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Abstract
We study a security game over a network played between a defender and k attack-
ers. Every attacker chooses, probabilistically, a node of the network to damage. The 
defender chooses, probabilistically as well, a connected induced subgraph of the net-
work of � nodes to scan and clean. Each attacker wishes to maximize the probability 
of escaping her cleaning by the defender. On the other hand, the goal of the defender 
is to maximize the expected number of attackers that she catches. This game is a 
generalization of the model from the seminal paper of Mavronicolas et al. Mavroni-
colas et al. (in: International symposium on mathematical foundations of computer 
science, MFCS, pp 717–728, 2006). We are interested in Nash equilibria of this 
game, as well as in characterizing defense-optimal networks which allow for the best 
equilibrium defense ratio; this is the ratio of k over the expected number of attackers 
that the defender catches in equilibrium. We provide a characterization of the Nash 
equilibria of this game and defense-optimal networks. The equilibrium characteriza-
tions allow us to show that even if the attackers are centrally controlled the equilibria 
of the game remain the same. In addition, we give an algorithm for computing Nash 
equilibria. Our algorithm requires exponential time in the worst case, but it is pol-
ynomial-time for � constantly close to 1 or n. For the special case of tree-networks, 
we further refine our characterization which allows us to derive a polynomial-time 
algorithm for deciding whether a tree is defense-optimal and if this is the case it 
computes a defense-optimal Nash equilibrium. On the other hand, we prove that it is 
��-hard to find a best-defense strategy if the tree is not defense-optimal. We comple-
ment this negative result with a polynomial-time constant-approximation algorithm 
that computes solutions that are close to optimal ones for general graphs. Finally, we 
provide asymptotically (almost) tight bounds for the Price of Defense for any � ; this 
is the worst equilibrium defense ratio over all graphs.
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1 Introduction

With technology becoming a ubiquitous and integral part of our lives, we find our-
selves using several different types of computer networks. An important issue when 
dealing with such networks, which are often prone to security breaches [6], is to 
prevent and monitor unauthorized access and misuse of the network or its accessible 
resources. Therefore, the study of network security has attracted a lot of attention 
over the years [18]. Unfortunately, such breaches are often inevitable, since some 
parts of a large system are expected to have weaknesses that expose them to secu-
rity attacks; history has indeed shown several successful and highly-publicized such 
incidents [17]. Therefore, the challenge for someone trying to keep those systems 
and networks of computers secure is to counteract these attacks as efficiently as pos-
sible, once they occur.

To that end, inventing and studying appropriate theoretical models that capture 
the essence of the problem is an important line of research, ongoing for a few years 
now [13, 14]. Here, extending some known models for very simple cases of attacks 
and defenses [11, 12], we introduce and analyze a more general model for a scenario 
of network attacks and defenses modeling it as a defense game.

The Network Security Game We follow the terminology established by the semi-
nal paper of Mavronicolas et al. [11]. We consider a network whose nodes are vul-
nerable to infection by threats called attackers; think of those as viruses, worms, 
Trojan horses or eavesdroppers [7] infecting the components of a computer network. 
Available to the network is a security software (or firewall), called the defender. The 
defender is only able to “clean” a limited part of the network from threats that occur; 
the reason for the limited cleaning capacity of the defender may be, for example, the 
cost of purchasing a global security software. The defender seeks to protect the net-
work as much as possible, and on the other hand, every attacker seeks to increase the 
likelihood of not being caught. Both the attackers and the defender make individual 
decisions for their positioning in the network with the aim to maximize their own 
objectives.

Every attacker targets (and attacks) a node chosen via her own probability distri-
bution over the nodes of the network. The defender cleans a connected induced sub-
graph of the network with size � , chosen via her own probability distribution over all 
connected induced subgraphs of the graph with � nodes. The attack of a particular 
attacker is successful unless the node chosen by the attacker is incident to an edge 
(link) being cleaned by the defender, i.e. to an edge belonging in the induced sub-
graph chosen by the defender. One could equivalently think of the defender selecting 
a set of � connected nodes to defend, and an attacker is successful if and only if she 
attacks a node that is not being defended. Since attacks and defenses over a large 
computer network are self-interested procedures that seek to maximize damage and 
protection, respectively, it is natural to model this network security scenario as a 
non-cooperative strategic game on graphs with two kinds of players: k ≥ 1 attack-
ers, each playing a vertex of the graph, and a single defender playing a connected 
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induced subgraph of the graph. The (expected) payoff of an attacker is the probabil-
ity that she is not caught by the defender; the (expected) payoff of the defender is the 
(expected) number of attackers she catches. We are interested in the Nash equilibria 
[15, 16] associated with this graph theoretic game, where no player can unilaterally 
improve her (expected) payoff by switching to another probability distribution. We 
are also interested in understanding and characterizing the networks that allow for a 
good defense ratio: given a strategy profile, i.e. a combination of strategies for the 
network entities (attackers and defender), the defense ratio of a network is the ratio 
of the total number of attackers over the defender’s expected payoff in that strategy 
profile.

1.1  Our Results

In this work we depart from and significantly extend the line of work of Mavronico-
las et al. in their seminal paper [11] on defense games in graphs; we term the type 
of games we consider Connected Subgraph Defense (CSD) games. In our model the 
defender is more powerful than in [11–14], since her power is parameterized by the 
size, � , of the defended part of the network. We allow � to take values from 1 to 
n, while in [11–14] only the case where � = 2 was studied. We study many ques-
tions related to CSD games. We extend the notions of defense ratio and defense-
optimal graphs for CSD games. In fact, the defense ratio of a given graph G and a 
given strategy profile S of the attackers and the defender is the ratio of the number of 
attackers, k, over the defender’s expected payoff (the number of attackers she catches 
on expectation). We thoroughly investigate the notion of the defense ratio for Nash 
equilibria strategy profiles.

Firstly, we precisely characterize the Nash equilibria and defense-optimal graphs 
in CSD games. This allows us to show that, in equilibrium, the game version of k 
uncoordinated attackers and a single defender is equivalent to the version in which a 
single leader coordinates the k attackers; meaning that both versions of the game 
have the exact same equilibria and defense ratio. We present an LP-based algorithm 
to compute an exact equilibrium of any given CSD game, whose running time is 

polynomial in 
(
n

�

)
 . Then, we focus on tree-graphs. There, we further refine our 

equilibrium characterization which allows us to derive a polynomial-time algorithm 
for deciding whether a tree is defense-optimal and, if this is the case, it computes a 
defense-optimal Nash equilibrium. A tree is defense-optimal if and only if it can be 
partitioned into n

�
 disjoint sub-trees. On the other hand, we prove that it is ��-hard to 

find a best-defense strategy if the tree is not defense-optimal.
We remark that a very crucial parameter for defense-optimality of a graph G is the 

“best” probability with which any vertex of G is defended in a NE; we call that proba-
bility MaxMin probability and denote it by p∗(G) . Then, for any graph G, the defense 
ratio in equilibrium is shown to be exactly 1

p∗(G)
 . Although it is hard to exactly compute 

p∗(G) even for trees, we complement this negative result with a polynomial-time con-
stant-approximation algorithm that computes solutions that are close to the optimal 
ones for any � , for any given general graph. In particular, we approximate the (best) 
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defense ratio of any graph within a factor of 2 + �−3

n
 . Finally, we provide asymptotically 

tight bounds for the Price of Defense for any � ∈ �(1) ∩ o(n) , and almost tight bounds 
for any other value of �.

1.2  Related Work

Our graph-theoretic game is a direct generalization of the defense game considered by 
Mavronicolas et al. [11–14].

In the latter, the authors examined the case where the size of the defended part of 
the network is � = 2 , i.e. where the defender “cleans” an edge. This leads to a nice 
connection between equilibria and (fractional) matchings in the graph [13]. But when 
� is greater than 2, one has to investigate (as we shall see here) how to sparsely cover 
the graph by as small a number as possible of connected induced subgraphs of size � . 
This direction can be seen as an extension of fractional matchings that cover the graph 
by equisized connected subgraphs. Sparse covering of graphs by connected induced 
subgraphs (clusters), not necessarily equisized, is a notion known to be useful also for 
distributed algorithms, since it affects message communication complexity [5].

In another line of work, Kearns and Ortiz [9] study Interdependent Security games 
in which a large number of players must make individual decisions regarding security. 
Each player’s safety may depend on the actions of the entire population (in a complex 
way). The graph-theoretic game that we consider could be seen as a particular instance 
of such games with some sort of limited interdependence: the actions of the defender 
and an attacker are interdependent, while the actions of the attackers are not dependent 
on each other.

Aspnes et al. [4] consider a graph-theoretic game that models containment of the 
spread of viruses on a network; each node individually must choose to either install 
anti-virus software at some cost, or risk infection if a virus reaches it without being 
stopped by some intermediate node with installed anti-virus software. Aspnes et al. [4] 
prove several algorithmic properties for their graph-theoretic game and establish con-
nections to a certain graph-theoretic problem called Sum-of-Squares Partition.

A game on a weighted graph with two players, the tree player and the edge player, 
was studied by Alon et al. [2]. At each play, the tree player chooses a spanning tree and 
the edge player chooses an edge of the graph, and the payoffs of the players depend 
on whether the chosen edge belongs in the spanning tree. Alon et al. investigate the 
theoretical aspects of the above game and its connections to the k-server problem and 
network design.

Finally, there is a long line of work on security games [3] where many scenarios are 
modelled using graph theoretic problems [8, 10, 19, 20].

2  Preliminaries

The game A Connected Subgraph Defense (CSD) game is defined by a graph 
G = (V ,E) , a defender, k ≥ 1 attackers, and a positive integer � . Throughout the 
paper, � is considered to be a given parameter of the game. A pure strategy for 
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the defender is any induced connected subgraph H of G with � vertices, which 
we term �-subgraph. For any �-subgraph H of G we denote V(H) its set of verti-
ces. Since V(H) uniquely defines an induced subgraph of G, we will use the 
term �-subgraph to denote either V(H) or H. The action set of the defender is 
D ∶= {V(H)|H is a �-subgraph of G} and we will denote its cardinality by � , i.e. 
� ∶= |D| . For ease of presentation, we will also refer to D as [�] ∶= {1, 2,… , �} . A 
pure strategy for each of the attackers is any vertex of G. So, the action set of every 
attacker is V, the vertex set of G; we denote n ∶= |V| and we similarly refer to V also 
as [n].

To play the game, the defender chooses a defense (mixed) strategy, i.e. a probability 
distribution over her action set, and each attacker chooses an attack (mixed) strat-
egy, i.e. a probability distribution over the vertices of G. We denote a strategy by 
s ∶= (s1,… , sd) ∈ �d , i.e. by the probability distribution over d enumerated pure 
strategies, where �d ∶= {x1,… , xd ≥ 0�∑d

i=1
xi = 1} is the (d − 1)-unit simplex. In a 

defense strategy q ∈ �
�
 , each pure strategy j ∈ [�] is assigned a probability qj.

We say that a pure strategy of the defender, i.e. a specific �-subgraph H of G, 
covers a vertex v ∈ V  , if v ∈ V(H) . A defense strategy covers a vertex v ∈ V  if it 
assigns strictly positive probability to at least one �-subgraph H of G which contains 
v.

Definition 1 (vertex-probability) The vertex-probability pi of vertex i ∈ [n] , is the 
probability that i will be covered, formally  pi ∶=

∑
j∈[�]∶ i∈j qj.

Payoffs and Strategy profiles. A strategy profile is a tuple of strategies 
S = (q, t1,… , tk) , where q denotes the defender’s strategy and tj denotes the j-th 
attacker’s strategy,  j ∈ [k] . A strategy profile is pure if the support of every strategy 
has size one. The payoff of every attacker is 1 in any pure strategy profile where she 
does not choose a defended vertex, and 0 in all the rest. The payoff of the defender 
in a pure strategy profile where she defends V(H), is the number of attackers that 
choose a vertex in V(H). Under a strategy profile, the expected payoff of the defender 
is the expected number of attackers that she catches, which we call defense value, 
and the expected payoff of the attacker is the probability that she will not get caught. 
A best response strategy for a participant is a strategy that maximizes her expected 
payoff, given that the strategies of the rest of the participants are fixed. A Nash equi-
librium is a strategy profile where all the participants are playing a best response 
strategy. In other words, neither the defender nor any of the attackers can increase 
their expected payoff by unilaterally changing their strategy.

Definition 2 (Defense ratio) For a given graph G we define a measure of the quality 
of a strategy profile S, called defense ratio of G and denoted DR(G, S) , as the ratio of 
the total number of attackers k over the defense value.

In this work we are only interested in the cases where S is an equilibrium. For a 
given graph, when in equilibrium, the defender’s expected payoff is unique (due to 
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Corollary 1 (a)) and achieves the equilibrium defense ratio DR(G, S∗) , where S∗ is 
an equilibrium. The defense strategy in S∗ which achieves this defense ratio will be 
termed best-defense strategy.

Definition 3 (MaxMin probability, p∗ ) We call MaxMin Probability of a graph G the 
maximum, over all defense strategies, minimum vertex-probability in G, that is:

As we will show in Lemma 1, the equilibrium defense ratio of a graph G turns 
out to be DR(G, S∗) = 1∕p∗(G).

Definition 4 (Price of defense) The Price of Defense, PoD , for a given parameter � 
of the game, is the worst defense ratio, over all graphs on n vertices, achievable in 
equilibrium, that is:

Definition 5 (Defense-optimal graph) For a given � , a graph G∗ that achieves 
the minimum equilibrium defense ratio over all graphs on n vertices, 
i.e. G∗ ∈ {G� | |V(G�)| = n, DR(G�, S∗) ≤ DR(G��, S∗), for all G�� with |V(G��)| = n} , 
is called defense-optimal graph.

In the following, for ease of presentation, whenever we refer to defense optimal-
ity, we implicitly assume that � has a fixed value.

3  Nash Equilibria

In this section, we provide a characterization of Nash equilibria in CSD games, as 
well as important properties of their structure, which turn out to be useful for the 
development of our algorithms in the remainder of the paper.

Theorem 1 (Equilibrium characterization) For a given graph G, in any equilibrium 
with support S ⊆ [𝜃] of the defender and support Tj ⊆ [n] of each attacker j ∈ [k] , 
the following conditions are necessary and sufficient: 

1. mini∈[n] pi is maximized over all defense strategies, and
2. 

⋃
j∈[k] Tj ⊆ V∗  ,  w h e r e 

V∗ ∶= {i|mini∈[n] pi is maximized over all defense strategies} , and
3. every s ∈ S has the maximum expected total number of attackers on its vertices 

over all pure strategies.

Proof First we will prove that the conditions in the statement of the theorem hold in 
equilibrium, i.e. equilibrium is sufficient for the conditions to hold.

p∗(G) ∶= max
q∈�

�

min
i∈[n]

pi.

PoD(�) = sup
G

DR(G, S∗).
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Condition 1 By definition, in an equilibrium, the defender and each attacker 
have chosen a best response. Suppose that the defender has chosen some strategy 
q = (q1, q2,… , q

�
) over her action set [�] ; we will consider this strategy to be a vec-

tor variable for now. Given q, each vertex i ∈ [n] has a vertex-probability pi . Now 
consider the minimum vertex-probability p� ∶= mini∈[n] pi , and the set V ′

⊆ V  con-
sisting of the vertices with vertex-probability p′ , i.e. V � ∶= {i ∈ V | pi = p�} . Since 
an attacker plays a best response, her support will be a subset of V ′ ; otherwise, if 
she assigns probability tv > 0 on a vertex v ∉ V � (with pv > p′ ) her expected payoff 
(see quantity (2)) can be strictly increased by choosing to move all of tv to another 
vertex u ∈ V � , thus increasing her expected payoff by tu ⋅ (pv − p�) . Therefore, every 
attacker’s support will be a subset of V ′.

We will denote by tji the probability that the strategy of attacker j ∈ [k] has 
assigned to vertex i ∈ [n] . The expected payoff of the defender is:

Since as we argued above, in an equilibrium, each attacker’s strategy has support 
that is a subset of V ′ , the expected payoff of the defender will be

where the first equality is due to the fact that pi = p� , ∀i ∈ V � and tji = 0 , ∀i ∈ V⧵V � , 
and the last equality is due to the fact that the support of any strategy tj = (tj1,… , tji) 
of an attacker j ∈ [k] is a subset of V ′ . It is important to note here that the entire 
probability mass of each of the attackers is placed on vertices with minimum vertex-
probability p′ . So, according to the definition of the defender’s expected payoff, i.e., 
the expected number of attackers that are caught by the defender, this will be equal 
to p′ ⋅ k . Furthermore, in an equilibrium, the defender also plays a best response, i.e. 
she maximizes her expected payoff. Thus, given the above quantity, the defender in 
an equilibrium has expected payoff maxq∈�

�
p� ⋅ k , and Condition 1 of the theorem’s 

statement is satisfied.
Condition 2 The proof is by contradiction. Assume an equilibrium profile 

where the defender has strategy q = (q1,… , q
�
) and there is an attacker, a, with 

strategy t = (t1,… , tn) whose support includes vertex v ∈ [n] with pv > p′ , where 
p� ∶= mini∈[n] pi . Then a’s expected payoff is

(1)
∑

i ∈ [n]

(
pi

∑
j∈[k]

tji

)
.

�
i ∈ V �

�
pi

�
j∈[k]

tji

�
+

�
i ∈ V⧵V �

�
pi

�
j∈[k]

tji

�

= p� ⋅
�

i ∈ V �

��
j∈[k]

tji

�
= p� ⋅

�
j∈[k]

⎛⎜⎜⎜⎝

�
i ∈ V �

tji

⎞⎟⎟⎟⎠
= p� ⋅ k,

(2)
∑

i∈V⧵{v}

ti(1 − pi) + tv(1 − pv).
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However, a can increase her expected payoff by moving all her probability tv to a 
vertex v′ for which pv� = p� , which contradicts the equilibrium assumption.

Condition 3 The proof is by contradiction. Suppose that in an equilibrium the 
defender has strategy q∗ ∈ �

�
 , where supp(q∗) ∶= S . According to Condition 1, this 

strategy achieves p∗(G) . Let us define the set

We denote by Ni the random variable that indicates the number of attackers on ver-
tex i ∈ [n] , under the strategy profile determined by the strategy of the defender and 
each attacker. The expected payoff of the defender according to Eq. (1) is ∑

i ∈ [n]

�
pi ⋅ �[Ni]

�
 . Since, as argued above, in an equilibrium each attacker has 

support in V∗ , the defender’s expected payoff is in fact p∗ ⋅
∑

i ∈ V∗ �[Ni].
For the sake of contradiction, suppose that for the expected total number of 

attackers on two different pure defense strategies s1 ∈ S and s2 ∈ [�] it holds that 
�

�∑
i∈s1

Ni

�
< �

�∑
j∈s2

Nj

�
 , and equivalently �

�∑
i∈s1⧵s2

Ni

�
< �

�∑
j∈s2⧵s1

Nj

�
 . Then, 

the expected payoff of the defender can be strictly increased if she chooses a strategy 
q� = (q�

1
,… , q�

�
) where q�

s1
= 0 and q�

s2
= q∗

s2
+ q∗

s1
 . In particular, when the defender 

plays q∗ her expected payoff is

whereas when she plays q′ it is

V∗ ∶= {i ∈ [n] | min
i∈[n]

pi is maximized over all defense strategies}.

U∗ = p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
i ∈ V⧵(s1 ∪ s2)

Ni

⎤
⎥⎥⎥⎦
+ p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
j ∈ s1 ∩ s2

Nj

⎤⎥⎥⎥⎦

+ p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
l ∈ s2⧵s1

Nl

⎤
⎥⎥⎥⎦
+ p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
r ∈ s1⧵s2

Nr

⎤
⎥⎥⎥⎦
,

U� = p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
i ∈ V⧵(s1 ∪ s2)

Ni

⎤
⎥⎥⎥⎦
+ p∗ ⋅ �

⎡
⎢⎢⎢⎣

�
j ∈ s1 ∩ s2

Nj

⎤
⎥⎥⎥⎦
+ (p∗ + q∗

s1
) ⋅ �

⎡
⎢⎢⎢⎣

�
l ∈ s2⧵s1

Nl

⎤⎥⎥⎥⎦

+ (p∗ − q∗
s1
) ⋅ �

⎡⎢⎢⎢⎣

�
r ∈ s1⧵s2

Nr

⎤⎥⎥⎥⎦

= U∗ + q∗
s1
⋅

⎛⎜⎜⎜⎝
�

⎡⎢⎢⎢⎣

�
l ∈ s2⧵s1

Nl

⎤⎥⎥⎥⎦
− �

⎡⎢⎢⎢⎣

�
r ∈ s1⧵s2

Nr

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
> U∗,



3411

1 3

Algorithmica (2021) 83:3403–3431 

which contradicts the equilibrium assumption. Therefore, for every pure defense 
strategy s1 ∈ S it holds that �

�∑
i∈s1

Ni

�
≥ �

�∑
j∈s2

Nj

�
 for every s2 ∈ [�].

Now we will prove that equilibrium is necessary for the three conditions of the 
statement to hold. Suppose that all conditions hold and p∗(G) is achieved for the 
defense strategy q = (q1,… , q

�
) . We will show that the defender and each attacker 

play a best response.
Consider an attacker j ∈ [k] with strategy t = (t1,… , tn) and support Tj ⊆ V∗ 

according to Condition 2. Her expected payoff is

It suffices to consider unilateral deviations of j to pure strategies. Any pure strat-
egy i� ∈ Tj gives her expected payoff 1 − p∗ , since pi� = p∗ (because Tj ⊆ V∗ ). Any 
pure strategy i� ∈ V∗⧵Tj also gives her expected payoff 1 − p∗ for the same reason. 
Finally, any pure strategy i� ∈ V⧵V∗ gives her expected payoff 1 − pi� < 1 − p∗ by 
the definition of V∗ . Therefore every attacker plays a best response.

Now consider the defender with strategy q = (q1,… , q
�
) and support S ⊆ [𝜃] . 

According to Condition 1 of the theorem’s statement, q results to vertices of G hav-
ing vertex-probability p∗ . By Condition 3, for any pure defense strategy s1 ∈ S it 
holds that �

�∑
i∈s1

Ni

�
≥ �

�∑
j∈s2

Nj

�
 for every s2 ∈ [�] , and let us denote 

Nmax ∶= �

�∑
i∈s1

Ni

�
 . Now consider a unilateral deviation q� = (q�

1
,… , q�

�
) of the 

defender. Her expected payoff is

where the penultimate equation holds due to the fact that 
∑

j∈S qj = 1 and Condition 
3. Therefore, q is a best response for the defender, and the three conditions of the 
theorem’s statement imply a strategy profile that is an equilibrium.   ◻

Lemma 1 For any given graph G, the equilibrium defense ratio is DR(G, S∗) = 1

p∗(G)
 , 

where p∗(G) ∶= maxq∈�
�
mini∈[n] pi and S∗ is an equilibrium.

Proof By Theorem 1, in an equilibrium, every attacker will have in her support only 
vertices that are defended with probability exactly p∗(G) . Thus, the expected 

∑
i∈Tj

ti ⋅ (1 − p∗) = 1 − p∗.

U(q�) =
∑
j∈[�]

(
q�
j
⋅ �

[∑
i∈j

Ni

])

≤
∑
j∈[�]

q�
j
⋅ Nmax

= Nmax

=
∑
j∈S

(
qj ⋅ �

[∑
i∈j

Ni

])

= U(q),
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number of attackers the defender catches is p∗(G) ⋅ k . By the definition of the 
defense ratio, DR(G, S∗) = k

p∗(G)⋅k
=

1

p∗(G)
 .   ◻

Corollary 1 The following hold. 

(a) For a given graph G, in any equilibrium, the expected payoff of the defender and 
each attacker is unique.

(b) For a given graph G, in any equilibrium with support S ⊆ [𝜃] of the defender, for 
every s ∈ S there exists a vertex v ∈ s such that pv = p∗(G).

(c) In any CSD game on a graph G, the problem of finding the equilibrium defense 
ratio (or equivalently, p∗(G) ) for k ≥ 2 attackers, reduces to the same problem 
in the game with k = 1 attacker, which is a two-player constant-sum game.

Proof    

(a) By Theorem 1, at any equilibrium the defender chooses a strategy that induces 
probability p∗(G) to some vertex of G (Condition 1). Also, each of the attackers 
has in her support T only vertices with vertex-probability p∗(G) . Therefore, all 
attackers attack only such vertices and the expected payoff of the defender is 
k ⋅ p∗(G) . Consider also an attacker with strategy t = (t1, t2,… , tn) . Her expected 
payoff is 

∑
i∈[n] ti ⋅ (1 − pi) , where pi is the vertex-probability of vertex i. This 

value is equal to 
∑

i∈T ti ⋅ (1 − p∗(G)) = 1 − p∗(G) . Since p∗(G) is unique for a 
graph G, the expected payoffs of the defender and each attacker is unique.

(b) The proof is by contradiction. Consider an equilibrium where the defender’s 
strategy is q ∈ [�] with support S, and there exists a pure strategy s ∈ S for which 
every vertex v ∈ s has pv > p∗(G) . By Condition 2 of Theorem 1, no attacker 
has in her support a vertex in s. Therefore, the defender can strictly increase her 
expected payoff by moving all her probability qs > 0 from s to some other pure 
strategy s′ that contains a vertex which is in the support of some attacker.

(c) Observe that for any given graph G, the quantity p∗(G) , by definition, only 
depends on the graph and not the number of attackers k. That is, p∗(G) is the 
same for every k ≥ 1 . Lemma  1 states that in any equilibrium S∗ , it is 
DR(G, S∗) =

1

p∗(G)
 , therefore the defense ratio in an equilibrium does not depend 

on k. This means that when we are given G and we are interested in the equilib-
rium defense ratio, we might as well consider the game with the single defender 
and a single attacker. By the definition of the game (see Sect. 2) the latter is a 
two-player constant-sum game.

  ◻

The following corollary implies that coordination (resp. individual selfishness) 
of the attackers cannot increase the attackers’ (resp. defender’s) expected payoff 
in equilibrium.



3413

1 3

Algorithmica (2021) 83:3403–3431 

Corollary 2 Every equilibrium with uncoordinated attackers (i.e. as described in 
Sect. 2) is an equilibrium with coordinated (i.e. centrally controlled) attackers, and 
vice versa.

Proof Let q∗ be a best-defense strategy for the defender. Then, in any best response 
of any attacker, coordinated or not, every attacker plays only pure strategies that 
yield maximum payoff against q∗ ; i.e. they play only strategies that are defended 
with probability p∗(G) . If this was not the case, either an uncoordinated attacker 
could increase her payoff by unilaterally changing her strategy, or the “coordinator” 
could increase the payoff the attackers collectively get by dictating all the attackers 
to play vertices that are covered with probability p∗(G).

So, assume that we have an equilibrium in the uncoordinated case. This is an 
equilibrium for the coordinated case as well: according to Theorem 1, all attackers 
play vertices that are defended with probability p∗(G) and thus the expected collec-
tive payoff of the attackers cannot be increased, and furthermore the expected total 
number of attackers on the vertices of a pure strategy that is in the support of the 
defender is maximized over all pure defense strategies, so no unilateral deviation of 
the defender can increase her expected payoff.

Conversely, in any equilibrium in the coordinated setting, the “coordinator” dic-
tates all the attackers to attack vertices that are covered with probability p∗(G) , satis-
fying Conditions 1, 2 of Theorem 1. Also in the equilibrium of the coordinated set-
ting, similarly to Condition 3 of Theorem 1, the “coordinator” will have placed the 
attackers in a way such that the vertices of any pure defense strategy in the support 
have maximum expected total number of attackers over all pure defense strategies; 
otherwise the defender can increase her expected payoff by neglecting a pure strat-
egy with smaller than maximum expected total number of attackers, and move the 
probability assigned to that pure strategy to another one that has maximum expected 
total number of attackers. By Theorem 1, this is an equilibrium also for the uncoor-
dinated setting.   ◻

The following theorem provides an algorithm for computing an equilibrium for 
any CSD game, whose running time is polynomial in n when � = c or � = n − c , 
where c is a constant natural number.

Theorem 2 For any given graph G and parameter � , there is an algorithm that com-

putes p∗(G) and also finds an equilibrium in time polynomial in 
(
n

�

)
.

Proof Given a graph G, the number of attackers k ≥ 1 , and some � ∈ {1, 2,… , n} , 

the action set D of the defender is constructed by the vertex sets of at most 
(
n

�

)
 �

-subgraphs; so for D’s cardinality � it holds that � ≤

(
n

�

)
 . Consider now the mixed 

strategy q ∈ �
�
 of the defender, where each pure strategy j ∈ [�] is assigned proba-

bility qj . Consider also the vertex-probability pi for each vertex i ∈ [n] . According to 
Corollary 1 (a) and (c), the unique p∗(G) in the case of a single attacker can be used 
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to derive an equilibrium for the case of k ≥ 2 attackers. Therefore, we will find 
p∗(G) for a single attacker, find an equilibrium for that case, and then extend this 
equilibrium to an equilibrium in the case of k ≥ 2 attackers. In more detail, after we 
find the defense strategy q∗ that maximizes mini∈[n] pi (Condition 1 of Theorem 1), 
i.e. yields p∗(G) on the set

V∗ ∶= {i ∈ V | pi = maxq∈�
�
minj∈[n] pj} , an equilibrium is achieved if the single 

attacker assigns probability 1∕|V∗| to each vertex of V∗ . This is because all condi-
tions of Theorem 1 are satisfied. Then, an equilibrium for k ≥ 2 is achieved if every 
attacker plays the same strategy as the single attacker; that is because again all con-
ditions of Theorem 1 are satisfied.

The crucial observation that allows us to design such an algorithm is that we can 

compute p∗(G) via a linear program which has O
((

n

�

))
 many variables and O(n) 

constraints, and therefore its running time is in the worst case polynomial in 
(
n

�

)
 , 

for � ∈ {2, 3,… , n − 1} . For the trivial cases � = 1 and � = n , D = {{i}|i ∈ V} and 
D = V  respectively, therefore p∗(G) = 1∕n and p∗(G) = 1 respectively. So in the rest 
of the proof we will assume that � ∈ {2, 3… , n − 1} . It remains to show how p∗(G) 
is computed.

Let us denote p∗ ∶= p∗(G) ∶= maxq∈�
�
mini∈[n] pi . The computation of p∗ can be 

done as follows. First, consider each of the 
(
n

�

)
 subsets of V of size � , and find if it 

is a proper �-subgraph of G (i.e. connected); this can be done by running a Depth (or 
Breadth) First Search algorithm for each subset of size � . If it is not, then continue 
with the next subset. If it is, we consider it in the action set [�] , and assign to it a 
variable qj which stands for its assigned probability in a general defense strategy. 
Now, by definition, for some vertex i ∈ [n] , pi =

∑
j ∈ [�]

i ∈ j

qj . Therefore, we will 

consider only pure strategies j which are �-subgraphs to create the pi’s. To compute 
the minimum pi over all i’s we introduce the variable p′ and write the following set 
of n inequalities as a constraint in our linear program:

The left-hand side of each of the above inequalities is in fact pi . The variable con-
straints are p�, q1, q2,… , q

�
≥ 0 and also 

∑�

j=1
qj = 1 , and all of the aforementioned 

constraints can be written in canonical form by applying standard transformations. 
Finally, the objective function of the linear program is variable p′ and we require its 
maximization, which is the value p∗ .   ◻

∑
j ∈ [�]

i ∈ j

qj ≥ p�, for i ∈ {1, 2,… , n}.
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3.1  Connections to Other Types of Games

Although CSD games are defined as a normal form game with k + 1 players, we can 
observe that they are a special case of other well-studied types of games: polymatrix 
games and Stackelberg games.

A polymatrix game is defined by a graph where every vertex represents a player 
and every edge represents a two-player game played by the endpoints of the edge. 
Every player has the same set of pure strategies in every game he is involved and 
to play the game he plays the same (mixed) strategy in every game. The payoff of 
every player is the sum they get from every two-player game they participate in. In 
a CSD game we observe the following. Firstly, the payoff of every attacker depends 
only on the strategy the defender plays, thus every attacker is involved only in one 
two-player game. In addition, all the attackers have the same set of pure strategies 
and they share the same payoff matrix. Similarly, the payoff the defender gets from 
catching an attacker depends only on the strategy the defender and this specific 
attacker chose. Hence, the payoff of the defender can be decomposed into a sum of 
payoffs from k two-player games. So, a CSD game can be seen as a polymatrix game 
where the underlying graph is a star with k leaves that correspond to the attackers 
and the defender is the center of the star. Although many-player polymatrix games 
have exponentially smaller representation size compared to the equivalent normal-
form representation, we should note that this polymatrix game is of exponential 
size in the worst case since the defender can have exponential in n pure strategies to 
choose from.

A Stackelberg game is an extensive form two-player game. In the first round, one 
of the players commits to a (mixed) strategy. In the second round, the other player 
chooses a best response against the committed strategy of her opponent. In a Stack-
elberg equilibrium the first player is playing a strategy that maximizes her expected 
payoff, given that the second player plays a best response (mixed strategy). The 
MaxMin probability p∗(G) for a CSD game on a graph G corresponds to a Stack-
elberg equilibrium. By Corollary 1(c), any CSD game, with k ≥ 1 attackers has the 
same p∗ as that of the case with k = 1 . Furthermore, as in a Stackelberg game, in 
the CSD game with k = 1 the defender chooses a mixed strategy that maximizes 
her expected payoff, given that the attacker plays a best response (mixed strategy). 
Therefore, when we are interested in the defense-ratio in equilibrium of a CSD game 
for some arbitrary k ≥ 1 , finding a Stackelberg equilibrium of the corresponding 
CSD game with k = 1 suffices.

4  Defense‑Optimal Graphs

We now focus our attention on defense-optimal graphs. We first characterize 
defense-optimal graphs with respect to the MaxMin probability p∗ and then use this 
characterization to analyze more specific classes of graphs like Hamiltonian graphs 
and tree graphs. We begin by an exact computation of the equilibrium defense ratio 
of any defense-optimal graph.
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Theorem 3 In any defense-optimal graph G, we have that DR(G, S∗) = n

�
.

Proof First we will show that n
�
 is a lower bound on the equilibrium defense ratio 

DR(G, S∗) and then prove that it is tight. According to Lemma 1, a lower bound on 
DR(G, S∗) can be found by equivalently founding an upper bound on p∗(G) over all 
graphs G with n vertices. Let us show that p∗(G) ≤ �

n
 for every G.

Suppose there is a graph G′ such that p∗(G�) >
𝜆

n
 , and let us focus only on 

G′ . Suppose also that the defender has an action set [�] on G′ . Fix the strategy 
q = (q1,… , q

�
) ∈ �

�
 that achieves p∗(G�) . Then, by the definition of p∗(G�) , for the 

vertex probabilities pi it holds that pi >
𝜆

n
 for all i ∈ [n] . Therefore, it is

Also, by the definition of a defense strategy, if X denotes the random variable cor-
responding to the number of vertices that the defender covers, then:

Let us introduce the indicator variables Xij , i ∈ [n] , j ∈ [�] with value 1 if vertex 
i ∈ Lj , and 0 otherwise. Then,

which contradicts Eq. (4).
It remains to show that the lower bound n

�
 on DR(G, S∗) is tight. This is easy to 

do by showing that �
n
 is a tight upper bound on p∗(G) : any Hamiltonian graph has 

p∗(G) =
�

n
 as we show in Observation 1.   ◻

As an intermediate corollary of Theorem 3 we get the following characteriza-
tion of defense-optimal graphs.

Corollary 3 A graph G is defense-optimal if and only if all of its vertices are 
defended with probability �

n
.

(3)
n∑
i=1

pi > 𝜆.

(4)
�[X] =

�∑
j=1

qj ⋅ |Lj| = � (where Lj is a �-subgraph of G, hence |Lj|

= � ∀j ∈ [�]).

(5)

�[X] =

𝜃∑
j=1

qj

n∑
i=1

Xij

=

n∑
i=1

𝜃∑
j=1

qjXij

=

n∑
i=1

pi

> 𝜆 (by Inequality (3)),
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Proof Necessity of defense-optimality is trivial: every vertex has vertex-probability 
�

n
 , therefore p∗(G) = �

n
 , so by Theorem 3 the graph is defense-optimal.

Sufficiency of defense-optimality is also easy to see using the Eqs. (4), (5) of 
the proof of Theorem 3. Suppose that the graph is defense-optimal and consider an 
equilibrium where the defense strategy is q = (q1,… , q

�
) . Then the sum of vertex 

probabilities is 
∑n

i=1
pi = � according to the aforementioned equations. Therefore, if 

there exists a vertex v with vertex-probability pv >
𝜆

n
 then there is another vertex u 

with probability pu <
𝜆

n
 . This means that p∗(G) < 𝜆

n
 , and as a result the graph is not 

defense-optimal which contradicts our assumption.   ◻

Someone may wonder whether Corollary 3 can be further exploited to prove 
that, in general, there are best-defense strategies in defense-optimal graphs are 
uniform, i.e. every pure strategy s in the support S of the defender is assigned 
probability 1/|S|. However, as we demonstrate in Fig. 1 this is not the case. On the 
other hand, this claim is true for Hamiltonian graphs and tree graphs.

Observation 1 All Hamiltonian graphs are defense-optimal.

Proof Consider an arbitrary Hamiltonian graph G with n vertices. We will show that 
the graph can achieve vertex-probability pi =

�

n
 for every i ∈ [n] , thus by Corollary 3 

it is defense-optimal. Consider a Hamiltonian cycle of G and let us denote it by H. In 
the rest of the proof H will be the graph under study. Now consider the whole action 
set D of the defender, i.e. every path on H starting from a vertex i going clock-
wise and ending at vertex i + � − 1 . Observe that there are only n such paths, there-
fore � ∶= |D| = n . By assigning probability 1

n
 to each pure strategy j ∈ [�] , since 

each vertex is in exactly � pure strategies, each vertex i ∈ [n] has vertex-probability 
pi = � ⋅

1

�
=

�

n
 .   ◻

4.1  Tree Graphs

In this section we focus on the case where the graph is a tree. First, we further 
refine the characterization of defense-optimal graphs for trees. Then, we uti-
lize this characterization to derive an algorithm that decides in polynomial time 
whether a given tree is defense-optimal, and if that is the case, it constructs in 
polynomial time a defense-optimal strategy for it. On the other hand, in the case 
where the tree is not defense-optimal, we show that it is ��-hard to compute a 
best-defense strategy for it, namely it is ��-hard to compute p∗(G) . We first pro-
vide Lemma 2 which will be used in our polynomial-time algorithm for checking 
defense-optimality on trees. Henceforth, we write that a graph is covered by a 
defense strategy if every vertex of the graph is covered by a �-subgraph that is in 
the support of the defense strategy.

Lemma 2 A tree T is defense-optimal if and only if T can be decomposed into n
�
 dis-

joint �-subgraphs.
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Proof (⇒)(⇒)(⇒) Let T be defense-optimal. We will show that the support of any best-
defense strategy on T must comprise of pure strategies that are disjoint �-subgraphs 
which altogether cover every v ∈ V  . Since those are disjoint and cover T, it follows 
that their number is n

�
 in total.

If � = 1 then the above trivially holds. Assume that � ≥ 2 and consider a best-
defense strategy on T whose support comprises of a collection L of �-subgraphs.

Let u ∈ V  be a leaf of T and let v ∈ V  be its parent. Any �-subgraph in L cover-
ing u must also cover v, since � ≥ 2 . Also, any �-subgraph in L covering v must also 
cover u, otherwise pv would be greater than pu . Now, consider the neighbors of v. 
For those of them that are leaves, the same must hold as holds for u, namely v and its 
leaf-children must all be covered by the exact same �-subgraph(s).

Consider the case where there is a leaf u ∈ V  , such that a single �-subgraph con-
tains u, its parent v, and all the other leaf-children of v (and, possibly, other vertices 
connected to v). Then we can remove this �-subgraph from L and the correspond-
ing tree from T. This leaves the remainder of T being a forest comprising of trees 
T1,… , Tx , each of which has a (best-)defense strategy comprising of the correspond-
ing subset of (the remainder of) L on Ti . Notice that it must be the case that every 
tree Ti , i = 1, 2,… , x , has size at least � (otherwise the initial collection L would not 
have covered T). So, if there is always a leaf u in some tree of the forest, such that a 
single �-subgraph contains u, its parent v, and all the other leaf-children of v (and, 
possibly, other vertices connected to v), we can proceed in the same fashion for each 
of the Ti’s, always removing a �-subgraph from L , and the corresponding vertices 
from T, until we end up with an empty tree. This means that L was indeed a collec-
tion of disjoint �-subgraphs covering T.

However, assume for the sake of contradiction that at some “iteration” the 
assumption does not hold, namely assume that there is a tree in the forest with no 
leaf u, such that a single �-subgraph contains u, its parent v, and all the other leaf-
children of v (and, possibly, other vertices connected to v). This means that there 

v1 v2 v3 v4

v5

v6

v7

Fig. 1  An example of a defense-optimal graph G with no uniform best-defense strategy. Here n = 7 , 
� = 3 and p∗(G) = 3∕7 is achievable by assigning probability 3/7 to pure strategy {v1, v2, v3} and prob-
ability 1/7 to each of the pure strategies {v4, v5, v6} , {v4, v5, v7} , {v4, v6, v7} , {v5, v6, v7} , so the graph is 
defense optimal. Suppose that there is a uniform best-defense strategy for the graph, with support of size 
r. Observe that v1 cannot participate in more than one pure defense strategies, so in the uniform defense 
strategy, the vertex-probability pv1 has to be 1/r (by the definition of uniformity), but it also has to be 3/7 
due to Corollary 3. Since r ∈ ℕ , this is a contradiction, and there is no uniform best-defense strategy for 
G 
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are (at least) two �-subgraphs in L , namely L1, L2 , that cover u. Due to our initial 
observations, u, together with its parent v and all of v’s leaf-children are contained 
in both L1 and L2 . Since those are different �-subgraphs, there is a vertex z in the tree 
which belongs to L2 but does not belong to L1 . Since pz = pv (due to the fact that L is 
the support of the defense-optimal strategy and Corollary 3), it must hold that there 
is a different �-subgraph, L3 , which covers z but does not cover v or any of its leaf-
children. If L3 also covers a vertex in L1⧵L21, then there is a cycle in the tree which 
is a contradiction. So L3 must not cover vertices in L1⧵L2 . Since L3 is different to L2 , 
there must be a vertex z′ in the tree which belongs in L3 but not in L2 (also not in L1 ). 
Since pz� = pz (due to the fact that L is the support of the defense-optimal strategy 
and Corollary 3), it must hold that there is a different �-subgraph, L4 , which covers 
z′ but does not cover z or any of the vertices in L2 . Similarly to before, if L4 covers a 
vertex in L1⧵L2 , then there is a cycle in the tree which is a contradiction. So L4 must 
not cover vertices in L1 or in L2.

Proceeding in the same way, we result in contradiction since the tree has finite 
number of vertices and there will need to be an overlap in coverage of some Lj with 
some Li , j > i + 1 , which would mean that there is a cycle in the tree.

Therefore, there cannot be any overlaps between the �-subgraphs of L , meaning 
that L comprises of n

�
 disjoint �-subgraphs which altogether cover T.

(⇐⇐⇐) Let L = {L1,… , L n

�

} be a collection of n
�
 disjoint �-subgraphs that altogether 

cover T. Let the defender play each Li , i ∈ {1,… ,
n

�
} , equiprobably, that is, with 

probability 1∕
(

n

�

)
=

�

n
 . Then every vertex v ∈ V  is covered with probability 

pv =
�

n
= p∗(G) , meaning that T is defense-optimal.   ◻

With Lemma 2 in hand we can derive a polynomial-time algorithm that decides if 
a tree is defense-optimal, and if it is, to produce a best-defense strategy.

Theorem 4 There exists a polynomial-time algorithm that decides whether a tree is 
defense-optimal, and if it is, it outputs a best-defense strategy.

Proof The algorithm works as follows. Let us pick arbitrarily a vertex as the root 
of the tree. Initially, there is a pointer associated with a counter in every leaf of the 
tree T that moves “upwards” towards the root. For every move of the pointer the cor-
responding counter increases by one. The pointer moves until one of the following 
happens: either the counter is equal to � , or it reaches a vertex with degree greater 
or equal to 3 where it “stalls”. In the case where the counter is equal to � , we cre-
ate a �-subgraph of T, we delete this �-subgraph from the tree, we move the pointer 
one position upwards, and we reset the counter back to zero. If a pointer stalls at a 
vertex of degree d ≥ 3 , it waits until all d − 1 pointers reach this vertex. Then, all 
these pointers are merged to a single one and a new counter is created whose value 
is equal to the sum of the counters of all d pointers. If this sum is larger than � , then 

1 We use Li⧵Lj for some �-subgraphs Li,Lj to denote the set of vertices which are contained in Li but not 
in Lj.
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the algorithm returns that the graph is not defense-optimal. If this sum is less than or 
equal to � , then we proceed as if there was initially only this pointer with its counter; 
if the new counter is equal to � , then we create a �-subgraph of T and reset the coun-
ter to 0; else the pointer moves upwards and the counter increases by one. To see 
why the algorithm requires polynomial time, observe that we need at most n point-
ers and n counters and in addition every pointer moves at most n times.

We now argue about the correctness of the algorithm described above. Clearly, 
if the algorithm does not output that the tree is not defense-optimal, it means that it 
partitioned T into �-subgraphs. So, from Lemma 2 we get that T is defense-optimal 
and the uniform probability distribution over the produced partition covers every 
vertex with probability �

n
 . It remains to argue that when the algorithm outputs that 

the graph is not defense-optimal, this is indeed the case. Consider the case where we 
delete a �-subgraph of the (remaining) tree. Observe that the �-subgraph our algo-
rithm deleted should be uniquely covered by this �-subgraph in any best-defense 
strategy; any other �-subgraph would overlap with some other �-subgraph. Hence, 
the deletion of such a �-subgraph was not a “wrong” move of our algorithm and 
the remaining tree is defense-optimal if and only if the tree before the deletion was 
defense-optimal. This means that any deletion that occurred by our algorithm did not 
make the remaining graph non defense-optimal. So, consider the case where after a 
merge that occurred at vertex v we get that the new counter is c > 𝜆 . Then, we can 
deduce that all the subtrees rooted at v associated with the counters have strictly less 
than � vertices. Hence, in order to cover all the c > 𝜆 vertices using �-subgraphs, at 
least two of these �-subgraphs cover vertex v. Hence, the condition of Lemma 2 is 
violated. But since every step of our algorithm so far was correct, it means that v 
cannot be covered only by one �-subgraph. Hence, our algorithm correctly outputs 
that the tree is not defense-optimal.   ◻

In Theorem 4 we showed that it is easy to decide whether a tree is defense-
optimal and if this is the case, it is easy to find a best-defense strategy for it. 
Now we prove that if a tree is not defense-optimal, then it is ��-hard to compute 
p∗(G) . Note that the problem of computing p∗(G) reduces to the problem of find-
ing a best-defense strategy for graph G. Therefore finding a best-defense strategy 
is also ��-hard.

Theorem 5 Computing p∗(G) in csd games is strongly �� -hard, even if the graph G 
is a tree. Consequently, finding a best-defense strategy is strongly �� -hard.

Proof We will prove the theorem by reducing from the strongly ��-hard prob-
lem 3-Partition. In an instance of 3-Partition we are given a multiset with n posi-
tive integers a1, a2,… , an written in unary, where n = 3m for some m ∈ ℕ

>0 , and we 
ask whether it can be partitioned into m triplets S1, S2,… , Sm such that the sum of 
the numbers in each subset is equal. Let s =

∑n

i=1
ai . Observe then that the problem 

is equivalent to asking whether there is a partition of the integers to m triplets such 
that the numbers in every triplet sum up to s

m
 . Without loss of generality, we can 

assume that ai <
s

m
 for every i ∈ [n] ; if this was not the case, the problem could be 
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trivially answered. So, given an instance of 3-Partition, we create a tree G = (V ,E) 
with s + 1 vertices and � =

s

m
+ 1 . The tree is created as follows. For every integer 

ai , we create a path with ai vertices. In addition, we create the vertex v0 and connect 
it to one of the two ends of each path. We will ask whether p∗(G) ≥ 1

m
 . Observe that 

this is a polynomial-time construction since the integers ai are given in unary.
Firstly, assume that the given instance of 3-Partition is satisfiable. Then, given 

Sj we create a ( s

m
+ 1)-subgraph of G as follows. If ai ∈ Sj , then we add the cor-

responding path of G to the subgraph. Finally, we add vertex v0 in our ( s

m
+ 1)-sub-

graph and the resulting subgraph is connected (by the construction of G). Since the 
sum of ai ’s equals s

m
 , the constructed subgraph has s

m
+ 1 vertices. If we assign prob-

ability 1
m

 to every ( s

m
+ 1)-subgraph we get that pv ≥

1

m
 for every v ∈ V .

To prove the other direction, assume that p∗(G) ≥ 1

m
 and observe the following. 

Firstly, since as we argued it is ai <
s

m
 for every i ∈ [n] , it holds that every ( s

m
+ 1)

-subgraph of G contains vertex v0 . Thus, pv0 = 1 and 
∑

v≠v0
pv ≥

s

m
 , since there are 

s vertices other than v0 and for each one of them holds that pv ≥
1

m
 . In addition, 

observe that 
∑

v∈V pv = � =
s

m
+ 1 . Hence, we get that pv = p∗(G) =

1

m
 for every 

vertex v ≠ v0 . In addition, observe that every pure defense strategy that covers a leaf 
of this tree, covers all the vertices of the branch. Hence, for every branch of the 
tree, all its vertices are covered by the same set of pure strategies; if a vertex u that 
is closer to v0 is covered by one strategy that does not cover the whole branch, then 
the leaf u′ of the branch is covered with probability less than u. So, in order for 
pv = p∗(G) =

1

m
 for every v ≠ v0 , it means that there exist a ( s

m
+ 1)-subgraph that 

exactly covers a subset of the paths; this means that if a ( s

m
+ 1)-subgraph covers a 

vertex in a path, then it covers every vertex of the path. Hence, by the construction 
of the graph, we get that this ( s

m
+ 1)-subgraph of G corresponds to a subset of inte-

gers in the 3-Partition instance that sum up to s
m

 . Since, 3-Partition is ��-hard, we 
get that computing p∗(G) is ��-hard. Also, since finding a best-defense strategy is at 
least as hard, we conclude it is ��-hard.   ◻

4.2  General Graphs

We conjecture that contrary to checking defense-optimality of tree graphs and con-
structing a corresponding defense-optimal strategy in polynomial time, it is ��-hard 
to even decide whether a given (general) graph is defense-optimal.

Conjecture 1 It is ��-hard to decide whether a graph is defense-optimal.

5  Approximation Algorithm for p∗(G)

We showed in the previous section that, given a graph G, it is ��-hard to compute 
p∗(G) , and consequently, ��-hard to find a best-defense strategy. We also presented 
in Theorem  an algorithm for computing the exact value p∗(G) of a given graph G 



3422 Algorithmica (2021) 83:3403–3431

1 3

(and therefore its best defense ratio), but this algorithm has running time polynomial 
in the size of the input only in the cases � = c or � = n − c , where c is a constant 
natural. On the positive side, we present now a polynomial-time algorithm which, 
given a graph G of n vertices, returns a defense strategy with defense ratio which is 
within factor 2 + �−3

n
 of the best defense ratio for G. In particular, it achieves defense 

ratio 1∕p� ≤
(
2 +

�−3

n

)
∕p∗(G) , where p� = mini∈[n] pi and every pi , i ∈ [n] is the 

vertex-probability determined by the constructed defense strategy. We henceforth 
write that a collection L of �-subgraphs covers a graph G = (V ,E) , if every vertex of 
V is covered by some �-subgraph in L . The algorithm presented in this section 
returns a collection L of at most 2n−3

�
+ 1 �-subgraphs that covers G. Therefore, the 

uniform defense strategy over L assigns probability at least 1∕
(

2n−3

�
+ 1

)
 to each �

-subgraph.
For any collection L of �-subgraphs and for any v ∈ V  , let us denote by 

coverageL(v) the number of �-subgraphs in L which v belongs in. Observe that:

where |L| denotes the cardinality of L.
We first prove Lemma 3, to be used in the proof of the main theorem of this sec-

tion. We henceforth denote by V(G) and E(G) the vertex set and edge set, respec-
tively, of some graph G.

Lemma 3 For any tree T of n vertices, and for any � ≤ n , we can find a col-
lection L of distinct �-subgraphs such that for every v ∈ V  , it holds that 
1 ≤ coverageL(v) ≤ degree(v) , except maybe for (at most) � − 1 vertices, where for 
each of them it holds that coverageL(v) = degree(v) + 1.

Proof We will prove the statement of the lemma by providing Algorithm 1 that takes 
as input T and � and outputs the requested collection L of �-subgraphs.

(6)
∑
v∈V

coverageL(v) = |L| ⋅ �,
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The algorithm starts by picking an arbitrary vertex v to serve as the root of the 
tree. Then it performs a Depth-First-Search (DFS) starting from v. We will dis-
tinguish between visiting a vertex and covering a vertex in the following way. 
We say that DFS visited a vertex if it considered that vertex as a candidate to be 
inserted to some �-subgraph, and we say that DFS covered a vertex if it visited and 
inserted the vertex at some �-subgraph. By definition, DFS visits in a greedy man-
ner first an uncovered child, and only if there is no such child, it visits its parent 
(lines 14–17, 21–24). The set-variable that keeps track of the covered vertices is S.

Starting with the root of T, the algorithm simply visits the whole vertex set 
according to DFS, putting each visited vertex in the same �-subgraph Li (starting 
with i = 1 ) (lines 18–24), and when |Li| = � , a new empty �-subgraph Li+1 is picked 
to get filled in with � vertices (lines 26–27) taking care of one extra thing: The first 
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vertex that the algorithm puts in an empty �-subgraph Li , i ∈ {1, 2,…} is guaranteed 
to be one that has not been covered by any other �-subgraph so far (lines 13–17). 
This ensures that no two �-subgraphs will eventually be identical.

The algorithm will not only visit all vertices in T, but also cover them. That is 
because there is no point where the algorithm checks whether the currently vis-
ited vertex is uncovered and then does not cover it. On the contrary, it covers every 
vertex that it visits, except for some already covered one in case the current �-sub-
graph is empty (lines 13–24). And since DFS by construction visits every vertex, 
we know that at some point the whole vertex set will be covered, or equivalently, 
coverageL(v) ≥ 1,∀v ∈ V  . Therefore, the algorithm will eventually exit the while-
loop in lines 12–29.

Now we prove that, after the algorithm terminates, every vertex v ∈ V  is cov-
ered at most degree(v) times, except for at most � − 1 vertices that are covered 
degree(v) + 1 times. Observe that DFS visits every vertex v at most degree(v) times: 
(a) v will be visited after its parent u only if v is uncovered (lines 14–15, 21–22), v 
will get covered (lines 19–20), and will not get visited ever again by its parent since 
it will be covered (lines 16–17, 23–24). (b) v will be visited at most once by each of 
its children, say w, only if w does not have an uncovered child (lines 16–17, 23–24), 
and v will not get ever visited by its parent since v will be covered, and also v can-
not be visited a second time by any of its children, since they can never be visited 
again (they can only be visited through v since T is a tree). Therefore, any vertex v 
will be visited exactly once after its parent is visited, and at most once by each of its 
children, having a total of at most degree(v) visits. And since, as argued above, the 
total number of times a vertex will be covered is at most the number of times it will 
get visited, when DFS terminates (i.e S = V  ), it will be coverageL(v) ≤ degree(v) , 
for every v ∈ V .

However, note that the last nonempty �-subgraph Li might not consist of � verti-
ces since the entire V was covered and DFS could not proceed further. In this case, 
the algorithm empties the set S that keeps track of the covered vertices, takes the 
current Li and fills it in with exactly another � − |Li| vertices. This is done by pick-
ing an arbitrary vertex from Li and setting it as the root of T, and performing one 
last DFS starting from it until Li has � vertices in total (lines 30–33). To ensure that 
the DFS will continue only until it fills in this current Li , the algorithm counts the 
number of times that it runs the while-loop of DFS, namely lines  12–29, via the 
variable count (line 34), which escapes the while-loop of DFS in case DFS has filled 
in Li (lines 28–29) and terminates. Observe that in the last �-subgraph Li , a vertex v 
inserted in the last iteration of DFS ( count = 1 ) and was not inserted in Li by the first 
run ( count = 0 ) might have been covered by the first run of DFS exactly degree(v) 
times, therefore when the algorithm terminates it has been covered degree(v) + 1 
times. Since by the end of the first DFS run,‘ Li had at least one vertex, the cardinal-
ity of such vertices that are covered more times than their degree are at most � − 1 .  
 ◻

We can now prove the following.
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Lemma 4 For any graph G of n vertices, and for any � ≤ n , there exist (at most) 
2n−3

�
+ 1 �-subgaphs of G that cover G.

Proof Consider a spanning tree T of G. Then Lemma  3 applies to T. Observe 
that a collection L as described in the statement of the aforementioned lemma 
has the same qualities for G since V(T) = V(G) and E(T) ⊆ E(G) . That is, L is 
a collection of distinct �-subgraphs of G, such that for every v ∈ V  , it holds that 
1 ≤ coverageL(v) ≤ degree(v) , except maybe for (at most) � − 1 vertices, for each 
v of which, it is coverageL(v) = degree(v) + 1 , where by degree(v) we denote the 
degree of vertex v in T.

Fix a particular value for � and consider a collection L of �-subgraphs as con-
structed in the proof of Lemma 3. Then, by Eq. (6),

  ◻

We conclude with the simple algorithm that achieves a defense strategy with 
defense ratio which is within factor 2 + �−3

n
 of the best defense ratio for G.

Theorem  6 Given any graph G = (V ,E) , Algorithm  2 computes in time O(|E|) a 
defense strategy such that, for any combination of attack strategies, the resulting 
strategy profile S yields defense ratio DR(G, S) ≤

(
2 +

�−3

n

)
⋅ DR(G, S∗).

Proof As argued in Lemma  4, there is a collection L of �-subgraphs with 
|L| ≤ 2n

�
+ 1 −

3

�
 which covers G. Therefore, the uniform defense strategy returned 

by Algorithm  2 (which determines the vertex-probability pi for each vertex i) 
achieves a minimum vertex-probability p� ∶= mini∈[n] pi for which it holds that:

�L� =
∑

v∈V coverageL(v)

�
≤

∑
v∈V degree(v) + (� − 1)

�

=
2(n − 1)

�
+

� − 1

�
=

2n − 3

�
+ 1.
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where the first equality is due to the fact that any leaf v ∈ V  of the spanning tree T of 
G through which L was created has coverageL(v) = 1 , and therefore there is such a 
vertex v in G that is covered by exactly one �-subgraph; and the last inequality is due 
to the fact that p∗(G) ≤ �∕n for any graph G (due to Corollary 3), where p∗(G) is the 
MaxMin probability of G.

The above inequality implies that if the defender chooses the prescribed strat-
egy, the minimum defense ratio cannot be too bad. That is because in the worst case 
for the defender, each attacker will choose a vertex v′ on which the aforementioned 
strategy of the defender results to vertex-probability p′ (so that the attacker is caught 
with minimum probability). As a result, the defender will have the minimum pos-
sible expected payoff which is p′ ⋅ k . Thus, for the constructed defend strategy and 
any combination of attack strategies, the resulting strategy profile S yields defense 
ratio:

where the last equality is due to Lemma 1.
With respect to the running time, notice that Step  1 of Algorithm  2 can be 

executed in time O(|V| + |E(G)|) = O(|E(G)|) . Step  2 can be executed in time 
O(|V| + |E(T)|) = O(|V|) . Finally, Step 3 can be executed in constant time. There-
fore, the total running time of Algorithm 2 is O(|E(G)|).   ◻

Corollary 4 For any graph G there is a polynomial (in both n and �) time approxi-
mation algorithm (Algorithm 2) with approximation factor 1∕

(
2 +

�−3

n

)
 for the com-

putation of p∗(G).

The merit of finding a probability p′ that approximates (from below) p∗(G) for a 
given graph G through an algorithm such as Algorithm 2 is in guaranteeing to the 
defender that, no matter what the attackers play, she always “catches” at least a por-
tion p′ of them in expectation, where the best portion is p∗(G) in an equilibrium. In 
fact, one can see from Inequality (7) (penultimate step) that Algorithm 2 guarantees 
that the defender catches a fraction of attackers which is at least 1∕

(
2 +

�−3

n

)
 times 

the best expected number (among all strategy profiles, not only equilibrium 
profiles).

6  Bounds on the Price of Defense

In the following theorem we give a lower bound on the PoD for any given n and 
2 ≤ � ≤ n − 1 by constructing a graph G with particular (very small) p∗(G) (which, 
by Lemma 1 implies great best defense ratio).

(7)p� =
1

|L| ≥
1

2n

�
+ 1 −

3

�

=

�

n

2 +
�−3

n

≥
1

2 +
�−3

n

⋅ p∗(G),

DR(G, S) ≤
k

p� ⋅ k
≤

(
2 +

� − 3

n

)
⋅

1

p∗(G)
=
(
2 +

� − 3

n

)
⋅ DR(G, S∗),
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Theorem 7 The PoD(� ) is lower bounded by 
⌊
2(n−1)

�

⌋
 and 

⌊
2(n−1)

�+1

⌋
 for � even and odd 

respectively, when � ∈ {2, 3,… , n − 1}.

Proof We will prove the statement by showing that for any given n and 
� ∈ {2, 3,… , n − 1} , there exists a graph G = (V ,E) on n vertices that requires (at 
least) some number roughly b =

⌊
2(n−1)

�+1

⌋
 of �-subgraphs to be covered and addition-

ally this graph’s structure achieves p∗(G) for the uniform defense strategy, i.e. each �
-subgraph is assigned equal probability 1/b.

The graph we construct is the following. First, consider a line graph with � verti-
ces, where � =

⌈
�

2

⌉
 . Keep a central vertex to use later, and using only n − 1 vertices, 

create as many complete lines with � vertices as possible, i.e. b =
⌊
n−1

�

⌋
 . Create 

another incomplete line (if needed) with strictly less than � vertices using the 
remaining ones n − 1 − b ⋅ � . Now draw an edge from the central vertex to a single 
leaf of each of the constructed lines. For examples of the construction of G in each 
of the below three cases, see Figs. 2, 3, and 4.

Consider now a defense strategy q ∶= (q1, q2,… , q
�
) ∈ �

�
 and the vertex prob-

abilities p1, p2,… , pn it induces on the vertices of G.
Case 1: � is even. In this case � = �∕2 and observe that the diameter of this 

graph G is equal to � , therefore no �-subgraph that covers a leaf of a complete 
line can cover a leaf of another complete line. Also, any �-subgraph that covers a 
leaf of a complete line can also cover the whole incomplete line. Therefore, this 
graph can be covered by b �-subgraphs but no less. Assume that q covers G, i.e. 
pi > 0,∀i ∈ [n] , and let us focus on the set Vcom of leaves of the complete lines of 
G, where |Vcom| = b as argued earlier, and denote Vcom by [b]. Consider the vertex 
probabilities pi , i ∈ [b] , and note that 

∑
i∈[b] pi ≤ 1 where strict inequality holds for 

the case where there exists some pure strategy Lj ∈ supp(q) such that Lj ∩ Vcom = � . 
Then for p� ∶= mini∈[b] pi it holds that p� ≤ 1∕b , otherwise pi > 1∕b , ∀i ∈ [b] and 
therefore 

∑
i∈[b] pi > 1 which is a contradiction. Also, for pi = 1∕b , ∀i ∈ [b] , it is 

p� = 1∕b , which yields p∗(G) ∶= maxq∈�
�
p� = 1∕b.

Fig. 2  An example of Case 1 of 
Theorem 7, where n = 15 and 
� = 6 . Here, graph G has � = 3 
and b = 4 . The �-subgraphs 
L1,L2,L3,L4 that constitute 
the support of a best-defense 
strategy are shown with various 
colors (Color figure online)

L1

L2

L3

L4
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Case 2: � is odd. In this case � = (� + 1)∕2 and the diameter of G equals � + 1 , 
therefore no �-subgraph that covers a leaf of a complete line can also cover a leaf of 
another complete line.

• Subcase (a): � − (n − 1 − b ⋅ �) ≠ 1 . Any �-subgraph that covers a leaf of a 
complete line can cover the whole incomplete line. Therefore, this graph can 
be covered with b �-subgraphs but no less. Following the analysis of Case 1, it 
is p∗(G) ∶= maxq∈�

�
p� = 1∕b.

• Subcase (b): � − (n − 1 − b ⋅ �) = 1 . No �-subgraph that covers a leaf of a 
complete line can cover the leaf of the incomplete line. Therefore, this graph 
can be covered by b + 1 �-subgraphs but no less. Following similar analysis 
as that of Case 1, where instead of Vcom we have Vcom ∪ {vinc} where vinc is the 
leaf of the incomplete line, and instead of b we have b + 1 , we conclude that 
p∗(G) ∶= maxq∈�

�
p� = 1∕(b + 1).

Fig. 3  An example of Case 2(a) 
of Theorem 7, where n = 19 and 
� = 7 . Here, graph G has � = 4 
and b = 4 . The �-subgraphs 
L1,L2,L3,L4 that constitute 
the support of a best-defense 
strategy are shown with various 
colors (Color figure online)

L1

L2

L3

L4

Fig. 4  An example of Case 2(b) 
of Theorem 7, where n = 20 and 
� = 7 . Here, graph G has � = 4 
and b = 4 . The �-subgraphs 
L1,L2,L3,L4,L5 that constitute 
the support of a best-defense 
strategy are shown with various 
colors (Color figure online) L1

L2

L3

L4

L5
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For Case 1, and Case 2(a), since each of the leaves of the b complete lines have ver-
tex-probability 1/b, the defense strategy q∗ with probability q∗

i
= 1∕b assigned to the 

respective pure defense strategy Li, i ∈ [b] that contains vertex i ∈ [b] , yields p∗(G) . 
For Case 2(b), since each of the leaves of the b complete lines and the leaf vinc of the 
incomplete line have vertex-probability 1∕(b + 1) , the defense strategy q∗ with prob-
ability q∗

i
= 1∕(b + 1) assigned to the respective pure strategy Li, i ∈ [b] ∪ {vinc} that 

contains vertex i ∈ [b] ∪ {vinc} , yields p∗(G).
By the above values of p∗(G) and Lemma 1, the proof of the theorem is com-

plete.   ◻

Corollary 5 For any given n and 2 ≤ � ≤ n − 1 , it holds that ⌊
2(n−1)

�+1

⌋
≤ PoD(�) ≤

2(n−1)+�−1

�
 . Furthermore, for the trivial cases � ∈ {1, n} it is 

PoD(1) = n and PoD(n) = 1.

Proof The lower bound is established by Theorem  7. The upper bound is due to 
Theorem  6. For the cases � = 1 and � = n , observe that the defender’s action set 
is D = {{i}|i ∈ V} and D = {V} respectively, therefore p∗(G) = 1∕n and p∗(G) = 1 
respectively, and again from Lemma 1 we get the values in the statement of the cor-
ollary.   ◻

7  Conclusion and Open Problems

Our results extend the line of work by Mavronicolas et al. [11] on defense games 
in graphs. In these games, we have generalized the pure strategy of the defender 
to be a connected induced subgraph of the underlying graph of size � instead of 
two adjacent vertices. We termed these new games Connected Subgraph Defense 
(CSD) games and studied the structure of equilibria and the complexity of finding 
one, depending on the power of the defender � . We also extended the notion of Price 
of Defense, as termed in [11], for any � and found almost tight bounds for its value.

An interesting open problem is the following. For � that is both more than con-
stantly away from 1 and n, our LP-based algorithm for computing a Nash equilib-
rium is not efficient. That is because in that case, our algorithm considers the strat-

egy space of the defender to have cardinality 
(
n

�

)
 and brute forces through all of 

that space. Is there a polynomial time algorithm for computing a Nash equilibrium 
when � ∈ �(1) ∩ o(n) ? Another open problem is to determine the complexity of 
deciding whether a general graph is defense-optimal. We conjecture that it is ��
-hard.
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