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1. Introduction

Multivariate linear regression methods are widely used statistical tools in re-
gression analysis. In general, a multivariate linear regression has n observations
with r responses and p predictors, and can be expressed as

Y = XB + ε, (1)

where Y ∈ R
n×r denotes a multivariate response matrix, X ∈ R

n×p represents
a matrix of predictors, ε ∈ R

n×r is an error matrix with its entry εij being
independent of each other with mean zero and variance σ2

ij , and B ∈ R
p×r is the

regression coefficient matrix. The model in (1) is the foundation of multivariate
regression analysis with its aim being to study the relationship between X and
Y through the regression coefficient matrix B.

For model (1), the ordinary least-squares (OLS) estimator of B is

B̂LS = X+Y, (2)

where X+ denotes the Moore–Penrose inverse of X.

1.1. Existing work

The OLS method of multiple responses, under no constraints, is equivalent to
performing OLS estimation for each response variable, separately, and so the
estimator does not use the possible correlation between multiple responses. In
practice, it will be quite realistic to assume that the response variables are
correlated. One way of avoiding this drawback of the OLS method will be to
consider reduced rank regression (RRR) model [19]. The reduced rank regres-
sion would allow the rank of B to be less than min(p, r), and so the model
parametrization can be expressed as B = B1B2, where B1 ∈ R

r×d, B2 ∈ R
d×p,

and rank(B1)=rank(B2)=d. The decomposition B = B1B2 is non-unique since,
for any orthogonal matrix O ∈ R

d×d, B∗
1 = B1O and B∗

2 = OTB2 will re-
sult in other valid decompositions satisfying B = B∗

1B
∗
2 = B1B2. Nevertheless,

the parameter B of interest is identifiable, as well as span(B1)=span(B) and
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span(BT
2 )=span(BT ). Under some constraints on B1 and B2, such as B2B

T
2 = Id

or BT
1 B1 = Id, [2, 19, 21] derived the maximum likelihood estimators of the RRR

parameters. As there are some linear constraints on regression coefficients, the
number of effective parameters gets reduced and as a result the prediction accu-
racy may get improved. In high-dimensional data, a large number of predictor
variables will be typically available, but some of them may not be useful for pre-
dictive purpose. Bunea et al. [4] proposed a rank selection criterion for selecting
the optimal reduced rank estimator of the regression coefficient matrix in multi-
variate response regression models, and derived minimax optimal bounds based
on mean squared errors of the estimators. Chen et al. [6] proposed an adap-
tive nuclear norm penalization method with low-rank matrix approximation,
and developed a method for simultaneous dimension reduction and coefficient
estimation in high-dimensional multivariate linear regression. If some column
vectors of a predictor matrix X are nearly linearly dependent, the situation
known as multicollinearity, the OLS estimator is known to perform poorly. Sim-
ilarly, the performance of the reduced rank estimator is also not satisfactory
when the predictor variables are highly correlated or the ratio of signal to noise
is small. To overcome this problem, by incorporating ridge penalty into reduced
rank regression, a reduced rank ridge regression estimator has been proposed
[13, 6].

Dimension reduction is a way to reduce the number of random variables using
various mathematical and statistical tools. In this regard, random projection is a
widely used dimension reduction method in statistical and machine learning lit-
erature. Dobriban and Liu [8] examined different random projection methods in
an unified framework, and derived explicit formulas for the accuracy loss of these
methods compared to ordinary least-squares. Ahfock et al. [1] studied statisti-
cal properties of sketched regression algorithms and achieved new distributional
results for a large class of sketched estimators and a conditional central limit
theorem for the sketched dataset. Wang et al. [25] examined matrix ridge regres-
sion problems based on classical sketch and Hessian sketch. Thanei et al. [22]
discussed some applications of random projections in linear regression models,
and computational costs and theoretical guarantees of the generalization error
in terms of random projection methods. Furthermore, random projection ideas
have also been applied to problems in classification [5], clustering [9], and con-
vex optimization [15, 16, 17] Principal components regression (PCR), based on
principal components analysis, is also a classical tool for dimension reduction
method, and so is the use of PCR to overcome the multicollinearity problem.
Slawski [20] found a connection and made a comparison between principal com-
ponents regression and random projection methods in classical linear regression.

1.2. Main contributions of this work

In this work, we propose three reduced rank estimators with a nuclear norm
penalty in multivariate linear regression model in terms of single random pro-
jection, averaged random projection and principal components analysis, re-
spectively. The estimation performance bounds of the proposed estimators are



4170 W. Guo et al.

achieved based on mean squared errors. Some simulation studies and a real
data analysis are performed to demonstrate that the proposed estimators pos-
sess good stability and prediction performance compared to some other existing
methods under certain conditions. In our model, the number of parameters p
and r can be either less than the observed value n or greater than n. Moreover,
the entry εij in error matrix can have different variance σ2

ij . Thus, the model
considered here is a different one from those in Bunea et al. [4] and Chen et al.
[6], in which the authors have assumed that all entries of the error matrix have
the same variance σ2. Thus, their models become a special case of the model
considered here. We also develop a consistent estimation approach of the rank of
the regression coefficient matrix, and the practical performance of the proposed
rank estimation method is then demonstrated through simulation studies.

1.3. Notation

For a matrix A ∈ R
n×p, λi(A) denotes the ith largest singular value of A. For

m, n ∈ R, m ∧ n denotes min{m, n}. The Frobenious norm, nuclear norm

and spectral norm of A are denoted by ||A||F =
√

tr(ATA), ||A||∗ =

n∧p∑
i=1

λi(A)

and ||A||2 = λ1(A), respectively. PA denotes the orthogonal projection ma-
trix A(ATA)+AT . vec(·) operator transforms an n × m matrix into an nm-
dimensional column vector by stacking the columns of the matrix below each
other. A⊗B denotes the Kronecker product of two matrices A and B. Finally,
tr(·) denotes the trace of a square matrix.

2. Reduced rank regression with matrix projections

Yuan et al. [27] proposed a reduced rank estimator with nuclear norm penalty
by minimizing the penalized least squares criterion

1

2
‖ Y −XB ‖2F +Pμ(B), (3)

where Pμ(B) = μ||B||∗. The penalty produces sparsity among the singular
values and thus achieves dimension reduction and shrinkage estimation simul-
taneously.

Chen et al. [6] developed a new method for simultaneous dimension reduction
and coefficient estimation in high-dimensional multivariate regression in terms
of an adaptive nuclear norm penalization. For this, they replaced the penalty

function in (3) by Pμ(B) = μ||XB||∗ω, where ||XB||∗ω =

n∧r∑
i=1

ωiλi(XB) denotes

an adaptive nuclear norm of XB and ωi’s are non-negative weights.
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2.1. Reduced rank regression with single random projection

The OLS estimator and the reduced rank estimator may both perform poorly
when column vectors of a data matrix are highly correlated. To avoid this prob-
lem, in this work, we develop a two-step estimation method. First, a low-rank
matrix is utilized to approximate the data matrix, and then a reduced rank re-
gression is performed in terms of nuclear norm penalty. Motivated by the work
of Halko et al. [10], we use the low-rank matrix approximation of X to be

X̃ = QQTX, (4)

where XS = QR, S ∈ R
p×k is a standard Gaussian matrix which is a random

matrix whose entries are independent standard normal variables, Q ∈ R
n×k is

a matrix with k orthonormal columns, and R ∈ R
k×k is an upper triangular

matrix with positive diagonal elements.

Inspired by Eq. (4) and the work of Chen et al. [6], a reduced rank estimator
with nuclear norm penalty, based on random projection, can then be derived by
minimizing the penalized least squares criterion

1

2
‖ Y − X̃B ‖2F +μ||X̃B||∗. (5)

The following proposition shows that a closed-form global minimizer of (5) can
be found.

Proposition 2.1. Let X̃ equal QQTX and PX̃Y have a singular value decom-

position as ŨD̃Ṽ T . Then, a global minimizer of (5) is given by

B̃ = X̃+Y Ṽ D̃+D̃μṼ
T , (6)

where D̃μ=diag[{λi(PX̃Y ) − μ}+, i = 1, · · · , n ∧ r], and diag(·) represents a
diagonal matrix with the enclosed vector on its diagonal.

The result in Proposition 2.1 follows directly from Lemma 1. The rank of
the coefficient matrix B, denoted by r0, can be regarded as the number of
effective linear combinations of predictor variables relating to response variables.
In practice, we need to estimate the rank of B. (6) indicates that the quality of
the rank estimator is related to the ratio of signal to noise and the value of k,
and by combining the works of Bunea et al. [4] and Chen et al. [6], we develop
here a method of rank estimation of B that can be expressed as

r̃ = max
{
i : λi(PX̃Y ) >

kμ

ηrX

}
, (7)

where k, rX and η represent the number of columns of random projection matrix
S, rank of predictor matrix X and a pre-specified constant, respectively. In
practice, we can get the values of k and μ by cross-validation.
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The following theorem shows that the rank selection method proposed recov-
ers consistently the true rank r0 under certain conditions.

Theorem 2.1. Suppose the entries of ε ∈ R
n×r are independent of each other

and εij ∼ N(0, σ2
ij). Also, let μ = ηrX(1 + θ)

√
2V (PX̃ε)log(n+ r)/(kδ) and

λr0(X̃B) >
2kμ

ηrX

, for any θ > 0. Then, we have

P (r̃ �= r0) −→ 0 as n+ r −→ ∞.

Theorem 2.1 holds when n or r tends to infinity, and p is not restricted.
Therefore, the rank consistency of the proposed estimator is effective for both
classical and high-dimensional cases.

In order to evaluate the performance of the proposed estimators and demon-
strate the results obtained, we need to decompose the predictor matrix X and
construct two sub random matrices of S as follows.

For a matrix X ∈ R
n×p with rank(X) = q and q ≤ n ∧ p, the singular value

decomposition (SVD) can be expressed as

X = ΓΛPT

=
(
Γ1, Γ2

) (
Λ1

Λ2

) (
PT
1

PT
2

)
, (8)

where Γ is a n× q column orthonormal matrix, Γ1 is the n× l matrix in which
the columns are the top l left singular vectors of X, Γ2 is similarly the n×(q− l)
matrix in which the columns are the bottom q − l left singular vectors of X, Λ
is a q× q diagonal matrix, Λ1 is the l× l diagonal matrix consisting of the top l
singular values of X (l < q), Λ2 is similarly the (q− l)× (q− l) matrix consisting
of the bottom q−l singular values of X, P is a p×q column orthonormal matrix,
P1 is the p× l matrix in which the columns are the top l right singular vectors
of X, and P2 is similarly the p × (q − l) matrix in which the columns are the
bottom q − l right singular vectors of X. Let S1 = PT

1 S and S2 = PT
2 S. Then,

S1 and S2 are l × k and (q − l) × k matrices, respectively. Further, S1 and S2

are independent since P1 and P2 are column orthonormal matrices.

In this section, we obtain results to bound the difference between the true
value and its estimated value based on single random projection. Our analyses
are separated into two parts. First, we describe bounds on the probability of
a large deviation. Next, we present some information about expected values.
When expectation is not taken, ‖ XB− X̃B̃ ‖F is indeed a random variable. In
this situation, the following theorem gives error bound with a certain probabil-
ity.

Theorem 2.2. Suppose X̃, B̃ and Λ2 are as defined in (4), (6) and (8), re-
spectively. Further, let the entries εij’s of the error matrix ε be independent of
each other, each following normal distribution N(0, σ2

ij), and k ≥ l + 4, with
l being a non-negative integer. Then, for any p × r matrix C with r(C) ≤ r0,
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some δ ∈ (0, 1] and all γ ≥ 1, t ≥ 1,

‖ XB − X̃B̃ ‖F≤‖ XB − X̃C ‖F +2μ(1 + δ)
√
2r0

with failure probability at most exp
(
− θ2log(n + r)

)
. More specifically, setting

C = B, we have

‖ XB − X̃B̃ ‖F≤‖ Λ2 ‖F ‖ B ‖F
√

3lt2(γ + 1)2

k − l + 1
+ 1 + 2μ(1 + δ)

√
2r0

with failure probability at most exp
(
− γ2/2

)
+ exp

(
− θ2log(n + r)

)
+ t−(k−l),

where k represents the number of columns of the random projection matrix S.

The following theorem provides a bound for the expected error in the Frobe-
nius norm.

Theorem 2.3. Suppose X̃ and B̃ are as defined in (4) and (6), respectively.
Then, for any p× r matrix C with r(C) ≤ r0,

E[‖ XB − X̃B̃ ‖F ] ≤
[
‖ XB ‖2F −2k

n
< XC, XB >F +

k

n
‖ XC ‖2F

]1/2
+2

√
2r0

{[k
n

n∑
i=1

r∑
j=1

σ2
ij

]1/2
+ μ

}
. (9)

More specifically, setting C = B, we have

E[‖ XB − X̃B̃ ‖F ] ≤
(
1− k

n

)1/2[ q∑
i=1

λ2
i (X)

]1/2
‖ B ‖F

+2
√
2r0

{[k
n

n∑
i=1

r∑
j=1

σ2
ij

]1/2
+ μ

}
, (10)

where k represents the number of columns of the random projection matrix S.

The expected error bound in (10) reveals some interesting features. The
bound depends on the value of k with the first term decreasing with increasing k
and the second term increasing with increasing k. Thus, the choice of k balances
the sum of the two terms, which can result in the value of sum being minimum.

To compare the expected error bounds derived by using the estimation of
X (proposed methods) with not using the estimation of X for model (1), the
following corollary is given.

Corollary 2.4. Suppose B̂NC is as defined in (26) and Γ = [γih]n×q. Then,

E[‖ XB −XB̂NC ‖F ] ≤ 2
√
2r0

{[ n∑
i=1

( r∑
j=1

σ2
ij

)( q∑
h=1

γ2
ih

)]1/2
+ μ

}
. (11)
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Remark 1. The value of the second term on the right hand side of (10) may be
less than the value of the term on the right hand side of (11) and so the sum
of the two terms on the right hand side of (10) may also be less than the value

of the term on the right hand side of (11), especially when
[∑q

i=1 λ
2
i (X)

]1/2
or

‖ B ‖F is small or σ2
ij ’s are large.

2.2. Reduced rank regression with averaged random projection

We have studied reduced rank estimator with a single random projection. The
variance of reduced rank estimator is an important problem in practical ap-
plication. The variance of the estimator can be reduced by averaging multiple
reduced rank estimators from different random projections. In this section, we
propose a reduced rank regression with averaged random projections, inspired
by the works of [3, 20, 22].

Definition 2.1. Let {Sm}Mm=1 ∈ R
p×k be independent random projection ma-

trices. Then, we define the averaged random projection matrix as

SM =
1

M

M∑
m=1

Sm. (12)

Proposition 2.2. Suppose X̃, B̃ and (X̃B̃)M are as defined in (4), (6) and
(12), respectively. We then have

E[‖ XB − (X̃B̃)M ‖F ] ≤ E[‖ XB − X̃B̃ ‖F ]. (13)

The proof is similar to the proof of Proposition 4 of Slawski [20]. The result
in (13) suggests that reduced rank estimator with averaged random projection
reduces the estimation error, improving significantly the efficiency of estimator.

2.3. Reduced rank regression with principal components analysis

For a data matrix X, let ΓΛPT be the SVD of X as in (8). Then, the top k
principal components Xk can be extracted from X, by setting X1 = XP1, where
P1 ∈ R

p×k denotes the top k right singular vectors of X. We can then obtain a
low-rank matrix approximation of X by using the top k right singular vectors
of X as

X̂ = XP1P
T
1 . (14)

Eq. (14) is different from Eq. (4). First, P1 in (14) is a deterministic matrix
derived by the principal components analysis of X, while Q in (4) is a random
matrix obtained via QR factorization of X which is multiplied by a random
matrix S from right. Second, X̂ is achieved by multiplying X from right using
the orthogonal projection matrix of P1, and X̃ is obtained by orthogonally
projecting X onto the column of Q.
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By minimizing ‖ Y − X̂B ‖2F , we obtain the ordinary principal components
regression estimator as

B̂PC = X̂+Y = P1P
T
1 B̂LS . (15)

Further, a reduced rank estimator with nuclear norm penalty in terms of princi-
pal components analysis is obtained by minimizing the penalized least squares
criterion

1

2
‖ Y − X̂B ‖2F +μ||X̂B||∗. (16)

Proposition 2.3. Let X̂ = XP1P
T
1 and PX̂Y have a singular value decompo-

sition to be ÛD̂V̂ T . Then, a minimizer of (16) is

B̂ = X̂+Y V̂ D̂+D̂μV̂
T , (17)

where D̂μ = diag[{λi(PX̂Y )− μ}+, i = 1, · · · , n ∧ r].
Similarly, the estimated rank of B can be expressed as

r̂ = max
{
i : λi(PX̂Y ) >

kμ

ηrX

}
, (18)

where k represents the number of principal components used.

Corollary 2.5. Suppose X̂ and B̂ are as defined in (14) and (17), respectively.
Then, for any θ > 0 and some δ ∈ (0, 1],

‖ XB − X̂B̂ ‖F≤
[ q∑
i=k+1

λ2
i (X)

]1/2
‖ B ‖F +2μ(1 + δ)

√
2r0

with failure probability at most exp
(
− θ2log(n + r)

)
, where k represents the

number of principal components used.

Corollary 2.6. Suppose X̂ and B̂ are as defined in (14) and (17), respectively.
Also, suppose Γ1 = [γih]n×k. Then,

E[‖ XB − X̂B̂ ‖F ] ≤
[ q∑
i=k+1

λ2
i (X)

]1/2
‖ B ‖F

+2
√
2r0

{[ n∑
i=1

( r∑
j=1

σ2
ij

)( k∑
h=1

γ2
ih

)]1/2
+ μ

}
(19)

where k represents the number of principal components used.

Remark 2. In practice, k should be less than or equal to q. When k = q, the
right hand side of (19) is equal to the right hand side of (11). On the other
hand, the value of the second term on the right hand side of (19) is less than
the value of the term on the right hand side of (11) when k < q, and so the sum
of the two terms on the right hand side of (19) may be less than the value of
the term on the right hand side of (11).
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3. Simulation study

In this section, we carry out a simulation study to compare the proposed meth-
ods with some known existing methods in terms of estimation accurary, predic-
tion accuracy and performance of rank recovery. The simulated data are from
the true model in (1). We consider two cases: One when both p and r are less
than n, and another when p and r are greater than n. The following are the
specific details of these two cases:

(a) The row vectors of the predictors X were independently generated from
multivariate normal distribution N(0,ΣX), wherein the elements of ΣX are
composed of ρ|i−j|, and ρ|i−j| denotes the correlation of the pairwise elements
in the row vector of the predictor matrix. The coefficient matrix B is constructed
as B = cB1B

T
2 , with c > 0, B1 ∈ R

p×r0 and B2 ∈ R
p×r0 . Here, c > 0 is a pre-

specified constant, called signal intensity, in order to control the values of the
entries of matrix B. All elements of B1 and B2 are derived from the uniform
(0, 1) distribution. The entry εij of the error matrix ε are from N(0, σ2

ij), where
σij is derived from the uniform (a, b) distribution with 0 ≤ a < b. We set the
correlation coefficient ρ=0.1, 0.5 and 0.9, respectively, and the signal intensity
c=0.5 and 0.05, respectively. In addition, we take the values of (a, b) as (0, 1),
(2, 3) and (4, 5), respectively. In this case, three scenarios are considered for
performing the simulation study with Scenario 1: ρ = 0.1, 0.5, 0.9, c = 0.5 and
(a, b) = (0, 1); Scenario 2: ρ = 0.1, 0.5, 0.9, c = 0.05 and (a, b) = (2, 3); Scenario
3: ρ = 0.1, 0.5, 0.9, c = 0.05 and (a, b) = (4, 5). We then simulated 100 data sets
consisting of n = 60, p = r = 30, r0 = 10 in all these three scenarios;

(b) The setting is similar to that in (a), except that 100 data sets of simulation
consist of n = 30, p = r = 40, r0 = 10.

In the tables and figures presented, ANR, RRR and RAN denote adaptive
nuclear norm penalized estimator [6], rank penalized estimator [4] and robus-
tified adaptive nuclear norm penalized estimator [6], respectively. PNR, SNR
and MSN represent nuclear norm penalized estimator with principal compo-
nents analysis, single random projection and averaged random projection, re-
spectively, while MRE represents the median rank estimate and correct rank
recovery percentage.

We made use of cross-validation for selecting k and μ, and compared sev-
eral different values of η based on different generated data. These results show
that η = 1/2 is a good choice. Therefore, in the following comparisons, η =
1/2 is specified. ANR, RRR and RAN were computed by using the R pack-
age “rrpack”. We implemented all proposed estimators in R, as well. For all
the methods, the estimation accuracy of regression coefficient is measured by
MSE(B)=‖ B̂ −B ‖2F /(pr). For the prediction accuracy of regression function,

PM(XB)=‖ XB̂−XB ‖2F /(nr) is used to measure ANR, RRR and RAN. More-

over, we utilize PM(XB)=‖ X̂B̂−XB ‖2F /(nr), PM(XB)=‖ X̃B̃−XB ‖2F /(nr)
and PM(XB)=‖ (X̃B̃)M −XB ‖2F /(nr) to measure PNR, SNR and MSN, re-
spectively.

Results for case (a): In terms of the estimation accuracy of regression co-
efficient, from Table 1 and Figure 1, we see that the estimation errors of all
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methods grow with an increase in correlation coefficient ρ and all methods have
similar performance when the ratio of signal to noise is large. The estimation
errors of ANR and RRR methods still grow with an increase in correlation co-
efficient ρ when the ratio of signal to noise is small, while the estimation errors
of PNR, SNR and MSN methods all decrease and, therefore, the proposed three
methods perform better than other methods in this situation. Moreover, the
estimation errors of ANR, RRR and RAN methods all increase as the ratio of
signal to noise decreases for the three correlation coefficients used. The estima-
tion errors for PNR, SNR and MSN methods also decrease as the ratio of signal
to noise decreases when the correlation coefficient is large, but the estimation
errors are smaller than other methods. Furthermore, we see that the perfor-
mance of PNR, SNR and MSN methods is quite stable and similar to that of
ANR, RRR and RAN methods with changes in correlation coefficient ρ. For the
prediction accuracy of regression function, we see that all methods have similar
performance when the ratio of signal to noise is large, but the prediction errors
of all methods decrease with increasing values of correlation coefficient ρ. RRR
method performs poorly especially when the ratio of signal to noise is small. In
most situations, PNR and MSN methods perform better than other methods
for all values of ρ when the ratio of signal to noise is small. The performance
of SNR and MSN methods is good when there is a small correlation between
the predictor variables, while PNR method performs well when the correlation
coefficient ρ is large. For the performance of rank recovery, as seen in Table 1,
the proposed methods are better than the existing ones in terms of median rank
estimate and correct rank recovery percentage.

Results for case (b): In this high dimensional case, the estimation errors of all
methods are relatively large and decrease with increasing values of correlation
coefficient ρ when the signal strength is high based on estimation accuracy;
yet, the proposed methods have smaller estimation errors compared to other
methods in this situation. Other comparisons are similar to those for case (a) in
terms of estimation accurary, prediction accuracy and the performance of rank
recovery.

4. Illustrative example

A breast cancer dataset was first used by Chin et al. [7]. It contains 89 samples
comprising gene expression measurements and comparative genomic hybridiza-
tion measurements. This dataset has been analyzed by Witten et al. [26] and
Chen et al. [6], and these data are available in the R package PMA. It has
been shown that some types of cancer have the characteristics of abnormal al-
terations of DNA copy number [14]. It will, therefore, be of interest to identify
the relationship between DNA copy numbers and RNA expression levels. Here,
we regress copy-number variations on gene expression profile since the predic-
tion model can identify copy-number changes related to function. In this case,
we consider chromosome 18, where p = 294, r = 51 and n = 89. We centered
and scaled both predictor matrix X and response matrix Y . For comparison of
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Table 1

Comparisons of different methods based on 100 simulation runs with n=60, p=30, r=30

ANR RRR RAN PNR SNR MSN

S1
ρ = 0.1 MSE (B) 0.005 (0.000) 0.006 (0.000) 0.005 (0.000) 0.005 (0.000) 0.005 (0.000) 0.005 (0.000)

PM (XB) 0.090 (0.000) 0.107 (0.000) 0.090 (0.000) 0.092 (0.000) 0.092 (0.000) 0.092 (0.000)
MRE (B) 10, 38% 8, 10% 10, 41% 10, 55% 10, 57% 10, 62%

ρ = 0.5 MSE (B) 0.007 (0.000) 0.009 (0.000) 0.007 (0.000) 0.007 (0.000) 0.007 (0.000) 0.007 (0.000)
PM (XB) 0.087 (0.000) 0.105 (0.000) 0.087 (0.000) 0.090 (0.000) 0.090 (0.000) 0.090 (0.000)
MRE (B) 9, 32% 8, 5% 9, 36% 10, 66% 10, 63% 10, 68%

ρ = 0.9 MSE (B) 0.023 (0.000) 0.029 (0.000) 0.023 (0.000) 0.023 (0.000) 0.020 (0.000) 0.015 (0.000)
PM (XB) 0.067 (0.000) 0.084 (0.000) 0.067 (0.000) 0.072 (0.000) 0.074 (0.000) 0.071 (0.000)
MRE (B) 6, 1% 4, 0% 7, 2% 6, 0% 7, 0% 7, 0%

S2
ρ = 0.1 MSE (B) 0.010 (0.000) 0.015 (0.000) 0.009 (0.000) 0.009 (0.000) 0.009 (0.000) 0.008 (0.000)

PM (XB) 0.229 (0.002) 0.236 (0.002) 0.229 (0.002) 0.369 (0.003) 0.369 (0.003) 0.259 (0.003)
MRE (B) 2, 0% 1, 0% 2, 0% 10, 55% 10, 51% 10, 61%

ρ = 0.5 MSE (B) 0.015 (0.000) 0.017 (0.000) 0.009 (0.000) 0.005 (0.000) 0.006 (0.000) 0.004 (0.000)
PM (XB) 0.225 (0.002) 0.227 (0.002) 0.223 (0.002) 0.340 (0.003) 0.428 (0.004) 0.293 (0.003)
MRE (B) 1, 0% 1, 0% 1, 0% 9, 21% 9, 28% 9, 33%

ρ = 0.9 MSE (B) 0.077 (0.013) 0.092 (0.033) 0.015 (0.000) 0.001 (0.000) 0.002 (0.000) 0.001 (0.000)
PM (XB) 0.223 (0.002) 0.216 (0.002) 0.222 (0.002) 0.227 (0.002) 0.422 (0.003) 0.253 (0.002)
MRE (B) 1, 0% 1, 0% 1, 0% 3, 0% 4, 0% 4, 0%

S3
ρ = 0.1 MSE (B) 0.020 (0.000) 0.080 (0.002) 0.016 (0.000) 0.014 (0.000) 0.015 (0.000) 0.013 (0.000)

PM (XB) 0.534 (0.015) 1.344 (0.168) 0.521 (0.012) 0.485 (0.009) 0.505 (0.009) 0.453 (0.006)
MRE (B) 1, 0% 1, 0% 1, 0% 11, 16% 11, 10% 10, 31%

ρ = 0.5 MSE (B) 0.034 (0.001) 0.083 (0.002) 0.016 (0.000) 0.008 (0.000) 0.011 (0.000) 0.008 (0.000)
PM (XB) 0.656 (0.021) 0.944 (0.038) 0.654 (0.021) 0.532 (0.010) 0.722 (0.020) 0.651 (0.012)
MRE (B) 2, 0% 1, 0% 2, 0% 10, 100% 10, 100% 10, 100%

ρ = 0.9 MSE (B) 0.240 (0.021) 0.259 (0.015) 0.016 (0.000) 0.002 (0.000) 0.004 (0.000) 0.002 (0.000)
PM (XB) 0.710 (0.028) 0.725 (0.017) 0.708 (0.028) 0.511 (0.013) 0.836 (0.027) 0.672 (0.019)
MRE (B) 1, 0% 1, 0% 1, 0% 3, 0% 3, 0% 3, 0%

S1, S2 and S3 denote Scenario 1, Scenario 2 and Scenario 3, respectively. The numbers in
parentheses are the corresponding standard deviations.

Table 2

Comparisons of different methods based on 100 simulation runs with n=30, p=40, r=40.

ANR RRR RAN PNR SNR MSN

S1
ρ = 0.1 MSE (B) 0.413 (0.023) 0.415 (0.023) 0.413 (0.022) 0.397 (0.022) 0.397 (0.022) 0.395 (0.021)

PM (XB) 0.152 (0.000) 0.196 (0.001) 0.152 (0.000) 0.153 (0.000) 0.153 (0.000) 0.151 (0.000)
MRE (B) 9, 22% 6, 2% 9, 22% 10, 60% 10, 57% 10, 62%

ρ = 0.5 MSE (B) 0.159 (0.004) 0.161 (0.004) 0.159 (0.004) 0.143 (0.003) 0.143 (0.003) 0.141 (0.003)
PM (XB) 0.149 (0.000) 0.192 (0.001) 0.149 (0.000) 0.147 (0.000) 0.147 (0.000) 0.145 (0.000)
MRE (B) 8, 17% 6, 2% 8, 20% 10, 57% 10, 65% 10, 69%

ρ = 0.9 MSE (B) 0.052 (0.000) 0.059 (0.001) 0.051 (0.000) 0.043 (0.000) 0.040 (0.000) 0.036 (0.000)
PM (XB) 0.114 (0.000) 0.146 (0.001) 0.114 (0.000) 0.120 (0.000) 0.130 (0.000) 0.120 (0.000)
MRE (B) 6, 2% 4, 0% 6, 3% 11, 33% 10, 59% 10, 63%

S2
ρ = 0.1 MSE (B) 0.017 (0.000) 0.032 (0.002) 0.013 (0.000) 0.012 (0.000) 0.012 (0.000) 0.011 (0.000)

PM (XB) 0.346 (0.008) 0.589 (0.557) 0.345 (0.005) 0.390 (0.005) 0.427 (0.007) 0.397 (0.004)
MRE (B) 2, 0% 1, 0% 2, 0% 10, 51% 10, 53% 10, 58%

ρ = 0.5 MSE (B) 0.024 (0.000) 0.046 (0.011) 0.014 (0.000) 0.007 (0.000) 0.008 (0.000) 0.006 (0.000)
PM (XB) 0.366 (0.007) 0.472 (0.327) 0.364 (0.008) 0.420 (0.005) 0.523 (0.009) 0.480 (0.006)
MRE (B) 2, 0% 2, 0% 1, 0% 11, 5% 12, 2% 11, 6%

ρ = 0.9 MSE (B) 0.101 (0.005) 0.126 (0.115) 0.016 (0.000) 0.002 (0.000) 0.003 (0.000) 0.002 (0.000)
PM (XB) 0.397 (0.008) 0.480 (0.507) 0.395 (0.004) 0.347 (0.005) 0.569 (0.007) 0.470 (0.005)
MRE (B) 1, 0% 1, 0% 2, 0% 4, 0% 5, 0% 5, 0%

S3
ρ = 0.1 MSE (B) 0.024 (0.000) 0.148 (0.012) 0.017 (0.000) 0.015 (0.000) 0.016 (0.000) 0.014 (0.000)

PM (XB) 0.773 (0.037) 2.671 (4.798) 0.723 (0.028) 0.676 (0.022) 0.685 (0.038) 0.641 (0.021)
MRE (B) 1, 0% 1, 0% 1, 0% 10, 100% 10, 100% 10, 100%

ρ = 0.5 MSE (B) 0.043 (0.001) 0.140 (0.036) 0.016 (0.000) 0.011 (0.000) 0.013 (0.000) 0.010 (0.000)
PM (XB) 1.037 (0.059) 1.903 (3.380) 1.020 (0.043) 0.917 (0.028) 1.076 (0.035) 1.007 (0.034)
MRE (B) 2, 0% 1, 0% 2, 0% 8, 0% 12, 3% 11, 5%

ρ = 0.9 MSE (B) 0.298 (0.047) 0.336 (0.062) 0.016 (0.000) 0.003 (0.000) 0.005 (0.000) 0.003 (0.000)
PM (XB) 1.212 (0.052) 1.285 (0.053) 1.210 (0.050) 1.010 (0.035) 1.368 (0.080) 1.184 (0.046)
MRE (B) 1, 0% 1, 0% 1, 0% 3, 0% 4, 0% 4, 0%

S1, S2 and S3 denote Scenario 1, Scenario 2 and Scenario 3, respectively. The numbers in
parentheses are the corresponding standard deviations.
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Fig 1: Comparisons of MSE of B and XB estimators based on 100 simulation
runs with n=60, p=30, r=30.

prediction accuracy, a prediction mean squared error (PMSE) is defined as

PMSE =‖ Yt −XtB̂ ‖2F /(ntr), (20)

where (Yt, Xt) represents the test dataset and B̂ represents the estimator of B
corresponding to each method. In addition, we randomly split the data into a
training set of size 70 and a test set of size 19. The training dataset is used
to achieve the estimation in the model, and then the test dataset is used to
evaluate the prediction performance of estimators. All the tuning parameters
were selected by ten-fold cross-validation.

As seen in Table 3 and Figure 3, the proposed estimators PNR, SNR and MSN
are better than other estimators in terms of prediction performance and stability.
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Fig 2: Comparisons of MSE of B and XB estimators based on 100 simulation
runs with n=30, p=40, r=40.

More specifically, the prediction error of MSN method is the smallest and is the
most stable one, followed by PNR method, while RRR method performs poorly
in this case. Although the RAN method is better than the ANR method, it is
not as good as the methods proposed in this work.

5. Discussion

We are considering the model exactly as considered in Bunea et al. [4] and Chen
et al. [6], wherein the rows assume independence between elements. However, we
allow for heterogeneity among the components in terms of different variances,
which generalizes their model. It will be of interest to consider dependence
between components within the rows, and this is something we wish to consider
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Table 3

Prediction comparisons based on data split at random 100 times

ANR RRR RAN PNR SNR MSN

Rank 21 14 21 26 26 25
(6.7) (22.1) (5.8) (0.0) (0.0) (0.0)

PMSE 0.782 0.798 0.693 0.602 0.620 0.582
(0.013) (0.012) (0.012) (0.014) (0.015) (0.008)

Rank and PMSE represent the estimated rank and the prediction mean squared error,
respectively. The numbers in parentheses are the corresponding standard deviations.

Fig 3: The distribution of PMSE based on data split at random 100 times

for our future work.

A weighted regression scheme can be taken into account in the following man-
ner. Let Σ = [σij ]n×r and Σj=[diag(σj)]

−1, where diag(·) represents a diagonal
matrix with the enclosed vector on its diagonal, and σj denotes the jth column
vector of Σ, j = 1, · · · , r. Let Ij be an r× r matrix with the (jj)th entry being
1 and remaining entries being 0.

Consider the model

r∑
j=1

ΣjY Ij =

r∑
j=1

ΣjXBIj +

r∑
j=1

ΣjεIj . (21)
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Eq. (21) can be expressed as

Y ∗ = X∗B∗ + ε∗, (22)

where Y ∗ = (Σ1Y, · · · ,ΣrY )(I1, · · · , Ir)T , X∗ = (Σ1X, · · · ,ΣrX), B∗ =
(I1BT , · · · , IrBT )T , and ε∗ = (Σ1ε, · · · ,Σrε)(I1, · · · , Ir)T .

Using the transformation, we have that ε∗ ∈ R
n×r is an error matrix with its

entries ε∗ij ’s being independent of each other with mean zero and variance 1. In
particular, when r = 1, Eq. (22) reduces to the equation

Σ1Y = Σ1XB +Σ1ε. (23)

This is an ordinary weighted linear regression model, where Y and ε reduce to
n× 1 vectors and B reduces to a p× 1 vector.

Here, we refer to Eq. (22) as a multivariate weighted linear regression model
compared to Eq. (23). Using model (22), weighted counterparts of proposed
estimators can be obtained. Moreover, suppose σij ’s have the common factor
σ0, with σij = σ0σ

0
ij and Σj=[diag(σ0

j )]
−1, and σ0

j = σ−1
0 σj . We then have

ε∗ ∈ R
n×r as an error matrix with its entries ε∗ij ’s being independent of each

other with mean zero and variance σ2
0 , which is similar to the error matrix in

Bunea et al. [4] and Chen et al. [6].
Now notice that the model (1) may be expressed in the vector form as

vec(Y ) = (Ir ⊗X) vec(B) + vec(ε), (24)

where vec(Y ) and vec(ε) are nr×1 vectors, B is a pr×1 vector, and Cov(vec(ε))=
[diag(vec(Σ))]2. Thus, model in (24) is a general linear regression model with
heteroscedasticity.

Also, the model in (21) and (22) may be expressed in the vector form as

W vec(Y ) = W (Ir ⊗X) vec(B) +W vec(ε), (25)

where W =
r∑

j=1

(Ij ⊗ Σj) is a weighted matrix and Cov
(
W vec(ε)

)
=Ir ⊗ In. If

σij ’s have the common factor σ0, then Cov
(
W vec(ε)

)
=σ2

0Ir ⊗ In.
In practice, when σij ’s are unknown, we can utilize some existing methods

(such as [18, 11]) to estimate σij ’s in terms of model in (24).

Appendix A: Some useful lemmas

In order to achieve the results of propositions, theorems and corollaries, we
introduce the following lemmas.

Lemma 1. Let PXY have a singular value decomposition, PXY = UDV T , and
for any μ ≥ 0, a global optimal solution of the representation

min
B

{1

2
‖ Y −XB ‖2F +μ||XB||∗

}
(26)
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is XB̂NC = UDμV
T or B̂NC = B̂LSV D+DμV

T , where Dμ = diag[{λi(PXY )−
μ}+, i = 1, · · · , n ∧ r].

Proof. From the fact that ‖ Y −XB ‖2F=‖ Y − PXY ‖2F + ‖ PXY −XB ‖2F ,
we have (26) to be equivalent to

min
B

{1

2
‖ PXY −XB ‖2F +μ||XB||∗

}
. (27)

In addition, we have ‖ PXY − XB ‖2F= tr(Y TPXY ) − 2tr(PXY BTXT ) +
tr(BTXTXB). Using von Neumann’s trace inequality [24, 12], we obtain

tr(PXY BTXT ) ≤
n∧r∑
i=1

λi(PXY )λi(XB),

with the equality holding when XB satisfies the singular value decomposition
XB = Udiag[λi(XB)]V T . Thus, (27) can be re-expressed as

min
B

{ n∧r∑
i=1

[1
2
λ2
i (XB)−

{
λi(PXY )− μ

}
λi(XB) +

1

2
λ2
i (PXY )

]}
. (28)

It is obvious that the objective function in (28) can be minimized if λi(XB) =
{λi(PXY ) − μ}+. Because {λi(PXY )} is non-increasing sequence, XB̂NC =
UDμV

T is a global optimal solution.

Lemma 2. Assume that there exists an index m ≤ r0 such that λm+1(X̃B) ≤
(1− δ)kμ

ηrX

and λm(X̃B) >
(1 + δ)kμ

ηrX

for some δ ∈ (0, 1]. Then,

P (r̃ �= m) ≤ P
{
λ1(PX̃ε) ≥ δkμ

ηrX

}
.

Proof. From (7), we have r̃ > m ⇐⇒ λm+1(PX̃Y ) >
kμ

ηrX

and r̃ < m ⇐⇒

λm(PX̃Y ) ≤ kμ

ηrX

. It implies that

P (r̃ �= m) = P
{
λm(PX̃Y ) ≤ kμ

ηrX

or λm+1(PX̃Y ) >
kμ

ηrX

}
.

Note that PX̃Y = X̃B + PX̃ε, which yields λ1(PX̃ε) ≥ λm(X̃B) − λm(PX̃Y )

and λ1(PX̃ε) ≥ λm+1(PX̃Y )− λm+1(X̃B). Therefore, λm(PX̃Y ) ≤ kμ

ηrX

implies

λ1(PX̃ε) ≥ λm(X̃B)− kμ

ηrX

, while λm+1(PX̃Y ) >
kμ

ηrX

implies λ1(PX̃ε) ≥ kμ

ηrX

−

λm+1(X̃B). We thus have

P (r̃ �= m) ≤ P
(
λ1(PX̃ε) ≥ min

{
λm(X̃B)− kμ

ηrX

,
kμ

ηrX

− λm+1(X̃B)
})

.

In addition, by the assumed conditions on λm+1(X̃B) and λm(X̃B), the proof
of the lemma gets completed.
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Lemma 3. Let {Ml} be a finite sequence of matrices with dimension n×r, and
{ξl} be a finite sequence of independent standard normal variables. Consider
the matrix Gaussian series Z =

∑
l ξlMl, and let V (Z) be the matrix variance

statistic of the sum, that is,
V (Z) = max{||E(ZZT )||2, ||E(ZTZ)||2} = max{||

∑
l MlM

T
l ||2, ||

∑
l M

T
l Ml||2}.

Then,
E||Z||2 ≤

√
2V (Z)log(n+ r).

Moreover, for all t0 ≥ 0, we have

P{||Z||2 ≥ t0} ≤ (n+ r)exp

(
−t20

2V (Z)

)

and

P{||Z||2 ≥ E||Z||2 + t0} ≤ exp

(
−t20

2V (Z)

)
.

Proof. The proof of Lemma 3 can be found in Chapter 4 of Tropp [23].

Lemma 4. Let the SVD of X be as in (8). For a fixed l ≥ 0, suppose S1 has
full row rank. Then, the approximation error satisfies

‖ (I − PXS)X ‖2F≤‖ Λ2 ‖2F + ‖ Λ2S2S
+
1 ‖2F . (29)

Lemma 5. If the matrices M and N are fixed, and a standard Gaussian matrix
G is drawn, then

E[‖ MGN ‖2F ] =‖ M ‖2F ‖ N ‖2F . (30)

Lemma 6. Suppose g is a Lipschitz function on matrices satisfying

|g(X)− g(Y )| ≤ L ‖ X − Y ‖F , for all X and Y, (31)

where L denotes Lipschitz constant. Draw a standard Gaussian matrix G. Then,

P{g(G) ≥ Eg(G) + Lt} ≤ e−t2/2, for all t ≥ 1. (32)

Lemma 7. Let G be a l × k standard Gaussian matrix, and k ≥ l + 4. Then,
for all t ≥ 1,

P

{
‖ G+ ‖F≥ t

√
3l

k − l + 1

}
≤ t−(k−l). (33)

Proof. Proofs of Lemmas 4–7 can be found in Halko et al. [10].

Lemma 8. Suppose X̃ and Λ2 are as defined in (4) and (8), respectively, and
k ≥ l + 4, with l being a non-negative integer. Then, for all γ ≥ 1, t ≥ 1,

‖ X − X̃ ‖2F≤
[

3lt2

k − l + 1
(γ + 1)2 + 1

]
‖ Λ2 ‖2F

with failure probability at most e−γ2/2 + t−(k−l).
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Proof. Let g(X) =‖ Λ2XS+
1 ‖F . Then, by using triangle inequality of norm and

some norm properties, we have

|g(X)− g(Y )| = | ‖ Λ2XS+
1 ‖F − ‖ Λ2Y S+

1 ‖F |
≤ ‖ Λ2(X − Y )S+

1 ‖F
≤ ‖ Λ2 ‖F ‖ S+

1 ‖F ‖ (X − Y ) ‖F .

This implies, by the Lipschitz constant, that

L ≤‖ Λ2 ‖F ‖ S+
1 ‖F . (34)

By the properties of expected values and Lemma 5, we then obtain[
E[‖ Λ2S2S

+
1 ‖F |S1]

]2 ≤ E[‖ Λ2S2S
+
1 ‖F |S1]

2 =‖ Λ2 ‖2F ‖ S+
1 ‖2F ;

that is,

E[‖ Λ2S2S
+
1 ‖F |S1] ≤‖ Λ2 ‖F ‖ S+

1 ‖F . (35)

We now define the event

Ep =

{
S1 : ‖ S+

1 ‖F≤ t

√
3l

k − l + 1

}
, for all t ≥ 1.

Combining (32), (34) and (35), we have

P
{
‖ Λ2S2S

+
1 ‖F |Ep ≥‖ Λ2 ‖F ‖ S+

1 ‖F |Ep + γ ‖ Λ2 ‖F ‖ S+
1 ‖F |Ep

}
≤ e−γ2/2,

for all γ ≥ 1, which is equivalent to

P

{
‖ Λ2S2S

+
1 ‖2F |Ep ≥‖ Λ2 ‖2F

3lt2

k − l + 1
(1 + γ)2

}
≤ e−γ2/2,

for all γ and t ≥ 1.
Moreover, by the nature of probability and the use of Lemma 7 have

P

{
‖ Λ2S2S

+
1 ‖2F≥‖ Λ2 ‖2F

3lt2

k − l + 1
(1 + γ)2

}

= P

{(
‖ Λ2S2S

+
1 ‖2F≥‖ Λ2 ‖2F

3lt2

k − l + 1
(1 + γ)2

)
Ep

}

+P

{(
‖ Λ2S2S

+
1 ‖2F≥‖ Λ2 ‖2F

3lt2

k − l + 1
(1 + γ)2

)
Ec

p

}

≤ P

{
‖ Λ2S2S

+
1 ‖2F |Ep ≥‖ Λ2 ‖2F

3lt2

k − l + 1
(1 + γ)2

}
+ P (Ec

p)

≤ e−γ2/2 + t−(k−l).

Thus,

P

{
‖ Λ2S2S

+
1 ‖2F + ‖ Λ2 ‖2F≥‖ Λ2 ‖2F

[
3lt2

k − l + 1
(1 + γ)2 + 1

]}

≤ e−γ2/2 + t−(k−l). (36)

Upon using Lemma 4 and the fact PXS = QQT , the proof gets completed.
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Appendix B: Proofs of main theorems and corollaries

B.1. Proof of Theorem 2.1

Proof. By the given condition that λr0(X̃B) >
2kμ

ηrX

, we have λr0(X̃B) >

(1 + δ)kμ

ηrX

. Note that λr0+1(X̃B) = 0, and so λr0+1(X̃B) <
(1− δ)kμ

ηrX

. For

this proof, we express ε as

ε =
n∑

i=1

r∑
j=1

ξijΣij ,

where {ξij} is a sequence of independent standard normal variables, and Σij is
a n × r matrix with the (ij)th entry being σij and remaining entries being 0.
Let Mij = PX̃Σij . Thus,

PX̃ε =

n∑
i=1

r∑
j=1

ξijPX̃Σij =

n∑
i=1

r∑
j=1

ξijMij

Further, by Lemmas 2 and 3, and let t0 = θ
√

2V (PX̃ε)log(n+ r), we have

P (r̃ �= r0) ≤ P
{
λ1(PX̃ε) ≥ δkμ

ηrX

}
= P

{
λ1(PX̃ε) ≥ (1 + θ)

√
2V (PX̃ε)log(n+ r)

}
≤ P{λ1(PX̃ε) ≥ E[λ1(PX̃ε)] + t0}

≤ exp

(−θ22V (PX̃ε)log(n+ r)

2V (PX̃ε)

)
= exp

(
− θ2log(n+ r)

)
−→ 0 as n+ r −→ ∞.

Thus, the proof of the theorem gets completed.

B.2. Proof of Theorem 2.2

Proof. For any p× r matrix C, by the definition of B̃, we have

‖ Y − X̃B̃ ‖2F +2μ ‖ X̃B̃ ‖∗≤‖ Y − X̃C ‖2F +2μ ‖ X̃C ‖∗ .

Recall that

‖ Y − X̃B̃ ‖2F = ‖ XB + ε− X̃B̃ ‖2F
= ‖ XB − X̃B̃ ‖2F + ‖ ε ‖2F +2 < ε, XB − X̃B̃ >F

and

‖ Y − X̃C ‖2F = ‖ XB + ε− X̃C ‖2F
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= ‖ XB − X̃C ‖2F + ‖ ε ‖2F +2 < ε, XB − X̃C >F .

These imply that

‖ XB − X̃B̃ ‖2F ≤ ‖ XB − X̃C ‖2F +2 < ε, X̃B̃ − X̃C >F

+2μ
(
‖ X̃C ‖∗ − ‖ X̃B̃ ‖∗

)
. (37)

From the facts that PX̃X̃ = X̃, < M, N >F ≤ ||M ||2||N ||∗ and ||N ||∗ ≤√
r(N)||N ||F , we have

< ε, X̃B̃ − X̃C >F = < PX̃ε, X̃B̃ − X̃C >F

≤ ‖ PX̃ε ‖2‖ X̃B̃ − X̃C ‖∗
≤

√
2r0 ‖ PX̃ε ‖2‖ X̃B̃ − X̃C ‖F . (38)

Moreover, using the triangle inequality of norm, we have

μ
(
‖ X̃C ‖∗ − ‖ X̃B̃ ‖∗

)
≤ μ ‖ X̃B̃ − X̃C ‖∗≤ μ

√
2r0 ‖ X̃B̃ − X̃C ‖F . (39)

Now, combining (37), (38) and (39), we have

‖ XB − X̃B̃ ‖2F ≤ ‖ XB − X̃C ‖2F +2
√
2r0 ‖ X̃B̃ − X̃C ‖F

(
‖ PX̃ε ‖2 +μ

)
≤ ‖ XB − X̃C ‖2F +2

√
2r0

(
‖ XB − X̃B̃ ‖F

+ ‖ XB − X̃C ‖F
)(

‖ PX̃ε ‖2 +μ
)
,

and it then follows that

‖ XB − X̃B̃ ‖F≤‖ XB − X̃C ‖F +2
√
2r0

(
‖ PX̃ε ‖2 +μ

)
. (40)

As shown in the proof of Theorem 2.1,

P{‖ PX̃ε ‖2≥ δμ} ≤ exp
(
− θ2log(n+ r)

)
.

Thus, we obtain

‖ XB − X̃B̃ ‖F≤‖ XB − X̃C ‖F +2μ(1 + δ)
√
2r0 (41)

with failure probability at most exp
(
− θ2log(n+ r)

)
.

Further, setting C = B, we have

‖ XB − X̃C ‖F≤‖ X − X̃ ‖F ‖ B ‖F . (42)

Upon combining (41) and (42), and using Lemma 8, the proof gets completed.
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B.3. Proof of Theorem 2.3

Proof. From (40) and the fact that ‖ A ‖2≤‖ A ‖F for any matrix A, we obtain

E[‖ XB − X̃B̃ ‖F |Q] ≤‖ XB − X̃C ‖F +2
√
2r0

{
E[‖ PX̃ε ‖F |Q] + μ

}
. (43)

Recall that if a function g is concave, then E[g(X)] ≤ g[E(X)], and so we have

E[‖ PX̃ε ‖F |Q] = E
√
tr(εTPX̃ε)|Q ≤

√
tr[E(εεT )PX̃ ]. (44)

Further, by the law of iterated expectations and the fact that PX̃ = QQT , we
have

E[‖ PX̃ε ‖F ] = E
{
E[‖ PX̃ε ‖F |Q]

}
≤

√
k

n
tr[E(εεT )] (45)

and

EQ[‖ XB − X̃C ‖F ] ≤
[
‖ XB ‖2F −2k

n
< XC, XB >F +

k

n
‖ XC ‖2F

]1/2
. (46)

Note that ε = [εij ]n×r is an error matrix and the entries are independent of
each other with mean zero and variance σ2

ij , and so√
k

n
tr[E(εεT )] =

[k
n

n∑
i=1

r∑
j=1

σ2
ij

]1/2
. (47)

Further, setting C = B, we obtain

EQ[‖ XB − X̃B ‖F ] ≤
(
1− k

n

)1/2

‖ XB ‖F

≤
(
1− k

n

)1/2[ q∑
i=1

λ2
i (X)

]1/2
‖ B ‖F . (48)

Upon combining (43)–(48), we complete the proof of the theorem.

B.4. Proof of Corollary 2.4

Proof. From (40) and the proof of Theorem 2.3, we have

E[‖ XB −XB̂NC ‖F ] ≤ 2
√
2r0

(√
E[tr(εεTPX)] + μ

)
. (49)

Note that X = ΓΛPT and X+ = PΛ−1ΓT , and so PX = X(XTX)+XT =
XX+ = ΓΓT . Then,

√
E[tr(εεTPX)] =

[ n∑
i=1

( r∑
j=1

σ2
ij

)( q∑
h=1

γ2
ih

)]1/2
. (50)

By combining (49) and (50), we complete the proof.
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B.5. Proof of Corollary 2.5

Proof. Using (40), with failure probability at most exp
(
− θ2log(n + r)

)
, we

obtain

‖ XB − X̂B̂ ‖F ≤ ‖ XB − X̂B ‖F +2μ(1 + δ)
√
2r0

≤ ‖ X − X̂ ‖F ‖ B ‖F +2μ(1 + δ)
√
2r0. (51)

Moreover, by (8) and (14), we obtain

X − X̂ = ΓΛPT (Ip − P1P
T
1 )

=
(
Γ1, Γ2

) (
Λ1

Λ2

) (
PT
1

PT
2

)
P2P

T
2

= Γ2Λ2P
T
2 .

Hence, we have

‖ X − X̂ ‖F=
√

tr(P2Λ2ΓT
2 Γ2Λ2PT

2 ) =
√

tr(Λ2
2) =

[ q∑
i=k+1

λ2
i (X)

]1/2
. (52)

Upon combining (51) and (52), we complete the proof.

B.6. Proof of Corollary 2.6

Proof. From (40) and the proof of Theorem 2.3, we have

E[‖ XB − X̂B̂ ‖F ] ≤ E[‖ XB − X̂B ‖F ] + 2
√
2r0

(√
E[tr(εεTPX̂)] + μ

)
. (53)

Note that X = ΓΛPT = Γ1Λ1P
T
1 +Γ2Λ2P

T
2 , and X+ = PΛ−1ΓT = P1Λ

−1
1 ΓT

1 +

P2Λ
−1
2 ΓT

2 , and so PX̂ = X̂(X̂T X̂)+X̂T = XP1P
T
1 X+ = Γ1Γ

T
1 . Hence, we obtain

√
E[tr(εεTPX̂)] =

[ n∑
i=1

( r∑
j=1

σ2
ij

)( k∑
h=1

γ2
ih

)]1/2
. (54)

Now, upon combining (53) and (54), the proof gets completed.
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