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To improve mathematical models of epidemics it is essential to move beyond the traditional 
assumption of homogeneous well–mixed population and involve more precise information on the 
network of contacts and transport links by which a stochastic process of the epidemics spreads. 
In general, the number of states of the network grows exponentially with its size, and a master 
equation description suffers from the curse of dimensionality. Almost all methods widely used in 
practice are versions of the stochastic simulation algorithm (SSA), which is notoriously known 
for its slow convergence. In this paper we numerically solve the chemical master equation for an 
SIR model on a general network using recently proposed tensor product algorithms. In numerical 
experiments we show that tensor product algorithms converge much faster than SSA and deliver 
more accurate results, which becomes particularly important for uncovering the probabilities of 
rare events, e.g. for number of infected people to exceed a (high) threshold.

1. Introduction

Modelling of epidemics is crucial to inform policies and support decision making for disease prevention and control. The recent 
outbreak of COVID-19 pandemic raised a significant scientific and public debate regarding the quality of the mathematical models 
used to predict the effect of the pandemics and to choose an appropriate response strategy. One of the first epidemiological models, 
proposed by Kermack and McKendrick in 1927 [1], assumes that each member of the population can be either susceptible to a 
disease, infected, or recovered. Its second important assumption is that the population is well–mixed, i.e. all members are in contact 
with each other and have the same chance of getting and passing a disease. Under this assumption, the system dynamics is governed 
only by the sizes of the compartments for susceptible, infected, and recovered part of the population, and can be described by three 
ordinary differential equations, one for each compartment. Despite its simplicity, the Kermack–McKendrick SIR model can describe 
important stages of the epidemics, such as exponential growth of the number of infected people at the beginning of epidemic, and 
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the exponential decay after the epidemics passed its peak. For this reason, this and other compartmental models are often included 
in academic curriculum and used to popularise epidemiological modelling among general public and present it to policy makers.

When it comes to policy making, however, we need models that can provide accurate quantitative results. The main assumption 
behind the compartmental models — that the population is well–mixed — does not hold very well for human population. People are 
not in constant contact with each other, and the probability of two people to meet each other depends significantly on where they 
live, where they work and what social contacts they maintain. The speed of the epidemics depends not just on the total number of 
infected people, but on where the infected people are located in relation to the susceptible part of the population. For example, if all 
infected people are located in an isolated region, the disease will spread much slower, than if the same number of infected people 
were spread uniformly among the susceptible part of the population. Moreover, the contacts are inherently stochastic. Due to this 
internal noise, deterministic models can give wrong results for extreme scenarios of e.g. small number of rarely contacting infected 
individuals.

To deliver more accurate predictions, stochastic epidemiological models on networks have been proposed [2,3]. Unfortunately, 
these models are also much more complex. They are formulated as a Markov process with the state space formed of all possible 
arrangements of susceptible, infected and recovered individuals on the network; while the transition probabilities depend on the 
structure of the network’s connections and model parameters, such as infection and recovery rates. The dynamics of the probability 
distribution is governed by the master equation (also known as Chapman or forward Kolmogorov equation), which takes the form 
of an autonomous ODE system. Since each network configuration has to be treated separately, the total number of equations that 
we need to solve grows exponentially with respect to the population size. This obstacle, known as the curse of dimensionality makes 
numerical solution of these models prohibitively difficult for networks of moderate and large size. Therefore, virtually all widely 
used methods of solving stochastic population models are variants of the Monte Carlo stochastic simulation algorithm [4]. Despite 
its simplicity and popularity, this algorithm is known for its slow convergence following from the central limit theorem. Alternative 
approaches include mean–field approximations [5,6], effective degree models [7–9], and edge–based compartmental models [10], 
but these models are approximate and rely on truncation of the state space, effects of which on accuracy are difficult to estimate 
and/or keep below a desired tolerance for a general network.

Recently, a family of tensor product methods was proposed for breaking the curse of dimensionality and making high–dimensional 
problems possible to solve. In these methods, the solution (in our case, the joint probability distribution function of individual states) 
is approximated by a compressed format, which often converges much faster (e.g. exponentially) compared to the central limit 
theorem rate in Monte Carlo methods [11]. Starting with basic algorithms for approximating a given array in tensor train (TT) [12]
or Hierarchical Tucker (HT) [13] format, new methods were proposed for solving linear systems [14,15] and eigenproblems [16–18], 
and recently for solving time–dependent problems [19]. Initially motivated by quantum physics [20–22], tensor product algorithms 
recently extended their domain to a variety of applications, see [23–26]. In this paper we apply tensor product algorithms to compute, 
approximately but with controlled accuracy, the joint probability distribution function of network states.

Another difficulty of a general master equation is the exponential number of transitions, in addition to the exponential number of 
states. Stochastic population models can often be written as a system of a polynomial number of stochastic chemical reactions, and 
solved using the chemical master equation (CME) [27]. In addition to the direct Monte Carlo simulations of the realisations of the 
model [4,28–30], a direct solution of the CME (or outputs thereof) was proposed using an adaptive finite state projection [31–33], 
sparse grids [34], radial basis functions [35], neural networks [36,37], and tensor product approximations, in particular, in the 
Tucker decomposition [38], CP decomposition [39,40], and TT decomposition [41,42,19,43–46]. Most of these papers consider 
the CME formulations of gene regulatory networks, where an accurate description of stochasticity is important due to small copy 
numbers. However, there seem to be a little coverage of population models. Somewhat related is a lattice model of unimolecular 
adsorption/desorption which was explored in [46].

In this paper we apply tensor product algorithms to solve the exponentially large systems of ODEs that mathematically capture 
the evolution of epidemics on networks, without any uncontrollable approximations caused by the simplification of the model. The 
fast convergence of the tensor product approximation allows us to solve the CME to extremely high accuracies, up to 6 decimal 
digits. This enables accurate estimation of probabilities of rare events, such as simultaneous infection of a large number of people 
in a network. Rare event simulation is a infamously formidable task, since the number of samples in a direct Monte Carlo method 
needs to be inversely proportional to the (small) event probability [47–49]. We demonstrate that we can accurately estimate events 
of probability as small as 10−6 in a small world network of 50 individuals.

2. Background

The original Kermack–McKendrick model [1] separated people in three groups — susceptible, infected and recovered — and 
described the state of the epidemics by the size of each group or compartment. For this information to be sufficient for describing the 
dynamics of epidemic an implied assumption has to be made that the system is well–mixed or homogeneous, i.e. each member is in 
contact with everyone and the disease can spread from each infected person to each susceptible person with the same probability. 
This assumption is not very realistic — the network of contacts between people normally has a complex structure, with some 
people having (much) more contacts than others. In this case it is not possible to describe the situation with just specifying sized 
of all compartments, as the location of infected people in the network plays a key role in the dynamics of epidemic. The simplest 
illustration can be a situation when a single infected person is completely isolated from the rest of the network (and infection can 
2

not spread), compared to this infected person been connected to all people in the network (and infection can spread rapidly).
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Fig. 1. Markov chain transitions between network states: (a) SIR epidemic on a chain of 𝑁 = 3 people; (b) SIR epidemic in a fully mixed network of 𝑁 = 3 people.

Since the compartmental description can not accurately describe epidemic on a general network, we will need to apply stochastic 
description, by considering for all states the network can reach and describing the evolution of probabilities of these states. In this 
section we recall the corresponding mathematical model of SIR epidemics on networks, explain the computational challenges arising 
due to the exponentially large size of this model, and briefly describe the stochastic simulation algorithm, which avoids the problem 
and is widely used in practice because of that.

2.1. Epidemics on networks

A network (or unweighted simple directed graph) is a set of nodes (vertices, sites)

 = {1,… ,𝑁},

representing individual people, and a set of links (edges, connections)

 = {(𝑚,𝑛) ∶ 𝑚 ∈  , 𝑛 ∈  , 𝑚 ≠ 𝑛},

representing contacts between them. If (𝑚, 𝑛) ∈  , which we will also denote using an adjacency relation 𝑚 ∼ 𝑛, a person 𝑚 (if 
infected) can pass a disease on a person 𝑛 (if susceptible). If all contacts can potentially pass disease in both directions (e.g. there are 
no personal protection measures in place), the network is undirected, i.e. (𝑚, 𝑛) ∈  ⇔ (𝑛, 𝑚) ∈  , in which case 𝑚 ∼ 𝑛 is a symmetric 
relation.

For a SIR epidemic, each person can be in exactly one of three states,

𝑥𝑛 ∈𝕏 = {s, i, r} = {susceptible, infected, recovered} = {1,2,3}, for 𝑛 ∈  . (1)

Hence, the state of the whole system can be written as

x =
(
𝑥1 𝑥2 … 𝑥𝑁

)𝑇 ∈Ω=𝕏𝑁.

We denote the probability to find the system in state x at time 𝑡 as 𝑝(x, 𝑡) = 𝑝(𝑥1, 𝑥2, … , 𝑥𝑁, 𝑡). The transitions between the states are 
described using the two reactions, i.e. infection and recovery, respectively:

𝖯
(
x(𝑡+ 𝛿𝑡) = (𝑥1,… , 𝑥𝑛 = i,… , 𝑥𝑁 ) ||x(𝑡) = (𝑥1,… , 𝑥𝑛 = s,… , 𝑥𝑁 )

)
= 𝐼𝑛(x)𝛽𝛿𝑡,

𝖯
(
x(𝑡+ 𝛿𝑡) = (𝑥1,… , 𝑥𝑛 = r,… , 𝑥𝑁 ) ||x(𝑡) = (𝑥1,… , 𝑥𝑛 = i,… , 𝑥𝑁 )

)
= 𝛾𝛿𝑡,

where 𝛽 is the (per contact) infection rate, 𝛾 is the (per capita) recovery rate, and 𝐼𝑛(x) = |{𝑚 ∈  ∶ 𝑚 ∼ 𝑛, 𝑥𝑚 = i}| counts the 
number of infected neighbours of person 𝑛 in the state x. These reactions connect the states of the system (as shown in Fig. 1), thus 
forming a Markov chain network (weighted directed graph with loops), where nodes are network states x ∈𝕏𝑁 , links are transitions 
3

{(x, y) ∶ 𝖯(y at time 𝑡+ 𝛿𝑡 | x at time 𝑡) ≠ 0}, and weights are reaction rates:
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𝑝x→y =
⎧⎪⎨⎪⎩
𝑝(inf)
x→y = 𝐼𝑛(x)𝛽, if ∃𝑛 ∈  ∶ 𝑥𝑛 = s, 𝑦𝑛 = i, and 𝑥𝑚 = 𝑦𝑚 for 𝑚 ≠ 𝑛;

𝑝(rec)
x→y = 𝛾, if ∃𝑛 ∈  ∶ 𝑥𝑛 = i, 𝑦𝑛 = r, and 𝑦𝑚 = 𝑥𝑚 for 𝑚 ≠ 𝑛;

0, otherwise.

(2)

Since the probability of the transition depends only on the current state (and not on the history of previous events), this process is a 
continuous–time Markov chain. The transition rates describe the dynamics of probabilities of network states as follows:

𝑝′(x, 𝑡) =
∑
y∈Ω

(
𝑝y→x ⋅ 𝑝(y, 𝑡) − 𝑝x→y ⋅ 𝑝(x, 𝑡)

)
. (3)

These ODEs need to be solved subject to initial conditions 𝑝(x0, 0) = 1 for the initial state x = x0 and 𝑝(x, 0) = 0 for other states x ≠ x0. 
Collecting all ODEs in a system, we obtain a Markovian master equation [27,2], also known as Chapman or forward Kolmogorov 
equations:

𝐩′(𝑡) =𝐀𝐩(𝑡), 𝐩′(0) = 𝐩0, (4)

where 𝐩(𝑡) =
[
𝑝(x, 𝑡)

]
x∈Ω is the unknown probability distribution function (p.d.f.), 𝐩0 is a unit vector with 1 in position of the initial 

state x0, and 𝐀 = [𝐴(x, y)]x,y∈Ω is matrix with elements{
𝐴(x,x) = −

∑
y∈Ω 𝑝x→y, on the diagonal

𝐴(x,y) = 𝑝y→x, off-diagonal, i.e. for x ≠ y.

By solving (4), we obtain probabilities 𝑝(x, 𝑡) for all states x ∈Ω, and can calculate statistical moments,

𝖤[𝐼(𝑡)] =
∑
x∈Ω

𝐼(x)𝑝(x, 𝑡), 𝖵[𝐼(𝑡)] =
∑
x∈Ω

(𝐼(x) − 𝖤[𝐼(𝑡)])2𝑝(x, 𝑡), (5)

where the function 𝐼(x) = 𝐼(𝑥1, … , 𝑥𝑛) = |{𝑛 ∈  ∶ 𝑥𝑛 = i}| counts the total number of infected individuals for a given state x.
Solving (4) is however not easy due to its large size. The state space Ω = 𝕏𝑁 contains |Ω| = 3𝑁 states, meaning that 𝐩(𝑡) is a 

vector of size 3𝑁 and 𝐀 is a 3𝑁 × 3𝑁 sparse matrix. As 𝑁 increases, the storage and computational costs grow as (3𝑁 ) and become 
prohibitively expensive even for modest values 𝑁 ≳ 20. This problem, known as the curse of dimensionality, is the major obstacle in 
solving high–dimensional problems that appear in a variety of applications, e.g. complex systems, quantum computations, machine 
learning, and epidemics on networks, which we consider in this paper.

2.2. Simplified models of epidemics on networks

Since master equations (4) suffer from the curse of dimensionality, a number of alternative approaches to modelling epidemics 
on networks were developed.

An approach known as lumping [50,51] attempts to group the network states in classes, in order to obtain a coarse description of 
the system behaviour by observing transitions between the groups, rather than individual states. Consider, for example, a network 
of 𝑁 = 3 people fully connected to each other. A full stochastic description of this network involves 3𝑁 network states as shown in 
Fig. 1(right). However, we can collect states (𝑥1𝑥2𝑥3) in groups described by the total number of susceptible and recovered people 
(𝑆, 𝑅), lumping the network model into a stochastic model for SIR epidemics in well–mixed groups.

(0,0) = {(iii)}, (1,0) = {(sii), (isi), (iis)},

(2,0) = {(ssi), (sis), (iss)}, (3,0) = {(sss)},

(0,1) = {(rii), (iri), (iir)}, (1,1) = {(sir), (sri), (irs), (isr), (rsi), (ris)},

(2,1) = {(ssr), (srs), (ssr)}, (0,2) = {(irr), (rir), (irr)},

(1,2) = {(srr), (rsr), (srr)}, (0,3) = {(rrr)}.

For fully connected network of 𝑁 people, lumping combines 3𝑁 network states in 1
2 (𝑁 + 1)(𝑁 + 2) = (𝑁2) groups, massively 

reducing the storage and computational complexity, while maintaining all the information necessary for describing the evolution. 
This is achieved by sacrificing information about the exact positions of susceptible, infected and recovered people in the network, 
which can be considered insignificant or unnecessary in this case. The coarser description obtained by lumping remains exact and 
perfectly matches the results obtained by the full network description. However, the effectiveness of lumping depends heavily on 
the number of symmetries available in the network of connections between people. For a fully connected network, permutations of 
people do not change the structure of connections, hence there are exponentially many symmetries, which explains why lumping is so 
efficient. However, even minor modifications of the network such as stepping away from the homogeneous structure of connections, 
destroy the existing symmetries and make lumping impossible to apply.

Alternative approaches include mean–field approximations [5,6], effective degree models [7–9], and edge–based compartmental 
models [10]. These models are approximate and rely on truncation of the state space, effects of which on accuracy are difficult to 
4

estimate and/or keep below a desired tolerance for a general network.
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In this paper we apply a tensor product solver [19] to integrate the high–dimensional system of ODEs (4) and hence compute, 
approximately but with controlled accuracy, the joint probability distribution 𝐩. The accuracy of approximations introduced by the 
proposed method is controlled by a single threshold parameter 𝜀 which can be set accordingly to the desired precision. The method 
automatically adjusts parameters controlling the complexity of approximation (so-called ranks) to match the desired accuracy. It does 
not explicitly rely on network to have symmetries, and thus can be applied to a general network, although the ranks and associated 
computational costs are network–dependent and may grow uncontrollably for large and densely connected networks.

2.3. Stochastic simulation algorithm

In contrast to previous methods, the classical Gillespie’s stochastic simulation algorithm (SSA) [52] does not attempt to solve the 
ODEs (4). Instead, it simulates a course of epidemic by sampling random walks x(𝑡) through the state space Ω until some desired time 
𝑇 . The sampled trajectories are assumed piecewise–constant, i.e. 𝑥(𝑡) = 𝑥𝑘, for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Starting with 𝑘 = 0, 𝑡0 = 0, and the initial 
state 𝑥0, SSA uses Monte Carlo sampling to simulate when a next reaction will occur, and which particular reaction will occur.

1. Calculate all nonzero transition probabilities (propensities) 𝑝x𝑘→y for y ∈ Ω.
2. Calculate the total propensity 𝑝Ω =

∑
y∈Ω 𝑝x𝑘→y .

3. Sample a time step 𝜏 from exponential distribution with rate parameter 𝑝Ω.
4. Sample a new state y⋆ ∈Ω from the discrete distribution with probabilities 𝑝x𝑘→y∕𝑝Ω.
5. Implement the next step of the walk by setting x𝑘+1 = y⋆, and 𝑡𝑘+1 = 𝑡𝑘 + 𝜏 .
6. If 𝑡𝑘+1 < 𝑇 , set 𝑘 ∶= 𝑘 + 1 and repeat from step 1, otherwise stop.

Running this algorithm 𝑁SSA times, we obtain 𝑁SSA sample paths, which can be used to estimate any expectations over the probability 
distribution defined by the master equation (4). Suppose that a quantity of interest 𝑄(x, 𝑡) is a function depending on the state and/or 
time. The expectation of 𝑄 can be approximated as follows,

𝖤[𝑄(𝑡)] ≈ 1
𝑁SSA

𝑁SSA∑
𝑠=1

𝑄(x(𝑠)
𝑘

, 𝑡(𝑠)
𝑘
), 𝑡 ∈ [𝑡(𝑠)

𝑘
, 𝑡(𝑠)

𝑘+1),

where (𝑡(𝑠)
𝑘
, x(𝑠)

𝑘
) represent the 𝑠–th randomly sampled trajectory. In other words, the SSA performs a piecewise constant interpolation 

of the state in time, followed by the Monte Carlo estimator over the sample paths.
Naturally, this estimate contains a statistical error. Following the central limit theorem, we can conclude that if the variance of 

the quantity of interest, 𝖵[𝑄], is finite, the variance of the estimator of 𝖤[𝑄] is 𝖵[𝑄]∕𝑁SSA. The relative error in the estimate is thus 
proportional to (

√
𝖵[𝑄]∕|𝖤[𝑄]|) ⋅ (1∕√𝑁SSA), which can be very large if 

√
𝖵[𝑄]≫ |𝖤[𝑄]|. To compensate for this, a very large 𝑁SSA

is needed, which leads to enormous computational costs. This happens for example in estimation of probabilities of rare events. In 
this case 𝑄(x, 𝑡) is an indicator function of the event of interest, with 𝖤[𝑄] ≪ 1.

Alternative algorithms include for example Tau-Leaping [4] and multi-level simulations [29,30]. The Tau-Leaping method fixes a 
time step 𝜏 , and samples (possibly several) reactions within this time step from a Poisson distribution. Clearly, the pre-selected time 
step 𝜏 can be larger than the time steps sampled by SSA, which requires fewer steps in total. However, Tau-Leaping samples biased 
trajectories, with the bias increasing with 𝜏 [53]. Multi-level algorithms allow one to compensate for more time steps resulting from 
a small 𝜏 by sampling less trajectories, and vice versa. This alleviates the problem of sampling fast reactions with small time steps. 
However, these methods may still struggle with high variance of the quantity of interest, 

√
𝖵[𝑄]≫ |𝖤[𝑄]|.

3. Methods

In this section we introduce tensor product approach to solving CME for epidemics on network.

3.1. Chemical master equation for the network SIR model

The matrix 𝐀 in the master equation (4) has exponentially large size 3𝑁 ×3𝑁 , which makes classical algorithms struggle from the 
curse of dimensionality. Fortunately, it has a hidden tensor product structure, which we will reveal and exploit to solve the problem 
using tensor product algorithms.

Firstly, note that the right–hand side in (3) contains sums over |Ω| = 3𝑁 states y. However, for a given state x ∈ Ω most of the 
transitions x → y and y→ x are impossible, i.e. 𝑝x→y = 0 and 𝑝y→x = 0. We will rewrite sums in a more explicit form by keeping only 
possible transitions.

From now on we will denote the states of individual nodes (1) using numbers, 𝑥𝑛 ∈ {1, 2, 3}. Note that an infection x → y which 
makes a susceptible person 𝑥𝑛 = 1 infected 𝑦𝑛 = 2 can be written as y = x + e𝑛 where e𝑛 ∈ ℝ𝑁 is the 𝑛-th unit vector. A recovery 
x → y which makes an infected person 𝑥𝑛 = 2 recovered 𝑦𝑛 = 3 also can be written as y = x + e𝑛. Hence, both the infection and 
recovery reactions are described by the stoichiometry 1. This means that 𝑝y→x = 0 unless ∃𝑛 ∈  ∶ x = y + e𝑛, and 𝑝x→y = 0 unless 
5

∃𝑛 ∈  ∶ y = x + e𝑛. Hence we can rewrite (3) as follows
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𝑝′(x, 𝑡) =
𝑁∑
𝑛=1

[
𝑝y→x ⋅ 𝑝(y, 𝑡)

]
x=y+e𝑛

−
𝑁∑
𝑛=1

[
𝑝x→y ⋅ 𝑝(x, 𝑡)

]
y=x+e𝑛

=
𝑁∑
𝑛=1

𝑝(x−e𝑛)→x
⏟⏞⏟⏞⏟
𝑎𝑛(x−e𝑛)

⋅𝑝(x − e𝑛, 𝑡) −
𝑁∑
𝑛=1

𝑝x→(x+e𝑛)
⏟⏞⏟⏞⏟

𝑎𝑛(x)

⋅𝑝(x, 𝑡),
(6)

keeping only 𝑁 terms in each sum and introducing notation 𝑎𝑛(x) = 𝑝x→(x+e𝑛) for reaction rates of stoichiometry 1. This form of the 
master equation is often called chemical master equation (CME) following [4]. As shown in (2), the specific formula for the reaction 
rate 𝑎𝑛(x) depends on whether this reaction is infection or recovery, which in turn depends on the value of 𝑥𝑛. Using an indicator

function

𝟏condition =

{
1, if condition is true

0, if condition is false,

we rewrite (2) as follows:

𝑎𝑛(x) = 𝑝x→(x+e𝑛) = 𝟏𝑥𝑛=1 ⋅ 𝑝
(inf)
x→(x+e𝑛)

+ 𝟏𝑥𝑛=2 ⋅ 𝑝
(rec)
x→(x+e𝑛)

= 𝟏𝑥𝑛=1 ⋅ 𝐼𝑛(𝑥)𝛽 + 𝟏𝑥𝑛=2 ⋅ 𝛾

=
∑
𝑚∼𝑛

𝛽𝟏𝑥𝑛=1𝟏𝑥𝑚=2
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝑎(inf)
𝑚→𝑛(x)

+ 𝛾𝟏𝑥𝑛=2
⏟⏟⏟

𝑎(rec)
𝑛 (x)

,
(7)

where 𝐼𝑛(x) =
∑

𝑚∼𝑛 𝟏𝑥𝑚=2 counts infected neighbours of person 𝑛.
All ODEs (6) taken together form the master equation with the vector of unknowns 𝐩(𝑡) = [𝑝(x, 𝑡)]x∈Ω, where the probability 𝑝(x, 𝑡)

of the state x = (𝑥1, 𝑥2, … , 𝑥𝑁 ) appears as element with index

𝑥1𝑥2…𝑥𝑁 = 3𝑁−1(𝑥1 − 1) + 3𝑁−2(𝑥2 − 1) +⋯+ 30𝑥𝑁 .

With this big-endian ordering, the vector 𝐚(rec)
𝑛 = [𝑎(rec)

𝑛 (x)]x∈Ω from (7) can be written as

𝐚(rec)
𝑛 = 𝛾𝑒 ⊗⋯⊗ 𝑒⊗ ı⃗ ⊗ 𝑒⊗⋯⊗ 𝑒, (8)

where ı⃗ =
(
0 1 0

)𝑇
appears in position 𝑛, 𝑒 =

(
1 1 1

)𝑇
appear in all positions 1, … , 𝑁 except 𝑛, and ⊗ denotes Kronecker 

(tensor) product. Recall that the Kronecker product 𝐶 =𝐴 ⊗𝐵 for 𝐴 ∈ℝ𝑝×𝑞 and 𝐵 ∈ℝ𝑚×𝑛 is a 𝑝𝑚 × 𝑞𝑛 matrix with elements 𝐶(𝑖 + (𝑗 −
1)𝑚, 𝑘 + (𝓁 − 1)𝑛) =𝐴(𝑗, 𝓁)𝐵(𝑖, 𝑘). The Kronecker product is distributive and associative.

Similarly, vector 𝐚(inf)
𝑚→𝑛 = [𝑎(inf)

𝑚→𝑛(x)]x∈Ω from (7) can be written as

𝐚(inf)
𝑚→𝑛 = 𝛽𝑒⊗⋯⊗ 𝑒⊗ 𝑠⊗ 𝑒⊗⋯⊗ 𝑒⊗ ı⃗ ⊗ 𝑒⊗⋯⊗ 𝑒, (9)

where 𝑠 =
(
1 0 0

)𝑇
appears in position 𝑛, ⃗ı =

(
0 1 0

)𝑇
appear in positions 𝑚 ∼ 𝑛, 𝑒 =

(
1 1 1

)𝑇
appear elsewhere. Note that 

appearance of basis vectors 𝑠 and ı⃗ realises conditions of indicator functions 𝟏𝑥𝑛=1 and 𝟏𝑥𝑚=2 in (7), and 𝑒 appears in positions of 
nodes not affected by any conditions. Now the vector [𝑎𝑛(x)𝑝(x, 𝑡)]x∈Ω in the second term of (6) can be written as

diag(𝐚𝑛)𝐩 =

(∑
𝑚∼𝑛

diag(𝐚(inf)
𝑚→𝑛) + diag(𝐚(rec)

𝑛 )

)
𝐩,

diag(𝐚(inf)
𝑚→𝑛) = 𝛽 ⋅ Id⊗⋯⊗ Id⊗ diag(𝑠)⊗ Id⊗⋯⊗ Id⊗ diag(⃗ı)⊗ Id⊗⋯⊗ Id,

diag(𝐚(rec)
𝑛 ) = 𝛾 ⋅ Id⊗⋯⊗ Id⊗ diag(⃗ı)⊗ Id⊗⋯⊗ Id,

(10)

where Id = diag(𝑒) is a 3 × 3 identity matrix.
The first term in the right–hand side of (6) contains the probability of the shifted state 𝑝(x − e𝑛, 𝑡) which we can express in terms 

of probabilities 𝑝(y, 𝑡) as follows

𝑞(x, 𝑡) = 𝑝(x − e𝑛, 𝑡)

=
∑
y∈Ω

𝟏𝑥1=𝑦1
⋯𝟏𝑥𝑛−1=𝑦𝑛−1

⋅ 𝟏𝑥𝑛−1=𝑦𝑛
⋅ 𝟏𝑥𝑛+1=𝑦𝑛+1

⋯𝟏𝑥𝑁=𝑦𝑁
⋅ 𝑝(y, 𝑡),

𝐪(𝑡) =
(
Id⊗⋯⊗ Id⊗𝐽𝑇 ⊗ Id⊗⋯⊗ Id

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐉𝑇𝑛

𝐩(𝑡),
(11)

where the shift matrix 𝐽𝑇 =
( 0 0 0

1 0 0
0 1 0

)
appears in position 𝑛, and the identity matrix Id =

( 1 0 0
0 1 0
0 0 1

)
appears elsewhere. Because of this 
6

special structure, we say that the 3𝑁 × 3𝑁 matrix 𝐉𝑇𝑛 acts on 𝑛–th site of the system only.
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The same process can be applied to the vector [𝑎𝑛(x − e𝑛)𝑝(x − e𝑛, 𝑡)]x∈Ω in the first term of (6), which gives

𝐩′ =
𝑁∑
𝑛=1

𝐉𝑇𝑛 diag(𝐚𝑛)𝐩−
𝑁∑
𝑛=1

diag(𝐚𝑛)𝐩.

Plugging in the tensor product expansion (10), we obtain the matrix of the master equation (4) in tensor product form

𝐀 =
𝑁∑
𝑛=1

∑
𝑚∼𝑛

𝛽 ⋅ Id⊗⋯⊗ Id⊗ (𝐽𝑇 − Id)diag(𝑠)⊗ Id⊗⋯⊗ Id⊗ diag(⃗ı)⊗ Id⊗⋯⊗ Id

+
𝑁∑
𝑛=1

𝛾 ⋅ Id⊗⋯⊗ Id⊗ (𝐽𝑇 − Id)diag(⃗ı)⊗ Id⊗⋯⊗ Id.

(12)

The tensor product representation of matrices 𝐉𝑇𝑛 in (11) and 𝐀 in (12) allows us to define large 3𝑁 × 3𝑁 matrices as a tensor 
product of small 3 × 3 matrices acting on individual sites of the system. By working with matrices and vectors is this form we can 
avoid computing them explicitly, hence reducing storage requirements significantly. For example, a 3𝑁 × 3𝑁 matrix 𝐉𝑇𝑛 has 2 ⋅ 3𝑁−1

nonzero elements, hence storing it in full (but sparse) form requires (3𝑁 ) memory. However the factors of tensor product in (11)
have 3𝑁 − 1 nonzero elements in total, hence we can keep the factorised matrix 𝐉𝑇𝑛 using (3𝑁) storage. Similarly, matrix 𝐀 in (12)
is represented by (|| + 𝑁) tensor product terms, reducing total storage from (3𝑁 ) to (3||𝑁 + 3𝑁2) = (3(⟨𝑘⟩ + 1)𝑁2), where ⟨𝑘⟩ = ||∕|| is the average degree of the network.

3.2. Tensor product factorisations

Maintaining the factorised tensor product form for the matrix 𝐀 of the chemical master equation (12), we remove the curse of 
dimensionality for storage of 𝐀. To similarly reduce the storage and computational costs for the unknown probability distribution 
function 𝐩(𝑡) and make the numerical solution possible, we need to assume a tensor product representation for 𝐩(𝑡) to hold exactly or 
approximately with sufficiently good accuracy. For the sake of simplicity, let’s first drop the dependency on 𝑡 and consider a p.d.f. 
𝐩 = [𝑝(x)]x∈Ω. Since Ω =𝕏𝑁 , we can consider 𝐩 as a vector of size |Ω| = 3𝑁 , or, equivalently, as a tensor 𝐩 = [𝑝(𝑥1, 𝑥2, … , 𝑥𝑁 )] of size 
3 × 3 ×⋯ × 3. Similar to (12), we want to factorise 𝐩 into a product of factors, each representing a single node of the network (aka

site of the system).
The simplest approach would be to factorise 𝐩 as a sum of tensor products,

𝐩 ≈ �̃� =
𝑅∑

𝛼=1
𝐩[1]𝛼 ⊗⋯⊗ 𝐩[𝑁]

𝛼 . (13)

This decomposition, known as the canonical polyadic (CP) format [54], factorises a given tensor into 3 ×𝑅 matrices 𝐩[𝑛] =
[
𝑝[𝑛]𝛼 (𝑥𝑛)

]
, 

known as CP factors. If all high–dimensional tensors are kept in tensor product format, all computations can be performed with 
one–site factors instead of full vectors and matrices, lifting the curse of dimensionality. Unfortunately, the CP format (13) can be 
unstable and the best approximation does not always exist [55], which makes it less attractive.

A different tensor product format that admits stable computations is the tensor train (TT) decomposition [12]. We say that a 
3 × 3 ×⋯ × 3 tensor 𝐩, and equivalently its vectorisation vec(𝐩) of size 3𝑁 , are approximated in TT format, if

𝐩 ≈ �̃� =
𝑟0 ,…,𝑟𝑁∑

𝛼0 ,…,𝛼𝑁=1
𝐩(1)𝛼0 ,𝛼1

⊗⋯⊗ 𝐩(𝑛)𝛼𝑛−1 ,𝛼𝑛
⊗⋯⊗ 𝐩(𝑁)

𝛼𝑁−1 ,𝛼𝑁
. (14)

Here, the 𝑟𝑛−1 × 3 × 𝑟𝑛 factors 𝐩(𝑛) =
[
𝐩(𝑛)𝛼𝑛−1 ,𝛼𝑛

(𝑥𝑛)
]
, 𝑛 = 1, … , 𝑁 , are called TT cores, and the ranges of the summation indices 𝑟0, … , 𝑟𝑁

are called TT ranks. Each core 𝐩(𝑛) contains information related to person 𝑛 in the network, and the summation indices 𝛼𝑛−1, 𝛼𝑛 of 
core 𝐩(𝑛) link it to cores 𝐩(𝑛−1) and 𝐩(𝑛+1). This linear arrangement of tensor train cores explains the name of the format.

In contrast to the CP format, the TT ranks 𝑟𝑛 are ranks of 3𝑛 × 3𝑁−𝑛 unfolding matrices, i.e. reshapes of the original tensor, where 
the first 𝑛 indices merge to form a multi-index for column, and the remaining 𝑁 − 𝑛 indices merge to form a multi-index for row,

𝑟𝑛 = rank 𝑃 [𝑛], 𝑃 [𝑛] =
[
�̃�(𝑥1…𝑥𝑛, 𝑥𝑛+1…𝑥𝑁 )

]
, �̃�(𝑥1…𝑥𝑛, 𝑥𝑛+1…𝑥𝑁 ) = �̃�(𝑥1,… , 𝑥𝑁 ).

This ensures the existence of best approximation in the TT format with the TT ranks 𝑟𝑛 ⩽ min(3𝑛, 3𝑁−𝑛), for 𝑛 = 0, … , 𝑁 , and, in 
particular, 𝑟0 = 𝑟𝑁 = 1.

Since TT ranks are matrix ranks, the approximation in (14) is usually considered with respect to Frobenius norm. Recall that 
for matrices (i.e. 𝑁 = 2) the best low-rank approximation in Frobenius norm can be computed in a stable and robust way using the 
(truncated) singular value decomposition (SVD) algorithm [56]. For small 𝑁 , when the tensor 𝐩 can be available in full, the TT 
approximation �̃�TT−SVD can be computed by TT-SVD algorithm [12] with quasi–optimal accuracy√
7

‖�̃�TT−SVD − 𝐩‖𝐹 ⩽ 𝑁 − 1‖�̃�best − 𝐩‖𝐹 ,
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where �̃�best is the best possible TT approximation of the same TT ranks, and the quasi–optimality factor 
√

𝑁 − 1 depends only on the 
dimensionality of the tensor. For larger dimensions, the TT approximations can be computed by alternating least square optimisation 
over the TT cores as shown in [57] and also in earlier work on matrix product states (MPS) [58,21] in context of quantum physics.

A general tensor 𝐩 can have the maximal TT ranks 𝑟𝑛 = min(3𝑛, 3𝑁−𝑛) which are exponential in 𝑁 . On the other hand, if 
𝑥1, … , 𝑥𝑁 were independent random variables, the p.d.f. 𝐩 would be a direct product of univariate distributions, 𝑝(𝑥1, … , 𝑥𝑁 ) =
𝑝(1)(𝑥1) ⋯ 𝑝(𝑁)(𝑥𝑁 ), which is a TT format (14) with TT ranks equal to one, 𝑟0 = 𝑟1 = ⋯ = 𝑟𝑁 = 1. Our approach is aimed at inter-
mediate scenarios with weak correlations between far variables 𝑥𝑛 and 𝑥𝑚 for |𝑛 − 𝑚| ≫ 1, in which case 𝐩 may lend itself to a TT 
approximation with moderate TT ranks. For example, the multivariate normal distribution with low-rank off-diagonal blocks of the 
precision matrix was shown to admit a TT approximation with TT ranks growing poly-logarithmically with error [59]. Existence 
of TT approximations with 𝑟 = (𝑁) was proven for stationary distributions describing mass-action and Michaelis–Menten kinet-
ics [60]. When TT ranks are bounded by 𝑟𝑛 ⩽ 𝑟 ≪min(3𝑛, 3𝑁−𝑛), we can represent the p.d.f. using only (𝑁𝑟2) ≪ 3𝑁 elements of the 
TT approximation (14), lifting the curse of dimensionality.

3.3. Discretisation in time

We discretise the dynamical system (4) on 𝑡 ∈ [0, 𝑇 ], where 𝑇 is the desired time horizon. We introduce a set of reference time 
points {𝑡𝑘}𝐾𝑘=1, such that 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 = 𝑇 . These can be the points where the solution is ultimately sought, or they can 
be determined adaptively to control the discretisation error [61]. On each subinterval (𝑡𝑘−1, 𝑡𝑘] we introduce a basis of Lagrange 
polynomials {𝜑(𝑘)

𝓁 (𝑡)}𝐿𝓁=1 centred at Chebyshëv nodes

𝑡(𝑘)𝓁 = 1
2 (𝑡𝑘−1 + 𝑡𝑘) +

1
2 (𝑡𝑘 − 𝑡𝑘−1) cos

(
𝜋 𝓁−1

𝐿

)
, 𝓁 = 1,… ,𝐿. (15)

The p.d.f. can now be approximated as

𝐩(𝑡) ≈
𝐿∑

𝓁=1
𝐩(𝑡(𝑘)𝓁 ) ⋅𝜑(𝑘)

𝓁 (𝑡), 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘],

which is known as spectral approximation. Since 𝐩(𝑡) is a solution of linear autonomous system of ODEs (4), it is analytic, hence 
the best spectral approximation converges exponentially in 𝐿, see [62, Ch. 5]. On each subinterval we want to compute all values 
𝑝(x, 𝑡(𝑘)𝓁 ), forming a vector �̄�(𝑘) = [𝑝(𝑥1, 𝑥2, … , 𝑥𝑁, 𝑡(𝑘)𝓁 )] ∈ℝ3𝑁𝐿, which can be also seen as a 3 ×3 ×⋯ ×3 ×𝐿 tensor with (𝑁 +1) indices. 
The TT decomposition (14) is expanded accordingly:

�̄�(𝑘) ≈ �̃�(𝑘) =
𝑟0 ,…,𝑟𝑁+1∑

𝛼0 ,…,𝛼𝑁+1=1
𝐩(𝑘,1)𝛼0 ,𝛼1

⊗⋯⊗ 𝐩(𝑘,𝑛)𝛼𝑛−1 ,𝛼𝑛
⊗⋯⊗ 𝐩(𝑘,𝑁)

𝛼𝑁−1 ,𝛼𝑁
⊗ 𝐩(𝑘,𝑁+1)

𝛼𝑁 ,𝛼𝑁+1
, (16)

where now 𝑟𝑁+1 = 1, 𝑟𝑁 ⩾ 1 (in general), and the new TT core 𝐩(𝑘,𝑁+1)
𝛼𝑁 ,𝛼𝑁+1

∈ ℝ𝐿 encodes the dependence on time. This p.d.f. can now 
be interpolated at any 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘] as

𝐩(𝑡) ≈ �̃�(𝑡) =
∑

𝛼0 ,…,𝛼𝑁+1

𝐩(𝑘,1)𝛼0 ,𝛼1
⊗⋯⊗ 𝐩(𝑘,𝑛)𝛼𝑛−1 ,𝛼𝑛

⊗⋯⊗ 𝐩(𝑘,𝑁)
𝛼𝑁−1 ,𝛼𝑁

⋅

(
𝐿∑

𝓁=1
𝐩(𝑘,𝑁+1)
𝛼𝑁 ,𝛼𝑁+1

(𝓁) ⋅𝜑(𝑘)
𝓁 (𝑡)

)
. (17)

The time derivative is replaced by a differentiation matrix 𝐷(𝑘) = [(𝜑(𝑘)
𝓁′
)′(𝑡(𝑘)𝓁 )]𝐿

𝓁,𝓁′=1. This allows us to propagate the master equa-
tion (4) through the interval (𝑡𝑘−1, 𝑡𝑘] by solving a linear equation(

Id3𝑁 ⊗𝐷(𝑘) −𝐀⊗ Id𝐿
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀(𝑘)

�̃�(𝑘) = 𝐩(𝑡𝑘−1)⊗ (𝐷(𝑘)e𝐿)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐟 (𝑘)

, (18)

where Id𝑛 is 𝑛 × 𝑛 identity matrix, and e𝑛 is the vector of all ones of size 𝑛. The initial state 𝐩(𝑡𝑘−1) is taken as the initial condition 𝐩(0)
if 𝑘 = 1 or interpolated from the previous subinterval using (17). Plugging in (12) and noticing that Id3𝑁 = Id⊗⋯ ⊗ Id, the matrix 
𝐀(𝑘) can be also written in a tensor product form similar to (12) but with one extra term. In the same way, if 𝐩(𝑡𝑘−1) is replaced by 
the TT decomposition (17), the right hand side 𝐟 (𝑘) can be written as a TT decomposition as well.

3.4. Tensor product algorithms for solving linear systems

To solve the linear system (18) we can use the Alternating Linear Scheme (ALS) algorithm [57], or the more robust Alternating 
Minimal Energy (AMEn) algorithm [15]. The basic ALS algorithm solves (18) by iterating over 𝑛 = 1, … , 𝑁 +1, fixing in each step all 
TT cores in (16) but 𝐩(𝑘,𝑛), and solving the resulting over-determined system for the elements of 𝐩(𝑘,𝑛). This can be seen by vectorising 
the TT core 𝐩(𝑘,𝑛), i.e. reshaping it into a long vector

p(𝑘,𝑛) = vec(𝐩(𝑘,𝑛)) = [𝐩(𝑘,𝑛)𝛼𝑛−1 ,𝛼𝑛
(𝑥𝑛)].
8

We then introduce a frame matrix
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𝐏(𝑘)
≠𝑛

=

( ∑
𝛼0…𝛼𝑛−2

𝐩(𝑘,1)𝛼0 ,𝛼1
⊗⋯⊗ 𝐩(𝑘,𝑛−1)𝛼𝑛−2 ,∶

)
⊗ Id⊗

( ∑
𝛼𝑛+1…𝛼𝑁+1

𝐩(𝑘,𝑛+1)∶,𝛼𝑛+1 ⊗⋯⊗ 𝐩(𝑘,𝑁+1)
𝛼𝑁 ,𝛼𝑁+1

)
,

which is of size 3𝑁𝐿 × 3𝑟𝑛−1𝑟𝑛 for 𝑛 ⩽𝑁 , and of size 3𝑁𝐿 × 𝑟𝑁𝐿 for 𝑛 =𝑁 + 1. Now the TT decomposition (16) can be written as a 
linear map �̃�(𝑘) = 𝐏(𝑘)

≠𝑛
p(𝑘,𝑛). The ALS method performs the Galerkin projection to solve a reduced linear system

((𝐏(𝑘)
≠𝑛
)𝑇𝐀(𝑘)𝐏(𝑘)

≠𝑛
)p(𝑘,𝑛) = (𝐏(𝑘)

≠𝑛
)𝑇 𝐟 (𝑘) (19)

subsequently for 𝑛 = 1, … , 𝑁 + 1. This system can be assembled and solved efficiently [57] because 𝐏(𝑘)
≠𝑛

, 𝐀(𝑘) and 𝐟 (𝑘) are available 
in TT format. The total complexity is (𝑁𝑟3). However, this simple ALS method has two drawbacks: TT ranks are fixed from the 
beginning (and may not match the ranks required for the unknown solution), and the sequential optimisation process may stuck in 
a local minimum corresponding to an inaccurate solution.

The AMEn method [15] circumvents these issues by computing TT approximations of both the solution �̃�(𝑘) and the residual 
�̃�(𝑘) ≈ 𝐳(𝑘) = 𝐟 (𝑘) − 𝐀(𝑘)�̃�(𝑘). This can be done using the TT-SVD truncation algorithm [12], but in practice the approximation can be 
obtained more effectively using standard ALS algorithm [23,57] that minimises the Frobenius norm of the error ‖�̃�(𝑘) − 𝐳(𝑘)‖𝐹 by 
sequential optimisations over the TT cores of �̃�(𝑘). The obtained information about the residual is used in AMEn to expand the search 
space by replacing the frame matrices in (19) with

𝐏(𝑘)
≠𝑛

=

( ∑
𝛼0…𝛼𝑛−2

𝐩(𝑘,1)𝛼0 ,𝛼1
⊗⋯⊗

[
𝐩(𝑘,𝑛−1)𝛼𝑛−2 ,∶ 𝐳(𝑘,𝑛−1)𝛼𝑛−2 ,∶

])
⊗ Id⊗

( ∑
𝛼𝑛+1…𝛼𝑁+1

𝐩(𝑘,𝑛+1)∶,𝛼𝑛+1 ⊗⋯⊗ 𝐩(𝑘,𝑁+1)
𝛼𝑁 ,𝛼𝑁+1

)
.

Adding extra vectors to the frame matrix allows one to increase the TT rank 𝑟𝑛−1 if it was underestimated. On the other hand, 
truncating the singular values of 𝐩(𝑘,𝑛−1) below the desired error threshold [12], one can reduce TT ranks if they are overestimated. 
Injection of the residual direction in the optimisation process ensures global convergence of the AMEn algorithm [15] to the solution 
of (18) and enhances its convergence rate in practical computations [17]. Remarkably, the approximation �̃�(𝑘) ≈ 𝐳(𝑘) does not have to 
be very accurate — even a rough approximation ‖�̃�(𝑘) −𝐳(𝑘)‖𝐹 ⩽ 1

2‖𝐳(𝑘)‖𝐹 would suffice to guarantee global convergence of AMEn [15].

3.5. Time step adaptation for local error control

Finally, the pseudospectral time discretisation (18), combined with the TT decomposition (16), allows one to estimate the time 
discretisation error in a computationally efficient way, and hence to adapt the reference time points 𝑡𝑘 using standard local error 
control methods. We check the accuracy of the computed solution �̃�(𝑘), on a finer Chebyshëv grid 𝑡(𝑘)𝓁 ∈ (𝑡𝑘−1, 𝑡𝑘], given by (15) with 
2𝐿 nodes.

We construct the linear system (18) on the finer grid {𝑡(𝑘)𝓁 }2𝐿𝓁=1, plug in the solution �̃�(𝑡), interpolated from the current grid to the 
finer grid using (17), and evaluate the residual, which can be done efficiently due to the TT and Kronecker product structures. If 
the residual norm exceeds the desired error threshold, the current solution is rejected, the time step is reduced, and the solution is 
recomputed on a smaller interval (𝑡𝑘−1, 𝑡𝑘]. If the residual norm is well below the desired efficiency threshold, the size of the next time 
interval is increased. This error control mechanism is implemented in the tAMEn (time–dependent AMEn) algorithm [19], which we 
use in the numerical experiments.

3.6. Evaluation of observables

When the p.d.f. 𝐩(𝑡) is computed in the TT format, we can evaluate observables, such as 𝖤[𝐼(𝑡)] and 𝖵[𝐼(𝑡)] in (5). However, 
we need to avoid taking sums over 3𝑁 network states x ∈ Ω and use more efficient strategy exploiting the properties of the TT 
format (14).

As an introductory example, suppose that we solved CME (4) and obtained 𝐩(𝑡) in TT format (16). The representation 𝐩(𝑡) is 
essentially a sequence of arrays (16) spanning intervals (𝑡𝑘−1, 𝑡𝑘]. It is therefore sufficient to discuss how to calculate observables at 
a particular time 𝑡, and then repeat the procedure for all intervals, thus covering the entire integration region (0, 𝑇 ]. Suppose we 
obtained 𝐩(𝑡) ≈ �̃� in the TT format (14). We may be interested in calculating total probability ∑x∈Ω �̃�(x), which equals 1 in theory, but 
may slightly deviate due to discretisation errors during numerical integration of (4) and approximation of the solution in TT format. 
Note that∑

x∈Ω
�̃�(x) =

∑
𝛼1 ,…,𝛼𝑁−1

[( ∑
𝑥1∈𝕏

𝐩(1)𝛼1
(𝑥1)

)
⋯

( ∑
𝑥𝑁−1∈𝕏

𝐩(𝑁−1)
𝛼𝑁−2 ,𝛼𝑁−1

(𝑥𝑁−1)

)( ∑
𝑥𝑁∈𝕏

𝐩(𝑁)
𝛼𝑁−1

(𝑥𝑁 )

)]
. (20)

Computing univariate sums inside round brackets costs (𝑁𝑟2) operations, where 𝑟 denotes the largest TT rank of �̃�. Summation 
over 𝛼 = (𝛼1, … , 𝛼𝑁−1), can be implemented as a sequence of matrix products [12] in another (𝑁𝑟2) operations. Hence, the total 
complexity is no longer exponential, but linear in number of people in the network. Normalising the p.d.f. 𝐩 = �̃�∕(∑x∈Ω �̃�(x)), we 
make the total probability 1, and proceed to computing observables.

First, let’s consider computing the mean∑

9

𝖤[𝐼] =
x∈Ω

𝐼(x)𝑝(x) = ⟨𝐈,𝐩⟩ ,
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where 𝐈 = [𝐼(x)]x∈Ω represents the observable 𝐼(x) for all states, and ⟨⋅, ⋅⟩ denotes scalar product. Similarly to (8) and (9), we obtain

𝐼(x) = 𝐼(𝑥1, 𝑥2,… , 𝑥𝑁 ) = 𝟏𝑥1=i + 𝟏𝑥2=i +⋯+ 𝟏𝑥𝑁=i,

𝐈 = ı⃗ ⊗ 𝑒⊗⋯⊗ 𝑒+ 𝑒 ⊗ ı⃗ ⊗⋯⊗ 𝑒+⋯+ 𝑒 ⊗ 𝑒⊗⋯⊗ ı⃗.
(21)

We note that the tensor 𝐈 admits CP decomposition (13) with tensor rank 𝑅 =𝑁 . However, due to a special structure of the rank-one 
terms the corresponding TT decomposition has TT ranks all equal to two:

𝐈 =
2∑

𝛼1 ,…,𝛼𝑁−1=1

[
𝑒 ı⃗

]
𝛼1

⊗

[
𝑒 ı⃗

0 𝑒

]
𝛼1 ,𝛼2

⊗⋯⊗

[
𝑒 ı⃗

0 𝑒

]
𝛼𝑁−2 ,𝛼𝑁−1

⊗

[
ı⃗

𝑒

]
𝛼𝑁−1

. (22)

A similar explicit TT representation appears for the high–dimensional Laplace [63], and diffusion [64] operators for high–dimensional 
PDEs. Note also a related work on explicit tensor product representation of Fourier transform operator [65,66].

To compute the variance in (5), we use the formula 𝖵[𝐼] = 𝖤[𝐼2] − (𝖤[𝐼])2, for which we need

𝖤[𝐼2] =
∑
x∈Ω

𝐼2(x)𝑝(x) = ⟨𝐈⊙ 𝐈,𝐩⟩ ,
where ⊙ denotes the Hadamard (pointwise) product of vectors. As noted in [67], linear operations between vectors and matrices 
in tensor product formats can be computed efficiently in the same format. In particular, the Hadamard product of vectors 𝐈 and 
𝐩 can be computed efficiently in TT format with TT ranks of the product being the product of TT ranks of the terms [12]. Since 
multiplication by 𝐈 only doubles the TT ranks, the complexity of evaluating ⟨𝐈⊙ 𝐈,𝐩⟩ is of the same order, (𝑁𝑟2), as the cost of 
evaluating ∑x∈Ω 𝑝(x). However, we can suggest a more elegant explicit formula for the TT factorisation of tensor 

[
𝐼(𝑥)2

]
x∈Ω = 𝐈 ⊙ 𝐈

with all TT ranks equal to three. From (21) we obtain

𝐼(x)2 =

(
𝑁∑
𝑛=1

𝟏𝑥𝑛=i

)2

=
∑

1⩽𝑛⩽𝑁

(
𝟏𝑥𝑛=i

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐼(x)

+2
∑

1⩽𝑚<𝑛⩽𝑁

𝟏𝑥𝑚=i𝟏𝑥𝑛=i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵(x)

.
(23)

Since 𝟏2 = 𝟏, the first term equals 𝐼(x) and the TT decomposition is given by (22). The second term is a sum of 12𝑁(𝑁 − 1) rank-one 
terms 𝑒 ⊗⋯ ⊗ 𝑒⊗ ı⃗ ⊗ 𝑒⊗⋯ ⊗ 𝑒⊗ ı⃗ ⊗ 𝑒⊗⋯ ⊗ 𝑒, where ⃗ı’s appear in positions 𝑚 and 𝑛, 𝑛 > 𝑚. Collecting linearly independent terms 
in each variable similarly to [63], we arrive at a TT representation of ranks three:

[𝐵(x)]x∈Ω =
3∑

𝛼1 ,…,𝛼𝑁−1=1

[
𝑒 ı⃗ 0

]
𝛼1

⊗
⎡⎢⎢⎣
𝑒 ı⃗ 0
0 𝑒 ı⃗

0 0 𝑒

⎤⎥⎥⎦
𝛼1 ,𝛼2

⊗⋯⊗
⎡⎢⎢⎣
𝑒 ı⃗ 0
0 𝑒 ı⃗

0 0 𝑒

⎤⎥⎥⎦
𝛼𝑁−2 ,𝛼𝑁−1

⊗
⎡⎢⎢⎣
0
ı⃗

𝑒

⎤⎥⎥⎦
𝛼𝑁−1

.

Extending the TT representation (22) to TT rank three by zero-padding the first and the last TT core allows us to represent 𝐼(x)2 =
𝐼(x) + 2𝐵(x) as a TT decomposition of TT ranks three:

𝐈⊙ 𝐈 =
3∑

𝛼1 ,…,𝛼𝑁−1=1

[
𝑒 ı⃗ 0

]
𝛼1

⊗
⎡⎢⎢⎣
𝑒 ı⃗ 0
0 𝑒 ı⃗

0 0 𝑒

⎤⎥⎥⎦
𝛼1 ,𝛼2

⊗⋯⊗
⎡⎢⎢⎣
𝑒 ı⃗ 0
0 𝑒 ı⃗

0 0 𝑒

⎤⎥⎥⎦
𝛼𝑁−2 ,𝛼𝑁−1

⊗
⎡⎢⎢⎣

ı⃗

2⃗ı+ 𝑒

2𝑒

⎤⎥⎥⎦
𝛼𝑁−1

. (24)

In addition to the above, we may want to calculate so-called exceedance probabilities

𝖯(𝐼(𝑡) ⩾ 𝐼⋆) =
∑
x∈Ω

𝑝(x, 𝑡)𝟏𝐼(x)⩾𝐼⋆
=
⟨
𝐩(𝑡), [𝟏𝐼(x)⩾𝐼⋆

]x∈Ω
⟩
, (25)

with some critical threshold 𝐼⋆, e.g. related to a hospital capacity. Similar to previous examples, we can evaluate this sum efficiently 
if we construct a TT representation for 

[
𝟏𝐼(x)⩾𝐼⋆

]
x∈Ω

. Since 𝟏𝐼(x)⩾𝐼⋆
=

∑𝑁
𝐼=𝐼⋆

𝟏𝐼(x)=𝐼 , we start by constructing TT representations for [
𝟏𝐼(x)=𝐼

]
x∈Ω. The states x = (𝑥1, 𝑥2, … , 𝑥𝑁 )𝑇 with 𝐼(x) = 𝐼 are such that exactly 𝐼 nodes are infected, and other 𝑁 − 𝐼 nodes are not. 

Extending the technique [63] used to derive (22) and (24), the indicators can be shown to have the following TT representations

[
𝟏𝐼(x)=𝐼

]
x∈Ω =

𝐼+1∑
𝛼1 ,…,𝛼𝑁−1=1

𝐮(1)𝛼1
⊗⋯⊗ 𝐮(𝑛)𝛼𝑛−1 ,𝛼𝑛

⊗⋯⊗ 𝐮(𝑁)
𝛼𝑁−1

,

𝐮(1) =
[
𝑒− ı⃗ ı⃗ 0 ⋯ 0

]
, 𝐮(𝑛) =

⎡⎢⎢⎢⎢
𝑒− ı⃗ ı⃗ 0 ⋯ 0
0 𝑒− ı⃗ ı⃗ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ 𝑒− ı⃗ ı⃗

⎤⎥⎥⎥⎥ , 𝐮(𝑁) =

⎡⎢⎢⎢⎢
0
⋮
0
ı⃗

⎤⎥⎥⎥⎥ ,
(26)
10

⎢⎣ 0 ⋯ ⋯ 0 𝑒− ı⃗
⎥⎦ ⎢⎣𝑒− ı⃗

⎥⎦
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with TT cores for 𝑛 = 2, … , 𝑁 −1 being the same (𝐼 +1) ×3 × (𝐼 +1) array, all (𝐼 +1) × (𝐼 +1) slices of which are two-diagonal Toeplitz 
matrices. Note that all TT ranks of this decomposition are equal to 𝐼 + 1. For 𝐼(x) >𝑁∕2 it is more convenient to ‘flip’ the variables 
and count how many people are not infected, which leads to the following decomposition

[
𝟏𝐼(x)=𝑁−𝐻

]
x∈Ω =

𝐻+1∑
𝛼1 ,…,𝛼𝑁−1=1

𝐯(1)𝛼1
⊗⋯⊗ 𝐯(𝑛)𝛼𝑛−1 ,𝛼𝑛

⊗⋯⊗ 𝐯(𝑁)
𝛼𝑁−1

,

𝐯(1) =
[
ı⃗ 𝑒− ı⃗ 0 ⋯ 0

]
, 𝐯(𝑛) =

⎡⎢⎢⎢⎢⎢⎣

ı⃗ 𝑒− ı⃗ 0 ⋯ 0
0 ı⃗ 𝑒− ı⃗ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ı⃗ 𝑒− ı⃗

0 ⋯ ⋯ 0 ı⃗

⎤⎥⎥⎥⎥⎥⎦
, 𝐯(𝑁) =

⎡⎢⎢⎢⎢⎢⎣

0
⋮
0

𝑒− ı⃗

ı⃗

⎤⎥⎥⎥⎥⎥⎦
,

(27)

with all TT ranks are equal to 𝐻 +1 =𝑁 − 𝐼 +1. Summing the above equation for 𝐻 = 0, … , 𝑁 − 𝐼⋆, we obtain the TT representation 
for the vector needed for computing the exceedance probability

[
𝟏𝐼(x)⩾𝐼⋆

]
x∈Ω

=
𝑁−𝐼⋆+1∑

𝛼1 ,…,𝛼𝑁−1=1
𝐰(1)

𝛼1
⊗⋯⊗𝐰(𝑛)

𝛼𝑛−1 ,𝛼𝑛
⊗⋯⊗𝐰(𝑁)

𝛼𝑁−1
,

𝐰(1) =
[
ı⃗ 𝑒− ı⃗ 0 ⋯ 0

]
, 𝐰(𝑛) =

⎡⎢⎢⎢⎢⎢⎣

ı⃗ 𝑒− ı⃗ 0 ⋯ 0
0 ı⃗ 𝑒− ı⃗ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ı⃗ 𝑒− ı⃗

0 ⋯ ⋯ 0 ı⃗

⎤⎥⎥⎥⎥⎥⎦
, 𝐰(𝑁) =

⎡⎢⎢⎢⎢⎢⎣

𝑒

⋮
𝑒

𝑒

ı⃗

⎤⎥⎥⎥⎥⎥⎦
.

(28)

Implementing this formula allows us to compute (25) in (𝑁𝑟2(𝑁 − 𝐼⋆)2) operations, where 𝑟 is the largest TT rank of 𝐩.
Finally, for a general observable that can be realised by an expectation

𝑞(𝑡) = 𝖤[𝑄(x)] =
∑
x∈Ω

𝑄(x)𝐩(x, 𝑡) = ⟨𝐐,𝐩(𝑡)⟩ , (29)

we can compute a TT approximation of the vector [𝑄(x)]x∈Ω by using TT cross interpolation methods [68–71]. These methods sample 
the function 𝑄(x) typically at (𝑁𝑟2) adaptively chosen states x ∈ Ω, followed by (𝑁𝑟3) other floating point operations in linear 
algebra.

Note that observables are evaluated as a post-processing step after solving the master equation (4), in contrast to SSA, for which 
the desired observations have to be stated in advance.

4. Results

The proposed method and necessary tensor product algorithms are implemented by authors in Matlab. The SSA algorithm is 
implemented by authors in Matlab. Where possible, the accuracy of results obtained by numerical methods is verified against analytic 
solutions, which were obtained as follows. First, for a given network of contacts, the Markov chain transition graphs (such as the one 
in Fig. 1) were constructed and the ODEs (3) were written using Julia language. After that, the analytic solutions for the ODEs were 
obtained using SageMath software package, which runs Maxima computer algebra system as backend. The numerical experiments 
were computed in MATLAB 2020b on an Intel Xeon E5-2640 v4 CPU with 2.4 GHz.

The codes are publicly available from

• github.com/savostyanov/ttsir.

4.1. Linear chain network

As a first experiment, we consider a linear network of 𝑁 = 9 people. Out of |Ω| = 3𝑁 = 19683 network states only 1022 = 2(2𝑁 −1)
are accessible from the initial state. This relatively modest scale of the problem makes it possible to write the ODEs (3) and to solve 
them analytically using SageMath software, which took us about 7 days of CPU time. From the analytic expressions for the p.d.f. 
𝐩⋆(𝑡) we evaluated analytic expressions for observables (5) and (25) and used them as reference values. The observables 𝑞(𝑡) obtained 
by numerical algorithms were compared with the reference values 𝑞⋆(𝑡) and the relative accuracy (relative error) was computed as

relative accuracy =
‖𝑞 − 𝑞⋆‖𝐿2‖𝑞⋆‖𝐿2

, (30)

where ‖ ⋅ ‖𝐿2
denotes a function norm, ‖𝑢(𝑡)‖2

𝐿2
= ∫ ∞

0 |𝑢(𝑡)|2d𝑡.
In Fig. 2, we show the relative accuracies (30) and CPU times of the TT and SSA methods for both the total mean number of 
11

infected individuals, and the occupancy probabilities for the linear chain. It should be noted that the TT algorithms are parameterised 

https://github.com/savostyanov/ttsir
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Fig. 2. SIR epidemic on a linear chain of 𝑁 = 9 people, shown for 𝛽 = 1 and 𝛾 = 0.3: (a) the network in its initial state; (b) mean and variance of the number of infected 
computed analytically and simulated using SSA with 𝑁SSA = 103 sampled trajectories; (c) exceedance probabilities computed analytically and simulated using SSA 
with 𝑁SSA = 103 sampled trajectories; (d) relative accuracy (30) of mean, variance, and exceedance probabilities, computed by SSA and tensor product approach.

Fig. 3. SIR epidemic on a road network in Austria, shown for 𝛽 = 1 and 𝛾 = 0.3: (a) the network in its initial state; (b) mean and variance of the number of infected 
computed analytically and simulated using SSA with 𝑁SSA = 103 sampled trajectories; (c) exceedance probabilities computed analytically and simulated using SSA 
12

with 𝑁SSA = 103 sampled trajectories; (d) relative accuracy (30) of mean, variance, and exceedance probabilities, computed by SSA and tensor product approach.



Applied Mathematics and Computation 460 (2024) 128290S. Dolgov and D. Savostyanov

Fig. 4. SIR epidemic on small world networks with 𝑁 = 50 people, with probability of rare event 𝖯(𝐼 ⩾ 40) computed using SSA and tensor product approach, shown 
for 𝛽 = 1 and 𝛾 = 0.3: (a) the small world network with short–range connections, where each person is linked with two neighbours left of them and two neighbours 
right of them on the circle; (b) the same network but with 3 randomly selected nodes rewired to a random node.

by the error tolerance, which is used as a threshold for the relative accuracy in Frobenius norm for both the truncation of the TT 
decompositions and for stopping of the tAMEn algorithm. In contrast, the SSA method is parameterised by the number of samples 
𝑁SSA. Since these parameters don’t match directly, we compare the CPU times of both methods. For all quantities of interest, SSA 
converges with a (𝑁−1∕2

SSA ) rate as expected. Although a seemingly modest number of samples may be sufficient to estimate mean 
population numbers, probabilities of rare events are much more difficult to estimate. In particular, SSA gives a rather misleading 
information about the high occupancy probability even with tens thousands of samples, requiring hundreds of seconds of computing 
for this (relatively simple) example. In contrast, the tensor product approach can compute the entire p.d.f. (and hence any derived 
statistics) with 4 accurate decimal digits in just a couple of seconds.

4.2. Road network in Austria

Now we test the methods on a network shown in Fig. 3(a), which illustrates the Austrian state adjacency map. This network has 
𝑁 = 9 nodes but more edges than the linear chain, resulting in better mixing and higher number of accessible network states. Assume 
that the initial state is deterministic with the first node in the infected state and all other nodes in the susceptible state, the Markov 
chain has 4982 accessible states for this network compared to 1022 for the linear chain network of the same size. Nevertheless, we 
were able to compute the analytic solution for this problem using SageMath and used it as a reference to benchmark the accuracy of 
numerical algorithms.

The accuracy of tAMEn and SSA algorithms is shown in Fig. 3(d). Similarly to the results in Fig. 2(d), we see that SSA converges 
according to the central limit theorem law, whereas the TT method can achieve a faster rate. Due to a more connected network, the 
exceedance probabilities are about ten times larger than those in the chain network, which makes it easier for the SSA algorithm 
to recover them. However, as the geometry of this network is somewhat elongated in one direction, and matches (although not 
perfectly) the linear geometry of the tensor train format, the tAMEn algorithm also performs well. Overall, we can see that if two or 
more accurate digits are desired in observables, the tensor product approach is more attractive for this example.

4.3. Small world networks

Lastly, we consider two small world networks, produced by the Watts–Strogatz algorithm, as shown in Fig. 4. The first contains 
𝑁 = 50 people, each connected to 2 next and 2 previous neighbours on a circular chain. The second additionally has 3 of its edges 
rewired to random vertices. The epidemics start with the first node in the infected state, all others in the susceptible state. We are 
interested in the probability that 𝐼 ⩾ 40, i.e. 4∕5 of the population is infected at once. For the first network, 𝖯(𝐼 ⩾ 40) reaches the 
level of 1.5 ⋅ 10−6 at its peak, which makes it a rare event. To accurately resolve this small value, we apply the tAMEn algorithm 
with the approximation threshold of 10−9. The TT ranks of the p.d.f. 𝐩(𝑡) reach the value of 401, and the computation takes about 5 
hours of CPU time. We then applied the SSA method with 5 ⋅ 105 trajectories, which requires approximately the same CPU time, and 
compared the results in Fig. 4(a). We see that only a tiny fraction of SSA trajectories has hit the event of interest, resulting in a rather 
inaccurate estimate of the probability. The TT method was able to produce more accurate and smooth estimate of the probability. We 
note that the probability recovered by the tensor product approach has a numerical artefact at 𝑡 ≈ 2 where it became negative with 
the magnitude of 10−7, which is caused by the approximation error. This suggests that our choice of the error threshold is reasonable, 
as more aggressive compression may destroy the structure of the probability of interest, while a more accurate approximation would 
result in larger TT ranks and CPU time. To reach a similar accuracy with SSA we would have to increase the number of trajectories 
to 107 that would require more than 120 hours of computing, while the tAMEn algorithm recovers the whole p.d.f. in just 5 hours.

The rewired network has more long–range connections that facilitate the propagation of the infection, and makes it much more 
13

probable for a large number of people to be infected at once. For instance, for this network 𝖯(𝐼 ⩾ 40) peaks at about 2 ⋅ 10−4, making 
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it easier for SSA to discover this event. With only 105 trajectories, SSA yields a reasonable estimate in 1.3 hours. For the TT method 
we can take the approximation threshold of 10−7, observe the maximal TT rank of the p.d.f. to be 337, and recover 𝐩(𝑡) using 2.5
hours of CPU time. The results are compared in Fig. 4(b), where we again can see that the estimate obtained by the TT algorithm is 
more accurate.

We see that the TT method is beneficial for rare event simulations requiring high overall accuracy and/or weakly correlated 
systems, since the TT decomposition converges rapidly when the correlations are local.

5. Discussion and conclusion

We have demonstrated numerically that the TT approximation of the probability distribution function converges rapidly for 
stochastic population models on networks with local connections, with only a polynomial scaling in the number of individuals, and 
a poly-logarithmic scaling in the error. This allows one to compute any statistics of such models more accurately than using the 
stochastic simulation. In particular, we have managed to compute probabilities of high infectivity events of the order of 10−6 . Thus, 
tensor methods can be recommended for models of moderate size, local connectivity, and/or if rare event statistics are of interest.

Two limitations of the proposed approach are very high dimensions and long–range connections in the network. The TT approxi-
mations are based on the SVD algorithm, which is known to produce an optimal approximation in the Frobenius norm, so ‖𝐩 − �̃�‖𝐹
is controlled. However, in practical computations we are interested in controlling the accuracy of the observables, not the p.d.f. 
Considering, for example, the mean 𝖤[𝐼] = ⟨𝐈,𝐩⟩, the error of this observable can be bounded as |⟨𝐈,𝐩− �̃�⟩| ⩽ ‖𝐈‖𝐹 ‖𝐩 − �̃�‖𝐹 . However, ‖𝐈‖𝐹 can be extremely large for large 𝑁 , purely because of the exponentially large length of the vector 𝐈. This means that to ensure 
a reasonable accuracy of the observable, we need to approximate p.d.f. to a much higher accuracy. Alternatively, we can bound the 
error of the observable as |⟨𝐈,𝐩− �̃�⟩| ⩽ ‖𝐈‖∞ ⋅ ‖𝐩 − �̃�‖1, where ‖𝐮‖1 =∑

x∈Ω |𝑢(x)| is the 1–norm of vector, and ‖𝐮‖∞ = maxx∈Ω |𝑢(x)|
is the maximum–norm. This approach seems more promising, since maxx∈Ω |𝐼(x)| ⩽𝑁 , i.e. grows at most linearly with the network 
size. However, in this case we need to control ‖𝐩 − �̃�‖1 while solving ODE (4) in the TT format (14). Potentially, this can be done by 
formulating a nonlinear ODE on 𝑞(x, 𝑡) =

√
𝑝(x, 𝑡), in which case we can control ‖𝐪 − �̃�‖𝐹 during the solution and ensure

‖𝐩− �̃�‖1 = ∑
x∈Ω

|𝑞(x)2 − 𝑞(x)2| = ⟨|𝐪− �̃�|, |𝐪+ �̃�|⟩ ⩽ ‖𝐪− �̃�‖𝐹 ‖𝐪+ �̃�‖𝐹 ⩽ ‖𝐪− �̃�‖𝐹 (‖𝐪‖𝐹 + ‖�̃�‖𝐹 )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

2

.

However, the ODE for 𝐪 features the reciprocals 1∕𝑞(x, 𝑡), complicating calculations when 𝑞(x, 𝑡) = 0 for some states x, for instance 
when the initial state is deterministic.

Long–range connections in the network inflate the ranks of the TT decomposition and slow the method down. This drawback may 
be curable by using tree tensor networks with the topology adapted to the given network [72–74]. This is a subject of future work.

Finally, we should note that SSA algorithm is embarrassingly parallel, because all trajectories can be sampled independently. To 
be competitive with SSA, tensor product algorithms also have to perform well on distributed–memory high–performance computing 
platforms. Recent progress in this area includes [75–77,71].
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