methods can be useful
or this field of research. 

Second, and relatedly, more refined MVPA approaches might be par-
icularly useful in modelling the uncertainty in the input data – espe-
ially in the context of infant data which is often characterized by inter-
ubject and/or intra-subject variabilities. For example, MVPA based on
Xplainable Artificial Intelligence (XAI) can describe the activation level
f cortical regions based on conceptual labels outlining multivariate
ontributions between brain regions for stimulus processing ( Kiani et
l., 2020 ). Such data-driven approach may be based on time-discretised
aseline-corrected responses or any other signal descriptor - overcom-
ng the need of determining a priori the shape of the HRF ( Gemignani,
018 ) - and may be useful for identifying patterns of intra- and inter-
egional interactions ( Andreu-Perez et al., 2021 ; Kiani, Andreu-Perez,
agras, Filippetti, & Rigato, 2020 ; Kiani, Andreu-Perez, Hagras, Rigato,
 Filippetti, 2022 ). 

With this registered report, we contribute to the body of recent work
imed at improving the analysis of fNIRS data by building a consensus
f best practices (e.g., ( Gemignani & Gervain, 2021 ; Pinti et al., 2019 ;
ücel et al., 2021 )). While it was not within the scope of the study to
rovide a definite solution to the design and analysis of infant fNIRS
ata, the added value of this work is that it provides the first systematic
omparison of how different types of analysis approaches can affect the
esults. Importantly, as part of the registered report process, the signif-
cance of the research and robustness of the methods are evaluated -
nd approved - via peer-review before any data collection takes place.
he report details our approach to determining the appropriate statis-
ical power for this study and follows well-established pre-processing
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ipelines to ensure good data quality. Therefore, it is highly unlikely
hat our results can be explained by small sample size or inadequate
ata quality. 

Overall, future studies should carefully consider the caveats outlined
n the present work when carrying out fNIRS developmental research
sing univariate and/or multivariate approaches. In a recent comment
ublished in Nature, Wagenmakers, Sarafoglou and Aczel (2021) sug-
ested that performing multiple analyses on the same set of data should
e made the norm to assess the robustness of one’s conclusions. Our
tudy illustrates this point by showing that there might not be a single
ppropriate way of analysing a dataset and that multiple, equally plau-
ible, statistical analyses can lead to different conclusions. We also sug-
est that advanced methods might provide complementary information
o infant fNIRS data analysis, but in this study, we have not been able to
nd enough evidence to suggest relinquishing of more basic methods. 
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