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Abstract

There has been considerable interest in addressing the problem of unifying distributed analyses into a single
coherent inference, which arises in big-data settings, when working under privacy constraints, and in
Bayesian model choice. Most existing approaches relied upon approximations of the distributed analyses,
which have significant shortcomings—the quality of the inference can degrade rapidly with the number of
analyses being unified, and can be substantially biased when unifying analyses that do not concur. In
contrast, recent Monte Carlo fusion approach is exact and based on rejection sampling. In this paper, we
introduce a practical Bayesian fusion approach by embedding the Monte Carlo fusion framework within a
sequential Monte Carlo algorithm. We demonstrate theoretically and empirically that Bayesian fusion is more
robust than existing methods.
Keywords: Bayesian inference, distributed data, fork-and-join, Langevin diffusion, sequential Monte Carlo

1 Introduction

There has recently been considerable interest in developing methodology to combine distributed
statistical inferences, into a single (Bayesian) inference. This distributed scenario can arise for a
number of practically compelling reasons. For instance, it occurs in large data settings where, to
circumvent the memory constraints on a single machine, we split the available data set across C
machines (which we term cores) and conductC separate inferences (Scott et al. 2016). Other mod-
ern instances appear when working under confidentiality constraints, where pooling the under-
lying data would be deemed a data privacy breach (e.g., Yıldırım & Ermiş 2019), and in model
selection (Buchholz et al. 2019). More classical instances of this common scenario appear in
Bayesian meta-analysis (see, e.g., Fleiss 1993; Smith et al. 1995), and in constructing priors
from multiple expert elicitation (Berger 1980; Genest & Zidek 1986).
In particular, in this article, we are interested in finding a sample approximation of the following

d-dimensional product-pooled target density (which we term the fusion density):

f (x) ∝ f1(x) . . . fC(x). (1)

Here x ∈ Rd, and fc for c ∈ {1, . . . , C} represent the C densities up to a normalising constant
(which we term subposteriors) which we wish to unify—in what we term the fusion problem.
For typical Bayesian problems, x is our parameter space, and fc can be thought of as the poster-

ior distribution from a Bayesian analysis of the data on the cth core (on a parameter space shared
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by all the subposteriors). If an uninformative prior is specified in the analysis, then the fusion dens-
ity is simply the posterior given all data. For more general specifications of the prior, a minor ad-
justment of Equation (1) is required (e.g., by using fractional priors on each subposterior). More
specifically, if the prior is denoted as π(x), the prior on each subposterior can be chosen as π(x)ac

where ac ∈ (0, 1),
∑C

c=1 ac = 1. Furthermore, we have the cth subposterior proportional to fc(x) =
lc(x)π(x)ac where lc(x) is the likelihood function for the model parameter x based on the samples in
the cth subdataset. For our purposes, we assume any Bayesian analysis on each core is complete,
and we have access to a sample approximation of each subposterior (obtained by, e.g., conducting
MCMC on each core). We further assume that we are able to evaluate each fc point-wise.
Specific applications, such as those we used to introduce the fusion problem, have a number of

specific constraints and considerations unique to them. For instance, in the large data setting par-
ticular consideration may be given to latency and computer architectures (Scott et al. 2016),
whereas in the confidentiality setting of Yıldırım and Ermiş (2019) one may be constrained in
the number and type of mathematical operations conducted. Indeed, the majority of the current
literature addressing the fusion problem has been developed to address specific applications.
Our focus in this paper will not concern any particular application, but rather on methodology
for the general fusion problem, which in principle could be applied and adapted to the statistical
contexts we describe. Some general discussion on particular applications is given in Section 3.7.
The methodologies proposed in the literature to address the fusion problem are mostly approxi-

mate, often supported by underpinning theory which ensures their limiting unbiasedness in an ap-
propriate asymptotic limit. While these methods are often computationally efficient and generally
effective, it is generally difficult to assess the extent of the biases introduced by these methods, and
equally difficult to correct for these biases. One of the earliest, and most widely used method for
dealing with the fusion problem is the Consensus Monte Carlo (CMC) method (Scott 2017; Scott
et al. 2016). This method weights samples from individual subposteriors in a way which would be
completely unbiased if each subposterior was indeed Gaussian. This is attractive in the large data
context which motivated their work. On the other hand, outside the Gaussian context CMC can
be very biased (Srivastava et al. 2016; X. Wang et al. 2015). An alternative method involving ag-
gregation techniques based on Weierstrass transforms to each subposterior was proposed in
X. Wang and Dunson (2013). In comparison to CMC, the so-calledWeierstrass rejection sampler
(WRS) is computationally more expensive, although it tends to produce less biased results in the
context of non-Gaussian subposteriors. We shall use these two methods as benchmarks to com-
pare our methodology.
Much of the existing approximate literature has been focused on distributed large data settings,

and as a consequence there has been particular attention on developing embarrassingly parallel
procedures, where communication between cores is limited to a single unification step. Often
termed as divide-and-conquer approaches (although strictly speaking fork-join approaches), re-
cent contributions include Neiswanger et al. (2013) who construct a kernel density estimate for
each subposterior to reconstruct the posterior density. Other approaches which construct approx-
imations directly from subposterior draws include Minsker et al. (2014), Srivastava et al. (2016),
X. Wang et al. (2015), Stamatakis and Aberer (2013), Agarwal and Duchi (2011), Neiswanger
et al. (2013), Xue and Liang (2019) and X.Wang and Dunson (2013). Alternative nonembarrass-
ingly parallel approaches are discussed extensively in Jordan et al. (2018) and Xu et al. (2014).
Within a hierarchical framework Rendell et al. (2018) (and subsequently Vono et al. 2019) intro-
duce a methodology in which a smoothed approximation to Equation (1) can be obtained if in-
creased communication between the cores is permitted.
In contrast to approximate methods, the Monte Carlo fusion (MCF) approach recently intro-

duced by Dai et al. (2019) provides a theoretical framework to sample independent draws from
Equation (1) exactly (without any form of approximation). MCF is based upon constructing a re-
jection sampler on an auxiliary space which admits Equation (1) as a marginal. However, unlike
approximate approaches there are considerable computational challenges with MCF. In particu-
lar, the scalability of the methodology in terms of the number of subposteriors to be unified, in-
creasing dis-similarity in the subposteriors, and the dimensionality of the underlying fusion
target density, all inhibit the practical adoption of themethodology. The challenge that we address
successfully in the present paper is to devise a methodology which shares the consistency proper-
ties of MCF while sharing the scalability behaviour of the approximate alternatives.
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In this paper, we substantially reformulate the theoretical underpinnings of the auxiliary con-
struction used in Dai et al. (2019) to support the use of scalable Monte Carlo methodology.
There are a number of substantial and novel contributions:

• We show that it is possible to sample fromEquation (1) bymeans of simulating from the prob-
ability measure of a forward stochastic differential equation (SDE).

• Based upon the SDE formulation, we further develop a sequential Monte Carlo (SMC) sam-
pler for Equation (1), in a methodology which we term Bayesian fusion (BF), and which in-
herits SMC consistency properties (Del Moral 2004; Kunsch 2005).

• Wedevelop extensive theory to show that BF is robust with increasingC, and in settingswhere
the subposteriors lack similarity with one another (which is common in many practical
Bayesian settings). The gain of BF on robustness is at the cost of a limited number of extra
communications between cores, while the existing methodologies require a single
communication.

• For practitioners we provide practical guidance for setting algorithm hyperparameters, which
will (approximately) optimise the efficiency of our approach.

• Finally, we provide extensive pedagogical examples and real-data applications to contrast our
methodology and scaling with existing approximate and exact approaches.

In the next section, we present the theory that underpins BF, together with methodology and
pseudo-code for its implementation in Section 2.1. We provide guidance on implementing BF in
Section 3, which includes selection of user-specified parameters in Sections 3.1 and 3.2, studies
of the robustness of the algorithm with respect to how similar the subposteriors are in Sections
3.3 and 3.4, and extensive discussion of practical considerations in Sections 3.5, 3.6, and 3.7.
Section 4 studies the performance of BF in a number of real data set applications. We conclude
in Section 5 with discussion and future directions. We suppress all proofs from the main text,
which are instead collated in the appendices. The appendices also include some discussion of
the underlying diffusion theory and assumptions (see online supplementary material, Appendix
A), theory to support implementations for distributed environments in the online
supplementary material, Appendix D, and discussion on the application of the methodology to
large data settings in the online supplementary material, Appendix E, and are referenced as appro-
priate in the main text. Online supplementary material, Appendix G, studies the performance of
our methodology in comparison to competing methodologies for idealised models and a synthetic
data set.

2 Bayesian fusion

A simple approach for finding a sample approximation of Equation (1) is to note that if we
sampled the random variables X(c) ∼ fc for c ∈ {1, . . . , C}, then conditional on X(1) = · · · = X(C),
X(1) has density f as given in Equation (1). Of course, in practice this approach is naive as the con-
ditioning event is of probability 0.
An extension of this naive approach would be to instead simulate C independent stochastic

processes initialised at X(1), . . . , X(C) respectively at time 0, with invariant densities f1, . . . , fC, re-
spectively. Now, we would have a sample from Equation (1) if at some point in time these C in-
dependent stochastic processes coincided with one another. Of course, this is again too rare an
event for the resultant methodology to be practical.
TheMCF approach ofDai et al. (2019) is to instead simulate theseC stochastic processes in such

a way that they coalesce at a fixed time T. Coercing the processes to merge changes the joint dis-
tribution of the processes at any time in a fundamental way. In particular, note that they are no
longer independent. As such, a key aspect of the MCF approach is to construct the C stochastic
processes in such a way that the marginal distribution at the coalescence time T is the fusion dens-
ity of Equation (1). Sampling from this object is not possible directly, and so Dai et al. (2019) con-
struct an elaborate rejection sampler. However, in common with many rejection-sampling
schemes, there are practical limitations to the MCF approach: in our setting this is robustness
with increasing numbers of cores, and the level of (dis-)similarity of the subposteriors.
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To devise a more practical version of the rejection-sampling-basedMCF, it is natural to replace
it with a sequential importance scheme which steps through a sequence of neighbouring distribu-
tions between the initial proposal distribution and the target fusion density. In the case of MCF
this is not direct, but is in essence what we achieve in this paper with the BF approach we intro-
duce. Here, our sequence of neighbouring distributions will be the joint distribution of our C de-
pendent stochastic processes at times in-between 0 and the coalescence time T. The challenge in
this paper is to find tractable dynamics for these C stochastic processes. Our approach is to first
derive tractable dynamics for a baseline case (which we term the proposal measure, denoted by
P) where each of the C stochastic processes is Brownian motion before conditioning, and correct
for this using suitable importance weights to find the fusion measure, F.
To introduce the fusion measure, F, we first present some notation and terminology. We term

the proposal measure,P, to be the probability law induced byC interacting d-dimensional parallel
continuous-time Markov processes in [0, T], where each process X(c)

t , c ∈ {1, . . . , C} is described
by the following d-dimensional SDE,

dX(c)
t =

�Xt − X(c)
t

T − t
dt + dW (c)

t , X(c)
0 := x(c)0 ∼ fc, t ∈ [0, T], (2)

where {W (c)
t }Cc=1 are independent Brownian motions, and �Xt := C−1∑C

c=1 X
(c)
t . Typical realisations

of the proposal measure are denoted as X := {�xt, t ∈ [0, T]}, where �xt := x(1:C)t is the
dC-dimensional vector of all processes at time t, with one such realisation illustrated in Figure 1a.
Interaction of the C processes in a realisation of X occurs through their average at a given time

marginal (�Xt), and note that we have coalescence at timeT (x(1)T = · · · = x(C)T = : y) which shown via
the Doob h-transforms (Rogers &Williams 2000, Section IV.6.39) in the proof of Theorem 1.We
describe in detail in Section 2.1 how to simulate from P, but note that (critically) initialisation of
the proposal measure at t = 0 only requires independent draws from theC available subposteriors.
Now we define the fusion measure, F, to be the probability measure induced by the following

Radon–Nikodým derivative,

dF
dP

(X) ∝ ρ0(�x0) ·
∏C
c=1

exp − ∫
T
0 ϕc(x

(c)
t ) dt

{ }[ ]
, (3)

where {x(c)t , t ∈ [0, T]} is a Brownian bridge from x(c)0 to x(c)T ,

ϕc(x) :=△fc(x)/2fc(x), (4)

where △ is the Laplacian operator, and

ρ0 := ρ0(�x0) = exp −
∑C
c=1

‖x(c)0 − �x0‖2
2T

{ }
∈ (0, 1], where �x0 = C−1

∑C
c=1

x(c)0 . (5)

We now establish that we can access the fusion density f , by means of the temporal marginal of F
given by common value of theC trajectories at time T. First, we introduce the following regularity
assumptions. Let ∇ be the usual gradient operator.

Assumption 2.1 ∇ log fc(x) is once continuously differentiable.

Assumption 2.2 ϕc(x) is bounded below by some Φc ≤ inf {ϕc(x) : x ∈ Rd} ∈ R.

Theorem 1. Under Assumptions 2.1 and 2.2, with probability 1 we have that under the
fusion measure, F, the ending points of these parallel processes have a
common value y := x(1)T = · · · = x(C)T which has density f .

4 Dai et al.
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Proof. See online supplementary material, Appendix A. □

2.1 Simulation of f by means of simulating from the fusion measure F

As suggested by Theorem 1we could simulate from the desired f in Equation (1) by simulatingX ∼
F and simply retaining its time T marginal, y. However, direct simulation of Fwill typically not be
possible, and so we now outline general methodology to simulate F indirectly (and so by extension
f ). In particular, we show that we can simulate from F by means of a rejection sampler with pro-
posalsX ∼ Pwhich are acceptedwith probability proportional to the Radon–Nikodým derivative
given in Equation (3).
For the purposes of the efficiency of themethodology wewill subsequently develop, wewill con-

sider the simulation of P and F at discrete time points given by the following auxiliary temporal
partition:

P{t0, t1, . . . , tn : 0 = : t0 < t1 < · · · < tn := T}, (6)

noting that ultimately we only require the time Tmarginal corresponding to the nth temporal par-
tition. For simplicity we suppress subscripts when considering the Markov processes at times co-
inciding with the partition, denoting x(c)tj as x(c)j , and �xtj as �xj. We further denote Δj := tj − tj−1.
We begin by considering simulating exactlyX ∼ P at the points given by the temporal partition,

P. To do so, note that the SDE given in Equation (2) is linear and therefore describes a Gaussian
process, and its finite-dimensional distributions are explicitly available.

Theorem 2. If X satisfies Equation (2) then under the proposal measure, P, we have

(a) For s < t

�Xt ∣ (�Xs = �xs) ∼ N ( �Ms,t, Vs,t), (7)

where N is a multivariate Gaussian density, �Ms,t = (M(1)
s, t, . . .M

(C)
s, t ) with

M(c)
s, t =

T − t
T − s

x(c)s +
t − s
T − s

�xs, (8)

and where Vs,t = Σ⊗ Id×d with Σ = (Σij) being a C × C matrix given by

Σii =
(t − s) · (T − t)

T − s
+

(t − s)2

C(T − s)
, Σij =

(t − s)2

C(T − s)
. (9)

Figure 1. Left plot shows a typical realisation of X (C interacting Markov processes), whereas the right plot shows
the d(nC + 1)-dimensional density corresponding to themarginal ofX given by the temporal partitionP. (a) Typical X.
(b) Typical X with temporal partition P.
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(b) For every c ∈ {1, . . . , C}, the distribution of {X(c)
t , s ≤ u ≤ t} given endpoints Xc

s = x(c)s and
X(c)

t = x(c)t is a Brownian bridge, so that

Xc
u ∣ (x(c)s , x(c)t ) ∼ N (t − u)x(c)s + (u − s)x(c)t

t − s
,
(u − s)(t − u)

t − s
Id×d

( )
. (10)

Proof. See online supplementary material, Appendix A. □

To simplify the presentation of the methodology, we now restrict our attention to the
d(nC + 1)-dimensional density of the C d-dimensional Markov processes at the (n + 1) time mar-
ginals given by the temporal partition under P. An illustration of this is given in Figure 1b. As a
consequence of Theorem 2 we have

h(�x0, . . . , �xn−1, y) ∝
∏C
c=1

[fc(x
(c)
0 )] ·

∏n
j=1

N (�xj; �Mj, V j), (11)

where to simplify notation we have set

�Mj := �Mtj−1,tj and V j := V tj−1,tj . (12)

By factorising Equation (3) according to the temporal partition P, the equivalent
d(nC + 1)-dimensional density under F is simply

g(�x0, . . . , �xn−1, y) ∝ h(�x0, . . . , �xn−1, y) ·
∏n
j=0

ρj, (13)

where ρ0 is as given in Equation (5), for j ∈ {1, . . . , n},

ρj := ρj(�xj−1, �xj) =
∏C
c=1

EWj,c exp −∫tjtj−1 (ϕc(x
(c)
t ) − Φc) dt

{ }[ ]
∈ (0, 1], (14)

and whereWj,c is the law of a Brownian bridge {x(c)t , t ∈ (tj−1, tj)} from x(c)j−1 to x(c)j , andΦc is a con-
stant such that infx ϕc(x) ≥ Φc > −∞ (see Assumption 2.2).
As we are interested in sampling from the fusion density f (corresponding to the timeTmarginal

of the d(nC + 1)-dimensional density g), it is sufficient to simulate g rather than the more compli-
cated objectX ∼ F. As suggested by Equation (13), simulation from g can be achieved by rejection
sampling by first simulating a proposal from the density h, and accepting this proposal with prob-
ability equal to

∏n
j=0 ρj .

Simulating a proposal from h is made possible by Theorem 2 and Equation (11). In particular,
we first simulate a single draw from each subposterior and compose them to obtain a proposal at
the time 0 marginal of the temporal partition P (in particular, �x0 := x(1:C)0 where x(c)0 ∼ fc for
c ∈ {1, . . . , C}). Here we assume we have access to independent realisations from each subposte-
rior. As discussed in the introduction, we may naturally have only sample approximations of each
subposterior obtained by some other scheme (e.g.,MCMC).We reserve discussion of this scenario
to Section 3.6 following the introduction of our (more idealised) methodology here. Our initial
draw �x0 := x(1:C)0 can then be iteratively propagated n-times using Gaussian transitions (as given
in Equation (11)) to compose the entire draw from h.
Now, considering the computation of the acceptance probability of the proposal, note that al-

though ρ0 is computable, direct computation of ρ1, . . . , ρn is impossible as it requires the evalu-
ation of path integrals of functionals of Brownian motion. However, it is sufficient for our
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purposes to construct unbiased estimators of these intractable quantities. In particular, we do this
by first introducing ρ̃j for j ∈ {1, . . . , n} where

ρ̃j(�xj−1,·, �xj,·) := ρ̃j =
∏C
c=1

Δκc
j · e−U(c)

j Δj

κc! · p(κc |Rc)

∏κc
kc=1

(
U(c)

j − ϕc
(
x(c)χc,kc

))⎛⎝ ⎞⎠. (15)

Here Rc, U
(c)
j , κc, p(κc |Rc), and χc,i for c ∈ {1, . . . , C} are additional notations we motivate and

introduce in the next two paragraphs.
Rc is the layered Brownian bridge construction of Beskos et al. (2008), which can be thought of

as a discretisation of the random variable

sup
t∈[tj−1,tj]

x(c)j−1 + x(c)j

2
− x(c)t

∣∣∣∣∣
∣∣∣∣∣

for t in the range [tj−1, tj] thus giving a measure of the extent to which this particular Brownian
path meanders away from the average of its endpoints. Beskos et al. (2008) provide efficient algo-
rithms for simulating from Rc as well as the Brownian path conditional on Rc. Conditional on Rc,
an upper boundU(c)

j for ϕc(x
(c)
t ) can be identified, i.e., the variableU(c)

j is chosen as a deterministic

function of Rc and such that ϕc(x
(c)
t ) ≤ U(c)

j for all x(c)t ∼ Wj,c |Rc. Note that the variable U(c)
j is a

random value in the sense that it depends on Rc, which is actually random.
We further let κc be a nonnegative integer-valued random variable with probabilities condition-

al on Rc denoted by p( · |Rc). A full discussion of choosing p(κc |Rc) is given in the online
supplementary material, Appendix B, however a common choice is that of a Poisson distribution
with parameter Δj(U

(c)
j − Φc) as that considerably simplifies Equation (15). Finally,

{χ1, . . . , χκc }
i.i.d.
∼ U[tj−1, tj].

The precise construction of Equation (15) can be found in the online supplementary material,
Appendix B, and in particular its simulation is possible by means of Algorithm 4. Returning to
finding unbiased estimators of ρ1, . . . , ρn, then this is established by the following theorem:

Theorem 3. For every j ∈ {1, . . . , n}, ajρ̃j is an unbiased estimator of ρj, where
aj := exp {

∑C
c=1 ΦcΔj}.

Proof. See online supplementary material, Appendix B. □

Now that we have found unbiased estimators for ρ1, . . . , ρn and we have an implementable re-
jection sampler for f in Equation (13). In particular, upon simulating a proposal from h we can
simply accept the proposal with probability

∏n
j=0 ajρ̃j ∈ (0, 1]. The validity of using ajρ̃j in place

of ρj follows from Theorem 3 together with of Beskos and Roberts (2005, Prop. 1): the algorithm
is statistically equivalent to the original construction (i.e., outputs from both algorithms have iden-
tical probabilities), and there is no detrimental effect from the use of the estimators (such as de-
creased acceptance probabilities, or inflated variance).
Although we could now proceed and implement a rejection sampler, a rejection-sampling ap-

proach can suffer from a number of inefficiencies in settings we are typically interested in. For in-
stance, the acceptance probability in Equation (14) will typically decay geometrically with
increasing C as each of the terms in the product of Equation (14) is bounded by 1. As another ex-
ample of an inefficiency, note that Equation (14) will typically decay exponentially with increasing
T. Indeed, a simplified variant of this approach termedMCFwas introduced byDai et al. (2019) (it
was based upon methodology developed from a substantial simplification of Theorem 2 without
the auxiliary temporal partition, P), and does suffer from these (and other) practical shortcom-
ings. Further discussion of the MCF approach is given in the online supplementary material,
Appendix G, and contrasted with the methodology we develop in this section.
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An immediate extension of the rejection-sampling approach of Dai et al. (2019) would be an
importance sampler, in which importance weights are assigned to each of the proposals from h
corresponding to the acceptance probability. This would however ultimately suffer from similar
inefficiencies to the rejection-sampling approach manifested by variance in the importance
weights. A drawback of both rejection and importance sampling approaches, are the computa-
tional complications from the simulation of diffusion bridges (required in Equation (15)) which
have computational cost which scales exponentially rather than linearly with T. Indeed, this is
one of the motivations for introducing the temporal partition, P (which is fully discussed and spe-
cified in Section 3.2).
The key novelty of Theorem 2 is that the auxiliary temporal partition P which has been

introduced allows g to be simulated using an SMC approach. This mitigates the robustness
drawbacks of the MCF approach and allows us to leverage the results and approaches avail-
able within the SMC literature. In particular, and as suggested by Equation (13), one could
initialise an algorithm by simulating N particles from the time 0 marginal of h in Equation
(13), �x0,1, . . . , �x0,N (recalling that �x0 := x(1:C)t , where for c ∈ {1, . . . , C} x(c)t ∼ fc), and assign-
ing each an un-normalised importance weight w′

0,· := ρ0(�x0,·). This initial particle set (which
constitutes an approximation of the time 0 marginal of g in Equation (13)), can then be it-
eratively propagated n times by interlacing Gaussian transitions of the particle set over the
jth partition of P (with mean vector �Mj and covariance matrix V j as given in Equation (12)),
and updating the particle set weightings by a factor of ajρ̃j(�xj−1,·, �xj,·). The weighted particle
set obtained after the final nth iteration of the algorithm (which is an approximation of the
time T marginal of g) can then be used as a proxy for the desired f (as supported by
Theorem 2).
We term the SMC approach outlined above BF and present pseudo-code for it in

Algorithm 1. Note that in this setting (unlike the rejection-sampling setting) we need to further
consider the construction of the unbiased estimator for ρj and its variance, which is fully consid-
ered in the online supplementary material, Appendix B.
Algorithm 1 outputs a weighted particle set at the end of each iteration, which are then re-

normalised. In common with much of the SMC literature, we monitor for weight degeneracy
by monitoring the particle weights, and if the estimated effective sample size (ESS) falls below
a lower user-specified threshold then resampling. For our BF approach we adopted the widely
used ESS convention of (Kong et al. 1994), and employed a multinomial resampling strategy
(Gordon et al. 1993) (although, the resampling step can be modified to a variety of other strat-
egies common in SMC, such as those in Kitagawa 1996 and Doucet et al. 2001). Note that al-
though commonly used, the appropriateness of the ESS heuristic within SMC is disputed within
the literature, as it can give misleading or suboptimal results. As acknowledged in Kong et al.
(1994), ESS is only a loose approximation. (Elvira et al. 2022) pointed out that it could over-
estimate the theoretical ESS value under a small particle size. This means that improvement us-
ing integrand dependent metric could be achieved. Possible solutions were pointed out by Elvira
et al. (2022). Also, when comparing an importance sampling estimator with an estimator based
on i.i.d. sampling, the ESS criterion can judge the importance sampling estimator as inferior
when the opposite is true. Therefore, as suggested by Elvira et al. (2022), caution should be
used when interpreting results based on the ESS formula, which is outwith the scope of this
paper.
Note that re-normalisation in Algorithm 1 Step bi of the BF approach removes all contributory

components ofΦ1, . . . , ΦC from ajρ̃j(�xj−1,·, �xj,·), as aj is a constant for all particles and will be can-
celled out in the re-normalisation. This conveniently allows us to avoid the computation of
Φ1, . . . , ΦC, and so we only need to evaluate ρ̃j in Equation (15).
As suggested by Algorithm 1, the output can be used directly as an approximation for the

fusion density, f . The efficiency of the BF approach outlined in Algorithm 1 will depend crit-
ically on the user-specified time horizon T, and the resolution of P (and hence the number of
iterations required in the algorithm). In the following section, we provide guidance on se-
lecting these tuning parameters, together with additional practical guidance on
implementation.
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Algorithm 1 Bayesian Fusion Algorithm.

(a) Initialisation Step (j = 0):
(i) Input: (Un-normalised) subposteriors, f1, . . . , fC, number of particles, N, time horizon, T and set

t0 = 0.
(ii) For i in 1 to N,

A. �x0,i: For c in 1 to C, simulate x (c)
0,i ∼ fc. Set �x0,i := x (1:C)

0,i .
B. w′

0,i: Compute un-normalised weight w′
0,i = ρ0(�x0,i), as per Equation (5).

(iii) w0,·: For i in 1 to N compute normalised weight w0,i =w′
0,i/

∑N
k=1 w

′
0,k.

(iv) gN0 : Set g
N
0 (d�x0) :=

∑N
i=1 w0,i · δ�x0,i

(d�x0).
(b) Iterative Update Steps (j = j + 1) while tj−1 < T:

(i) Resample: If the ESS := (
∑N

i=1 w
2
j−1,i)

−1 breaches the lower user-specified threshold, then for i in 1 toN

resample �x j−1,i ∼ gNj−1, and set wj−1,i = 1/N.
(ii) tj: Set Δj as guided by, say, Remark 6 and set tj =min {T, tj−1 + Δj}.
(iii) For i in 1 to N,

A. �x j,i: Simulate �x j,i ∼ N (�x j−1,i; �M j,i, V j), where �M j,i and V j are computed using Theorem 2.
B. w′

j,i: Compute weight w′
j,i =wj−1,i · ρ̃j(�x j−1,i, �x j,i) as per Equation (15).

(iv) wj,·: For i in 1 to N compute normalised weight wj,i =w′
j,i/
∑N

k=1 w
′
j,k.

(v) gNj : Set g
N
j ( d�x j) :=

∑N
i=1 wj,i · δ�x j,i

( d�x j).

(c) Output: f̂ ( dy) := gNn ( dy) ≈ f (dy).

3 Theoretical underpinning and implementational guidance

In common with other fusion approaches, a key consideration of BF is the distributed nature
of the cores and respective subposteriors. For instance, in a distributed big-data setting the
data remains separated across the cores throughout, and communication between cores is
computationally expensive. Methods such as CMC (Scott et al. 2016), embarrassingly par-
allel MCMC (Neiswanger et al. 2013), and double-parallel Monte Carlo (Neiswanger et al.
2013) reduce communication to a single instance, whereas more recent approaches (e.g.,
Rendell et al. 2018; Vono et al. 2019) permit a limited number of communications in an
effort to reduce the level of approximation of Equation (1). Although the exact MCF ap-
proach of Dai et al. (2019) only requires a single instance of communication, our more ro-
bust (yet consistent) BF approach requires a limited number of further communications (in
total, n instances). As a consequence, efficiently implementing BF to ensure strong scalability
and robustness properties is critical, particularly in terms of the number of cores and dis-
crepancy between subposteriors.
To this end, in this section, we provide guidance on how to select the user-specified time horizon

(T) and an appropriate resolution of the auxiliary temporal partition (n and P). This is considered
in Sections 3.1 and 3.2, respectively. The robustness of this guidance is considered bymeans of two
extreme possible scenarios in Sections 3.3 and 3.4. Finally, in Sections 3.5–3.7, we provide further
practical guidance.
We begin in developing guidance for T and P (or n), by noting that Algorithm 1 is an SMC al-

gorithm for simulating the extended target density g in Equation (13), which is achieved by ap-
proximating successive temporal marginals of g (in particular, gNj ) by means of propagating
and re-weighting the previous temporal marginal (gNj−1). As such, it is natural to choose T, n
and P to ensure the discrepancy between the sequence of proposal and target distributions is
not degenerate, and so ESS is an appropriate quantity to analyse (see Kong et al. 1994). We
here use the term conditional effective sample size (CESS), following the convention of Zhou
et al. (2016):

CESSj :=
(
∑N

i=1 ρ̃j,i)
2∑N

i=1 ρ̃
2
j,i

, j = 1, . . . , n; CESS0 =
(
∑N

i=1 ρ0,i)
2∑N

i=1 ρ
2
0,i

, (16)
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where ρ0,i as per Equation (5). To develop concrete implementational guidance we consider and
analyse the idealised setting of posterior distributions of large sample size m. In particular,
throughout this section, we assume that the target density f is multivariate Gaussian with mean
vector a and covariance matrix m−1bI (for some b > 0), and each of the subposterior densities
fc(x) (c ∈ {1, . . . , C}) is also multivariate Gaussian but with mean vector ac and covariance matrix
m−1CbI, respectively. Note that we have a = C−1∑C

c=1 ac, and we will further reasonably assume
m > C > 1. To study the robustness of Algorithm 1 we further consider the quantity σ2a :=
C−1∑C

c=1 ‖ac − a‖2 which gives ameasure of what we term the subposterior heterogeneity (the de-
gree to which the individual subposteriors agree or disagree with one another).

3.1 Guidance on selecting T

Considering the selection of T note from Algorithm 1 that its influence appears solely in the initial
weighting given to each of theN particles in Equation (5) through ρ0. As such, we study the initial
CESS.

Theorem 4. Considering the initial CESS (CESS0), we have that asN � ∞, the following
convergence in probability holds:

N−1CESS0�
p
exp −

σ2ab
m

T
C

+
b
m

( )
·
T
C

+
2b
m

( )
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ · 1 +

Cb
Tm

( )2

1+
2Cb
Tm

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

−(C−1)d/2

.

Proof. See online supplementary material, Appendix C. □

Theorem 4 shows explicitly how CESS0 degrades as the level of subposterior heterogeneity (σ2a)
increases. To explore this dependency we introduce the following conditions which will allow us
to clearly identify regimes where CESS0 is well-behaved.

Condition 1 (SH(λ))

The subposteriors obey the subposterior homogeneity SH(λ) condition (for some constant λ > 0) if,
σ2a = b(C − 1)λ/m.

Condition 2 (SSH(γ))

The subposteriors obey the super subposterior heterogeneity SSH(γ) condition (for some constant
γ > 0) if, σ2a = bγ.
Note that Condition 1 is a very natural condition which would arise in many settings (e.g., if

(m/C)th of the data was randomly allocated to each subposterior then σ2a ∼ b/m × χ2C−1 and there-
by have mean b(C − 1)/m). Form/C large we would expect that for λ > 1 the subposteriors would
obey the SH(λ) condition with high probability. Whereas at the other end of the spectrum, the
SSH(γ) condition of Condition 2 captures the case where subposterior heterogeneity does not de-
cay with m.
Considering the initial CESS under Conditions 1 and 2 we establish the following corollary.

Corollary 1. If for some constant k1 > 0, T is chosen such that

T ≥
bC3/2k1

m
, (17)

then the following lower bounds on CESS0 hold:

10 Dai et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkac007/7008983 by guest on 20 February 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data


(a) If SH(λ) holds for some λ > 0, then

lim
N�∞

N−1CESS0 ≥ exp {− λk−21 − dk−21 /2}. (18)

(b) If SSH(γ) holds for some γ > 0, and T ≥ k2C1/2 (for some constant k2 > 0), then

lim
N�∞

N−1CESS0 ≥ exp {− γbk−11 k−12 − dk−21 /2}. (19)

Proof. See online supplementary material, Appendix C. □

Remark 1 (Choosing k1, k2)

We will use Corollary 1 to select appropriate choices for k1 and k2 to ensure that, with high prob-
ability, CESS0 exceeds a prescribed threshold. To do this we will need to compute estimates of b
from the population variance; λ, calculated from the variance of the subposterior means and
Condition 1; and σ2a, the variance of the subposterior means).
We begin by choosing ζ ∈ (0, 1) to be a lower bound on the initial ESS we would tolerate. Then,

(a) If SH(λ) holds, then to guarantee that N−1CESS0 > ζ , Equation (18) suggests choosing k1
such that exp (− (λ + d/2)k−21 ) = ζ , i.e., k1 = 1/

$$$$$$$$$$$$$$$$$$$$$
− log (ζ)/(λ + d/2)

√
.

(b) If SSH(γ) holds, then Equation (19) suggests choosing k1 and k2 such that

exp {− γbk−11 k−12 − dk−21 /2} = ζ (20)

for the ESSN−1CESS0 > ζ . Corollary 1 indicates that in the SSH(γ) setting T should be chos-
en such thatT ≥ max (bC3/2k1/m, k2C1/2). On the other hand, we do not wish to choose too
large a T as in Algorithm 1 the computational cost is driven by Step b, and here we want to
make both bC3/2k1/m and k2C1/2 small. As such, we set bC3/2k1/m = k2C1/2, i.e., we choose
k2 = bCk1/m. Substituting this into Equation (20), we then choose
k21 = (mγ/C + d/2)( − log ζ)−1.

In practice, preliminary runs of BF can be used to refine these initial choices.

Remark 2 (T)

Given k1 and k2, thenT can be chosen as per Equation (17) in the SH(λ) setting, or as per Corollary
1 if SSH(γ) holds. Choosing T as small as possible within this minimal guidance, minimises the
introduction of the additional communication and computation required in Algorithm 1 Step (b).

3.2 Guidance on selecting P
Having selected an appropriate T following the guidance of Corollary 1 and Remarks 1 and 2, we
are left with choosing the remaining user-specified parameters n andP (the resolution and spacing
of the auxiliary temporal partition), as required in Algorithm 1.We address this implicitly by con-
sidering how to choose the jth interval size (i.e., the interval (tj−1, tj]), which we do so by again
considering the CESS in Theorem 5.

Theorem 5. Let k3 and k4 be positive constants, and choose p(κc |Rc) to be a Poisson dis-
tribution with intensity [Δj ∫

tj
tj−1 (U

(c)
j − ϕc(x

(c)
t ))2 dt]1/2 in specifying ρ̃ in

Equation (15). If limΔj�0 is taken over sequences of Δj � 0 with

Δj ≤ Δ̃j :=min
b2k3C
m2(Eνj)

,
k4b2C
2dm2

( )1/2
{ }

, (21)
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where νj := C−1∑C
c=1 ‖x(c)j−1 − ac‖2 and the expectation E is taken conditional

on �xj−1, we have

lim
Δj�0

lim
N�∞

N−1CESSj ≥ e−k3−k4 , (22)

where limN�∞ N−1CESSj means convergence in probability.

Proof. See online supplementary material, Appendix C. □

Remark 3 (k3, k4)

Choosing ζ ′ ∈ (0, 1) to be a lower bound on the ESS we would tolerate, then we can choose k3 and
k4 such that e−k3−k4 = ζ ′.

Remark 4 (νj, Eνj)

In essence, νj in Theorem 5 describes the average variation of the C trajectories of the distribution
of their proposed update locations with respect to their individual subposterior mean (i.e.,
how different x(c)j−1 is from ac). Recalling that Algorithm 1 is coalescing C trajectories initialised
independently from their respective subposteriors to a common end point, then νj will largely be de-
termined by a combination of how close the interval is to the end point T, how large the interval
(tj−1, tj] we are simulating over is, and critically the degree of subposterior heterogeneity as deter-
mined by variation in theirmean. Although Eνj is not computable, it only depends on the distribution
of �xj−1 (at time tj−1), and so a natural estimator is Êνj =N−1∑N

i=1 (C
−1∑C

c=1 ‖x(c)j−1,i − ac‖2).
Remark 5 (Δj, Δ̃, n, P)

Recalling t0 = 0, and using the guidance for Êνj in Remark 4, and k3 and k4 in Remark 3, then fol-
lowing Theorem 5 we can iteratively approximate Δ̃ and so we recommend setting
tj =min {T, tj−1 + Δ̃j}. Thus, by a recursive argument we find n and specifyP. Of course, choosing
interval sizes (Δj = tj − tj−1) smaller than this guidance is possible (and may help computationally
in the simulation of ρ̃· as per Algorithm 4) but leads to an overall increased number of iterations
(and so increased communication between different cores) in Algorithm 1. Note that following
this guidance we have an irregular temporal mesh, P.

Remark 6 (P regularity)

In the case where second term on the RHS of Equation (21) is the smaller (e.g., whenC is large), the
guidance of Remark 5 results in a regular temporal mesh, P. Regular temporal meshes have prac-
tical and computational advantages, and behave well and robustly in the examples we have ex-
plored. For instance, for large data sets with observations randomly allocated to subposteriors
then subposterior heterogeneity will be small, and one would anticipate Eνj to be small and of
the order of O(m−1). Here, for algorithmic simplicity we can impose a regular mesh
(Δ := Δj = tj − tj−1 = (k4b2C/2dm2)1/2, ∀j), and so n = T/Δ.
Having established guidance for choosing T, n andP for BF, we now verify that these selections

lead to BF being robust to increasing data size (as measured by CESS). We do so by studying the
guidance in idealised settings for the posterior distribution under the SH(λ) and SSH(γ) conditions,
which we do in Sections 3.3 and 3.4, respectively. Note that we consider more substantial exam-
ples and comparisons with competingmethodologies in Section 4, and in Appendix G of the online
supplementary material. Following Remark 6, we further discuss the temporal regularity of the
mesh in Section 3.5.

3.3 Subposteriors with similar mean

We begin by examining the guidance for T and n in BF under the SH(λ) setting of Condition 1.
Recall this would be the most common setting of relatively homogeneous subposteriors (as
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characterised by variation in the subposterior mean), which would occur if for instance we were
able to randomly allocate approximately aCth of the available data to each subposterior. To do so
we consider the idealised scenario in which we wish to recover a target distribution f , which is
Gaussian with mean μ = 0 and variance σ2 =m−1, by applying Algorithm 1 to unify C subposte-
riors (fc, c ∈ {1, . . . , C}), which are Gaussian with mean μc = 0 and variance σ2c = Cσ2. In this ex-
ample we consider a range of data sizes from m = 1, 000 to m = 50, 000, with a fixed number of
subposteriors (C = 10), and using a particle set of sizeN = 10, 000. In implementing Algorithm 1
we use UE-b (Condition B.2) of the online supplementary material, Appendix B for simulating the
unbiased estimator in Step b(iii)B.
Here, we consider CESS0 and CESSj (j ∈ {1, . . . , n}) with increasing data size by first consider-

ing fixed choices for T and n (T = 0.005 and n = 5), then choosing a robust scaling of T but with
fixed n, and then robustly scaling T and n. This procedure is summarised in Remark 7, and the
results are presented in Figures 2a–2c.

Remark 7 (SH(λ) parameter setting)

We set the BF tuning parameters as follows:

1. In line with Remark 1, prior to setting T we determine a lower bound on the initial ESS we
would tolerate (ζ). Here, we conservatively chose ζN = exp ( − 2)N ≈ 0.2N. In this example,
λ ≈ 1 and d = 1, and so we set k1 = 1.

2. Now, following Remark 2 and Equation (17), and noting b = 1, we choose T = C3/2k1/m.
3. Prior to choosing a temporal partition, following Remark 3 we again choose a lower bound

on the CESS we would tolerate. Here, for simplicity we choose k3 = k4 = 1, and so
ζ ′N = exp (− 2)N ≈ 0.14N.

4. We can now set n andP following Remark 5. As per Remark 6, we use a regular partition. As
such, Δj = (k4b2C/2dm2)1/2 (i.e., n = T/Δj =O(C)).

Considering the results of fixing T and n in Figure 2a, it is clear in this regime that Algorithm 1
would lack robustness with increasing data size. Although CESS0 improves with increasing data
size as expected with increasingly similar subposteriors from Equation (5) of Theorem 2, this

(a) (b) (c)

(d) (e) (f)

Figure 2. CESS of Algorithm 1 with increasing data size in SH(λ) setting of Section 3.3 (a–c) and SSH(γ) setting of
Section 3.4 (d–f). Solid lines denote initial CESS (CESS0, following Algorithm 1 Step (a)). Dotted lines denote
averaged CESS in subsequent iterations of Algorithm 1 ((

∑n
j=1 CESSj )/n, following Algorithm 1 Step (b)).
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comes with drastically decreasing CESSj (as suggested by Theorem 5), which in totality would ren-
der the methodology impractical.
Scaling T following the above guidance immediately stabilises both CESS0 and CESSj in the

SH(λ) setting, making Algorithm 1 robust to increasing data size (as shown in Figure 2b).
Additionally scaling n substantively improves CESSj for all data sizes. In both Figures 2b and
2c the slightly decreased CESSj for small data sizes can be explained by random variation in the
simulation of the subposterior, which leads to slight mis-matching.

3.4 Subposteriors with dissimilar mean

Now we examine the guidance for T and n in BF under the SSH(γ) setting of Condition 2. Recall
this would be an extreme setting in which subposterior heterogeneity does not decay with data
size, m. To investigate this setting we consider recovering a target distribution f , which is
Gaussian with mean μ = 0 and variance σ2 =m−1, by using Algorithm 1 to unify C = 2 subposte-
riors with mean μc = ±0.25 and variance σ2c = 2σ2. In this scenario as data size increases the sub-
posteriors have increasingly diminishing common support, although our measure of heterogeneity
is fixed with σ2a = 0.0625. In this example we consider a range of data sizes from m = 250 to
m = 2, 500, and use a particle set of size N = 10, 000. We again use UE-b (Condition B.2) of
the online supplementary material, Appendix B for simulating the unbiased estimator in Step
b(iii)B when implementing Algorithm 1.
As in the SH(λ) setting of Section 3.3, for this SSH(γ) setting we consider CESS0 and CESSj

(j ∈ {1, . . . , n}) with increasing data size with fixed choices for T and n (T = 0.01 and n = 5),
then choose a robust scaling of T but with fixed n (as in Section 3.1), and then robustly scale
both T and n (as in Section 3.2). This procedure is summarised in Remark 8, and the results are
presented in Figures 2d–2f.

Remark 8 (SSH(γ) parameter setting)

We set the BF tuning parameters as follows:

1. Following the guidance of Remark 1 we begin by choosing ζ . Here, we conservatively chose
ζN = exp ( − 2)N ≈ 0.14N. In this example, b = 1, d = 1, and γ = σ2a = 0.0625 Consequently,
we have k1 = (mγ/C + d/2)1/2( − log ζ)−1/2 and k2 = bCk1/m.

2. Now, following Remark 2 and Corollary 1, we choose T =max {C3/2k1/m, k2C1/2} which is
T =O(C/

$$$
m

√
) under the above choice of k1, k2.

3. Prior to choosing a temporal partition, following Remark 3 we again choose a lower bound
on the CESS we would tolerate. Here, for simplicity we again choose k3 = k4 = 1, and so
ζ ′N = exp ( − 2)N ≈ 0.14N.

4. We can now set n andP following Remark 5. As per Remark 6, we use a regular partition. As
such, Δj = (k4b2C/2dm2)1/2 (i.e., n =O((mC)1/2)).

It is clear from the results for the SSH(γ) setting in Figures 2d–2f, and contrasting them with the
SH(λ) setting of Figures 2a–2c, that the SSH(γ) setting is considerably more challenging. This is to
be expected as the subposteriors become increasingly mismatched as data size increases. However,
the effect of including scaling T and n does substantively improve Algorithm 1 as it did in Section
3.3. Considering the results of fixingT and n in Figure 2d, it is clear in this regime that Algorithm 1
is degenerate. Incorporating scaling of T in Figure 2e stabilises CESS0 and leads to a slower deg-
radation with data size of CESSj. However, incorporating scaling of T and n following our guid-
ance earlier in Section 3 retains the stabilised CESS0 and substantively improves CESSj to a level
where it could lead to a practical algorithm.

3.5 Temporal regularity of partition

In Section 3.2 in order to simplify the guidance for selecting the partition P, we imposed a regular
mesh. This allowed us to use the minimal guidance for the temporal distance between points in the
partition we developed in Theorem 5, which in conjunction with the guidance already established
for choosing T in Section 3.1, allowed us to indirectly specify n and in turn P. As discussed in
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Section 3.2, there may be some advantage of using an irregular mesh (in which the temporal
distance between points in the partition decreases as T 	 n). In this section, we investigate the
impact of using a regular mesh on CESSj (j ∈ {1, . . . , n}) as a function of the iteration of
Algorithm 1.
To investigate temporal regularity we revisit the idealised examples of the SH(λ) and SSH(γ)

settings we introduced in Sections 3.3 and 3.4, respectively. For both settings we consider a
data size of m = 1, 000 distributed across C = 2 subposteriors, and specify a temporal horizon
of T as Remark 2 and regular mesh of size n = 10. In implementing BF we use a particle set of
sizeN = 10, 000, and consider the use of two variants for the unbiased estimator in Step b(iii)B
when implementing Algorithm 1—UE-a (Condition B.1) and UE-b (Condition B.2) of the
online supplementary material, Appendix B—UE-a being a relatively straightforward con-
struction, whereas UE-b requiring slightly more specification but in general leading to a
more robust estimator as defined by the variance of the estimator. The results are presented
in Figure 3.
Considering the SH(λ) setting of Figure 3a we find that CESSj is stable across iterations of

Algorithm 1, which would suggest that there is little to be gained when heterogeneity is low in hav-
ing a more flexible irregular mesh. The SSH(γ) setting of Figure 3b is slightly more complicated.
The results here would suggest if using the UE-a in the SSH(γ) setting there may be some advantage
to using an irregular mesh to balance CESSj across the iterations of Algorithm 1. However, in both
the SH(λ) and SSH(γ) settings when using the UE-b unbiased estimator we find that CESSj is stable.
This would suggest that there is little to be gained from specifying an irregular mesh over the regu-
lar onewe have imposed in Section 3.2. Choosing a good estimator for a regularmesh is far simpler
than optimising an irregular mesh for a poor estimator, and so the more critical consideration is to
ensure a suitable unbiased estimator is chosen—a full discussion of which can be found in the
online supplementary material, Appendix B.

3.6 Impact of using approximate subposteriors

In typical settings we will not be able to simulate i.i.d. realisations from each subposterior. Instead
it is more realistic to assume we have access to realisations from an approximation of each subpos-
terior: for instance, if we are splitting the data acrossC cores in order to implement aMonte Carlo
algorithm in a more scalable fashion. In this subsection, we analyse the impact of using approxi-
mate subposteriors.
More formally, if we denote φc as the normalised cth subposterior (in particular, we have

φc(xc) := fc(xc)/‖fc‖1 where ‖fc‖1= ∫ |fc(x(c))| dx(c) is the normalising constant of fc), and let φ(K)c
be an approximation of φc obtained using a Monte Carlo sample of size K, then we want to
show that substituting φ(K)c for φc in Algorithm 1 (for large enough K) would result in output y
being arbitrarily close to the target fusion density f . This is presented in Theorem 6.
Note that we naturally assume that ‖φc − φ(K)c ‖1 � 0 as K � ∞, and our modification to

Algorithm 1 results in instead proposing �x0 and y from the density

(a) (b)

Figure 3. CESS at each iteration of Algorithm 1 (j ∈ {1, . . . , 10}) under SH(λ) and SSH(γ) settings respectively. Solid
lines denote results based upon selecting the unbiased estimator ρ̃j := ρ̃(a)j . Dotted lines the unbiased estimator
ρ̃j := ρ̃(b)j . (a) SH(λ) setting. fc (x) =N (0, Cσ2). (b) SSH(γ) setting. fc (x) =N (μc , Cσ2), μc = ±0.25.
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g(K)(�x0, y) : ∝
∏C
c=1

[φ(K)c (x(c)0 )] · N (y; �M1, V1) ·
∏1
j=0

ρj, (23)

where for notational simplicity we take n = 1. For general values of n, the proof is similar.

Theorem 6. Suppose that for ϵ > 0 there exists a K0 such that for K > K0

‖φc − φ(K)c ‖1 ≤ ϵ (24)

for all c = 1, . . . , C. Then for any ε∗ > 0, we can find K′ such that when K >
K′ we have

∫ ∫ (g(�x0, y) − g(K)(�x0, y)) d�x0
∣∣ ∣∣ dy ≤ ϵ∗. (25)

Proof. See online supplementary material, Appendix F. □

Although Theorem 6 addresses the use of approximations to the subposteriors, in commonwith
standard SMC literature (Kunsch 2005) we assume we have access to i.i.d. realisations from the
approximate subposteriors to initialise the particle set. If the approximate φ(K)c for c ∈
{1, . . . , C} are obtained by some Monte Carlo approaches (say, MCMC), then some care has to
be taken if the approximate subposterior samples are serially correlated. Analysing theoretically
such approximations is challenging, although a pragmatic solution would be to either thin the
MCMC output for each subposterior, or randomly sample the MCMC trajectories.

3.7 Practical implementational considerations

As motivated in the introduction, the primary contribution of this paper is to develop a practical
SMC approach for inference in the fusion problem (simulating from Equation (1)). The methodo-
logical development of Section 2, and the practical guidance of Sections 3.1 and 3.2, have been
developed to this end. However, in some particular settings where this methodology is applied
it is likely there will be a number of additional specific constraints that necessitate careful imple-
mentation, or somemodification, of Algorithm1. For instance, latency in communication between
coresmay be of particular concern, or in applications where there is a large amount of data on each
individual subposterior the computational efficiency of some quantities in Algorithm 1 may need
consideration. In this section, we highlight some aspects and minor (nonstandard) modifications
of the methodology we have developed which may be useful for practitioners.
For the purposes of clarity for the primary contributions of this paper, themethodology and examples

given elsewhere in the paper do not exploit the modifications we present below.We discuss other more
substantial possible directions for the practical development of the BF methodology in the conclusions.
We consider the possible modifications to BF grouped into the constituent elements of Algorithm 1:
Initialisation; Propagation of the particle set; and, Computing importance weights; and, normalisation
and resampling of the particle set. This is presented in Sections 3.7.1–3.7.3, respectively.
There is a growing literature on implementing SMC approaches in-parallel in distributed envi-

ronments (see, e.g., Doucet & Lee 2018, Sec. 7.5.3). This includes distributed resampling method-
ologies (Lee & Whiteley 2016; Lee et al. 2010; Murray et al. 2016), and methodological
adaptations such as distributed particle filters (Bolic et al. 2005; Heine & Whiteley 2017), and
the island particle filter (Vergé et al. 2015). Note that typical SMC approaches in this area distrib-
ute the particle set across cores, and so fuller consideration of using such approaches for BF in par-
allel would need to be considered. Aspects of this subsection may be useful to developing BF in this
direction, however full consideration of this is beyond the scope of this paper and is instead dis-
cussed in the conclusions.

3.7.1 Initialising the particle set
In the initialisation step of BF (Algorithm 1 Step a(ii)A) we propose �x0 := x(1:C)0 where for
c ∈ {1, . . . , C}, x(c)0 ∼ fc. Composing �x0 requires communication between the cores, and �x0 re-
quires further communication back to the cores for the computation of the proposal importance
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weight, ρ0(�x0). Although ρ0(�x0) can be trivially decomposed into a product ofC terms correspond-
ing to the contribution from each core separately Equation (5), computing ρ0(�x0) still requires a
third communication between cores during initialisation. In settings where latency is an issue,
this repeated communication is undesirable. In this setting, one could attempt to improve the qual-
ity of the proposalsmade on each core (while avoiding any additional communication), and reduce
the level of communication.
If we choose some θ̃ ∈ Rd (e.g., by performing a single pre-processing step and choosing θ̃ to be

the weighted average of the approximatemodes of each subposterior), we canmodify the proposal
distribution for the initial draw from each core to be

f̃c(x
(c)
0 ) ∝ exp −

‖x(c)0 − θ̃‖2
2T

{ }
· fc(x(c)0 ), (26)

compensating for this modification by replacing ρ0 within Algorithm 1 with

ϱ̃0(�x0) := exp
‖�x0 − θ̃‖2
2T/C

{ }
, where �x0 = C−1

∑C
c=1

x(c)0 . (27)

The validity of these modifications can be established by noting that,
ϱ̃0(�x0) ·

∏C
c=1 f̃c(x

(c)
0 ) ∝ ρ0(�x0) ·

∏C
c=1 fc(x

(c)
0 ), and recalling that re-normalisation within Algorithm

1 removes the need to compute the constant of proportionality for ϱ̃0.
Noting that it is possible to sample from Equation (26) on each core in isolation by rejection

sampling (using fc as a proposal), then this can be done by each core in parallel in advance of ini-
tialising the algorithm, and will lead to improved proposal quality. Furthermore, note that com-
putation of the proposal importance weight, ϱ̃0(�x0) in Equation (27), does not require further
communication by the cores. In particular, we have removed two of the three communications re-
quired in the original formulation of the initialisation of BF. This simple modification to the BF
algorithm is presented in Algorithm 2.

Algorithm 2 Modified Initialisation (in place of Algorithm 1 Step (aii))

(aii) For i in 1 to N,

A. �x0,i: For c in 1 to C, simulate x (c)
0,i ∼ f̃ c. Set �x0,i := x (1:C)

0,i .
B. w′

0,i: Compute un-normalised weight w′
0,i = ϱ̃0(�x0,i), as per Equation (27).

3.7.2 Propagation of the particle set
Considering the iterative propagation of the particle set in Algorithm 1 Step b(iii)A, note that for
each particle we need to compute �Mj and V j, from Equations (8) and (9). In particular, commu-
nication between the cores is required as the computation of �Mj and V j requires the temporal pos-
ition of every trajectory over all cores. Upon propagation further communication is required in
order to compute the updated importance weight of the particle in Algorithm 1 Step b(iii)B.
This is clearly inefficient: we would like to minimise the number and size of communications.
It would be preferable to propagate �xj−1 to �xj by considering the separate propagation of each of

the C parallel processes which compose �xj−1, namely x(c)j−1 c ∈ {1, . . . , C}. This can be achieved by
means of exploiting Corollary 2:

Corollary 2. Simulating �xj ∼ N ( �Mj, V j), the required transition from �xj−1 to �xj in
Algorithm 1, can be expressed as

x(c)j =
Δ2
j

C(T − tj−1)

( )1/2

ξj +
T − tj
T − tj−1

Δj

( )1/2

η(c)j +Mjc, (28)

where ξj andη
(c)
j are standardGaussian vectors, andM(c)

j is the subvectorof �Mj

corresponding to the cth component adopting the notation in Equation (12).
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Proof. See online supplementary material, Appendix D. □

In particular, note that the interaction with the other trajectories solely appears in the mean of
the trajectories at the previous iteration (�xj−1). Computation of �xj−1 can be conducted at the pre-
vious iteration of Algorithm 1 at the same time as the trajectories are communicated for compos-
ition and use in computing the importance weight—thus removing an unnecessary
communication. As we already compute �x0,i, as required in the computation of ρ0 in Algorithm
1 Step a(ii)B (or alternatively as required by ϱ̃0 in Section 3.7.1), incorporating this into BF requires
only a minor modification. This is presented in Algorithm 3.

Algorithm 3 Modified Propagation (in place of Algorithm 1 Step b(iii)A).

b(ii)A.1. For c in 1 to C, simulate x (c)
j,i | (�x j−1,i, x

(c)
j−1,i) as per Equation (28).

b(ii)A.2. Set �x j,i := x (1:C)
j,i , and compute �x j,i :=

∑C
c=1 x

(c)
j,i /C.

3.7.3 Updating the particle set weights
In some settings it may not be practical to compute functionals of each subposterior (fc,
c ∈ {1, . . . , C}), and so rendering the evaluation of ϕc, and in turn ρ̃j in Algorithm 1 Step b(iii)
B, unfeasible. This may be due to a form of intractability of the subposteriors, (such as the settings
considered by Andrieu and Roberts (2009)), or simply that their evaluation is computationally too
expensive (such as in the large data settings considered by Pollock et al. 2020). This issue can be
circumvented by means of the following corollary:

Corollary 3. The estimator

ϱ̃j :=
∏C
c=1

Δκc
j · e−�U(c)

j Δj

κc! · p(κc |Rc)

∏κc
kc=1

�U
(c)
j −ϕ̂c x(c)χc,kc

( )( )
,

where ϕ̂c is an unbiased estimator of ϕc, and �U
(c)
j is a constant such that

ϕ̂c
(
x(c)t
)
≤ �U

(c)
j for all x(c)t ∼ Wj,c |Rc, is an unbiased estimator of ρ̃j.

Proof. Follows directly from the proof of Theorem 3 in the online supplementary
material, Appendix B. □

The estimator ϱ̃j in Corollary 3 can be used as a substitute for ρ̃j in Algorithm 1 Step b(iii)B, and
simulated by direct modification of Algorithm 4. To take advantage of Corollary 3 one simply has
to find a suitable unbiased estimator of ϕc, which in many settings will be straightforward to con-
struct as ϕc is linear in terms of ∇ log fc(x) and Δ log fc(x). To find a suitable unbiased estimator to
use in place of ρ̃j, it is important to recognise the penalty for its introduction. In particular, intro-
ducing the estimator ϱ̃j will (typically) increase the variance of the estimator, which will manifest
itself in the variance of the particle set weights in Algorithm 1. To control this we will (typically)
require a heavier tailed choice of discrete distribution p in Corollary 3. An extensive discussion on
finding low variance estimators of the type can be found in the online supplementary material,
Appendix B. A concrete application of Corollary 3 can be found in the online supplementary
material, Appendix E.

4 Examples

In this section, we apply our BF approach of Algorithm 1 to data obtained from a population sur-
vey (Section 4.1) and road accident data (Section 4.2). In both examples we compare the perform-
ance BF with CMC (Scott et al. 2016), DPMC (Xue & Liang 2019), and the WRS (X. Wang &
Dunson 2013). To construct a fair benchmark for each method we construct a benchmark distri-
bution by using the BayesLogit R package (Polya-GammaGibbs sampler, Choi&Hobert 2013) to
sample from the fusion density directly. We then define and compute the integrated absolute
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distance (IAD) for each method with respect to the benchmark distribution as follows:

IAD :=
1
d

∑d
j=1

∫ |f̂ (θj) − f (θj)| dθj ∈ [0, 2], (29)

where f is the benchmark distribution and f̂ is the distribution obtained from the methodology
employed, both computed using a kernel density estimate.
To better understand the performance and scaling of BF and competitor approaches, in

Appendix G of the online supplementarymaterial we further consider a range of idealised settings.
Online supplementary material, Appendix G.1 concentrates on a comparison with the exactMCF
approach, whereas online supplementary material, Appendix G.2 focuses on the approximate
CMC, DPMC, and WRS approaches.

4.1 US Census Bureau population surveys

In this example we applied BF to the 1994 and 1995 US Census Bureau population surveys, ob-
tained from Bache and Lichman (2013), and of size m = 199, 523, and investigated the effect of
education on gross income. We took gross income as our observed data (yi), treating it as a binary
taking a value of one if income was greater than $50,000. An income in excess of $50,000 is mod-
erately rare with only 12,382 individuals exceeding this threshold (which represents approximate-
ly 6% of the data). In addition to the intercept, we extracted three further education covariates
indicating educational stages attained by the individual (each of whichwere binary).We then fitted
the following logistic regression model with prior distribution N (0, 10I4):

yi =
1 with probability exp {zTi β}

1+exp {zTi β}
,

0 otherwise.

{
(30)

For this data set, we considered recovering the benchmark distribution by unifying subposteriors
across an increasing number of cores C ∈ {10, 20, 40}. To construct subposteriors we distributed
the data among the availableC cores, and fit the logistic regression model of Equation (30) to each
using a fractional prior. To emulate more realistic settings, we did not allocate the data randomly
among the C cores. In our allocation there was an extremely unbalanced allocation of data, with
three of the cores containing about 99% of the individuals earning in excess of $50,000.
BF was implemented with a particle set of size N = 30, 000, and following the guidance of

Section 3. CMC, DPMC, andWRSwere implemented following the guidance suggested by the au-
thors. The marginal densities are presented in Figure 4 for the C = 40 setting, together with their
IAD, and computational costs for the range of cores considered.
For this data set CMC and DPMC are poorly suited as they rely on the convergence of the pos-

terior to a Gaussian distribution, and this is evidenced here with them capturing neither the mar-
ginals of the benchmark distribution, or showing any robustness with respect to the numbers of
cores. Considering the marginals in Figure 4, the WRS substantially improves upon CMC (only
struggling with β2 and β3). However, for slightly more computational expenditure (Figure 4f),
BF substantially improves upon IAD over the WRS (Figure 4e), and also appears to show robust-
ness with increasing C.

4.2 UK road accidents

In this example we considered the ‘Road Safety Data’ data set published by the Department for
Transport of the UK government (gov.uk 2019). It comprises road accident data set from 2011
to 2018, and in total is of size m = 1, 111, 320. We treated our observation for each record to
be binary taking a value of one if a severe accident was recorded. In total in the full data set there
were 13,358 such severe accidents. We selected a number of covariates to investigate what effect
they have on accident severity: in addition to an intercept, we considered road speed limit, lighting
condition (which we treated as binary taking a value of one if lighting was good, and zero if light-
ing was poor), and weather condition (binary, taking one if good and zero if poor). The logistic

J R Stat Soc Series B: Statistical Methodology, 2022, Vol. 00, No. 0 19

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkac007/7008983 by guest on 20 February 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data


regression model of Equation (30) was fit to the data set, again with a N (0, 10I4) prior
distribution.
We again considered recovering the benchmark distribution by unifying subposteriors across an

increasing number of cores C ∈ {10, 20, 40}. The subposteriors were obtained with the allocation
of data to each core being in temporal order. We contrasted BF with a particle set of size
N = 30, 000, with fair implementations of CMC, DPMC, and the WRS. Marginal densities for
the C = 40 setting are presented in Figure 5, together with IAD and overall computational cost
for the range of cores considered. The results are in keeping with those of Section 4.1. CMC
andDPMC perform extremely poorly, and for a modest increase in computational budget BF sub-
stantially improves upon WRS.

5 Conclusions

In this paper, we have developed a theoretical framework, and scalable SMC methodology, for
unifying distributed statistical analyses on shared parameters from multiple sources (which we
term subposteriors) into a single coherent inference. The work significantly extends the theoretical
underpinning, and practical limitations, of the exactMCF approach of Dai et al. (2019). MCF is a
rejection-sampling-based approach for sampling from Equation (1) without approximation.
However, it lacks scalability with respect to the number of subposteriors to be unified, and robust-
ness with subposterior dis-similarity. This is addressed by our BF approach (Algorithm 1), which
both recovers the correct target distribution and is computationally competitive with leading ap-
proximate schemes. Fundamental to our BF approach is the construction of the fusionmeasure via
an SMC procedure driven by the SDE in Equation (2).
In addition to the theoretical and methodological development of BF presented in Section 2, in

Section 3 we provide concrete theory and guidance on how to choose the free parameters of
Algorithm 1 to ensure robustness with increasing numbers of subposteriors, and subposterior dis-
similarity. In Section 4, we apply BF to the ‘US Census Bureau population surveys’ data set and
‘UK road accidents’ data set, contrasting it with competing approximate methodologies.
Further extensive numerical studies in challenging idealised scenarios are given in the online
Supplementary material, Appendix G to contrast the limitations of existing fusion approaches
and our BF.

(a) (b) (c)

(d) (e) (f)

Figure 4. BF and competing algorithms applied to the US Census Bureau population survey data set of Section 4.1.
(a–d) shows marginal density estimates for β1–β4 respectively, with the solid lines denoting the benchmark fitted
target distribution. (e, f) shows the performance of BF in terms of IAD and computational cost with respect
increasing numbers of cores. Long dashed lines denote BF. Dotted lines denote CMC. Dotted and dashed lines
denote WRS. Short dashed lines denote DPMC.
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One of the key advantages of BF is that it is underpinned methodologically by SMC, which al-
lows us to leverage many of the existing theoretical results and methodology found in that litera-
ture. As is typical within SMC it is desirable to attempt to minimise the discrepancy between the
sequence of proposal and target distributions. In our setting this entails ensuring the propagated
temporal marginal of g in Equation (13) (say gNj−1), is well-matched with the following temporal
marginal of g (say gNj ). Although not emphasised within the main text, there is clear scope to im-
prove BF in this sense by modifying the diffusion theory presented in its development (see online
supplementary material, Appendix A), to one which better incorporates information about each
subposterior (e.g., this could be knowledge of the volume of data on each core). In the spirit of
this, in the recent work of Chan et al. (2021) the covariance structure of each subposterior is esti-
mated and the C spaces are transformed accordingly, leading to Brownian proposals being more
attuned to the target distribution. This approach could in principle be modified to our BF setting,
and would amount to modifying the Fusion measure in Equation (3) (in which the transition dens-
ities for each subposterior are that of a Langevin diffusion with unit volatility), to one with vola-
tility which matches the covariance structure of its respective subposterior.
We have provided considerable practical guidance in Sections 3.6 and 3.7. In Section 3.6, we

addressed the realistic scenario where we have only sample approximations of each subposterior.
In Section 3.7, we rendered many aspects of BF which are nonstandard due to the particularities of
the fusion problem into standard SMC structures. A truly parallel implementation of BF is a very
attractive prospect for future development. As discussed in Section 3.7, although SMC is inherent-
ly well-suited to parallel implementation in distributed environments (Doucet & Lee 2018), in the
fusion setting the natural direct interpretation of BF would be to consider the subposteriors (and
associated data) as being distributed across cores, but the particle set to be shared across all cores.
This is not the setting typically addressed by distributed SMC literature, and raises interesting chal-
lenges which require further innovation to be resolved.
A number of other methodological directions for BF are possible. As presented in Sections 2

and 3, the C subposteriors are unified together in a ‘fork-and-join’manner. An alternative would
be to unify the subposteriors in stages gradually by constructing a tree to perform the operation
hierarchically, for instance by exploiting ‘divide-and-conquer’ SMC theory and methodologies
such as that of Lindsten et al. (2017). This has been considered in the MCF setting in Chan
et al. (2021). Another direction would be to consider how approximations could be used within
the methodology. Many approximate approaches tackling the fusion problem are highly

(a) (b) (c)

(d) (e) (f)

Figure 5. BF and competing algorithms applied to the UK road accident data set of Section 4.2. (a–d) shows
marginal density estimates for β1–β4 respectively, with the solid lines denoting the benchmark fitted target
distribution. (e, f) shows the performance of BF in terms of IAD and computational cost with respect increasing
numbers of cores. Long dashed lines denote BF. Dotted lines denote CMC. Dotted and dashed lines denote the
WRS. Short dashed lines denote DPMC results.

J R Stat Soc Series B: Statistical Methodology, 2022, Vol. 00, No. 0 21

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssb/advance-article/doi/10.1093/jrsssb/qkac007/7008983 by guest on 20 February 2023

http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data
http://academic.oup.com/JRSSSB/article-lookup/doi/10.1093/jrsssb/qkac007#supplementary-data


computationally efficient, albeit at the expense of introducing an approximation error which can
be difficult to quantify and on occasion significant. The work of A. Wang et al. (2019) constructs
an explicit Monte Carlo scheme in which approximations can be readily used to develop exact
Monte Carlo schemes. There is theory linking this paper with Pollock et al. (2020) and
A. Wang et al. (2019), and so finding a similar approach to embedding approximations may be
viable.
As discussed in Section 1, there is considerable scope for application of BF, as inference in the set-

ting of Equation (1) arises directly and indirectly in many interesting practical settings. One interest-
ing direction considers the use of fusion methodologies within the Markov melding framework of
Goudie et al. (2019), in which a modular approach is taken to statistical inference where separate
submodels are fit to data sources in isolation (often of varying dimensionality), and then joined.
This type of application would necessitate theoretical developments to the Fusion methodologies
to support subposteriors on mismatched dimensions. Another scenario where this methodological
shortcoming arises would be in Bayesian hierarchical modelling for (generalised) regression models
with missing covariates. Here, the missing variables could exist in different hierarchical layers
(Daniels et al. 2013), and so may not be common to each subposterior. However, there appears
to be some scope to addressing mismatched subposteriors within the SMC theory developed in
Lindsten et al. (2017), and this may be interesting even in the case of matched subposteriors as it
could plausibly make Fusion methodologies more robust to increasing dimensionality.
A number of future directions for the BF methodology are currently being pursued by the au-

thors. One interesting avenue of research is to apply Fusionmethodologies within statistical crypt-
ography. In the simplest setting a number of trusted parties who wish to securely share their
distributional information on a common parameter space and model, but would prefer not to re-
veal their individual level distributions, could do so bymeans of applying cryptography techniques
and exploiting the exactness and linear contributions to computations of individual subposteriors
within the Fusion approach. In a further example, the authors are investigating the application of
BF for purely algorithmic reasons. One motivation for this (rather like the motivation for temper-
ingMCMC approaches) is that the simulation of amultimodal target density could be prohibitive-
ly difficult, whereas the target density might be readily written as a product of densities with less
pronounced multimodal behaviour, thus making it far more amenable to Monte Carlo sampling
(see Chan et al. 2021).
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