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a b s t r a c t

It currently remains unclear how facet-specific trainings of three
core modules of executive function (EF; updating, switching, and
inhibition) directly compare regarding efficacy, whether improve-
ments on trained tasks transfer to nontrained EF tasks, and which
factors predict children’s improvements. The current study sys-
tematically investigated three separate EF trainings in 6- to 11-
year-old children (N = 229) using EF-specific trainings that were
similar in structure, design, and intensity. Children participated
in pre- and posttest assessments of the three EFs and were ran-
domly allocated to one of three EF trainings or to an active or pas-
sive control group. Multivariate latent change score models
revealed that only the updating group showed training-specific
improvements in task performance that were larger compared
with active controls as well as passive controls. In contrast, there
were no training-specific benefits of training switching or inhibi-
tion. Latent changes in the three EF tasks were largely independent,
and there was no evidence of transfer effects to nontrained EF
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tasks. Lower baseline performance and older age predicted larger
changes in EF performance. These seemingly opposing effects sup-
port compensation accounts as well as developmental theories of
EF, and they highlight the importance of simultaneously account-
ing for multiple predictors within one model. In line with recent
theoretical proposals of EF development, we provide new system-
atic evidence that questions whether modular task trainings repre-
sent an efficient approach to improve performance in narrow or in
broader indicators of EF. Thereby, this evidence ultimately high-
lights the need for more comprehensive assessments of EF and,
subsequently, the development of new training approaches.

� 2022 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Executive function (EF) represents a group of higher-order cognitive processes that enable individu-
als to be attentive, to solve problems, to pursue goals, and to regulate behaviors, thoughts, and emotions
(Diamond, 2013; Zelazo et al., 2008). From a developmental perspective, EF is crucial, for example,
because it contributes to children’s attainment of autonomy, socioemotional functioning, and academic
performance (Best et al., 2011;Dawson&Guare, 2018;Denhamet al., 2015;Diamond, 2016; Liew, 2012;
Riggs et al., 2006).Motivatedby thehigheveryday relevanceof broader andmoreecological indicators of
EF, extensive research has aimed to improve children’s performance on more narrow laboratory mea-
sures of EF via cognitive training (Strobach & Karbach, 2021). Such efforts are based on the concept of
transfer,whichpostulates that repeatedlyperforminga cognitive taskwill improveperformanceon tasks
that deploy similar cognitive processes (often labeled near transfer) and that this might even improve
performance on structurally more distant tasks deploying similar cognitive processes (often labeled
far transfer; e.g., Kliegel et al., 2017; Strobach & Karbach, 2021).

In this context, the threemostwidely studied and trained EF components are updating of information
in working memory, switching attention between different task sets, and inhibition of automatic or pre-
dominant responses or of irrelevant distractors (Miyake et al., 2000). It is crucial to highlight here that
this three-partite view of EF has received increasing criticism (e.g., Doebel, 2020; Perone et al., 2021).
Importantly, EF is still developing during childhood and certain componentsmay fullymature only later
in life (e.g., switching; Garon et al., 2008; Karr et al., 2018;Müller & Kerns, 2015). Thus, it is unlikely that
EF is best understood with a three-dimensional model (compared with a one- or two-dimensional
model) across all ages (see Karr et al., 2018; Miyake & Friedman, 2012). Related to this, more and more
research questions such modular views of different EF components and whether training performance
on these rather narrow indicators of EF can actually transfer to broader outcomes (Diamond & Ling,
2016; Kassai et al., 2019; Perone et al., 2021). Recent theoretical contributions therefore urge that EF
should be conceivedmore comprehensively as using control ‘‘in the service of particular goals that acti-
vate and are influencedby diversemental content such as knowledge, beliefs, and values” (Doebel, 2020,
p. 952). Buildingon this view, rather thanstaticmodules that areactivatedoneat a time, EFmaybebetter
understood as a dynamic system that allowsmomentary behavior by assemblingmultiple components
(physiological, cognitive, emotional, andmotorprocesses togetherwith the social andphysical forces) of
prior experiences and abilities to pursue a goal (Perone et al., 2021).

Despite such proposals and calls for more comprehensive views of EF, the three-component model
is currently still a persisting conceptualization of EF, with updating, shifting, and inhibition represent-
ing the most widely studied and trained EF components during childhood (for an in-depth review, see
Müller & Kerns, 2015). Thus, the goal of the current study was to systematically compare cognitive
trainings of these three EFs. Although our study focused on these narrow measures of EF, we discuss
findings within the broader context of the current EF literature, which will ultimately lead to new
insights that align with these more comprehensive views.
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Cognitive training and EF

A significant body of literature suggests that computerized cognitive process trainings can enhance
EF performance on laboratory tasks (for reviews, see, e.g., Diamond & Ling, 2016, 2020; Kliegel et al.,
2017; for meta-analyses, see, e.g., Cao et al., 2020; Sala & Gobet, 2017; Scionti et al., 2020; Takacs &
Kassai, 2019). However, most previous studies have focused on training either a single EF per study
or all three core EFs simultaneously. So far, only one study has applied specific separate trainings
for each EF component within a sample of typically developing children (Johann & Karbach, 2020).
Johann and Karbach (2020) compared standard training with game-based training of the three EFs
and examined potential transfer effects to mathematical and reading abilities in 153 8- to 11-year-
old children. They found that both trainings improved EF performance. They also found transfer effects
to reading abilities. EF improvements were greater in children who participated in a game-based
switching or inhibition training compared with the passive control group, and these improvements
persisted at a 3-month follow-up.

Johann and Karbach’s (2020) study thus provided the first integrative insights into the broader
long-lasting benefits of training EF to improve non-EF domains. However, although the authors
reported no transfer between the three EFs, they did not examine in detail how improvements in each
EF directly compared with the others or whether improvements may be interrelated. The authors sug-
gested that transfer between EFs might not have occurred because each training program consisted of
a set of multiple tasks and that training on only a single EF task might facilitate transfer to untrained
EF tasks. Despite these relevant suggestions, systematic comparisons of the three EF trainings are cur-
rently still lacking, leaving a series of conceptually important questions unanswered—such as how dif-
ferent EFs directly compare in terms of how easily task performance can be improved, whether
improved performance in one EF relates to improved performance in the other EFs, or which factors
predict training benefits in children. Building on and extending recent work such as that of Johann
and Karbach (2020), the current study set out to tackle these pressing questions.

Performance improvements in the trained EF

Currently, it is unclear how updating, switching, and inhibition directly compare in terms of speci-
fic performance improvements in the trained EF. Performance improvements are most frequently
observed in studies that train updating, whereas results are less consistent when training switching
or inhibition (e.g., Kassai et al., 2019; Rapport et al., 2013; Takacs & Kassai, 2019). Previous findings
need to be interpreted with caution, however, because updating also represents the most studied
EF component and thus is most likely to produce a larger number of positive findings (Takacs &
Kassai, 2019). Furthermore, studies typically train only one specific EF and contrast benefits with
either an active or passive control group. Yet, studies largely vary in terms of target population, design,
and training intensity, which further contributes to the inconsistent pattern of EF training benefits
(Klingberg, 2010), making it difficult to investigate whether performance is more likely to improve
on certain EF tasks.

Transfer to performance improvements in untrained EF tasks

Even more debated is the extent to which modular task trainings translate into performance
improvements on untrained EF tasks (Diamond & Ling, 2020; Smid et al., 2020). For each EF, transfer
effects have been inconsistent (for reviews and meta-analyses, see Kliegel et al., 2017; Klingberg,
2010; Melby-Lervåg et al., 2016; Morrison & Chein, 2011; Sala & Gobet, 2017, 2020), potentially again
because of studies examining one EF training at a time and trainings being heterogeneous across stud-
ies. Importantly, there is currently no systematic examination of whether improvement in one EF task
directly translates into improvements in other EF tasks.

Theoretical accounts and predictors of training benefits

Although research consistently shows that there is important variance in how much individuals
benefit from EF trainings (e.g., Cao et al., 2020; Smid et al., 2020; Traut et al., 2021), there is currently
3
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no consensus on which factors predict training benefits in children or on which theoretical and devel-
opmental accounts best describe training mechanisms in children. From a theoretical perspective,
compensation accounts suggest that training benefits are largest for individuals who have an initial dis-
advantage in performance (e.g., individuals with low baseline performance, atypically developing chil-
dren, children at higher developmental risk or from lower socioeconomic conditions; Karbach et al.,
2017; Smid et al., 2020; Strobach & Karbach, 2021; Traut et al., 2021). Accordingly, children with lower
initial performance have more room to improve and engaging in new cognitive activities might be
more beneficial for them. In contrast, magnification accounts suggest that children with initial advan-
tages in performance benefit more because they are more able to fully engage in the intervention pro-
gram and build on already existing skills (e.g., Foster et al., 2017; Lövdén et al., 2012; Swanson, 2014,
2015). Although both accounts have been supported by empirical studies (see Katz et al., 2021; Traut
et al., 2021), they assign a central but opposing role to baseline performance.

Similarly, from a developmental perspective, there currently is no agreement on the role of age. On
the one hand, younger children may benefit more because of greater neuroplasticity and because their
EFs are being differentiated into distinct abilities (Best & Miller, 2010; Huizinga et al., 2006). On the
other hand, older children may benefit more because the neural underpinnings of EF—prefrontal net-
works—continue to undergo important structural and synaptic changes during late childhood and
throughout adolescence (Best & Miller, 2010; Diamond, 2013). So far, the literature has mostly com-
pared rather distant age groups, typically with a focus on older versus younger adults (Katz et al.,
2021). Therefore, it remains unclear whether early school-age children versus preadolescents may
benefit more from EF trainings. Certain meta-analyses suggest larger training benefits for younger
children (e.g., Cao et al., 2020; Cepeda et al., 2001; Wass et al., 2012), whereas others do not find
age effects (Kassai et al., 2019; Scionti et al., 2020). Furthermore, other demographic variables that
could interact with age, namely gender, remain largely unstudied even though boys and girls may
respond differently to computerized tasks (e.g., Delalande et al., 2020; Martinovic et al., 2016).

The current study

This study aimed to provide the first systematic and comprehensive examination of how facet-
specific single-task trainings directly compare with each other across the entire middle childhood
and whether they translate into benefits in untrained EFs. We aimed to extend Johann and
Karbach’s (2020) study by (a) systematically disentangling whether benefits translate to performance
improvements in untrained EF tasks, (b) extending the age range to cover the entire primary school
period (i.e., 6–11 years), (c) more directly examining the role of multiple predictors (i.e., baseline per-
formance and age, controlling for gender) within a single latent change score model, and (d) including
an active control group for which the activity was closely matched to the training interventions
regarding task design, difficulty, adaptability of difficulty, intensity, and duration.

The current study thereby aimed to answer the following research questions. First, howdo the differ-
ent EFs directly compare in terms of how easily task performance can be improved? Second, does
improved performance on one EF task relate to improved performance on tasks deploying other EFs?
Third, which factors predict training benefits? Fourth, is there support for compensation versus magni-
fication accounts of cognitive training when all predictors are considered simultaneously within one
model? Fifth,would the efficacy of the training be differentwhen comparing training groupswith active
versus passive controls?
Method

Participants

A total of 239 school-aged children initially participated in the study. They were recruited through
advertisements at publication locations, schools, and the experimenters’ network. In view of the
important differences in the training literature between typically and atypically developing children
as well as the large age range of our sample, we excluded children whose indices of general cognitive
functioning were outliers in order to render the sample more homogeneous in terms of overall devel-
4



S. Zuber, E. Joly-Burra, Caitlin E.V. Mahy et al. Journal of Experimental Child Psychology 227 (2023) 105602
opment of cognitive functioning. Therefore, 9 children were excluded from subsequent analyses
because they scored below 2.5 standard deviations of their age group norms on fluid and/or crystal-
lized intelligence measures (assessed via the Matrices and Vocabulary subtests of the Wechsler Intel-
ligence Scale for Children–Fourth Edition (WISC-IV; Wechsler, 2004). Of these 9 children, 1 child came
from the updating group, 4 children came from the inhibition group, 3 children came from the active
control group, and 1 child came from the passive control group. It is important to highlight that the
exclusion occurred after data collection and that the cutoff was adapted during revisions of this manu-
script (i.e., we initially planned to exclude scores below 2 standard deviations, which would exclude 1
additional participant). Note that the pattern of results of our findings would remain the same if anal-
yses were performed on data including all participants as well as if the cutoff was 2 standard devia-
tions. The remaining children did not report any history of (neuro)psychopathology (as indicated by
children’s caregivers in questionnaires) and either were native French speakers or had fluent profi-
ciency in French. All children and their caregivers gave informed consent.

The final sample consisted of 230 children (Mage = 8 years 4 months, SD = 1 year 5 months), 121 of
which were female (53 %; there were no significant differences in age between genders, p = .502). Chil-
dren’s ethnicity was not collected because this is not common practice in the country of data collec-
tion. Before pretest assessment, children were randomly allocated to one of the five groups (updating
training, switching training, inhibition training, active control, or passive control). Table 1 displays the
number of children, percentage of girls, and age per experimental group. Analyses of variance (ANO-
VAs) and subsequent Tukey HSD (honestly significant difference) tests showed that there were no sig-
nificant differences between any of the experimental groups regarding percentage of girls or age (all
ps > .05). A chi-square test of homogeneity indicated that the number of children did not significantly
vary between groups, v2(4) = 1.15, p = .89.

Procedure

Fig. 1 illustrates the procedure of the study for the five experimental groups separated by study
phase. Pre- and posttest assessments consisted of two sessions each (�45 min per session) during
which children performed different EF tasks as well as other cognitive tasks (e.g., measuring fluid
and crystalized intelligence) in a pseudorandomized order. Sociodemographic questionnaires were
filled out by children’s parents between the two pretest assessments. Pre- and posttest assessments
were separated by 4 weeks on average. During this period, the three EF training groups and the active
control group participated in eight sessions on a computer (�20–25 min each; two sessions per week),
whereas the passive control group did not participate in any activities. All sessions (pretest, posttest,
and trainings) were conducted by two experimenters (one leading the experiment and one being pre-
sent due to ethical requirements for testing children) in a quiet environment where children were not
distracted.

Measures

Pretraining assessment of fluid and crystallized intelligence
Fluid intelligence: Matrices of WISC-IV. For each trial in the Matrices subtest of the WISC-IV (Wechsler,
2004), children were shown a 2 � 2 grid of four boxes with the bottom-right box displaying a question
mark and the other boxes displaying images. Below this grid, six images were displayed and children
were instructed to select the image that would complete the series above (e.g., selecting a green light
bulb among bulbs of other colors). The task consisted of 32 grids in total but was ended earlier if chil-
dren selected 4 incorrect answers in 5 consecutive trials. The outcome measure was the number of
correct responses (note that raw scores were age-standardized).

Crystallized intelligence: Vocabulary of WISC-IV. In the Vocabulary subtest of the WISC-IV (Wechsler,
2004), children were asked to explain the meanings of words (e.g., ‘‘What is an umbrella?”) and
received 2 points for correct answers (e.g., ‘‘to protect you from rain”), 1 point for partial vague
answers (e.g., ‘‘you hold it above your head”), and 0 points for incorrect answers. The task consisted
5



Table 1
Number of children, percentage of girls, and age per experimental group.

Gender Age

Training group N % Girls M SD Min Max

Updating 48 50 8;8 1;5 5;10 11;5
Switching 47 53 8;0 1;6 5;11 10;8
Inhibition 42 59 8;4 1;4 6;5 11;2
Active control 43 49 8;6 1;6 5;10 10;11
Passive control 50 54 8;1 1;5 6;4 10;7
ANOVA p = .91 p = .15

Note. Ages are in years;months. ANOVA, analysis of variance.

Fig. 1. Study procedure separated per experimental group and study phase. Gf, fluid intelligence; Gc, crystallized intelligence.
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of 31 words in total but was ended earlier if children gave 5 consecutive incorrect answers. The out-
come measure was the sum of points (note that raw scores were age-standardized).

Pre- and posttraining assessment of EF performance
Updating: Spatial 2-back task. For each trial in this task (adapted from Jaeggi et al., 2011), children
were shown a 3 � 2 grid of six boxes and needed to indicate whether a cartoon character was dis-
played in the same box as 2 trials before (by pushing the green button stuck on the right arrow
key) or not (by pushing the red button stuck on the left arrow key) (see Fig. 2). Children first per-
formed a practice block of 17 trials (which was repeated if accuracy was <60 %). This was followed
by five test blocks of 17 trials, each containing 5 hit trials (for which the character was in the same
location as 2 trials before) and 12 non-hit trials. For the parallel version of the posttest assessment,
a different cartoon character was used and hit/non-hit trials appeared in a different order. In both
assessments, the order of hit/non-hit trials was the same for all participants. The outcome measure
was the proportion of correctly detected hits minus the proportion of false alarms on non-hit trials.

Switching: Dots & triangles task. This task (adapted from Huizinga et al., 2006) consisted of two single-
task blocks (Task A and Task B) and a mixed-task block (Task A/B). For each trial, children saw a grid of
4 � 4 boxes and, using the four arrow keys, needed to answer whether there were more dots (i.e., frog
faces) on the left or right half of the grid (Task A) or whether there were more triangles (i.e., cherries)
in the top or bottom half of the grid (Task B) (see Fig. 2). Children first worked on both single-task
blocks (in counterbalanced order), which consisted of 10 practice trials (and an additional 10 practice
trials if accuracy was <60 %) and 40 experimental trials. Children then worked on the mixed-task
block, which consisted of 21 practice trials (and 21 possible re-practice trials) and 81 experimental
trials. The mixed-task block shifted between Task A and Task B every 4 trials. For the parallel version
6



Fig. 2. Example stimuli for updating, switching, and inhibition tasks.
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of the posttest assessment, stimuli were inversed (i.e., dots were used for Task B and triangles were
used for Task A). The outcome measure was switching costs (i.e., mean reaction time on switch trials
minus mean reaction time on nonswitch trials, both on trials with correct responses only). Note that
reaction times were initially recorded in milliseconds but were rescaled to seconds to avoid variances
being much larger than on the other outcome measures.

Inhibition: Go/NoGo task. In this task (adapted from Schulz et al., 2007), children were shown a series
of animal pictures and needed to push the spacebar as fast as possible as soon as a new picture
appeared (Go stimuli, 75 % of all trials) except for birds (for which no response needed to be made;
NoGo stimuli, 25 % of all trials) (see Fig. 2). Go and NoGo trials were presented in a pseudorandomized
order. Children practiced this first for 16 trials (and for another 16 practice trials if performance was
<60 %) and then worked on a block of 96 trials. For the parallel version of the posttest assessment,
monkeys were used as NoGo stimuli (note that monkeys were used as Go stimuli at pretest, but birds
were not used as Go stimuli at posttest). The outcome measure was inhibition accuracy (i.e., the pro-
portion of correctly inhibited NoGo trials).

Training programs
The three EF and the active control programs were similar in terms of training design and intensity.

Each program consisted of eight sessions lasting 20 to 25 min each. For the three EFs, training tasks
resembled the pre–post assessment of the same EF (see ‘‘Pre- and posttraining assessment of EF per-
formance” section above). Specifically, the updating trainings consisted of a spatial 2-back paradigm
for which children needed to indicate for each trial whether a cartoon character was displayed in
the same location as 2 trials before. Each session consisted of 170 trials (50 hit trials). The switching
training tasks consisted of a Task A/Task B switching paradigm for which children needed to indicate
either whether stimuli belonged to one category versus another category (Task A) or whether one
object versus two objects were displayed (Task B). The paradigm switched between tasks on every
third trial, and each training consisted of 410 trials (200 switching trials). The inhibition training con-
sisted of a Go/NoGo response inhibition paradigm for which children needed to push the spacebar as
fast as possible after stimuli appeared on the screen (Go trials) except for when the stimulus corre-
sponded to a specific category (NoGo trials). Each session consisted of 320 trials (80 NoGo trials). In
the active control training, children needed to categorize images (similar to the categorization tasks
of the switching paradigm but without needing to switch between different task sets, thereby not par-
ticularly tapping into EF). Each training session consisted of 410 trials.

For all four training programs, task difficulty was individually adapted to children’s performance
throughout the program. During each training session, there were a total of 10 difficulty levels to
which children could advance or revert depending on their performance. Between levels, difficulty
7
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was increased by decreasing how long a stimulus and fixation cross were presented and, for certain
levels, by presenting more complex stimuli (i.e., more spatial locations and more challenging maps
for the updating training; categories that are more difficult to distinguish for the inhibition training).
To be able to compare training progress between groups, one outcome measure was the highest level
achieved in each training session. In addition, group-specific outcome measures were the proportion
of correctly detected hits minus the proportion of false alarms on non-hit trials for updating, switching
costs on trials with correct responses only for switching, inhibition accuracy for inhibition, and mean
reaction time on correctly categorized trials for active control training. More detailed descriptions of
the different trainings can be found online in Supplementary Material S1. The passive control only par-
ticipated in pre- and posttest assessments without receiving any activities between the two assess-
ment times (i.e., ‘‘business as usual” control group).
Statistical analyses

First, to assess how performance on the training tasks changed throughout the training, we com-
pared the highest task level achieved as well as task-specific outcome measures on the first versus last
training session by conducting a paired-sample t test for each training group separately (including the
active control group). These t tests as well as descriptive statistics, correlations, ANOVAs, and Tukey
HSD test were conducted with jamovi software.

Second, to assess predictors of pre–post change and potential transfer effects to untrained EFs, we
conducted factorial latent change score modeling (LCSM). To examine means and variances in change
of each EF task as well as how these changes correlated, in a first LCSM (Model 1; see Panel A of Fig. 3),
we computed latent variables of change as the difference between pre- and posttest performance for
each of the three EF tasks. To examine whether change in one EF task was related to change in the
other EF tasks, latent change variables were allowed to covary. Performances at pretest for the three
EF tasks were also allowed to covary.

Third, to investigate predictors of changes in EF performance, in a second LCSM (Model 2; see Panel
B of Fig. 3), the following variables were added as predictors of the three latent change scores: (a)
baseline performance, (b) children’s age, (c) gender, and (d) the specific training group. Four dummy
variables were created to investigate the effect of each training group compared with the active con-
trol group (i.e., the updating group has the value 1 on the updating training variable and has the value
Fig. 3. Factorial latent change score models. (A) Latent score change Model 1. The latent change variables have estimated means
and variances. Single-headed arrows represent regression coefficients, whereas two-headed arrows represent covariances. For
the purpose of readability, correlations between pretests for the three EF tasks are not depicted. (B) Model 2, where predictors of
change are included in the model and allowed to covary. The error terms (e1, e2, and e3) indicate residual variances from the
latent change scores. For the purpose of readability, covariances between the different predictors and covariances between
residual variances of change are not depicted.
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0 on the three remaining dummy variables; the active control group has the value 0 on all four vari-
ables). A significant effect of a dummy variable means that this group displayed larger EF changes than
the active control group. Residual variances of latent change variables were allowed to covary.

Fourth, to examinewhether the efficacy of the trainingwould be judged differentlywhen comparing
training groups with active versus passive controls, we computed a third model (Model 3) in which we
used thepassive control groupas a referencegroup.Note that althoughchanging the referencegroupcan
result in different parameter estimates, this model is mathematically equivalent to Model 2 in terms of
model fit, which therefore is reported only for Model 2. LCSMs were estimated in IBM SPSS AMOS (Ver-
sion 26) using maximum likelihood estimation. As indicated by the Little MCAR (missing completely at
random) test (computed in IBM SPSS Version 26), missing data (which were less than 1 % of all data
points) were missing completely at random, v2(41) = 48.54, p = .20, and therefore subsequently were
imputed using full information maximum likelihood (Little, 1988). We assessed the goodness of fit for
the twoLCSMsusing thev2/df ratio, the rootmean square error of approximation (RMSEA), and the com-
parative fit index (CFI). Model fits were considered good when the v2/df ratio was less than 3, when the
RMSEA was between 0 and .06, and when the CFI was greater than .95 (Hu & Bentler, 1999).
Results

Descriptive statistics

Table 2 presents means, standard deviations, and correlations between age, pretest performance,
and posttest performance on the three EFs tasks across all groups. Fig. 4 displays pre- and posttest per-
formances on the three EF tasks separated by group.

Changes in performance across training sessions

Fig. 5 depicts trajectories of the highest level achieved on each training session (i.e., group mean)
for the four training groups separately. It also displays performance trajectories on each training ses-
sion on the four training tasks. Regarding the highest levels achieved, paired-sample t tests between
the first and eighth training sessions showed that there were significant differences with large
improvements for the updating group, t(45) = 12.95, p < .001, d = 1.91, and the switching group, t
(40) = 6.83, p < .001, d = 1.07. In contrast, performances of the inhibition and active control groups
did not significantly improve on the highest level achieved, t(37) = 0.45, p = .65, d = 0.07, and
t(42) = �0.84, p = .41, d = �0.13, respectively. Regarding performance on the trained tasks, paired-
sample t tests between the first and eighth training sessions showed that there were significant
improvements for the updating group, t(45) = 5.13, p < .001, d = 0.76, and the switching group,
t(40) = �5.10, p < .001, d = �0.80. In contrast, performance of the inhibition group did not signifi-
cantly improve, t(37) = 0.88, p = .39, d = 0.14, whereas the active control group became significantly
slower across sessions, t(42) = 3.91, p < .001, d = 0.60.

Baseline differences

To ensure that training improvements were not confounded with potential differences in perfor-
mance at baseline, we compared pretest performance of the five groups for each EF. Tukey HSD anal-
yses indicated that there were no significant differences between any of the five groups in baseline
performance on updating, switching, or inhibition except for one; the inhibition group performed sig-
nificantly worse than the passive control group on the switching task at baseline, t(220) = �2.80,
p = .043 (all other ps > .05).

Variability in change and transfer effects to other EF tasks

Model 1 showed excellent fit, v2(6) = 7.06, v2/df = 1.18, p = .32, CFI = .99, RMSEA = .03. Parameter
estimates are reported in Table 3. Mean changes between pre- and posttest were significant in updat-
9



Table 2
Descriptive statistics and correlations between age and pre- and posttest performances on the three executive function tasks
(across all groups).

M (SD) 1 2 3 4 5 6

1. Age (years) 8.29 (1.43) –
2. Updating pretest 0.35 (0.25) .33*** –
3. Updating posttest 0.46 (0.29) .28*** .46*** –
4. Switching pretest 0.38 (0.32) �.21** �.16* �.11 –
5. Switching posttest 0.27 (0.27) �.26*** �.20** �.19** .37*** –
6. Inhibition pretest 0.81 (0.14) .20** .19** .26*** �.06 �.05 –
7. Inhibition posttest 0.82 (0.15) �.01 .07 .15* �.07 �.08 .33***

Note. Updating score is the proportion of correctly detected hits minus the proportion of false alarms on non-hit trials.
Switching score is the switching cost in seconds (i.e., mean reaction time on shift trials minus mean reaction time on non-shift
trials on trials with correct responses only). Inhibition score is the inhibition accuracy (proportion of correctly inhibited NoGo
trials).
*p < .05.
**p < .01.
***p < .001.

Fig. 4. Pre- and posttest performances on the three EF tasks separated by training group. Updating accuracy is the proportion of
correctly detected hits minus the proportion of false alarms on non-hit trials. Switching cost is the switching cost in seconds
(i.e., mean reaction time on switch trials minus mean reaction time on non-switch trials on trials with correct responses only).
Inhibition accuracy is the proportion of correctly inhibited NoGo trials. Error bars represent standard deviations.

Fig. 5. Progression of highest level achieved (large figure at left) and performance (small figures at right) across the eight
training sessions separated per training group. Updating accuracy is the proportion of correctly detected hits minus the
proportion of false alarms on non-hit trials. Switching cost is the switching cost in milliseconds (i.e., mean reaction time on
switch trials minus mean reaction time on non-switch trials on trials with correct responses only). Inhibition accuracy is the
proportion of correctly inhibited NoGo trials. Categorization RT is the mean reaction time in milliseconds on correctly
categorized trials of the active control training task. Error bars represent standard deviations.

S. Zuber, E. Joly-Burra, Caitlin E.V. Mahy et al. Journal of Experimental Child Psychology 227 (2023) 105602
ing and switching but not in inhibition. Skewness values of the factor scores for the mean changes in
updating, switching, and inhibition were 0.04, 0.36, and �0.11, respectively, whereas kurtosis values
were 0.19, 1.64, and 0.88, respectively. Table 4 shows changes in performance per EF and per group. In
addition, variances in change (i.e., variances of the latent change scores) were significant in the three
10
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EFs, indicating that for each EF there was interindividual variability in change. However, changes in
the three EFs did not correlate (all ps > .05), indicating that changes in EFs were independent from
each other.

Predictors of change and transfer to untrained EF tasks

Because there was significant variance in change on all three EFs, Model 2 examined predictors of
change for each EF. Model 2 showed excellent fit, v2(6) = 10.58, v2/df = 1.76, p = .10, CFI = .99,
RMSEA = .06. When all predictors were considered simultaneously, they predicted substantial portions
of variance in changes in updating, switching, and inhibition (30 %, 47 %, and 33 %, respectively). Raw
and standardized estimates for each EF are reported in Table 5. In sum, results show that change in
updating was predicted negatively by updating performance at pretest but positively by age. In addi-
tion, only the updating group showed larger changes than the active control group. Change in switch-
ing1 was predicted negatively by switching costs at pretest and by age. None of the groups showed larger
changes in switching than the active control group. Change in inhibition was predicted negatively by
baseline inhibition performance, indicating that children with lower initial performance showed greater
improvements. There were no effects of age or group on change in inhibition. Gender did not predict
change in any of the three EFs. As for correlations between the latent change variables in Model 1, resid-
ual errors for the latent change score variables in the three EFs did not correlate in Model 2, again indi-
cating that changes in EFs were independent from each other. Furthermore, results show that none of the
training group variables significantly predicted changes in untrained EFs, again indicating no evidence
for transfer effects to untrained EFs.

Active versus passive controls as reference group

Finally, using the passive controls as a reference group in Model 3 revealed a similar pattern of
results as in Model 2. Therefore, regression weights, standard error of estimation, and p values for pre-
dictors of latent changes in EFs in Model 3 are displayed in Supplementary Material S2.
Discussion

The current study set out to perform the first systematic comparison of facet-specific single-task EF
trainings across the entire middle childhood. It aimed to (a) directly compare whether updating,
switching, and inhibition performance improve when these three EF tasks are trained under similar
conditions, (b) examine whether training certain EF tasks improves performance on the other tasks,
(c) investigate which factors predict training benefits when accounting for all predictors simultane-
ously within a single model, including whether predictors support compensation versus magnification
accounts of cognitive training, and (d) study whether the efficacy of the training would be judged dif-
ferently when comparing training groups with active versus passive controls.

Does performance improve when training on EF tasks?

Overall, our findings show that updating training is the most likely to produce performance
improvements when the three EFs are trained under similar conditions using a single-task training
paradigm. In contrast, we find no evidence that the other trainings benefit children’s EF performance
beyond retest effects, general learning, and short-term developmental changes. In more detail, the
updating group improved performance across training sessions, and only children in this group dis-
played larger pretest-to-posttest improvements in updating performance than the active and passive
control groups. On average, children of the updating group increased their accuracy by 85 %, whereas
1 For the interpretation of switching results, it is important to keep in mind that (a) pre- and posttest scores represent switching
costs (hence, larger scores indicate worse performance) and (b) mean change in switching was negative, representing a reduction
of switching costs (hence, larger negative regression weights of predictors indicate a larger reduction of switching costs).
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Table 3
Estimated means, variances, and covariances for the latent score change variables in Model 1.

Parameter Estimate SE p

Mean change in updating .11 .02 <.001
Mean change in switching �.11 .02 <.001
Mean change in inhibition .01 .01 .60
Variance of change in updating .08 .01 <.001
Variance of change in switching .11 .01 <.001
Variance of change in inhibition .03 .01 <.001
Change in updating M change in switching �.01 .01 .50
Change in updating M change in inhibition .01 .01 .82
Change in switching M change in inhibition �.01 .01 .56

Note. Double-headed arrows denote covariances. SE, standard error of estimation. Significant estimates are in bold.

Table 4
Changes in performance per executive function and group.

Updating Switching Inhibition

Improvement Increase in
performance
accuracy

% of
pretest

SD of
pretest

Reduction
of cost (in
ms)

% of
pretest

SD of
pretest

Increase in
performance
accuracy

% of
pretest

SD of
pretest

Across all
groups

.11 32.85 0.47 115 30.30 0.36 .01 0.81 0.05

Updating
group

.29 84.76 1.14 69 19.05 0.21 �.03 �2.31 �0.20

Switching
group

.09 25.86 0.37 181 47.19 0.70 �.01 �0.12 �0.01

Inhibition
group

.06 21.17 0.27 144 30.80 0.37 .03 3.96 0.18

Active
controls

.05 14.27 0.20 165 39.15 0.53 .03 3.31 0.20

Passive
controls

.06 15.28 0.25 30 10.48 0.10 .01 0.83 0.05

Table 5
Regression weights, standard errors of estimation, and p values for predictors of latent changes in executive functions in Model 2.

Predicting change in
updating

Predicting change in
switching

Predicting change in
inhibition

Predictor b b SE p b b SE p b b SE p

Updating pretest �.52 �.46 .07 <.001 – – – – – – – –
Switching pretest – – – – �.73 �.70 .05 <.001 – – – –
Inhibition pretest – – – – – – – – �.66 �.55 .07 <.001
Age (years) .03 .13 .01 .03 �.04 �.17 .01 <.001 �.01 �.06 .01 .33
Gender .01 .02 .03 .73 �.02 �.03 .03 .54 .01 .03 .02 .65
Updating group .24 .34 .05 <.001 .06 .08 .05 .23 �.04 �.10 .03 .14
Switching group .04 .05 .05 .45 �.07 �.08 .05 .20 �.03 �.07 .03 .36
Inhibition group �.02 �.03 .05 .66 .05 .06 .05 .34 �.03 �.07 .03 .30
Passive control group .04 .06 .05 .40 .01 .02 .05 .78 �.03 �.07 .03 .31
R2 .30 .47 .33

Note. b, raw regression weight; b, standardized regression weight; SE, standard error of estimation. Updating pretest is the
proportion of correctly detected hits minus the proportion of false alarms on non-hit trials. Switching pretest is the switching
costs in seconds (i.e., mean reaction time on shift trials minus mean reaction time on non-shift trials on trials with correct
responses only). Inhibition score is the inhibition accuracy (proportion of correctly inhibited NoGo trials). Gender is coded 0 for
girls and 1 for boys. To code for group, four dummy variables were computed, with the active control group as a reference.
Significant estimates are in bold.
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the switching, inhibition, active control, and passive control groups improved by only 19 % on average.
Although the switching group improved switching performance throughout the training, children did
not show significantly larger improvements than the active or passive control groups from pretest to
posttest. Furthermore, there were no improvements across inhibition training sessions, and there
were no group differences in changes in inhibition performance from pretest to posttest.

At first glance, our findings might seem to diverge from those of Johann and Karbach (2020), who
also reported benefits of training switching and inhibition. However, different conclusions seem to
have mainly resulted from how the specific outcome measures were interpreted. Johann and Karbach
reported benefits of training inhibition because children responded faster and more often on Go trials.
However, as in our study, they also did not find improvements in how often children successfully
inhibited responses on NoGo trials (children actually respondedmore often on NoGo trials at posttest),
which we consider to be the core indicator of inhibitory control. Overall, both studies suggest no ben-
efits of training inhibition. Similarly, Johann and Karbach reported benefits of training switching
because they observed that switching costs decreased in the switching training groups. However, as
in our study, there were no significant differences compared with the passive control group. This
aligns with our findings and raises the question of whether multiple groups slightly improve on
switching tasks (i.e., they become faster at posttest) but that there may be no EF-specific training ben-
efits beyond mere learning, retest effects, and generally faster processing.

Taken together, findings of our study and Johann and Karbach’s (2020) study dovetail with previous
findings, where significant performance benefits of training updating have more consistently been
shown than of training switching or inhibition (e.g., Kassai et al., 2019; Rapport et al., 2013; Takacs
& Kassai, 2019). Importantly, the current results confirm this pattern in one systematic overall ran-
domized controlled trial that applied comparable single-task training regimes with these three EF
components.

Does training on one EF task improve performance on the others?

Regarding transfer effects to untrained EF tasks, our findings show that training on either updating,
switching, or inhibition tasks does not improve performance on the others. Specifically, LCSM shows
that the different training groups do not predict the magnitude of change in other EFs and that latent
changes in the three EFs are largely independent (i.e., do not correlate). These findings are in line with
Johann and Karbach (2020) and several other studies (for reviews, see, e.g., Diamond & Ling, 2016,
2020). Johann and Karbach (2020) argued that the lack of transfer effects may be due to the fact that
they applied a multitask training (i.e., trainings consisted of multiple tasks of the same EF component).
They suggested that variability in tasks may hinder transfer effects in children and that transfer would
be more likely to occur if only one type of task was used during the training. Our study provides addi-
tional insights in this regard given that we applied a single-task training for each EF component but—
in contrast to these suggestions—also did not observe any transfer effects. Indeed, the few studies that
found transfer effects have applied both single- and multitask trainings (e.g., Klingberg et al., 2002,
2005; Kray et al., 2012). We argue that the uniformity versus variability in tasks does not seem to
be the main driving mechanism for between-EF transfer effects.

Interestingly, studies that have reported transfer to untrained EFs were largely conducted on atyp-
ically developing populations (e.g., children with attention-deficit/hyperactivity disorder; Klingberg
et al., 2002, 2005; Kray et al., 2012). Thus, transfer effects between EFs may depend on specific cog-
nitive characteristics of the target population rather than on the training task design. Taking together
the systematic evidence of our study and of Johann and Karbach (2020), as well as meta-analytical evi-
dence of Kassai et al. (2019), there is currently no evidence of transfer effects between the three EFs in
typically developing children.

Predictors of training benefits and theoretical implications

When baseline performance, age, gender, and training group were considered simultaneously, they
predicted substantial 30 %, 47 %, and 33 % of variance in updating, switching, and inhibition changes,
respectively. Disentangling the specific role of each predictor while accounting for the other predictors
13
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shows that children with lower baseline performance displayed larger performance improvements on
all three EF tasks, whereas older children showed larger improvements on updating and switching
tasks, but there was no effect of age on inhibition performance. There was no effect of gender on
change for any of the three EF tasks.

Because older children typically display better baseline performance, opposing effects of age and base-
line performancemayhave canceled out or blurredfindings inprevious studies that appliedmore classical
analyses examining one predictor at a time.Our findings thereby illustrate an important conceptual impli-
cationof directly contrastingmultiplepredictorswithinone latent changemodel (Karbachet al., 2017) and
suggest two seemingly opposite, yet complementary, mechanisms that drive training effects in children.
On the one hand, our findings align with previous studies reporting larger benefits for those who have
the most room for improvement (see Karbach et al., 2017; Smid et al., 2020; Strobach & Karbach, 2021;
Traut et al., 2021). From a theoretical perspective, we thereby providemore systematic evidence for com-
pensation (rather thanmagnification accounts) of process-based cognitive trainings.

On the other hand, our findings are in contrast to previous studies reporting larger benefits for
younger children or no effects of age (e.g., Cao et al., 2020; Cepeda et al., 2001; Kassai et al., 2019;
Scionti et al., 2020; Wass et al., 2012) and suggest that, after accounting for baseline performance,
training benefits are larger in older children. This aligns with previous research showing that the neu-
ral underpinnings of EFs—most important, the prefrontal cortex—continue to undergo structural and
synaptic changes during late childhood and subsequent developmental stages (Best & Miller, 2010;
Davidson et al., 2006; Diamond, 2013). Similarly, EF continues to develop and become more distinct
across childhood (Karr et al., 2018) and certain components (e.g., switching) may only fully mature
later in life (Garon et al., 2008; Müller & Kerns, 2015). Relatedly, previous research also shows that
other key cognitive abilities—such as metacognitive skills—develop incrementally with schooling
and are more developed by the end of middle childhood (Schneider & Lockl, 2008; Schneider &
Löffler, 2016). Increases in metacognition facilitate learning across different school subjects (e.g.,
Dimmitt & McCormick, 2012; McCormick, 2003; Schneider, 2008; Smortchkova & Shea, 2020), and
it is possible that they also bolster training benefits in older children. From a developmental perspec-
tive, our findings thereby suggest that training benefits are maximized when children’s cognitive abil-
ities are malleable, the underlying cognitive and neural systems are sufficiently developed, and the
training occurs during an appropriate developmental stage that favors improvements.

Are training effects interpreted differently when compared with active versus passive controls?

To control for potential benefits of engaging in cognitively stimulating activities, participants’ expec-
tations, andother placeboeffects, includingan active control grouphas become thegold standard in cog-
nitive training research. Yet, including active controls is also more resource- and time-consuming
compared with passive controls, and it currently remains debated whether the type of control group
actually affects results or the interpretation of training efficacy (e.g., Au et al., 2020). So far, this issue
has mostly been examined with meta-analytical approaches between studies, with those focusing on
updating reporting that benefits seem larger when comparing training effects with passive controls
(Melby-Lervåg & Hulme, 2013; Sala & Gobet, 2017; Schwaighofer et al., 2015), whereas meta-analyses
targeting multiple EFs did not find differences between the two control types (Au et al., 2020; Scionti
et al., 2020).

With the current study, we provide the first directly comparable within-study evidence that aligns
with latter meta-analyses, demonstrating similar patterns of results between active and passive
control groups (Au et al., 2020; Scionti et al., 2020). Although active controls present many method-
ological advantages, such findings can be highly relevant for the efficient allocation of resources and
time in future training studies. They suggest that interpretation of training benefits might not differ
when training groups are compared with a passive control group versus an active control group that
participated in a cognitively rather low-demanding activity. Depending on the specific study focus,
therefore, for many studies it may be more ethical either to compare cognitive trainings with passive
controls that are on waiting lists and can participate in the training at a later time or to compare
trainings with active control interventions that are more engaging and may better promote children’s
development while allowing to disentangle specific effects of the different interventions.
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Implications of the current findings

Looking at the important number of cognitive training studies that have been published over the
past decades suggests that, in general, researchers have been rather optimistic that these interven-
tions benefit task performance and children’s development in a broader context. Yet, more recent lit-
erature has questioned the efficacy of how EFs currently are assessed and trained (e.g., Doebel, 2020;
Perone et al., 2021). Overall, the current data align with such skepticism, showing that when perfor-
mance on three EF components was trained under very similar and comparable conditions, only one
training (i.e., updating) led to specific improvements. Importantly, even this training did not improve
performance on supposedly related EF tasks (i.e., switching and inhibition), which aligns with current
research showing little evidence for far transfer of EF task training (e.g., Diamond & Ling, 2016; Kassai
et al., 2019; Perone et al., 2021). Thus, it is questionable how and why such training approaches should
lead to broader improvements and generalize to everyday relevant outcomes such as school achieve-
ment, behavioral regulation, and attentional control. Although our study does not allow concluding
whether task-specific improvements would persist over time or affect any everyday outcomes, the
current findings strongly dampen the enthusiasm toward repeated single-task cognitive training
interventions and urge for new, more efficient, and more naturalistic approaches.

This is important because for children training interventions are typically carried out in school or
child-care facility. Therefore, they take away from crucial time spent on the educational curriculum
and other valuable activities that may benefit children’s development such as engaging in physical
exercise, artistic activities, and mindfulness (for meta-analyses, see Takacs & Kassai, 2019) or in pro-
grams providing new strategies to bolster self-regulation, social, and other skills (e.g., McClelland &
Tominey, 2015; Petersen, 1995). This seems even more relevant for atypically developing or at-risk
populations, which may need support the most and, unfortunately, can least afford to spend time
and resources on interventions that currently lack systematic evidence to promote children’s develop-
ment. Taken together, we argue that it is crucial for future research to thoroughly examine whether
and how different intervention approaches can lead to broader long-lasting improvements in chil-
dren’s everyday outcomes.

In this context, Doebel (2020) and Perone et al. (2021) presented inspiring new conceptual models
of EF and how its development might be fostered. They questioned the validity of the current modular
conceptualization of EF and whether it is useful to train performance on these modules. Instead, they
suggested that future interventions should target children’s specific goals by considering children’s
prior knowledge, beliefs, values, and more as a dynamic ensemble that allows for momentary behavior
to unfold. For example, if a child should learn not to hit another child who took his or her toy, modular
task training (e.g., of inhibition) may be rather inefficient. Instead, it may be more useful to build on
the child’s previous experiences such as expecting that hitting will lead to punishment, having expe-
rienced how it feels to be hit by someone, preferring to maintain the friendship with the other child,
and more (see Doebel, 2020). Similarly, providing children with contextual multilevel information
may help them to link specific goals to environmental cues (e.g., asking how the child feels at the
moment, explaining why the other child may have taken the toy, providing a context that allows
for the conflict to be solved; see Perone et al., 2021). Together, by strengthening the association
between goals, cues, and contextual information rather than training modular task performance, more
comprehensive goal-oriented interventions may be better suited for helping children to learn and
reproduce the target behavior and thereby ultimately bolster development in real-life contexts.

Limitations and outlook

Although the current study provides important systematic insights into the (in)efficacy of EF train-
ings and thereby may guide future research toward more integrative and more ecological assessment
and training of EF, it also is important to highlight its limitations. One methodological shortcoming is
that the current study did not include any follow-up or ecological measures of EF. Besides examining
whether training benefits lasted across time, a follow-up would further allow evaluating training-
specific versus general effects of the interventions. Yet, because we found training-specific perfor-
mance improvements at posttest for only one EF task (i.e., updating), we are skeptical that this or
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similar training approaches would benefit children across longer periods of time or that they would
improve performance on more ecological EF measures or in real-life contexts (see Diamond & Ling,
2016; Kassai et al., 2019; Perone et al., 2021).

Another limitation is that baseline performance levels varied between EFs. For example, updating
and switching performances were rather low. Although this may partially be due to our choice of out-
come measures, children’s performance may also have been affected by the rather low number of tri-
als to assess each EF. In contrast, baseline performance was rather high for inhibition. Although it was
sufficiently low at the first training session to leave room for potential improvements, high baseline
performance may be particularly challenging for training studies, as supported by our finding that
training benefits were largest when baseline performance was lowest.

An important conceptual limitation of the current study as well as other training studies is that they
typically do not allow us to concludewhy one EFmay show larger performance benefits. It could be that
certain EFs simply are more trainable than others and allow increasing existing resources. However, it
could also be that because of how EFs are typically assessed, it may be easier to add new resourceswhen
performing certain tasks (e.g., discovering strategies such as rehearsing spatial locations of previous
stimuli before onset of the next stimulus in updating tasks), whereas thismay bemore difficult for other
tasks (e.g., inhibiting the impulse to respond after stimulus onset in inhibition tasks).

A final limitation is that correlations between pre- and posttest measures of the same EF were
rather low. One possible explanation for this may be that whereas at pretest all children were rela-
tively comparable, at posttest children had participated in different interventions and thus may have
approached certain tasks differently. This also suggests that, besides training-specific effects, other
mechanisms—such as task novelty, familiarity, motivation, and fatigue—may have affected posttest
performance, which further illustrates issues with current approaches to assess and train EFs.
Conclusion

Our study represents thefirst systematic and comprehensive examination thatdirectly compared the
trainability of the three core EF components across the entire primary school age range using latent
change score modeling. It demonstrates that when performance on updating, switching, and inhibition
tasks is trained under similar conditions within a single group of children, only updating performance
showed training-specific improvements. In terms of potential transfer effects, it underlines that there
is currently no systematic evidence for transfer of improvements to nontrained EF tasks. Such findings
question how likely it is that classical task paradigm trainings can lead to improvements in even broader
outcomes of EF in everyday contexts. Furthermore, taken togetherwith other studies, the findings illus-
trate that the current conceptualization of EF and how it develops is still incomplete (for similar views,
see Doebel, 2020; Perone et al., 2021). A better understanding of how EF should be assessed and concep-
tualized throughout childhood is necessary before future researchwill be able to explore new interven-
tions supporting children’s real-life behaviors that rely on EF.

In terms of predictors of improvements, our results show that performance improvements are lar-
gest for children that are older but still have relatively low EF performance. This provides evidence for
opposite yet complementary mechanisms of baseline performance and age, thereby supporting both
compensation accounts as well as developmental theories of EF and underlining the importance of
accounting for multiple predictors simultaneously. Finally, our findings show that the efficacy of a
cognitive training is similar when comparing training groups with active versus passive controls. In
certain situations, therefore, it may be more ethical to use passive controls or other interventions that
are more likely to benefit children’s development than the typical active control paradigms.
Data availability
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