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Abstract. We revisit the discrete heterogeneous two-facility location problem, in which there
is a set of agents that occupy nodes of a line graph, and have private approval preferences over two
facilities. When the facilities are located at some nodes of the line, each agent suffers a cost that
is equal to her total distance from the facilities she approves. The goal is to decide where to locate
the two facilities, so as to (a) incentivize the agents to truthfully report their preferences, and (b)
achieve a good approximation of the minimum total (social) cost or the maximum cost among all
agents. For both objectives, we design deterministic strategyproof mechanisms with approximation
ratios that significantly outperform the state-of-the-art, and complement these results with (almost)
tight lower bounds.
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1. Introduction. In the classic truthful single-facility location problem, there
is a set of agents with private positions on the line of real numbers, and a public
facility (such as a library or a park) whose location we need to decide. This decision
must be made so as to (a) incentivize the agents to truthfully reveal their positions
(an agent would be willing to lie if this leads to the facility being located closer to
her true position), and (b) optimize a social objective (such as the total distance of
the agents from the facility location, or the maximum distance). Since the celebrated
paper of Procaccia and Tennenholtz [2013], this problem and its many variants have
been studied extensively in the literature on approximate mechanism design without
money. For a comprehensive introduction to the various different facility location
models that have been considered over the years, we refer the interested reader to the
recent survey of Chan et al. [2021].

A recent stream of papers have focused on heterogeneous facility location prob-
lems, with multiple facilities (typically, two) that are different in nature (e.g., a school
and a bar). As such, the agents care both for the location and the types of the fa-
cilities, aiming for the facilities they like the most to be as close to their position as
possible. To give an example, a family would like to be closer to a school than to a bar,
a single person might want to be closer to the bar, and a young couple might want to
be close to both facilities. Many settings have been proposed to model the different
preferences the agents may have about the facilities (see the discussion in the related
work). With few exceptions, all of these models assume that both facilities can be
placed at any point of the real line, even at the same one. Serafino and Ventre [2016]
deviated from these assumptions and studied a discrete version of the problem. In
this model, the line is a discrete graph, and each node of this graph is either occupied
by a single agent, or is empty. This information is assumed to be common knowledge.
There are also two facilities (such as the school and the bar in our example above)
which can only be placed at different nodes of the line. Each agent has a private
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approval preference over the facilities, that is, she either wants to be close to a facility
or is indifferent about its location. Given the locations of the facilities, the cost of an
agent is then defined as the total distance from the facilities she approves.

Serafino and Ventre presented bounds on the approximation ratio of deterministic
and randomized strategyproof mechanisms in terms of the social cost (i.e., the total
cost of agents) and the maximum cost. In particular, for the social cost, they showed
that the best possible approximation ratio of deterministic mechanisms is between 9/8
and n− 1, where n is the number of agents. In contrast, they designed a randomized
mechanism that always outputs a solution with minimum expected social cost. For
the maximum cost objective, they showed that the best possible approximation ratio
of deterministic mechanisms is between 3/2 and 3, and that of randomized mecha-
nisms is between 4/3 and 3/2. In this paper, we focus exclusively on deterministic
strategyproof mechanisms when agents are interested in the outcome (that is, approve
at least one facility)1, and improve upon the bounds of Serafino and Ventre for both
objectives in this case.

1.1. Our contribution. The main technical difficulty in designing deterministic
strategyproof mechanisms with low approximation ratio in terms of the social cost is
the constraint of locating the two facilities at different nodes. If each agent approves
just a single facility, then locating each facility to the median agent among those that
approve it would be a strategyproof mechanism with minimum social cost. However,
in general, there might exist agents that approve both facilities, in which case the
medians for the two facilities could coincide, and any choice of how to break this tie
could lead to some agent having incentive to misreport.

The upper bounds of Serafino and Ventre (for their more general model) follow
by the TwoExtremes mechanism, which locates one of the facilities at the node
occupied by the leftmost agent among those that approve it, and the other facility
at the node occupied by the rightmost agent among those that approve it; in case of
a collision, one of the facilities is moved a node to the left or the right. While this
mechanism successfully places the two facilities without providing incentives to the
agents, it can be quite inefficient. There are two main reasons for this deficiency: (i)
the boundary agents (leftmost and rightmost) among those that approve a facility
may be rather far away from the median such agent, whose node would be the ideal
location for the facility, and (ii), it does not exploit the available information about
the position of the agents in any way. Our improved mechanisms, for the setting we
consider, take care of these two limitations: We place the facilities closer to median
agents (without breaking strategyproofness), and exploit the information about the
positions of the agents.

For the social cost, we design the Fixed-or-Median-Nearest-Empty (FMNE)
mechanism with an approximation ratio of at most 17/4 = 4.25. The mechanism
switches between two cases based on the structure of the line: If there are no empty
nodes, it fixes the locations of the facilities to be the two central nodes of the line;
otherwise, if there are empty nodes, it locates one of the facilities at the position
of the median agent among those that approve it, and the other facility at one of
the nearest empty nodes to the median agent among those that approve it. We
complement this result with an improved lower bound of 4/3 on the approximation
ratio of all strategyproof mechanisms, which follows by two instances with only three
agents and no empty nodes. Motivated by this lower bound construction, we then

1Serafino and Ventre [2016] consider a more general model where agents may not approve any
facility.
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Table 1: An overview of our bounds on the approximation ratio of deterministic
strategyproof mechanisms for the social cost and the maximum cost. The bounds in
parentheses are the previously best known ones implied by Serafino and Ventre [2016].
The lower bound of 4/3 marked with a ? is tight for instances with three agents.

Lower bound Upper bound
Social cost 4/3? (9/8) 17/4 (n− 1)

Maximum cost 2 (3/2) 2 (3)

focus on instances with three agents, and design the 3-agent Priority-Dictatorship
mechanism that achieves the best-possible bound of 4/3.

For the maximum cost, we design a parameterized class of mechanisms α-Left-
Right (α-LR), each member of which partitions the line into two parts, from the
first node to node α, and from node α+ 1 to the last node. Then, the decision about
the locations of the facilities is based on the preferences of the agents included in the
two parts. We show that all mechanisms of the class are strategyproof, and there
are members with approximation ratio at most 2. In particular, when the size m of
the line is an even number, the bound is achieved by m/2-LR, and when m is odd,
it is achieved by (m + 1)/2-LR. Finally, we show a tight lower bound of 2 on the
approximation ratio of all strategyproof mechanisms, using a construction involving
a sequence of five instances with three agents and no empty nodes.

An overview of our bounds, and how they compare to the previously best ones
shown by Serafino and Ventre [2016], as applied to our model, is given in Table 1.

1.2. Related work. As already mentioned above, the survey of Chan et al.
[2021] nicely discusses the many different facility models that have been considered
over the years in the literature on approximate mechanism design without money.
Here, we will mainly discuss papers on heterogeneous facility location models that
are closely related to ours. The vast majority of the related literature has mainly
focused on continuous settings, where the facilities can be located at any point of the
line, even the same one. Some notable exceptions include the paper of Serafino and
Ventre [2016], a few papers on characterizations of onto strategyproof mechanisms for
the single-facility location problem in discrete lines, cycles [Dokow et al., 2012] and
trees [Filimonov and Meir, 2021], and some papers related to truthful single-winner
voting on a line metric (e.g., [Feldman et al., 2016, Filos-Ratsikas and Voudouris,
2021]). Discrete facility location problems have also been studied within the distortion
literature on social choice problems, where the main source of inefficiency is due to
having limited information; see the recent survey of Anshelevich et al. [2021] for an
overview.

The first heterogeneous facility location model, combining elements from the clas-
sic single-facility location problem and the obnoxious single-facility location prob-
lem [Cheng et al., 2011, 2013], was independently proposed and studied by Feigen-
baum and Sethuraman [2015] and Zou and Li [2015]. In this setting, there are two
facilities to be located on the real line, and the agents have dual preferences over the
facilities; that is, an agent likes or dislikes a facility. The authors showed bounds on
the approximation ratio of deterministic and randomized strategyproof mechanisms
for different cases depending on whether the positions or the preferences of the agents
are their private information (and can thus lie about them). Kyropoulou et al. [2019]
considered an extension of this model, where the location space of the two facilities is
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a constrained region of the Euclidean space.
Chen et al. [2020] studied a setting with agents that have optional (or, approval)

preferences over the facilities; that is, an agent either likes a facility or is indifferent
about it. The authors considered two different cost functions of the agents, one that
is equal to the distance from the closest facility that the agent approves, and one
that is equal to the distance from the farthest such facility. Li et al. [2020] studied
an extension of this setting in more general metrics (beyond the line), and designed
mechanisms that significantly improved some the linear (in the number of agents)
upper bound of Chen et al. to a constant. Deligkas et al. [2022] considered a similar
approval preference model, but with the difference that the goal is to locate just
one of the two facilities (and, more generally, k out of m). Elkind et al. [2022] also
considered the case of locating only a subset of the available facilities, but based on
approval preferences that are induced by the possible locations of the facilities, as
opposed to being exogenous.

Anastasiadis and Deligkas [2018] considered a model that combines dual and
optional preferences, in the sense that the agents can like, dislike or be indifferent
about a facility. Fong et al. [2018] studied a setting with fractional preferences, where
each agent has a weight in [0, 1] for each facility indicating how much she likes it.
Finally, Xu et al. [2021] focused on the problem where the locations of the locations
of the two facilities must satisfy a minimum distance requirement.

2. Preliminaries. We consider the discrete two-facility location problem. An
instance I of this problem consists of a set N of n ≥ 2 agents, two facilities, and a line
graph with m ≥ n nodes. Each agent occupies a node xi of the line, such that different
agents occupy different nodes. By x we denote the position profile consisting of the
positions of all agents (i.e., the nodes they occupy) as well as the positions of possible
empty nodes; the position profile is assumed to be common knowledge; in many cases,
we enumerate the nodes from 1 to m, so that we can compare the positions of the
agents. Every agent i also has a private approval preference ti ∈ {0, 1}2 over the two
facilities such that ti1 + ti2 ≥ 1: If tij = 1, agent i ∈ N approves facility j ∈ {1, 2};
otherwise, she is indifferent to it. By t = (ti)i∈N we denote the preference profile
consisting of the preferences of all agents. Given t, it will be useful to denote by Nj
the set of agents that approve facility j ∈ {1, 2}. Clearly, the two sets N1 and N2 need
not be disjoint if there are agents that approve both facilities. As x and t implicitly
include all the information related to an instance, we denote I = (x, t).

A feasible solution z = (z1, z2) determines the node zj where each facility j ∈
{1, 2} is located, so that z1 6= z2. Given a feasible solution z, the cost of any agent i
in instance I is her total distance from the facilities she approves, i.e.,

costi(z|I) =
∑

j∈{1,2}

tij · d(i, j),

where d(i, j) = |xi − zj | is the distance between agent i and facility j.
A mechanism takes as input an instance and outputs a feasible solution. A mech-

anism M is said to be strategyproof if the solution M(I) it computes when given as
input the instance I = (x, t) is such that no agent i has incentive to report a false
preference t′i 6= ti to decrease her cost, i.e.,

costi(M(I)|I) ≤ costi(M(x, (t′i, t−i))|I),

where (t′i, t−i) is the preference profile according to which agent i’s preference is t′i,
while the preference of any other agent is the same as in t.
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We consider two well-known social objectives, which are functions of feasible
solutions. Given an instance I, the social cost of a feasible solution z is the total cost
of all the agents, i.e.,

SC(z|I) =
∑
i∈N

costi(z|I).

The max cost of z is the maximum cost among all agents, i.e.,

MC(z|I) = max
i∈N

costi(z|I).

Let SC∗(I) = minz SC(z|I) be the minimum possible social cost for instance I,
achieved by any feasible solution. Similarly, let MC∗(I) = minz MC(z|I) be the
minimum possible maximum cost for I.

For any social objective f ∈ {SC,MC}, the f -approximation ratio ρf (M) of a
mechanismM is the worst-case ratio (over all possible instances) between the objective
value of the solution computed byM over the minimum possible objective value among
all feasible solutions, i.e.,

ρf (M) = sup
I

f(M(I)|I)

f∗(I)
.

Our goal is to design strategyproof mechanisms with an as low f -approximation ratio
as possible (close to 1).

3. Social cost: A general constant upper bound. We start with the social
cost objective. For general instances with n agents, we design the strategyproof
mechanism Fixed-or-Median-Nearest-Empty (FMNE) with approximation ratio
17/4, thus greatly improving upon the previous bound of n − 1 that follows from
Serafino and Ventre [2016]. Our mechanism exploits the known information about
the position profile, and distinguishes between two cases depending on whether the
given instance contains empty nodes or not. If there are no empty nodes, FMNE
locates the facilities next to each other at central nodes of the line (in particular,
nodes bn/2c and bn/2c + 1); this is the Fixed part of the mechanism. If there are
empty nodes, FMNE locates facility 1 at the node occupied by the median agent
among those that approve facility 1, and facility 2 at the empty node that is nearest
to the node occupied by the median agent among those that approve facility 2; this
is the Median-Nearest-Empty part of the mechanism. See Algorithm 3.1 for the
formal definition.

Theorem 3.1. FMNE is strategyproof.

Proof. Consider an arbitrary instance I. Recall that the positions of the agents
are known. The mechanism is clearly strategyproof if there are no empty nodes in I
as the locations of the facilities are fixed and independent of the preferences of the
agents. So, it remains to consider the case where I contains empty nodes. Let i be
an arbitrary agent. We switch between the following three cases:

Agent i approves only facility 1 (i ∈ N1 \N2). Suppose without loss of generality
that xi ≤ y1. Any misreport of agent i can only lead to a median y′1 among the agents
that approve facility 1 which is farther away from xi. In particular, if i misreports that
she approves only facility 2, then y′1 ≥ y1, whereas if i misreports that she approves
both facilities, then y′1 = y1.
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Algorithm 3.1 Fixed-or-Median-Nearest-Empty (FMNE)

Input: Instance I with n agents
Output: Feasible solution z = (z1, z2)
. Fixed part
if there are no empty nodes then

z1 ← bn/2c
z2 ← bn/2c+ 1

. Median-Nearest-Empty part
else

for j ∈ {1, 2} do
yj ← position of the leftmost median agent in Nj

end for
z1 ← y1
z2 ← nearest empty node to y2, breaking ties in favor of rightmost such node

end if

Agent i approves only facility 2 (i ∈ N2 \N1). Suppose without loss of generality
that facility 2 is positioned at some empty node e with xe > y2. Denote by y′2 the
median node occupied by the agents that approve facility 2 when i misreports.

• If agent i misreports that she approves both facilities, then y′2 = y2, and
hence the position of facility 2 as well as the cost of agent i remain the same.

• If xi ≤ y2 and agent i misreports that she only approves facility 1, then
y′2 ≥ y2. As a result, either e continues to be the nearest empty node to y′2
and the cost of i remains exactly the same, or another empty node e′ with
xe′ > xe becomes the nearest empty node to y′2, and the cost of i strictly
increases.

• If xi > y2 and agent i misreports that she only approves facility 1, then
y′2 ≤ y2. As a result, either e continues to be the nearest empty node to y′2,
or another empty node e with xe′ < y2 < xe becomes the nearest empty node
to y′2. In any case, the cost of i does not decrease.

Agent i approves both facilities (i ∈ N1 ∩ N2). Since the cost of agent i is the
sum of costs she derives from the two facilities and we decide where to locate each
facility independently from the other facility, the same arguments for the previous
two cases show that no possible misreport can lead to a strictly lower cost.

To argue about the approximation ratio of FMNE, we will distinguish between
instances with and without empty nodes. In our proofs, we exploit the following lower
bounds on the optimal social cost; we include the proof for completeness. Here, 1 {X}
is equal to 1 if the event X is true, and 0 otherwise.

Lemma 3.2 ([Serafino and Ventre, 2016]). For any instance I in which there are
nj agents that approve facility j ∈ {1, 2}, it holds that

SC∗(I) ≥ 1

4

(
n21 + n22 − 1 {n1 odd} − 1 {n2 odd}

)
≥ 1

4

(
n21 + n22 − 2

)
.

Proof. We argue about each facility j ∈ {1, 2} independently. When nj is odd,
the optimal allocation can, at best, have facility j at one of these nj nodes and have
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two agents at distance i, for i ∈ {1, . . . , nj−1
2 } from j; the total cost due to facility j

is then
n2
j−1
4 . When nj is even, the optimal allocation can, at best, place facility j

facility at one of the nj nodes and have two agents at distance i, for i ∈ {1, . . . , nj

2 −1},
and an agent at distance

nj

2 ; the total cost due to facility j in this case is then
n2
j

4 .

For instances without empty nodes and n ≥ 5, we will show that the approxima-
tion ratio of FMNE (in particular, its Fixed part) is at most 3; note that for n ≤ 4,
the TwoExtremes mechanism of Serafino and Ventre [2016] is 3-approximate.

Theorem 3.3. For any instance with n ≥ 5 agents and no empty nodes, the
SC-approximation ratio of FMNE is at most 3.

Proof. Consider an instance I and recall that Nj denotes the set of agents that
approve facility j. Let n1 = |N1|, n2 = |N2|, and b = |N1 ∩N2|; clearly, it holds that
n = n1 + n2 − b.

We first consider the case where n is even, i.e., n ≥ 6. For any agent i, with
i ∈ {1, . . . , n}, the maximum distance of i to a facility is |n/2 + 1− i|. Furthermore,
each of the b agents that approve both facilities faces an added cost of at most n/2
due to the distance to the agent’s nearest facility. Therefore, the total cost of the
solution z computed by the mechanism is bounded by

SC(z|I) ≤ 2

n/2∑
i=1

i+ b · n
2

=
n

2
·
(n

2
+ 1
)

+ b · n
2

=
n21 + n22 + b2 + 2n1n2 − 2bn1 − 2bn2 + 2n1 + 2n2 − 2b

4
+
bn1 + bn2 − b2

2

≤ n21 + n22 + 2n1n2 + 2n1 + 2n2
4

,

where the second equality holds since n = n1 + n2 − b, while the last inequality holds
since b ≥ 0.

By Lemma 3.2, SC∗(I) ≥ 1
4

(
n21 + n22 − 2

)
, and thus the approximation ratio is

bounded by

SC(z|I)

SC∗(I)
≤ n21 + n22 + 2n1n2 + 2n1 + 2n2

n21 + n22 − 2
.

To prove the claim, it suffices to show that, when n1 + n2 ≥ 6, it holds that n21 +
n22 + 2n1n2 + 2n1 + 2n2 ≤ 3n21 + 3n22 − 6, i.e., (n1 − n2)2 + n21 + n22 ≥ 2n1 + 2n2 + 6.
Observe that, when n1 + n2 ≥ 6, it holds that n21 + n22 ≥ 3(n1 + n2) ≥ 2n1 + 2n2 + 6;
the claim follows.

We now consider the case where n ≥ 5 is odd; the analysis is slightly more
involved, but follows along similar lines. Observe that the maximum distance of any
agent i positioned at some of the first (n − 1)/2 nodes from a facility (in particular,
facility 2) is (n+ 1)/2− i, while the maximum distance of any agent i positioned at
some of the last (n+1)/2 nodes from a facility (in this case, facility 1) is i− (n−1)/2.
Furthermore, each of the b agents that approve both facilities faces an added cost of
at most (n− 1)/2. So, the total cost of the solution z computed by the mechanism is
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bounded by

SC(z|I) ≤
(n−1)/2∑
i=1

i+

(n+1)/2∑
i=1

i+ b · n− 1

2

=
(n+ 1)2

4
+ b · n− 1

2

=
n21 + n22 + b2 + 2n1n2 − 2bn1 − 2bn2 + 2n1 + 2n2 − 2b+ 1

4

+
bn1 + bn2 − b2 − b

2

=
n21 + n22 + 2n1n2 + 2n1 + 2n2 + 1− b2 − 4b

4
,

where, again, the second equality holds since n = n1 + n2 − b.
By Lemma 3.2, SC∗(I) ≥ 1

4

(
n21 + n22 − 1 {n1 odd} − 1 {n2 odd}

)
, and thus the

approximation ratio is bounded by

SC(z|I)

SC∗(I)
≤ n21 + n22 + 2n1n2 + 2n1 + 2n2 + 1− b2 − 4b

n21 + n22 − 1 {n1 odd} − 1 {n2 odd}
.

To prove the claim it suffices to show that (n1−n2)2 +n21 +n22 +b2 +4b ≥ 2n1 +2n1 +
1 + 3(1 {n1 odd} + 1 {n2 odd}). If b ≥ 1, then n1 + n2 ≥ 6, and the claim follows
since (n1−n2)2 +n21 +n22 ≥ 2(n1 +n2 + 1) holds in this case. Otherwise, when b = 0,
then exactly one of n1, n2 is odd and it suffices to show that (n1 − n2)2 + n21 + n22 ≥
2n1 + 2n1 + 4. Since (n1 − n2)2 ≥ 1, this always holds if n1 + n2 ≥ 5.

For instances with at least one empty node, we will show that the approximation
ratio of FMNE (in particular, its Median-Nearest-Empty part) is 17/4 for any n ≥
6; observe that the TwoExtremes mechanism of Serafino and Ventre [2016] achieves
an approximation ratio of at most 4 when n ≤ 5. Our proof for the approximation
ratio of FMNE in this case relies on the following technical lemma.

Lemma 3.4. Let f(x, y) = y2+4xy+2y+1
x2+y2−2 . For non-negative integers x, y such that

x+ y ≥ 6, it holds f(x, y) ≤ 13/4.

Proof. First, observe that f(x, y) can be written as f(x, y) = 1 + −x2+4xy+2y+3
x2+y2−2 .

It suffices to limit our attention to the values of x, y for which f(x, y) > 3, i.e., to these

x, y such that −x
2+4xy+2y+3
x2+y2−2 > 2. By rearranging, we obtain −x2 + 4xy + 2y + 3 >

2x2 + 2y2 − 4, and, therefore, −x2 + 2y + 7 > 2(x− y)2.
Let y = x+k for some integer k and rewrite the last inequality as −x2 +2x+7 >

2(k2 − k). Clearly, for x ≥ 4 the inequality never holds as the left-hand-side term is
negative and the right-hand-side term is always non-negative. Hence, we obtain that
f(x ≥ 4, y) < 13/4. For the remaining values of x, i.e., when x ∈ {0, 1, 2, 3}, recall that
x+ y ≥ 6, i.e., 2x+ k ≥ 6. When x = 0, it must be k ≥ 6 and the inequality does not
hold, as 7 < 60. When x = 1, we have k ≥ 4 and, again, the inequality does not hold,
as 8 < 24. For x = 2, we obtain k ≥ 2 and the inequality becomes 7 > 2(k2−k), which
holds only when k = 2; in this case, f(2, 4) = 19/6 < 13/4. Finally, for x = 3, we have
that k ≥ 0 and the inequality becomes 4 > 2(k2 − k) which holds for k ∈ {0, 1}. The
proof follows by observing that max{f(3, 3), f(3, 4)} = max{13/4, 73/23} ≤ 13/4.

We are now ready to prove the bound for instances with empty nodes.
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Theorem 3.5. For any instance with n ≥ 6 and at least one empty node, the
SC-approximation ratio of FMNE is at most 17/4.

Proof. Consider any instance I. We first argue a bit about the optimal social
cost of I. A solution that minimizes the social cost locates each facility j ∈ {1, 2} to
the node yj occupied by a median agent in Nj . However, this solution might not be
feasible if y1 = y2, and so the optimal social cost can only be larger. We have that

SC∗(I) ≥
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2).(3.1)

Now, let us focus on the social cost of the solution z computed by the mechanism.
Let e be the empty node where facility 2 is located; without loss of generality, we can
assume that xe > y2. Combined with the fact that facility 1 is located at y1, we have
that z = (y1, xe), and

SC(z|I) =
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, xe).

The first term appears in the lower bound of the optimal social cost given by Inequality
(3.1), so all we need to do is bound the second term of the above expression.

We partition the set N2 into three sets L, M and R depending on the positions
of the agents in N2 compared to y2 and xe, as follows:

• L = {i ∈ N2 : xi ≤ y2};
• M = {i ∈ N2 : xi ∈ (y2, xe)};
• R = {i ∈ N2 : xi > xe}.

By the definition of median, we have that |L| ≥ |M | + |R|; in particular, this is an
equality if n2 = |N2| is even, and a strict inequality if n2 is odd (as L also includes
the median agent in this case). Due to this, we can create disjoint pairs of agents as
follows:

• We match every agent i ∈M to a unique agent j ∈ L such that

d(xj , xe) = d(xj , xi) + d(xi, xe) = d(xj , y2) + d(xi, y2) + d(xi, xe).

• We match every agent i ∈ R to a unique agent j ∈ L such that

d(xj , xe) + d(xi, xe) = d(xj , y2) + d(y2, xe) + d(xi, xe) = d(xj , y2) + d(xi, y2).

Hence, we have that∑
i∈N2

d(xi, xe) =
∑
i∈L

d(xi, xe) +
∑
i∈M

d(xi, xe) +
∑
i∈R

d(xi, xe)

≤
∑
i∈N2

d(xi, y2) + d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe).

Next, we will bound the second and third terms of the above expression. Since
each agent occupies a different node, we can upper-bound the total distance of the
agents in M as follows:

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe)

≤ d(y2, xe)1 {n2 odd}+ 2 ·
(
d(y2, xe)− 1 + d(y2, xe)− 2 + . . .+ d(y2, xe)− |M |

)
= −|M |2 + (2d(y2, xe)− 1)|M |+ d(y2, xe)1 {n2 odd} .
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Now observe that d(y2, xe) > |M | (since all agents in M are between y2 and e);
thus, the last expression in the above derivation is an increasing function in terms
of |M |. It is clearly also an increasing function in terms of d(y2, xe). Since |M | ≤
1
2 (n2 − 1 {n2 odd}) and d(y2, xe) ≤ n1 + 1 + |M | ≤ n1 + 1 + 1

2 (n2 − 1 {n2 odd}), by
doing calculations and also using the fact that 1 {n2 odd} ≤ 1, we obtain

d(y2, xe)1 {n2 odd}+ 2 ·
∑
i∈M

d(xi, xe) ≤
1

4

(
n22 + 4n1n2 + 2n2 + 1

)
.

By putting everything together, we have

SC(z|I) ≤
∑
i∈N1

d(xi, y1) +
∑
i∈N2

d(xi, y2) +
1

4

(
n22 + 4n1n2 + 2n2 + 1

)
≤ SC∗(I) +

1

4

(
n22 + 4n1n2 + 2n2 + 1

)
.

By Lemma 3.2, we have SC∗(I) ≥ 1
4

(
n21 + n22 − 2

)
, and thus the approximation ratio

is bounded by

SC(z|I)

SC∗(I)
≤ 1 +

n22 + 4n1n2 + 2n2 + 1

n21 + n22 − 2
.

The bound of 17/4 follows by applying Lemma 3.4 with x = n1 and y = n2.

We conclude this section by showing that our analysis of the approximation ratio
of FMNE is tight.

Lemma 3.6. There exists an instance with n ≥ 5 and no empty nodes such that
the SC-approximation ratio of FMNE is at least 3, and an instance with n ≥ 6 and at
least one empty node such that the SC-approximation ratio of FMNE is at least 17/4.

Proof. For the Fixed part of FMNE consider the following instance I1 with 5
agents and no empty nodes. The first two agents approve only facility 2, and the last
three agents approve only facility 1. The mechanism outputs the solution (2, 3), that
is, it locates facility 1 at the second node and facility 2 at the third node. The social
cost of this solution is SC((2, 3)|I1) = 9. However, an optimal solution is (4, 2) with
social cost SC∗(I1) = 3, leading to an approximation ratio of 3.

For the Median-Nearest-Empty part of FMNE consider the following instance
I2 with 6 agents and one empty node. The first three nodes are occupied by agents
that approve only facility 2, the next three nodes are occupied by agents that approve
only facility 1, and the last node is empty. The mechanism outputs the solution
(5, 7), that is, it locates facility 1 at node 5 and facility 2 at the empty node. This
solution has social cost SC((5, 7)|I2) = 17. In contrast, an optimal solution is (5, 2)
with SC∗(I2) = 4, leading to an approximation ratio of 17/4.

4. Social cost: A tight bound for instances with three agents. In this
section, we restrict to instances with three agents (and possibly many empty nodes).
We show a tight bound of 4/3 on the approximation ratio of strategyproof mechanisms.
In particular, we present a rather simple instance without empty nodes showing that
the approximation ratio of any strategyproof mechanism is at least 4/3; this improves
upon the previous lower bound of 9/8 shown by Serafino and Ventre [2016]. We
complement this result by designing a mechanism that achieves the bound of 4/3
when given as input any instance with three agents.
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Algorithm 4.1 Priority-Dictatorship

Input: Instance I with three agents `, c, and r such that x` < xc < xr
Output: Feasible solution z
if c ∈ N1 \N2 then

if r ∈ N2 then
z← (xc, xr)

else
z← (xc, x`)

end if
else if c ∈ N2 \N1 then

if r ∈ N1 then
z← (xr, xc)

else
z← (x`, xc)

end if
else

if r ∈ N2 then
z← (xc, xc + 1)

else
z← (xc + 1, xc)

end if
end if

Theorem 4.1. The SC-approximation ratio of any strategyproof mechanism is at
least 4/3.

Proof. We consider two instances with three agents and no empty nodes. In the
first instance I1, all agents approve both facilities. Clearly, any mechanism must
locate a facility to the first or the third node (or, perhaps, both). Without loss of
generality, suppose the mechanism locates facility 2 at the third node.

In the second instance I2, the first two agents approve both facilities, while the
third agent approves only facility 2 (that is, the only difference between I1 and I2 is
the preference of the third agent). Since facility 2 is located at the third node in I1,
the same must happen in I2; otherwise, agent 3 would have cost at least 1 in I2 and
incentive to misreport that she approves both facilities, thus changing I2 to I1, and
decreasing her cost to 0. However, both possible feasible solutions z1 = (1, 3) and
z2 = (2, 3) have social cost 4 in I2, whereas an optimal solution (such as z∗ = (1, 2))
has social cost 3; the theorem follows.

Next, we design the 3-agent mechanism Priority-Dictatorship, which is strat-
egyproof and has an approximation ratio of at most 4/3. Consider any instance with
three agents; for convenience, we call the agents `, c, and r and let x` < xc < xr. To
be concise, we describe the mechanism (and prove its properties) for the case where
c is at least as close to r as to `, that is, xr − xc ≤ xc − x`; in the other case, it
would suffice to swap ` and r in the discussion that follows. Our mechanism gives
priority to the central agent over the right agent, and does not take into account the
preference of the left agent at all. In particular, the mechanism locates at xc one of
the facilities that agent c approves, and decides the location of the other facility based
on the preference of agent r. See Algorithm 4.1 for a formal description. We first
show that the mechanism is strategyproof.
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Theorem 4.2. Priority-Dictatorship is strategyproof.

Proof. Consider any instance with three agents `, c and r such that x` < xc < xr.
Since the preference of agent ` is not taken into account, ` cannot affect the outcome
and thus has no incentive to misreport. In addition, the mechanism always locates
at xc one of the facilities that c approves, and if c approves both facilities, the other
facility is located at xc + 1; hence, the cost of c is always minimized. Finally, to see
why agent r also has no incentive to misreport, it suffices to observe that in all cases
(where the preference of agent c is fixed) the location of the facility that r approves is
either independent of her preference, or is closer to her position than if she misreports.
As an example, if c ∈ N1 \N2, facility 1 is located at xc independently from the report
of r, and facility 2 is located at xr if r approves it. Hence, agent r minimizes her cost
by being truthful. The same holds for the remaining two cases.

Next, we show the upper bound of 4/3 on the approximation ratio of the mecha-
nism.

Theorem 4.3. For instances with three agents, the SC-approximation ratio of
Priority-Dictatorship is at most 4/3.

Proof. Consider any instance I with three agents `, c and r. We distinguish
between the three cases considered by the mechanism.

• If c ∈ N1 \N2, c is a median agent for facility 1.
– If r ∈ N2, the outcome is (xc, xr), and the approximation ratio is 1 as r

is a median agent for facility 2.
– If r ∈ N1 \ N2, the outcome is (xc, x`), and the approximation ratio is

again 1 as either ` is a median agent for facility 2, or all agents approve
only facility 1.

• If c ∈ N2 \N1, due to symmetry to the above case, the approximation ratio
is again 1.

• If c ∈ N1∩N2, c is a median agent for both facilities. The approximation ratio
is 1 in the following cases: (a) c is the unique median for both facilities, which
happens when ` and r approve the same set of facilities; (b) r is a median for
the facility located at xc+1 (so that this facility is located in-between median
agents), which happens when ` and r approve a single (different) facility, or
when ` ∈ N1 \N2 and r ∈ N1 ∩N2. So, we can consider the remaining three
cases. Let α = xc − x` ≥ 1 and β = xr − xc ≥ 1.

– ` ∈ N1 ∩N2, c ∈ N1 ∩N2, r ∈ N2 \N1. One possible optimal solution
is (x`, xc) with social cost 2α + β. The solution (xc, xc + 1) computed
by the mechanism has social cost 2α+ β+ 1. Hence, the approximation
ratio is 2α+β+1

2α+β = 1+ 1
2α+β . As this is a non-increasing function in terms

of α and β, it attains its maximum value of 4/3 for α = β = 1.
– ` ∈ N2 \N1, c ∈ N1 ∩N2, r ∈ N1 ∩N2. One possible optimal solution

is (xr, xc) with social cost α + 2β. The solution (xc, xc + 1) computed
by the mechanism has social cost α+ 2β+ 1. Hence, the approximation
ration is α+2β+1

α+2β = 1 + 1
α+2β . This is again a non-increasing function

in terms of α and β, and thus attains its maximum value of 4/3 for
α = β = 1.

– ` ∈ N1 ∩N2, c ∈ N1 ∩N2, r ∈ N1 \N2. One possible optimal solution
is (xc, x`) with social cost 2α + β. The solution (xc + 1, xc) computed
by the mechanism has social cost 2α+ β+ 1. Hence, the approximation
ration is 2α+β+1

2α+β = 1 + 1
2α+β , which is maximized once again to 4/3 for
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Algorithm 5.1 α-Left-Right (α-LR)

Input: Instance I with n agents
Output: Feasible solution z = (z1, z2)
L← left part of line from node 1 to node α
N(L)← agents that occupy nodes in L
R← right part of line from node α+ 1 to node m
N(R)← agents that occupy nodes in R
. (Case 1): Each part includes agents that approve only one, different facility
if ∃X,Y ∈ {L,R}: N1 = N(X) and N2 = N(Y ) then

z1 ← median of line defined by N(X) (ties in favor of nodes farther from α)
z2 ← median of line defined by N(Y ) (ties in favor of nodes farther from α)

. (Case 2): One part includes agents that approve only one facility
else if ∃ ` ∈ {1, 2}, X ∈ {L,R}: N` ⊆ N(X) then

if N` is empty then
X ← L

end if
z` ← median of line defined by N(X) (ties in favor of nodes farther from α)
z3−` ← β ∈ {α, α+ 1} \X

. (Case 3): Both parts include agents from N1 and N2

else
z1 ← α (rightmost node of L)
z2 ← α+ 1 (leftmost node of R)

end if

α = β = 1.
The proof is now complete.

5. Maximum cost. We now turn our attention to the maximum cost. For this
objective, Serafino and Ventre [2016] showed an upper bound of 3 on the approxi-
mation ratio of the TwoExtremes mechanism, and a lower bound of 3/2 on the
approximation ratio of any strategyproof mechanism. We improve both bounds by
showing a tight bound of 2 when the agents approve at least one facility.

5.1. Improving the upper bound. To achieve the improved upper bound of
2, we consider a class of mechanisms that use only the part of the line that is occupied,
from the first to the last occupied node, with possible empty nodes in-between; with
some abuse of notation, we denote by m the size of exactly this part of the line.
These mechanisms, termed α-Left-Right (α-LR, for short), are parameterized by
an integer α ∈ {1, . . . ,m− 1}, and their general idea is as follows: They partition the
line into two parts depending on the value of α, and then decide where to locate the
facilities based on the preferences of the agents occupying nodes in these two parts.
See Algorithm 5.1 for a formal description. We first show that every α-LR mechanism
is strategyproof.

Theorem 5.1. For any α ∈ {1, . . . ,m− 1}, mechanism α-LR is strategyproof.

Proof. Consider any instance. We distinguish between the three cases considered
by the mechanism.

True preferences are as in Case 1. The mechanism locates facility 1 at the
median node of the line defined by N(X), and facility 2 at the median node of the
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line defined by N(Y ). It suffices to show that any agent i ∈ N1 has no incentive to
deviate; the case i ∈ N2 is symmetric. If i is the unique agent in N(X), then she
occupies the median node of the line defined by N(X), where facility 1 is located,
and thus has zero cost. So, we can assume that there is some agent in N(X) \ {i}.
If agent i misreports by approving either just facility 2 or both facilities, then we
transition to Case 2 with N1 ⊆ N(X), meaning that the location of facility 1 remains
the median of the line defined by N(X). So, agent i cannot decrease her cost, and
has no incentive to deviate.

True preferences are as in Case 2. Suppose that N1 ⊆ N(L), while N2 has
agents in both L and R; all other cases that fall under Case 2 are symmetric. So,
the mechanism locates facility 1 at the median node of the line defined by N(L), and
facility 2 at the leftmost node of R. Consider any agent i, and switch between all
possible preferences of i:

• i ∈ N1. Since all agents in N(R) approve only facility 2, we can never
transition to Case 3 when i misreports. Also, agent i is indifferent between
Case 1 and Case 2 if she only approves facility 1, and prefers Case 2 to Case
1 if she approves both facilities (since her position is closer to the leftmost
node of R than to the median node of N(R)). So, agent i has no incentive to
misreport.

• i ∈ (N2 \ N1) ∩ N(L). Similarly to the above case, we can never transition
to Case 3 when i misreports. Now, i strictly prefers Case 2 to Case 1, as
she wants facility 2 to be located at the leftmost node of R, so her cost is
minimized, and has no incentive to misreport.

• i ∈ (N2 \N1) ∩N(R). Note that i approves only facility 2. If she misreports
that she approves both facilities, then we transition to Case 3, where the
location of facility 2 remains the same. If she misreports that she approves
only facility 1, then either the outcome remains the same if there is another
agent in N(R), or we transition to a symmetric case of Case 2, where N2 ⊆
N(L) (while N1 has agents in both L and R), thus changing the location of
facility 2 from the leftmost node of R to the median node of the line defined
by N(L). As this would increase the cost of agent i, she has no incentive to
misreport.

True preferences are as in Case 3. Since each of N(L) and N(R) contains agents
from both N1 and N2, the mechanism locates facility 1 at the rightmost node of L,
and facility 2 at the leftmost node of R. Consider any agent i ∈ N` ∩ N(X), where
` ∈ {1, 2} and X ∈ {L,R}. Observe that if for each facility j ∈ {1, 2} there exists
some agent in N(X) \ {i} that approves j, then agent i cannot affect the outcome;
no matter what i reports, we are still in Case 3. So, we can assume that for some
j ∈ {1, 2}, all agents in N(X) \ {i} approve only facility j. Since we are in Case 3,
we can also assume that j 6= ` (of course, agent i might also approve j). To change
the case considered by the mechanism, i must completely agree with the other agents
in N(X) and report that she approves only facility j. This leads to a symmetric case
of Case 2, where N` ⊆ N({L,R} \ X) (and Nj contains agents in both L and R).
Hence, facility ` is located at the median node of the line defined by N({L,R} \X)
and facility j is still located at either α or α+ 1. Clearly, the cost of agent i can only
increase as facility ` has moved farther away.

Next, we focus on the approximation ratio of α-LR mechanisms for the max cost.
We distinguish between cases where the size m of the line is an even or odd number,
and show that there are values of α such that α-LR achieves an approximation ratio
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of at most 2. Before we do this, we prove a lemma providing lower bounds on the
optimal max cost of a given instance, which we will use extensively.

Lemma 5.2. Let I be an instance. The following are true:
(a) If there are two agents positioned at x and y > x, and q ∈ {0, 1, 2} is the

number of facilities they both approve, then

MC∗(I) ≥ q · y − x
2

.

(b) If there is an agent positioned at x that approves both facilities, an agent
positioned at y > x that approves facility 1, and an agent positioned at z > y
that approves facility 2, then

MC∗(I) ≥
⌈
y + z − 2x

3

⌉
.

Proof. To show the two properties, we use the fact that the optimal cost for an
instance is at least the optimal cost when we restrict to any subset of agents and any
subset of facilities, in which case we aim to balance the cost of all the agents involved.
We have:

(a) We begin with the case q = 1 as the claim holds trivially when q = 0. Clearly, if
we place the facility before x or after y, the claim holds. So, let us assume that we
place the facility at node a such that x ≤ a ≤ y. The cost of the agent at node x is
then (at least) a − x, while the cost of the agent at node y is (at least) y − a. The
claim follows since it cannot be that both a− x and y − a are strictly less than y−x

2 .
When q = 2, the claim follows if at least one facility is placed before x or after y.

Let us assume that we place the facilities at nodes a and b such that x ≤ min{a, b} <
max{a, b} ≤ y. The cost of the agent at node x is then (at least) a+ b− 2x, while the
cost of the agent at node y is (at least) 2y − a− b. The claim follows since it cannot
be that both a+ b− 2x and 2y − a− b are strictly less than y − x.

(b) In this case, we want to locate facility 1 at some node a ∈ [x, y] and facility
2 at some node b ∈ [x, z], such that the maximum cost among the three agents is
minimized. The cost of the agent at node x is then (at least) a+ b− 2x, the cost of
the agent at y is (at least) y − a, while the cost of the agent at z is (at least) z − b.
As the sum of costs is (at least) y + z − 2x, it cannot be the case that all three costs
are strictly less than y+z−2x

3 . The claim follows since any cost must be an integer.

We are now ready to bound the approximation ratio of particular α-LR mecha-
nisms. We start with instances where m is an even number, for which we use α = m/2;
that is, we partition the line into two parts of equal size.

Theorem 5.3. When m is even, the MC-approximation ratio of m/2-LR is at
most 2.

Proof. Consider any instance I. We distinguish between the three cases consid-
ered by the mechanism.

Case 1. Since the agents in N(X) approve only facility 1 and the agents in N(Y )
approve only facility 2, locating facility 1 at the median node of the line defined by
N(X), and facility 2 at the median node of the line defined by N(Y ) is the optimal
solution.

Case 2. Suppose that N1 ⊆ N(L) and that N2 contains agents in both N(L) and
N(R); this is one of the symmetric instances captured by Case 2. The mechanism
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locates facility 1 at the median node yL (with 1 ≤ yL ≤ bm+2
4 c) of the line defined by

N(L), and facility 2 at node m
2 + 1 (the leftmost node of R). We distinguish between

the following cases depending on the preferences of the agents with the maximum cost
for the solution z computed by the mechanism.

• The cost of the mechanism is equal to the cost of an agent that
approves a single facility. As all agents that approve facility 1 are in
N(L), and facility 1 is located at the median of the line defined by N(L), the
cost of any agent that approves only facility 1 can be at most max{bm+2

4 c −
1, m2 − b

m+2
4 c} ≤

m
4 . Since facility 2 is located at node m

2 + 1, the cost
of any agent that approves only facility 2 can be at most m

2 + 1 − 1 = m
2 .

Hence, MC(z|I) ≤ m
2 . As N2 contains at least one agent in N(L), there exists

at least one agent at a node x ≤ m
2 that approves facility 2. By applying

Lemma 5.2(a) with x and y = m, we have that MC∗(I) ≥ m−x
2 ≥ m

4 , yielding
that the approximation ratio is at most 2.

• The cost of the mechanism is equal to the cost of an agent that
approves both facilities. Since we are in Case 2 with N1 ⊆ NL, let x ≤
m/2 be the position of the agent i that approves both facilities and has the
maximum cost among all such agents. The cost of agent i, and thus of the
mechanism, is MC(z|I) = |x− yL|+ m

2 + 1− x.
If x > yL, we have MC(z|I) = m

2 + 1 − yL ≤ m
2 . As in the case where the

cost is due to an agent that approves a single facility, we have MC∗(I) ≥ m
4 ,

and thus the approximation ratio is at most 2.

Otherwise, if x ≤ yL, we have MC(z|I) = m
2 +1+yL−2x ≤ 3(m+2)

4 −2x. Since
agent i and the agent at node m both approve facility 2, by Lemma 5.2(a),
we have that MC∗(I) ≥ m−x

2 . Hence, the approximation ratio is at most
3m+6−8x
2m−2x . As this is a non-increasing function in terms of x, it attains its

maximum value of 3m−2
2m−2 for x = 1. For every m ≥ 2, it holds that 3m−2

2m−2 ≤ 2.

Case 3. Recall that the mechanism locates facility 1 at m
2 (rightmost node of L), and

facility 2 at m
2 + 1 (leftmost node of R). Without loss of generality, we can assume

that the agent at node 1 approves facility 1 (and possibly also facility 2). We switch
between the following two subcases:

• The cost of the mechanism is equal to the cost of an agent that
approves a single facility. Then, MC(z|I) ≤ m

2 (the distance between
node 1 and node m

2 + 1). As we are in case 3, there exists an agent at some
node y ≥ m

2 + 1 that approves facility 1, and by our assumption that the

agent at node 1 approves facility 1, Lemma 5.2(a) gives MC∗(I) ≥ y−1
2 ≥

m
4 .

So, the approximation ratio is at most 2.
• The cost of the mechanism is equal to the cost of an agent that
approves both facilities. Without loss of generality, let x ≤ m/2 be the
position of the agent i that has the maximum cost among all agents that
approve both facilities. Then, MC(z|I) = m

2 − x+ m
2 + 1− x = m+ 1− 2x.

As the agent at node m approves some facility that is also approved by i, by
Lemma 5.2(a), we get MC∗(I) ≥ m−x

2 . The approximation ratio is 2·m+1−2x
m−x ,

which is a non-increasing function in terms of x, and attains its maximum
value of 2 for x = 1.

In any case, the approximation ratio of the mechanism is 2, and the theorem
follows.

For instances with odd m, we use α = (m + 1)/2. The proof of the following
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theorem is similar in structure with the previous theorem for even m, but is slightly
more complicated.

Theorem 5.4. When m is odd, the MC-approximation ratio of (m+ 1)/2-LR is
at most 2.

Proof. Consider any instance I. We distinguish between the three cases consid-
ered by the mechanism.

Case 1. Since the agents in N(X) approve only facility 1, and the agents in N(Y )
approve only facility 2, locating facility 1 at the median node of the line defined by
N(X), and facility 2 at the median node of the line defined by N(Y ) is the optimal
outcome.

Case 2. Suppose that N1 ⊆ N(L) and that N2 contains agents in both N(L) and
N(R); this is one of the symmetric instances captured by Case 2. The mechanism
locates facility 1 at the median node yL (with 1 ≤ yL ≤ bm+3

4 c) of the line defined
by N(L), and facility 2 at node m+1

2 + 1 = m+3
2 (the leftmost node of R). We

distinguish between the following cases depending on the preferences of the agents
with the maximum cost for the solution z computed by the mechanism.

• The cost of the mechanism is equal to the cost of an agent that
approves a single facility. As all agents that approve facility 1 are in
N(L), and facility 1 is located at the median of the line defined by N(L), the
cost of any agent that approves only facility 1 can be at most max{bm+3

4 c −
1, m+1

2 − bm+3
4 c} ≤

m+1
4 . Let x ≤ m+1

2 be the position of the leftmost agent
that approves facility 2. Since the agent at node m also approves facility 2,
by Lemma 5.2(a), we have that MC∗(I) ≥ m−x

2 . We now distinguish between
two subcases, based on the value of x.
If x = m+1

2 , the maximum cost among agents that approve facility 2 is at most
m − m+3

2 = m−3
2 , and thus MC(z|I) ≤ max

{
m+1
4 , m−32

}
. Since MC∗(I) ≥

m−1
4 , the approximation ratio is at most 2.

Otherwise, if x ≤ m−1
2 , the maximum cost among agents that approve facility

2 is a most m+3
2 − 1 = m+1

2 , and thus MC(z|I) ≤ max
{
m+1
4 , m+1

2

}
= m+1

2 .
Since MC∗(I) ≥ m−x

2 ≥ m+1
4 , the approximation ratio is again at most 2.

• The cost of the mechanism is equal to the cost of an agent that
approves both facilities. Since we are in Case 2 with N1 ⊆ NL, let x ≤
m+1
2 be the position of the agent i that approves both facilities and has the

maximum cost among all such agents. The cost of agent i, and thus of the
mechanism, is MC(z|I) = |x− yL|+ m+3

2 − x.
If x ≤ yL, then since yL ≤ m+3

4 , we have that MC(z|I) = m+3
2 + yL − 2x ≤

3(m+3)
4 − 2x. As node m is occupied by an agent that approves facility 2,

by Lemma 5.2(a), we have that MC∗(I) ≥ m−x
2 , and thus the approximation

ratio is 3m+9−8x
2m−2x . This is a non-increasing function of x ≥ 1, and attains its

maximum value of 3m+1
2m−2 for x = 1. For every m ≥ 5, it holds that 3m+1

2m−2 ≤ 2.
When m = 3, for x ≤ yL to be true, it has to be the case that x = yL = 1; so,
the cost of agent i for z is 2, while MC∗(I) ≥ 1, leading to an approximation
ratio of at most 2.
Otherwise, if x > yL, for yL = 1 to be possible, it would have to be the case
that m = 3 and x = 2; then, the cost of agent i is 2, while MC∗(I) ≥ 1, and
so the approximation ratio is at most 2. Hence, assume that yL ≥ 2. Then,
we have MC(z|I) = m+3

2 − yL ≤ m−1
2 . Since x ≤ m+1

2 and the agent at node
m approves facility 2, by Lemma 5.2(a), we have that MC∗(I) ≥ m−1

4 , and
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the approximation ratio is at most 2.

Case 3. Recall that in this case the mechanism locates facility 1 at m+1
2 , and facility

2 at m+3
2 . Without loss of generality, we assume that the agent at node 1 approves

facility 1 (and possibly also facility 2). We switch between two subcases:
• The cost of the mechanism is equal to the cost of an agent that
approves a single facility. Then, MC(z|I) ≤ m+3

2 − 1 = m+1
2 . As we

are in case 3, there exists an agent at some node y ≥ m+3
2 that approves

facility 1, and by our assumption that the agent at node 1 approves facility
1, Lemma 5.2(a) gives MC∗(I) ≥ y−1

2 ≥ m+1
4 , and the approximation ratio

is at most 2.
• The cost of the mechanism is equal to the cost of an agent that
approves both facilities. Without loss of generality, let x ≤ m+1

2 be the
position of the agent i that has the maximum cost among agents that approve
both facilities. Then, MC(z|I) = m+1

2 −x+ m+3
2 −x = m− 2x+ 2. Since we

are in case 3, in N(R), there exists an agent that approves facility 1 and an
agent that approves facility 2. Consider the following two subcases:
If there is an agent j at some node y ≥ m+3

2 that approves both facilities,
then, by Lemma 5.2(a), MC∗(I) ≥ y − x ≥ m+3

2 − x, and the approximation
ratio is at most 2 · m−2x+2

m−2x+3 ≤ 2.
Otherwise, if there is no agent in N(R) that approves both facilities, suppose
that the agent at node m approves facility 2, and there exists an agent at some
node y ∈

[
m+3
2 ,m

)
that approves facility 1. If x = 1, then MC(z|I) ≤ m

and, by Lemma 5.2(b), MC∗(I) ≥ dy+m−23 e ≥ dm2 −
1
6e = m+1

2 ; hence,
the approximation ratio is at most 2. If x ≥ 2, it suffices to use the bound
MC∗(I) ≥ m−x

2 implied by Lemma 5.2(a), to get an upper bound of 2·m−2x+2
m−x

on the approximation ratio. This is a non-increasing function of x, and thus
attains its maximum value of 2 for x = 2.

In any case, the approximation ratio is at most 2, and the proof is complete.

5.2. A tight lower bound for deterministic mechanisms. We conclude
the presentation of our technical results with a tight lower bound of 2 on the ap-
proximation ratio of any strategyproof mechanism with respect to the maximum cost
objective.

Theorem 5.5. The MC-approximation ratio of any strategyproof mechanism is
at least 2.

Proof. Suppose there exists a strategyproof mechanism M with approximation
ratio strictly smaller than 2. We will reach a contradiction by examining a series of
instances, all of which involve three agents and no empty nodes; see also Figure 1.

We begin with instance I1, in which the first and third agents approve only
facility 1, while the second agent approves only facility 2. Clearly, M must return
either (2, 3) or (2, 1) as MC((2, 3)|I1) = MC((2, 1)|I1) = 1; any solution where facility
1 is not placed at the second node has maximum cost 2, and returning such a solution
would contradict the assumption that the approximation ratio of M is strictly smaller
than 2. Let us assume that M returns the solution (2, 3); the other case is similar.

Next, consider instance I2, in which the first agent approves only facility 1, while
the remaining agents approve only facility 2. M must output either (2, 3) or (1, 3)
due to strategyproofness. Indeed, any solution where facility 2 is not placed at the
third node leads to a cost of at least 1 for the third agent. But then, that agent would
misreport that she only approves facility 1, thus leading to instance I1, and obtain a
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cost of 0 for the resulting solution (2, 3).
If M returns (2, 3) for instance I2, consider instance I3, in which the first agent

approves both facilities, while the other two agents approve facility 2. M must return
the optimal solution (1, 2) with MC((1, 2)|I3) = 1, since any other solution leads to a
maximum cost of at least 2. In this case, however, the first agent in I2 would misreport
that she approves both facilities to reduce her cost from 1 to 0; this contradicts the
assumption that M is strategyproof.

If M returns (1, 3) for I2, consider instance I4, in which the first agent ap-
proves only facility 1, the second agent approves both facilities, and the last agent
approves only facility 2. There are two optimal solutions in I4, (2, 3) and (1, 2), with
MC((2, 3)|I4) = MC((1, 2)|I4) = 1; any other solution has maximum cost 2. Out of
these solutions, (1, 2) would give the second agent in I2 incentive to misreport that she
approves both facilities to reduce her cost from 1 to 0. Hence, M must return (2, 3)
when given as input I4. To conclude the proof, consider instance I5, in which the first
two agents approve both facilities, while the third agent approves only facility 2. The
optimal solution is (1, 2) with MC((1, 2)|I5) = 1; any other solution has maximum
cost of at least 2. But then, the first agent in I4 has incentive to misreport that she
approves both facilities to reduce her cost from 1 to 0; this again contradicts the fact
that M is strategyproof.

6. Conclusion and open problems. In this paper, we revisited the discrete
truthful heterogeneous two-facility location problem, and showed bounds on the ap-
proximation ratio of deterministic strategyproof mechanisms when agents approve at
least one facility. Our results greatly improve upon the previous best-known ones for
this case, both with respect to the social cost as well as the maximum cost. There
are still many open questions and directions for future research.

While we were able to show a bound for the social cost that is a small constant,
thus improving upon the linear bound that was previously known for a more general
setting, we were unable to close the gap between the lower bound of 4/3 and the
upper bound of 17/4. Besides deterministic mechanisms, it would also be interesting
to focus on randomized mechanisms and the maximum cost objective, for which there
is a gap between the lower bound of 4/3 and the upper bound of 3/2 shown by
Serafino and Ventre [2016]. Let us also remark that improving upon the linear bound
for the social cost in the particular setting studied by Serafino and Ventre poses an
interesting challenge; our lower bounds clearly extend to that setting, while we believe
that our mechanism for the maximum cost achieves the same approximation guarantee
requiring only slight modifications.

Going beyond the particular model studied here, there are many extensions to be
considered. One could study settings with more than just two facilities, settings where
the positions of the agents are their private information and can report empty nodes
as their positions, settings with different heterogeneous preferences such as fractional
or obnoxious ones, and also settings with more general location graphs such as trees
or regular graphs.
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