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Abstract. Interaction analyses are useful tools to examine complex socioeco-
nomic outcomes in which the effect of one variable depends on the presence or
values of another variable. Interaction effects capture simultaneous changes in two
(or more) covariates, and their computation is especially challenging in nonlin-
ear models. For such models, a statistically significant interaction-term coefficient
does not necessarily indicate significant interactive effects. For analyses in which
the interaction effect cannot be inferred from the model estimates, I introduce
ginteff, a new command that automatically computes two- and three-way inter-
action effects. The command accommodates a large suite of estimation models
and allows researchers to use either the partial derivative or the first difference to
model the effect of the interacted variables.
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1 Introduction
Interaction analyses are used to examine complex socioeconomic outcomes in which
the effect of one variable depends on the presence or values of another variable.1 For
example, to assess whether the 2008 financial crisis had a more pronounced effect on
minorities, in a regression analysis, we would interact (that is, multiply) the indicator
of minority status with that of the before- and after-2008 periods. In linear models, the
coefficient on the interaction term can be used to infer whether the effect of the treatment
variable is statistically different at alternative values of the moderating variable. For
instance, if the interaction coefficient were to reach the conventional levels of statistical
significance, we would conclude that the 2008 crisis had a statistically different effect
on majority and minority groups. In nonlinear models, however, the coefficient on
the interaction term does not tell us the direction, magnitude, or significance of the
interaction effect (Ai and Norton 2003). For analyses in which the interaction effect
cannot be inferred from the model estimates, I introduce ginteff, a new command
that automatically computes two- and three-way interaction effects. The command

1. This type of analysis is particularly popular in social sciences (for example, economics, sociology,
political science, psychology). For instance, in political science, roughly a quarter of published
studies contain interactive hypotheses (Kam and Franzese 2007, 7–8).

© 2023 StataCorp LLC st0711

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231175253&domain=pdf&date_stamp=2023-06-22


302 ginteff: A generalized command for computing interaction effects

accommodates a large suite of estimation models and allows researchers to use either
the partial derivative or the first difference to model the effect of the interacted variables.

2 What is an effect and how do we calculate it?
Broadly speaking, the interaction effect is the change in the effect of a given variable as
another variable also changes. Before considering two simultaneous changes, I briefly
review what an unconditional effect is and how it is computed. Let us say our dependent
variable y depends on the independent variable of interest, x, and a vector of other
covariates plus the constant term, X. Conditional on the independent variables, the
predicted value of y is

Pr(y|x,X) = F (βxx+ βX)

where F (·) is the (possibly nonlinear) link function of model predictors.2 The effect
of x on y is the change in Pr(y) attributable to a change in x. There are two general
approaches to computing the effect of x, which I denote by ∆(x). One alternative is
to calculate the first difference, which is the change in Pr(y) associated with an n-unit
increase in x (frequently a one-unit increase), ∆(x) = {Pr(y|x+ n)− Pr(y|x)}. This is
the default approach for factor variables, in which case the effect is the discrete change
from the base level. For example, if x is a dummy variable, the discrete difference is
∆(x) = Pr(y|x = 1)− Pr(y|x = 0).

For continuous variables, researchers can alternatively compute the instantaneous
rate of change, which is the partial derivative with respect to x, ∆(x) = {∂Pr(y)}/(∂x).
This estimate can then be used to calculate the impact on y of a very small increase,
say, 0.001, in x.3 In this case, Pr(y) would increase by about 0.001×∆(x). In practice,
however, many analysts extrapolate and interpret the value of ∆(x) as representing the
change in y associated with a one-unit increase in x. In many (but not all) instances,
this is a good approximation. In nonlinear models, there is no guarantee that a one-unit
increase in x would lead to a change in y of 1 ×∆(x). In fact, substantive deviations
are likely when x is measured in large units (Williams 2012, 2021).

Turning to interactions, let us say we have a multiplicative model where two in-
dependent variables, x1 and x2, are interacted. In this case, the predicted value of y
is

Pr(y|x1, x2,X) = F (β1x1 + β2x2 + β12x1x2 + βX)

One can use either the partial derivative or the first difference to compute the simulta-
neous changes in x1 and x2. Specifically, the interaction effect can be computed as the
cross-partial derivative with respect to both variables, {∂2Pr(y)}/(∂x1∂x2), or as the
discrete difference between two first differences, {Pr(y|x1 + n1;x2 + n2)− Pr(y|x1;x2 +
n2)} − {Pr(y|x1 + n1;x2)− Pr(y|x1;x2)}. Technically, they are both valid approaches.
From a purely practical perspective, the first-difference approach has several advantages.

2. If the link function is strictly linear (as in the case of the standard linear regression), the expression
simplifies to Pr(y|x,X) = βxx+ βX.

3. As a rule of thumb, Cameron and Trivedi (2022, 620–622) suggest using the standard deviation of
the variable divided by 1,000 as a value for this “very small” amount.
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First, it does not require complex math, because we need to compute predicted prob-
abilities only for alternative values of x1 and x2. By contrast, taking the cross-partial
derivative is a challenging task even for relatively simple likelihood functions and may
be intractable for complex ones. Second, it is easier to explain what the interaction ef-
fect represents in substantive terms when using clearly defined increments (for example,
a one-unit increase). By contrast, partial effects reference an undefined “very small”
amount.4

3 The ginteff command
3.1 Description

ginteff computes the average and individual-level interaction effects for two- and three-
way interactions. The effect of the interacted variables can be computed via either the
partial derivative or the first difference.

3.2 Syntax

ginteff
[
if
] [

in
] [

weight
]
, effect_computation

[
options

]
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

4. One question that remains open with the first-difference approach is the starting value for contin-
uous variables. Unlike factor variables, these do not have a natural or predefined base level. Put
differently, we evaluate an n-unit increase from what value? In practice, it is up to the researcher
to choose a reasonable baseline. This can be the variable’s observed values, its mean, or another
theoretically informed value. Often touted as a limitation of the first-difference approach, this
modeling decision also affects partial derivative estimates. To make it more concrete, we would
obtain different results if we were to type margins, dydx(x) or margins, dydx(x) at((mean) x), in
which x is set at its observed values in the first case and at its mean in the second case.
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3.3 Options

Short descriptions of the ginteff options are presented in table 1. For the extended
descriptions, see The ginteff User’s Manual.

Table 1. The ginteff options

effect_computation Description

* dydxs(dxspec) specify the interacted variables for which to compute the
effect via partial derivative

fd(fdspec) shorthand for firstdiff()
* firstdiff(fdspec) specify the interacted variables for which to compute the

effect via first difference

* One of dydxs() or firstdiff() is required. A minimum of two and a maximum
of three variables must be specified in dydxs() or firstdiff().

options Description

atdxs(atdxspec) fix the interacted variables in dydxs() to specified values
nunit((#) varlist) specify the unit increase for each variable in

firstdiff()
obseff(stub) create new variables with the interaction effect for each

observation
at(atspec) compute the interaction effect at specified values of

covariates
intequation(eqno) identify the interaction equation; default is

intequation(#1)
level(#) set confidence level; default is level(95)
many report more than 100 results; maximum is 1,000
nolegend suppress output legend
noweights ignore weights specified in estimation
post post interaction effects and their variance–covariance

estimate as estimation results
predict(pred_opt) compute the interaction effect for predict, pred_opt
vce(vcetype) specify how the variance–covariance estimate and

standard errors are calculated; default is vce(delta)
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3.4 Stored results

ginteff stores the following in r():

Scalars
r(N) number of observations
r(N_psu) number of sampled primary sampling units, survey data only
r(N_strata) number of strata, survey data only
r(df_r) variance degrees of freedom, survey data only
r(level) confidence level of confidence intervals

Macros
r(cmd) ginteff
r(cmdline) command as typed
r(est_cmd) e(cmd) from original estimation results
r(est_cmdline) e(cmdline) from original estimation results
r(fdstat) the firstdiff() specification
r(model_vce) vcetype from estimation command
r(obseff) the list of new variables created because of the obseff() option
r(vce) vcetype specified in vce()
r(atstat) the at() specification

Matrices
r(at) matrix of values from the at() option
r(b) the interaction effect estimates
r(fd) matrix of values from the firstdiff() option
r(ginteff) matrix containing the average interaction effects with their standard

errors, test statistics, p-values, upper and lower confidence limits,
and critical values

r(nunit) matrix of values from the nunit() option
r(V) variance–covariance matrix of the interaction effect estimates

ginteff with the post option also stores the following in e():

Scalars
e(N) number of observations
e(N_psu) number of sampled primary sampling units, survey data only
e(N_strata) number of strata, survey data only
e(df_r) variance degrees of freedom, survey data only

Macros
e(cmd) ginteff
e(properties) b V

Matrices
e(b) estimates
e(V) variance–covariance matrix of the estimates

Functions
e(sample) marks estimation sample
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4 The ginteffplot command
4.1 Description

ginteffplot graphs the results of the immediately preceding ginteff command.

4.2 Syntax

ginteffplot
[
, options

]
4.3 Options

Short descriptions of the ginteffplot options are presented in table 2. For the extended
descriptions, see The ginteffplot User’s Manual.
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Table 2. The ginteffplot options

options Description

Main
aiepoint([#clockposstyle] ["text for label"] customize marker for the point

[ , marker_label_options estimate of the average interaction
marker_options ]) effect

aierange(
[
line_options

]
customize the range plot of the[

msize(markersizestyle)
]
) average interaction effect using

capped spikes
obseff

[
(obseff_options)

]
plot observation-level interaction

effects
output(#) identify a specific ginteff output to

be graphed; default is output(1)
save(newfile.suffix

[
, export_options

]
) export current graph

xcommon(
[
numlist

] [
*
]
) give x-axes common scale

zeroline
[
(line_options)

]
add a vertical line at the 0 value

x and y axes
xtitle(axis_title) customize x-axis title
ytitle(axis_title) specify y-axis title
xlabel(rule_or_values) customize ticks and labels for x axis
ylabel(rule_or_values) specify ticks and labels for y axis
xscale(axis_suboptions) customize how x axis looks
yscale(axis_suboptions) specify how y axis looks

Plot and graph areas
aspectratio(#

[
, pos_option

]
) plot region aspect ratio

graphregion(suboptions) customize attributes of graph region
plotregion(suboptions) customize attributes of plot region
scheme(schemename) customize the graphics scheme
xsize(#) change width of graph
ysize(#) change height of graph

Titles, legend, and notes
legend(

[
contents

] [
location

]
) standard legend, contents, and

location
note(tinfo) note about graph
title(tinfo) overall title
subtitle(tinfo) subtitle of the graph
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5 What is new or different with ginteff?
In this section, I first compare and contrast ginteff with existing community-contrib-
uted commands and then with Stata’s official commands.

5.1 Comparing ginteff with community-contributed commands

There are two community-contributed commands for calculating interaction effects, that
is, inteff and inteff3, for two- and three-way interactions, respectively (Cornelißen
and Sonderhof 2009; Norton, Wang, and Ai 2004). These commands have significantly
increased our understanding of interaction models and helped analysts correctly com-
pute interaction effects. Yet they accommodate only logit and probit models, and if the
interaction involves factor variables, they must be dummy variables. In fact, inteff3
can handle solely binary variables and cannot be used with continuous variables. inteff
can compute the effect of a continuous-by-continuous interaction via the cross-partial
derivative, but alternative modeling options are excluded (for example, the first differ-
ence). Another restriction is that numeric variables cannot have higher-order terms (for
example, squared terms).

ginteff has none of these limitations. Specifically, ginteff extends the computa-
tion of interaction effects to cases in which factor variables have more than two cate-
gories. It also allows researchers to choose whether to compute the effect of the inter-
acted variables via the partial derivative or the first difference. Additionally, ginteff
accepts weights (thus accommodating survey analyses), and the interacted variables can
have higher-order terms. Last, ginteff can be used after a wide range of estimation
models because it accommodates most models after which margins can be used. This
includes regression models for panel data (for example, xtreg, xtlogit); models for
censored or truncated data (for example, truncreg, tobit); and multiequation models
(for example, biprobit, sureg). It can also be used after models with a polychoto-
mous dependent variable, and the outcomes may be either ordered or not (for example,
ordered logit, multinomial logit). In sum, ginteff is more general than its predecessors.

ginteff also features a simplified syntax and a larger set of options. For instance,
users need not provide the names of the interacted variables in a particular sequence.5
Besides offering increased flexibility, many elective options have the same syntax as
the homonym options of margins (for example, at(), level(), noweights, post,
predict()). Because Stata users are already familiar with these options, this should
facilitate the adoption of the new command.

This said, ginteff comes with one notable restriction. It can estimate interaction
effects between continuous variables via the cross-partial derivative only for logistic,
logit, and probit models. Even when considering the restricted set of models, comput-
ing three-way interaction effects for continuous variables is a novel feature that inteff3
does not possess. This limitation, though, does not concern interactions involving factor
variables or analyses in which the effect is computed via the first-difference approach.

5. inteff syntax requires users to list continuous variables first and factor variables second.
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For clarity, there are no model restrictions when the interaction is between 1) one factor
and one continuous variable, 2) two factor variables, 3) two factor variables and one
continuous variable, 4) three factor variables, and, if one is using the first-difference ap-
proach, 5) two continuous variables, 6) one factor variable and two continuous variables,
and 7) three continuous variables.

Technicalities aside, the substantive difference between ginteff and its predecessors
is that the former computes the average interaction effect, whereas the latter compute
individual effects for each case in the data.6 The decision to compute the average or
case-level effects boils down to one’s view about how to best report nonconstant effects.
This goes beyond interaction effects because it concerns marginal effects in nonlinear
models more generally. In nonlinear models, even the unconditional effect of a variable
differs from one observation to the next because the magnitude of the effect is conditional
on the values of other covariates, which are case specific. Thus, there is no one single
effect.

Each approach comes with its own advantages and disadvantages. The case-level
approach entails computing the interaction effect separately for each individual obser-
vation. Because it reveals the heterogeneity of individual effects, this approach can
prevent gross generalizations. The alternative approach is to aggregate the individual
effects and report the average. The advantage is that we can make inferences about
a variable’s effect in the population or specific subgroups. This approach is particu-
larly useful when individual cases are anonymous and do not carry special meaning.
For example, when examining the effect of an initiative to increase voter turnout, it is
the average response that is of immediate interest. In fact, a report that focuses on
individuals’ idiosyncratic responses may be of little practical relevance to policymakers.

It is beyond the scope of this article to compare the two approaches. In practice,
their usefulness depends on the research question and type of data (for example, the
voting record of the nine U.S. Supreme Court justices or a large population survey).
Importantly, ginteff users can still compute the interaction effect for each observation
via option obseff(). Because it can estimate both the average and the individual-level
effects, ginteff offers researchers more options to analyze the data.

5.2 Comparing ginteff with Stata’s official commands

Most ginteff results can be reproduced via margins because, behind the scenes, it
is this Stata command that does the heavy lifting when computing interaction effects.
However, there are some notable exceptions. For example, margins cannot automati-
cally calculate two- or three-way interaction effects between continuous variables via the
partial derivative. Because dydx() can take just the first derivative, it cannot be used
for second- and third-order cross-partial derivatives. To calculate two- and three-way

6. By taking the mean of inteff’s or inteff3’s individual interaction effects, one can calculate the
average effect. However, one cannot obtain the correct standard error of the mean by averaging
the individual standard errors. Thus, from the information provided by inteff and inteff3, one
cannot assess whether the average effect in the population is statistically significant.
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interaction effects, the user must write the correct vector notation formula in option
expression(). Similarly, one cannot directly compute interaction effects via the first-
difference approach. For instance, to compute a three-way effect, one needs to first
correctly specify eight distinct at() options. These represent all combinations between
the initial value and the counterfactual increase in the interacted variables. Then, the
user must correctly subtract the respective predictive margins with the exact sequence
varying based on the order in which the at() options were introduced. This second
step also requires the use of a different command, nlcom. These intermediary steps can
be taxing and error prone.7

ginteff also has extra features that provide additional options and checks. For
instance, one cannot simultaneously calculate the average and individual-level interac-
tion effects using margins.8 This task is straightforward with ginteff because option
obseff() automatically computes the interaction effect for each observation. Further-
more, ginteff also checks that the specified variables are actually interacted and there
are no missing terms. For example, the analyst is notified if only two terms of a three-
way interaction are listed.

Ultimately, having a specialized command to compute interaction effects minimizes
mistakes. margins is a general command that can compute many quantities of interest,
whereas ginteff is a one-stop command for most interaction effect calculations. While
being versatile is an appealing feature of margins, it can also overwhelm users. For
instance, there is more than one alternative to compute a given quantity of interest via
margins. Specifically, some show how to compute interaction effects for factor variables
using the contrast option (for example, Wiggins [2004]), while others show how to do
so using pwcompare (for example, Pinzon [2016]). Combining the reference manuals for
1) margins, 2) margins, contrast, and 3) margins, pwcompare amounts to over 80
pages of dense information detailing dozens of options.

6 Interpreting interaction effects
Before showing how ginteff can be used to compute interaction effects, I briefly review
how to interpret them. Let us assume we have an interaction between two dummy
variables, x1 and x2, and the predicted value of y is a function of the interacted variables
as well as other covariates,

Pr(y|x1, x2,X) = F (β1x1 + β2x2 + β12x1x2 + βX)

For dummy variables, the marginal effect is the first difference, that is, the change in
Pr(y) in the presence and absence of that variable. In practice, this means calculating
F (β1x1+β2x2+β12x1x2+βX) when the variable of interest is set to 0 and 1 and then
subtracting the former from the latter. The interaction effect, in turn, is the discrete

7. For additional details and an actual illustration, see online appendix A.2.1.
8. Even advanced users who are aware of the undocumented margins, generate() option cannot

compute the individual interaction effects without additional manipulations, because this option
cannot be used in conjunction with margins, contrast or margins, pwcompare.
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double difference with respect to both x1 and x2 or the difference between two first
differences (Norton, Wang, and Ai 2004, 157):

∆2Pr(y)
∆x1∆x2

=
∆∆Pr(y)

∆x1

∆x2

=
∆∆F (β1x1+β2x2+β12x1x2+βX)

∆x1

∆x2

=
∆{F (β1 × 1 + β2x2 + β12 × 1× x2 + βX)− F (β1 × 0 + β2x2 + β12 × 0× x2 + βX)}

∆x2

=
∆{F (β1 + β2x2 + β12x2 + βX)− F (β2x2 + βX)}

∆x2

= {F (β1 + β2 × 1 + β12 × 1 + βX)− F (β1 + β2 × 0 + β12 × 0 + βX)}
− {F (β2 × 1 + βX)− F (β2 × 0 + βX)}

= F (β1 + β2 + β12 + βX)− F (β1 + βX)− F (β2 + βX) + F (βX) (1)

What does the interaction effect, {∆2Pr(y)}/(∆x1∆x2), mean in substantive terms?
To answer this question, we need to understand what each of the four elements on
the right-hand side of (1) represents. To make the interpretation more concrete, let
us assume we want to assess the effect of gender and race on health. Among other
determinants, one’s health is a function of both gender (0 = male, 1 = female) and
race (0 = majority, 1 = minority), and the two condition each other’s effect. The
dependent variable is a dummy indicator of health (0 = poor and 1 = good). For
models with a binary dependent variable, y ∈ {0, 1}, where the probability space is
bounded between 0 and 1, a popular nonlinear function is the cumulative standard
logistic distribution, Λ(·), which leads to the logit model. Specifically, this distribution
function is Λ(βX) = (eβX)/(1 + eβX) = 1/(1 + e−βX) = Pr(y = 1), where Pr(y = 1) is
the probability of the event occurring (Clark and Golder 2023, 297).

For our example, we can write the probability of being in good health as

Pr(h = 1) = Λ(βff + βrr + βfrfr + βX) =
1

1 + e−(βff+βrr+βfrfr+βX)

where h is the health indicator, f stands for female, and r stands for race. When we
replace y with h, x1 with f , x2 with r, and F (·) with Λ(·), the four right-hand-side
elements of (1) become
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∆2Λ(h)

∆f∆r
= Λ(βf + βr + βfr + βX)− Λ(βf + βX)− Λ(βr + βX) + Λ(βX)

=
1

1 + e−(βf+βr+βfr+βX)
{Pr(h = 1| f = 1, r = 1)} (2)

− 1

1 + e−(βf+βX)
{Pr(h = 1| f = 1, r = 0)} (3)

− 1

1 + e−(βr+βX)
{Pr(h = 1| f = 0, r = 1)} (4)

+
1

1 + e−(βX)
{Pr(h = 1| f = 0, r = 0)} (5)

To help with the interpretation, I note in curly braces what each element means in
terms of predicted probabilities. For example, (2) captures the probability of being in
good health (h = 1) for a woman (f = 1) who is a member of a racial minority (r = 1).
Similarly, (3) captures the probability of being in good health for a woman who is a
member of the majority group (r = 0), and so on. For convenience, I will reference
the respective probabilities by the corresponding equation number (that is, PrEq. (2),
PrEq. (3), PrEq. (4), and PrEq. (5)).

Without altering the result, we can rearrange the four probabilities as the difference
between two distinct differences: (PrEq. (2) −PrEq. (4))− (PrEq. (3) −PrEq. (5)). The first
parenthetical statement, (PrEq. (2)−PrEq. (4)), captures the difference in the probability
of being healthy between a minority female and a minority male. Put differently, this is
the effect of gender on health for racial minorities. The second parenthetical statement,
(PrEq. (3)−PrEq. (5)), captures the difference in the probability of being healthy between
a woman and a man from the majority group. Thus, this is the effect of gender on health
for the racial majority. Finally, the difference in the effect of gender between the minority
and majority groups is the interaction effect. Substantively, it captures the relative
strength of the two gender effects. For instance, a positive value on the interaction
effect would indicate that the effect of gender on well-being is more pronounced for
minorities than for the majority group.9

The interpretation of the interaction effect would be similar if gender were interacted
with a continuous variable such as age. In this case, the interaction effect would capture
the relative strength of the two gender effects attributable to an n-unit increase in
age. More specifically, we would compare the effect of gender between the current
group of respondents and a counterfactual group where respondents were one year older
(assuming the standard one-unit increase in x).
9. To focus on the effect of racial status on health, we could write the discrete double difference

as (PrEq. (2) − PrEq. (3)) − (PrEq. (4) − PrEq. (5)). Here we compare the effect of being a mem-
ber of a racial minority for women (the first parenthetical statement) and the same effect for
men (the second parenthetical statement). A positive value on the interaction effect (that is, the
difference between the two effects) would indicate that the effect of race on well-being is more
pronounced for females than for males. Because the cross or second derivatives are symmetric,
([{∂Pr(y)}/(∂x1)]/(∂x2)) = ([{∂Pr(y)}/(∂x2)]/∂x1), the interaction effect is the same regardless
of whether we group the probabilities to describe the effect of gender or that of race.
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Last, we could also have an interaction between two continuous variables, say, age
and income (measured in thousands of dollars). In this example, the interaction effect
would capture the effect on health of a one-unit increase in income (that is, $1,000)
attributable to a one-unit change in respondents’ age. More specifically, we would
compare the effect of increasing the respondents’ income by $1,000 with the effect of
the same income bump for a counterfactual group where respondents were one year
older.10

7 Computing interaction effects with ginteff
I illustrate the capabilities of the ginteff command using data from the Second Na-
tional Health and Nutrition Examination Survey, available from the StataCorp website.
The dependent variable (DV) is health, which codes the respondents’ well-being on
a five-point scale (that is, poor, fair, average, good, and excellent). The independent
variables are age, female, and race; age is numeric, whereas female and race are
factors. female is coded 0 for males and 1 for females. race is a three-category variable
in which 1 = white, 2 = black, and 3 = other. In the upcoming examples, female and
race are the interacted variables, and age is used as a control.11 To keep things concise,
I frame the discussion around the effect of gender on health. But the estimated effects
also apply to race because cross-partial derivatives are symmetric. Last, these exercises
are for illustration purposes only. In particular, I do not test a specific hypothesis or
include all relevant predictors.

7.1 A binomial logit example

For this exercise, I use a dichotomous indicator of health coded 1 if the respondent’s
health is above average and 0 otherwise. Specifically, the dummy DV is obtained by
collapsing the poor, fair, and average levels into one category and the good and excellent
levels into another category.

After getting the data, I first fit an additive logit model with no interactions as a
reference point. The coefficient on female is negative and statistically significant, which
means that, keeping everything else constant, females are less likely to be in good health
than men. Because logistic regression is a nonlinear model, the coefficient estimate is not
the same as the average marginal effect. Setting race and age at their observed values,
I compute the effect of gender on health using margins. The generate(obs_noint)
option calculates the predicted probability, separately for males and females, for each
case in the data (the _noint suffix is shorthand for “no interaction”). The results are
saved in two variables called obs_noint1 and obs_noint2. The difference between these
variables is the individual-level marginal effect of gender. The level(90) option simply
instructs margins to report the 90% confidence interval (CI) instead of the default, the
95% CI.

10. I discuss the interpretation of three-way interaction effects in online appendix A.1.
11. I present and discuss the corresponding three-way interactions in online appendix A.2.
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. webuse nhanes2f, clear

. keep health race female age

. clonevar health_2l = health
(2 missing values generated)
. recode health_2l (1/3=0) (4/5=1) // two-level health
(10,335 changes made to health_2l)
. label variable health_2l "Dummy Health"
. logit health_2l i.female i.race age, nolog level(90)
Logistic regression Number of obs = 10,335

LR chi2(4) = 1291.33
Prob > chi2 = 0.0000

Log likelihood = -6512.4514 Pseudo R2 = 0.0902

health_2l Coefficient Std. err. z P>|z| [90% conf. interval]

female
Female -.1419507 .0420207 -3.38 0.001 -.2110687 -.0728328

race
Black -.9702392 .0727429 -13.34 0.000 -1.089891 -.8505877
Other -.4587717 .1525501 -3.01 0.003 -.7096942 -.2078492

age -.0406942 .0012659 -32.15 0.000 -.0427765 -.0386119
_cons 2.046528 .0688644 29.72 0.000 1.933256 2.1598

. margins, dydx(female) generate(obs_noint) level(90)
Average marginal effects Number of obs = 10,335
Model VCE: OIM
Expression: Pr(health_2l), predict()
dy/dx wrt: 1.female

Delta-method
dy/dx std. err. z P>|z| [90% conf. interval]

female
Female -.0312231 .0092384 -3.38 0.001 -.0464188 -.0160273

Note: dy/dx for factor levels is the discrete change from the base level.
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I plot the margins results in figure 1, where the average marginal effect of gender is
indicated by the solid square mark and the horizontal line is the 90% CI. On average,
the probability of being healthy is 0.031 [−0.046,−0.016] percentage points lower for
females. This effect is statistically significant because the 90% CI does not contain zero.
Thus, compared with men, women are significantly less likely to be in good health. To
judge whether the average value represents a good measure of central tendency, I also
plot the individual marginal effects for all cases in the data. These are indicated by
the string of dots below the average effect. Because overlapping values may obscure the
distribution of individual effects, the median is superimposed. While the average and
median values are very similar, there is still variation among individual responses. This
variation is not due to interactions directly modeled (there are none) but rather to the
fact that, in nonlinear analyses, even unconditional effects depend on the values of all
model covariates.12

AME

(median)

-.05 -.04 -.03 -.02 -.01 0
 

Change in the predicted probability of Health

Figure 1. The marginal effect of gender on health (dichotomous indicator)

Next I fit a new model where female and race are interacted. To compute the
average interaction effect, I then issue the ginteff command. The obseff(obs_l2w)
option instructs ginteff to also compute the interaction effect for each observation (the
_l2w suffix is shorthand for “logit model with a two-way interaction”). These results
are saved in two variables, obs_l2w1 and obs_l2w2, one for each contrast of race (that
is, change from the base level).

12. The code to produce the figures not generated by the ginteffplot command (that is, figure 1, 4a, 5a,
and 5b) is provided in the replication files.
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. logit health_2l i.female##i.race age, nolog level(90)
Logistic regression Number of obs = 10,335

LR chi2(6) = 1296.53
Prob > chi2 = 0.0000

Log likelihood = -6509.849 Pseudo R2 = 0.0906

health_2l Coefficient Std. err. z P>|z| [90% conf. interval]

female
Female -.1165629 .0445974 -2.61 0.009 -.189919 -.0432067

race
Black -.8073243 .1039329 -7.77 0.000 -.9782786 -.6363699
Other -.5510827 .213072 -2.59 0.010 -.9015549 -.2006105

female#race
Female#Black -.3131646 .1450113 -2.16 0.031 -.5516869 -.0746422
Female#Other .1922582 .3048587 0.63 0.528 -.3091897 .6937061

age -.0407121 .0012661 -32.15 0.000 -.0427947 -.0386295
_cons 2.034095 .0692179 29.39 0.000 1.920241 2.147948

. ginteff, dydxs(female race) obseff(obs_l2w) level(90)
Interaction Effects

Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(i.x2) : dy/dx w.r.t. x2; x2 : b1.i(2.3).race
Number of obs = 10,335
Expression : Pr(health_2l), predict()

Statistic Std. Err. [90% Conf. Interval]

∆(1.x1)#∆(2.x2) -.0561421 .02817198 -.10248089 -.00980331
∆(1.x1)#∆(3.x2) .04228932 .06580824 -.06595559 .15053423

Note: dy/dx for factor levels is the discrete change from the base level.

Before moving to interpreting and presenting the results, let us examine the ginteff
output to understand what information each line conveys. The first line of the output
(that is, the left-aligned text at the top) spells out that interaction effects are the
substantive quantities of interest computed by the ginteff command. The second line
clarifies that the main statistic reported in the results table is the average interaction
effect. The third line specifies how the standard error of the average interaction effect
is calculated (here the delta method).

The next lines introduce the interacted variables, x1 and x2. (For three-way inter-
actions, there will also be an x3 variable.) For each individual variable, the associated
line lists its full name and details how its effect, ∆(x∗), is computed. Let us consider
x2, which corresponds to variable race. The first thing to note is that the label of the
effect, ∆(i.x2), includes i., conveying that the respective variable is a factor. After the
colon, the ∆(·) notation is explained. In this case, it refers to the partial derivative of
Pr(y) with respect to x2 (abbreviated to dy/dx); w.r.t. is shorthand for “with respect
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to.” Because the variable at hand is a factor, the partial derivative is the discrete change
from the base level. After the semicolon, the x2 label is elaborated upon. The additional
details comprise the base level (here b1, meaning race = 1) and the list of factor levels
for which the discrete change is to be calculated (enumerated in the i() parentheses).
In this example, this is all other levels of race, {2, 3}, which is the default. But one
can specify a single level or, for factor variables with many levels, a subset of levels (see
example 2 from The ginteff User’s Manual for a concrete example). Finally, the full
name of the variable is displayed at the end.13

The next line of the output notes the number of observations used in the calcula-
tion. The last part of the output header spells out the expression of the response for
which the effect is calculated. For our example, this is the probability of a positive
outcome, Pr(health_2l = 1), which is the default after logistic regression. But we
could have requested the linear prediction instead via the predict(xb) option or some
other specified prediction. Knowing the type of the response is important because it
informs the interpretation of the interaction effect. Because the response is the proba-
bility of a positive outcome in our case, the interaction effect can be interpreted as the
change in the predicted probability of being in good health attributable to a change in
both gender and race. Thus, the interpretation of the interaction effect depends on the
outcome metric of the response, which is determined in part by the estimation model.
For example, after linear regression, the interaction effect captures the change in the
average value of y, but the change in the predicted number of events after a Poisson
regression.14

When the analyst calculates the interaction effect for multiple at() scenarios, the
legend showing the fixed values of covariates for each scenario will be displayed just
above the table of results (see example 2 from The ginteff User’s Manual).

The results table shows the value of four estimates: the average interaction effect, its
standard error, and the lower and upper limits of the associated CI. These are the table
columns. Each row is associated with a distinct interaction effect, and the respective
label clarifies the specific scenario. In our example, there are two outputs, one for each
contrast of race. The first row output, labeled ∆(1.x1)#∆(2.x2), is the interaction
effect associated with a discrete change in x1 (female) from the base level to the factor
level 1 and a discrete change in x2 (race) from the base level to the factor level 2. In
practical terms, this means moving from males to females and from whites to blacks.
The variables represented by x1 and x2, and their respective base levels, are indicated
in the output header. The label of the second output, ∆(1.x1)#∆(3.x2), indicates that
the respective interaction effect is attributable to the same discrete change in female,

13. The output looks somewhat different for numeric variables, whose effect can be calculated via the
partial derivative or the first difference. For the partial derivative approach, dy/dx, the value at
which the variable in question is set before taking the derivative (for example, observed values,
mean) would be displayed (see example 3 from The ginteff User’s Manual). For the first-difference
approach, denoted by (y|x∗+n∗)-(y|x∗), both the value of the n-unit increase and the baseline
(for example, observed values, mean) would be displayed (see example 4 from The ginteff User’s
Manual).

14. When ginteff computes the interaction effect for multiple outcomes, the response expression output
is broken down by individual outcome (see the next section, An ordered logit example).
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but a change in race from the base level to the factor level 3 (racial minorities other
than black).

In figure 2a, I graph the estimated average and individual interaction effects sep-
arately for both outcomes. Plotting the ginteff results is easily achieved using the
companion ginteffplot command. For instance, figure 2a1 was generated simply by
typing

. ginteffplot

The ginteffplot command automatically retrieves the point estimate of the average
interaction effect (the solid square mark) and its upper and lower confidence limits (the
horizontal capped spike). The significance level of the CI is set by the previous ginteff
command. The name for the dependent variable used in the x-axis title (that is, Dummy
health) is the label of health_2l, which I defined when creating this variable. The
graph indicates that, on average, the negative effect of gender is statistically larger for
blacks compared with whites (that is, the base category of race). Thus, women are
generally less likely than men to have above-average health, and furthermore, black
women fare worse than white women. The substantive difference is a decrease in the
probability of being in good health of 0.056 [−0.102,−0.010] percentage points.

By contrast, women from racial groups other than black seem to fare better than
white women. Specifically, the positive estimate in figure 2a2 indicates that the negative
effect of gender on health is smaller for minority respondents. However, this effect is not
statistically significant. Compared with figure 2a1, this graph has several extra features.
First, the x title is more informative because it spells out what the outcome metric is,
namely, predicted probability. Second, the plot displays a vertical line at the zero value
to more easily judge whether the interaction effect is statistically significant. Third, it
reports the full range of individual effects for all cases in the data with the median value
superimposed. Because the individual effects are clustered and the median and mean
values are very similar, the average represents a good measure of central tendency in
this case. The command line to produce the enhanced figure 2a2 is

. ginteffplot, obseff(median) output(2)
> xtitle("Change in the predicted probability of {it:Health}", size(4)) zeroline

Option output(2) indicates that we want to plot the second row estimate from the
results table.
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By default, the ginteffplot command considers only the values for an individual
output. This is fine when we estimate a single interaction effect or are mainly interested
in assessing whether a given effect is statistically significant. However, if we want to
evaluate one interaction effect in relation to another, we need to adjust the graphs
so that they use the same scale. More specifically, all plots should have a common
x axis. This can be achieved using the option xcommon()—where we can specify one
other ginteff output, #; a subset of outputs, numlist; or all outputs, *—to be put
on a common x-axis scale. I illustrate this option in figure 2b, which shows the same
interaction effects from figure 2a but with plots that share the same x axis. The two
graphs were produced by typing

. ginteffplot, obseff(median) xcommon(2)
> xtitle("Change in the predicted probability of {it:Health}", size(4)) zeroline
. ginteffplot, obseff(median) output(2) xcommon(1)
> xtitle("Change in the predicted probability of {it:Health}", size(4)) zeroline
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(a) Graphs with individual x axes
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(a1) Blacks versus whites

AIE

(median)

-.07 -.026 .018 .062 .106 .15  
0

Change in the predicted probability of Health

(a2) Other minorities versus whites

(b) Graphs with a common x axis
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Change in the predicted probability of Health

(b1) Blacks versus whites
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(median)

-.1 -.05 0 .05 .1 .15

Change in the predicted probability of Health

(b2) Other minorities versus whites

Figure 2. The interaction effect between gender and race on health (dichotomous indi-
cator)

Having the graphs on the same scale facilitates comparisons across outcomes and
scenarios, but this should not be taken as a definitive significance of differences test.
Specifically, when the CIs of two point estimates overlap, the estimates may or may
not be different from one another (Goldstein and Healy 1995; Radean Forthcoming;
Schenker and Gentleman 2001). Importantly, this is the case even if the point estimates
have different signs and only one of them is statistically significant (Gelman and Stern
2006). This is the situation in our example because the two interaction effects are
−0.056 [−0.102,−0.010] and 0.042 [−0.066, 0.151]. When the CIs overlap, the solution
is to conduct a standard significance of differences test. For that, we need to first save
the results, along with the estimated variance–covariance matrix in e(), by specifying
option post. We can then pass these estimates to other commands (for example, nlcom)
and conduct additional tests.
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To illustrate this procedure, I reissue the previous ginteff command, using quietly
to suppress the output. The main difference is that now the results are saved in e()
because option post is specified. We can confirm this by listing the coefficient vector
e(b). It is easy to see that these are the ginteff estimates, not the coefficients from the
logit model. Last, I use nlcom to test whether the difference between the two interaction
effects is statistically significant. Because the 90% CI of the difference in estimates
contains 0, the respective effects are not statistically distinct at the 0.1 significance level.
This is despite all conjectural evidence pointing to the contrary (that is, the compared
estimates have opposite effect signs and different statistical significance status).

. quietly ginteff, dydxs(female race) post

. matrix list e(b)
e(b)[1,2]

_inteff1 _inteff2
y1 -.0561421 .04228932
. nlcom _b[_inteff2] - _b[_inteff1], level(90)

_nl_1: _b[_inteff2] - _b[_inteff1]

Coefficient Std. err. z P>|z| [90% conf. interval]

_nl_1 .0984314 .0701942 1.40 0.161 -.0170277 .2138906

7.1.1 An ordered logit example

One of the advantages of ginteff over existing community-contributed commands is
that it can accommodate models other than the binomial logit or probit. As an illus-
tration, I next present an application concerning an ordered logit model. The data are
the same as before, but now the DV is an ordinal variable, health_3l, with three levels,
where 1 = poor, 2 = average, and 3 = excellent. Practically, I collapse the poor and fair
levels into one category, keep the average category unchanged, and collapse the good
and excellent levels into another category.

. clonevar health_3l = health
(2 missing values generated)
. recode health_3l (2=1) (3=2) (4/5=3) // three-level health
(9,606 changes made to health_3l)
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. ologit health_3l i.female##i.race age, nolog level(90)
Ordered logistic regression Number of obs = 10,335

LR chi2(6) = 1645.32
Prob > chi2 = 0.0000

Log likelihood = -10007.515 Pseudo R2 = 0.0760

health_3l Coefficient Std. err. z P>|z| [90% conf. interval]

female
Female -.0848304 .0413361 -2.05 0.040 -.1528223 -.0168386

race
Black -.7802284 .0904631 -8.62 0.000 -.929027 -.6314298
Other -.3585295 .1870633 -1.92 0.055 -.6662212 -.0508378

female#race
Female#Black -.2698946 .1224673 -2.20 0.028 -.4713354 -.0684538
Female#Other .1785221 .2693293 0.66 0.507 -.2644853 .6215294

age -.0437226 .0011899 -36.75 0.000 -.0456798 -.0417654

/cut1 -3.570566 .0714685 -3.688121 -3.45301
/cut2 -2.137158 .0653756 -2.244691 -2.029625

. ginteff, dydxs(female race) obseff(obs_ol2w) level(90)
Interaction Effects

Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).female
∆(i.x2) : dy/dx w.r.t. x2; x2 : b1.i(2.3).race
Number of obs = 10,335
1._pr : Pr(health_3l==1), predict(pr outcome(1))
2._pr : Pr(health_3l==2), predict(pr outcome(2))
3._pr : Pr(health_3l==3), predict(pr outcome(3))

Statistic Std. Err. [90% Conf.

1._pr#∆(1.x1)#∆(2.x2) .06109026 .02486272 .02019472
1._pr#∆(1.x1)#∆(3.x2) -.02962508 .04701208 -.10695308
2._pr#∆(1.x1)#∆(2.x2) -.01203469 .00379538 -.01827754
2._pr#∆(1.x1)#∆(3.x2) -.00924215 .01140145 -.02799587
3._pr#∆(1.x1)#∆(2.x2) -.04905557 .02384525 -.08827751
3._pr#∆(1.x1)#∆(3.x2) .03886723 .05830807 -.05704102

Interval]

1._pr#∆(1.x1)#∆(2.x2) .1019858
1._pr#∆(1.x1)#∆(3.x2) .04770292
2._pr#∆(1.x1)#∆(2.x2) -.00579185
2._pr#∆(1.x1)#∆(3.x2) .00951157
3._pr#∆(1.x1)#∆(2.x2) -.00983362
3._pr#∆(1.x1)#∆(3.x2) .13477547

Note: dy/dx for factor levels is the discrete change from the base level.
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Let us consider the same two-way interaction between gender and race. Upon
fitting the new model, I issue the ginteff command, which is identical to the one used
after the simple logit (save the stub name in option obseff(obs_ol2w), with the new
suffix being shorthand for “ordered logit model with a two-way interaction”). The first
thing to note is that there are three times as many output results. Because now we
have three distinct health outcomes, the interaction effect is computed separately for
each of them. Second, ginteff automatically incorporates any auxiliary parameters
into the calculations of interaction effects (here /cut1 and /cut2), removing the need
for manual manipulation.

Figure 3 graphs the ginteff results by outcome and race. For easy comparison,
all plots use a common x-axis range. Figure 3a1 outlines the difference between the
conditional effect of gender for blacks and whites, 0.061 [0.020, 0.102]. The positive
estimate means that black women are more likely to be in poor health than white
women. When it comes to the average and excellent health outcomes, black women are
less likely to be in good health (figures 3a2 and 3a3, respectively). All three interaction
effects are statistically significant. The gender effect, however, has the opposite impact
when we compare whites with other racial minorities. Specifically, women from minority
groups other than black are less likely to be in poor or average health compared with
white women and more likely to have excellent health. However, none of these effects
are statistically significant (see figure 3b).
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(a) Blacks versus whites
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(b) Other minorities versus whites
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Figure 3. The interaction effect between gender and race on health (three-level indicator)
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8 The interaction effect in practical applications
When assessing conditional hypotheses, researchers are typically interested in whether
the treatment effect is constant across the levels of the moderator. The quantity of
interest in such analyses is the interaction effect because it can provide the answer
to the research question for linear and nonlinear models alike. Because of theoretical
confusion or a lack of knowhow to compute the interaction effect, many analysts try to
get at the interaction without computing the interaction effect. Resorting to heuristics
or work-arounds, however, invites mistakes.

A common misconception is that we can draw valid inferences about the significance
status of the interaction effect from the statistical significance level of the interaction
term coefficient. In nonlinear models, however, a statistically significant interaction
term is neither necessary nor sufficient for significant interactive effects. Conflating
the interaction effect with the coefficient on the interaction term is another frequent
misunderstanding. This is partly because, in a linear regression, the interaction effect is
equal to the coefficient on the product term; that is, {∂Pr(y)}/(∂x1∂x2) = βx1x2

. But
this is not the case for nonlinear models.

Because of the erroneous association, questions about the coefficient on the interac-
tion term are often misguided questions about the interaction effect. The many Statal-
ist entries on this topic attest to how acute the problem is (for example, Statalist
thread [2016, 2017a,b] to reference a few). Specifically, “[p]eople often ask what the ME
[marginal effect] of an interaction term is [. . . even though] there is not one” (Williams
2012, 329) and are willing to go to great lengths to obtain it.15 For example, to force an
estimate for “the average marginal effect of the interaction,” one user proposed forgoing
the Stata operator for interactions and manually generating the product between the
interacted variables. Thus, instead of running the proper command

probit y a##b

the user suggested the following work-around:

generate c = a*b
probit y a b c
margins, dydx(c)

By defrauding margins into thinking that c is a real variable, one may obtain an esti-
mate for its marginal effect, but, as Clyde Schechter succinctly put it, “[t]hat number
is meaningless nonsense” (Statalist thread 2017a). After helpful comments and clari-
fications from Statalist contributors, it turns out the sought “effect of the interaction
term” was actually the interaction effect.

With respect to the practical challenges of computing the interaction effect, some
struggle to account for the simultaneous change in the second interacted variable. Let
us look at a concrete example. Radean (2019) examines the interaction effect between

15. How frequent is “often”? Sometimes, the frequency is measured in minutes, which led a Statalist
contributor to rhetorically ask, “What is the probability that two people would ask a question based
on the same misconception within minutes of each other?” (Statalist thread, 2017a).



326 ginteff: A generalized command for computing interaction effects

office benefits and ideological preferences on the probability of party switching in Brazil.
The dependent variable is coded 1 if a legislator who is a member of party A affiliates
midterm with party B and 0 otherwise. President's Coalition is coded 1 if the
legislator’s party is a member of the president’s legislative coalition and 0 otherwise.
This is taken as a proxy for access to state resources. Ideological Congruence is the
distance between the legislator’s ideological position and that of the party.

Because President's Coalition is a dummy variable, its effect is calculated as
the discrete change from the base level. But is the effect constant across the range of
ideological congruence? To answer this question, Radean (2019) reports the effect of
President's Coalition at minimum and maximum values of congruence with 84% CIs
(see figure 1.Ia, 147). Unlike with the standard 95% CI, one can visually judge signifi-
cance of differences at the 0.05 level from the overlap of the customized 84% intervals
(Goldstein and Healy 1995; Schenker and Gentleman 2001). The use of this particular
interval level, however, is appropriate only if the compared estimates are normally dis-
tributed, are independent (that is, not correlated), and have identical standard errors
(Radean Forthcoming). These are very restrictive and unrealistic assumptions, and the
study does not indicate whether all three conditions are simultaneously met. Using an
imprecise interval level may, in turn, lead to incorrect inferences. Ultimately, from the
information provided, we cannot determine whether the effect of office benefits changes
as ideological congruence also changes.

The solution to all the problems discussed above is to compute the interaction
effect—a task made easy by the ginteff command. Examining the interaction ef-
fect can lend additional support for the research hypothesis, but it may also provide
evidence that contradicts it. Either way, the interaction effect should not be ignored.

8.1 Replication of a previous study

In this section, I illustrate one type of substantive findings that could be missed if
researchers overlook the interaction effect. To do so, I replicate an analysis from
Heller and Mershon (2005) on the effect of the electoral system and party discipline on
party switching.16 The electoral system is made operational in terms of party- versus
candidate-centered electoral rules. While the electorates vote for an individual candi-
date in candidate-centered electoral systems, they cast a party vote in party-centered
systems (implicitly voting for all candidates on that party’s list). The Electoral Law
variable is coded 1 if the legislator was elected under candidate-centered electoral rules
and 0 if the legislator was elected on a party list.

Furthermore, the degree of party-label clarity (that is, information about the party’s
policy stance) is used as a proxy for party discipline (that is, the control that party lead-
ers exercise over the rank-and-file members). When party labels are clear, there is less
uncertainty about the policy preference of party leadership. When the labels are blurry,
legislators may sometimes find themselves at odds with their party’s position. Thus,

16. Berry, DeMeritt, and Esarey (2010) are the first to have used this example to illustrate that a
statistically significant product term is not a necessary condition for meaningful interactions.
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leaders of parties with blurry labels have to enforce party discipline more frequently,
which increases a legislator’s incentives to switch.

In terms of theoretical expectations, representatives elected under candidate-cen-
tered rules should be less likely to switch. Because voters can single them out on the
ballot at the next election, they have higher incentives to keep faith with the electorate.
By contrast, legislators elected on (closed) party lists are to some extent insulated from
voter retribution. The underlying assumption here is that the electorate prefers loyal
representatives, who do not jump ship when a better offer comes along. The negative
effect of candidate-centered rules on the probability of party switching should be more
pronounced in the context of clear party labels because the costs of strict party discipline
are less onerous in this context (Heller and Mershon 2005, 538–539).

The output below replicates the logistic regression from Heller and Mershon (see
model 3, table 4, 550). With a p-value of 0.274, the coefficient on the interaction term
is far from the conventional levels of statistical significance. Based on this information,
the authors infer that there is little empirical support for the conditional hypothesis
and do not investigate further. Specifically, they do not compute either the marginal
effect of the electoral system or the interaction effect.17

. use heller_mershon_jop2005_replication, clear

. logit anycross electlaw##blurrylabel age newcomer groupsize govstatusn
> southisland if elected96, nolog level(90)
Logistic regression Number of obs = 630

LR chi2(8) = 83.98
Prob > chi2 = 0.0000

Log likelihood = -122.67409 Pseudo R2 = 0.2550

anycross Coefficient Std. err. z P>|z| [90% conf. interval]

1.electlaw .6580585 1.257445 0.52 0.601 -1.410255 2.726372
1.blurrylabel 3.254135 1.076709 3.02 0.003 1.483105 5.025164

electlaw#
blurrylabel

1 1 -1.441158 1.318086 -1.09 0.274 -3.609217 .7269013

age .0007566 .0182891 0.04 0.967 -.0293264 .0308395
newcomer .8352592 .3596385 2.32 0.020 .2437065 1.426812
groupsize -.0209664 .0047239 -4.44 0.000 -.0287366 -.0131962

govstatusno~d -1.612178 .4880202 -3.30 0.001 -2.414899 -.8094558
southisland 1.191375 .3575821 3.33 0.001 .6032052 1.779546

_cons -3.852148 1.370978 -2.81 0.005 -6.107207 -1.597089

But, in a logit model, a statistically significant interaction term is not necessary for
significant interactive effects (Ai and Norton 2003; Berry, DeMeritt, and Esarey 2010).
To elucidate the matter, I first compute the marginal effect of the electoral system for
both types of party labels using the margins command. These results are plotted in

17. By contrast, for analyses where the coefficient on the product term is statistically significant, the
authors discuss the moderating effect of party labels on the effect of the electoral system (for
example, see the analysis from model 1, table 3, 548, and the associated discussion on page 547).
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figure 4a. The effect is positive in the clear label scenario, suggesting that legislators
elected under candidate-centered rules are more likely to switch than their party-list
counterparts. As the authors note, this result does not support the theory, but the
effect is also not statistically significant. The marginal effect of the electoral system is
negative and significant in the blurry label scenario, which is in line with the theoretical
expectation. While now we have a better idea of the conditional effect of the electoral
system on party switching, we still cannot tell whether the effect is statistically different
between the two scenarios. This is because the estimates’ CIs overlap. For a definitive
answer, I compute the interaction effect using the ginteff command.

. margins r.electlaw@blurrylabel, contrast(nowald) level(90)
Contrasts of predictive margins Number of obs = 630
Model VCE: OIM
Expression: Pr(anycross), predict()

Delta-method
Contrast std. err. [90% conf. interval]

electlaw@blurrylabel
(1 vs 0) 0 .0083313 .0154511 -.0170835 .033746
(1 vs 0) 1 -.0687639 .0357297 -.127534 -.0099938

. ginteff, dydxs(electlaw blurrylabel) obseff(obs_p) level(90)
Interaction Effects

Statistic : Average interaction effect
Standard error : Delta-method
∆(i.x1) : dy/dx w.r.t. x1; x1 : b0.i(1).blurrylabel
∆(i.x2) : dy/dx w.r.t. x2; x2 : b0.i(1).electlaw
Number of obs = 630
Expression : Pr(anycross), predict()

Statistic Std. Err. [90% Conf. Interval]

∆(1.x1)#∆(1.x2) -.07709514 .03898491 -.14121962 -.01297066

Note: dy/dx for factor levels is the discrete change from the base level.

The statistically significant interaction effect (graphed in figure 4b) indicates that
the effect of the electoral system on party switching is in fact distinct between clear
and blurry party-label scenarios. Thus, the authors were too quick to dismiss the
idea that party-label clarity conditions the effect of electoral rules. This is a piece of
information that cannot be gleaned from either the logit coefficients or the conditional
effects. More generally, there are cases where only by computing the interaction effect
can we ascertain whether the treatment effect varies significantly with the levels of the
moderator. In sum, by overlooking the interaction effect, we ignore crucial evidence
for testing conditional hypotheses, which can lead to us either understating or, more
problematically, overstating the extent of the empirical support for our theories.
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Clear Label

Blurry Label

-.12 -.09 -.06 -.03 .030
 

Change in the predicted probability of Party Switching

(a) The marginal effect of the electoral system
across types of party labels

AIE

(median)

-.25 -.2 -.15 -.1 -.05 0
  

Change in the predicted probability of Party Switching

(b) The interaction effect between
the electoral system and party labels

Figure 4. The effect of the electoral system on party switching

8.2 Alternative approaches for continuous-by-continuous interactions

Besides computing the interaction effect, there are other options to explore how two
continuous variables interact. One alternative is to plot the marginal effect of x1 across
the range of the moderating variable x2,

[
Pr(y|x1 + n;x2 = min) − Pr(y|x1;x2 =

min)
]
, . . . ,

[
Pr(y|x1 + n;x2 = max) − Pr(y|x1;x2 = max)

]
(see Brambor, Clark, and

Golder [2006]). Marginal-effect graphs are useful for outlining the trajectory of the con-
ditional effect but are not designed to compare the effect of x1 at alternative values of
x2. Specifically, if there is overlap between the CIs of the effect of x1 at the minimum
and maximum values of x2, we cannot tell whether the effect changes significantly with
x2.

To illustrate the problem, let us consider a logistic regression with a dummy health
indicator and a continuous-by-continuous interaction between height and weight.18

Figure 5a graphs the effect on health of increasing height by one standard deviation
from its observed values across the range of weight. As expected, an increase in height
always has a positive effect on health but more so for heavier people. This is because it
decreases the body mass index by a greater amount. However, we cannot tell whether
the effect of the counterfactual increase in height is statistically different between the
minimum and maximum values of weight, because the associated 95% CIs overlap.

18. The fitted model is logit health_2l c.weight##c.height age i.female i.race, and the full re-
gression output is shown in online appendix B.
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Figure 5. Examining continuous-by-continuous interactions

Heat maps are another popular approach to examine continuous-by-continuous in-
teractions (see Huber [2017]). This type of plot graphs the predicted probability of y
across the range of both x1 and x2. The benefit of such graphs is that they cover a
wide range of feasible values. Because no individual probabilities are identified, though,
heat maps do not typically reveal the estimated uncertainty. Thus, we cannot judge
whether a given change in predicted probability is statistically significant. Illustrating
this problem, figure 5b graphs the predicted probability of being healthy across the
range of both height and weight. It is easy to note that one has the lowest probability
of being in good health when one scores low on height and high on weight (a scenario
associated with a high body mass index). Conversely, higher probabilities are associ-
ated with low weight and high height scores. That said, from this graph we cannot tell
whether Pr(health = 1 | height = max; weight = min) is statistically different from
Pr(health = 1 | height = min; weight = max).

Unlike other empirical approaches, the interaction effect allows us to directly assess
whether the change in the effect of x1 due to x2 also changing is statistically significant.
Thus, it can be used to assess interactive theories. In fact, establishing whether the
treatment effect is distinct at different values of the moderator is the crux of conditional
hypothesis testing.

9 Conclusion
Interaction analyses are useful tools to examine complex socioeconomic outcomes where
the effect of one variable depends on the presence or levels of another variable. Inter-
action effects capture the simultaneous change in two (or more) covariates, and their
computation is challenging for models with a nonlinear link function (for example, bino-
mial logit or probit) or models involving auxiliary parameters (for example, the correla-
tion parameter in bivariate probit, the cutpoints in ordered logit, etc.). To complicate
matters, in nonlinear analyses, the coefficient on the interaction term does not tell us
the direction, magnitude, or significance of the interaction effect. For analyses where
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the interaction effect cannot be inferred from the model estimates, I introduce a new
command that automatically computes two- and three-way interaction effects.

ginteff accommodates a large suite of estimation models and allows researchers
to use either the partial derivative or the first difference to model the effect of the
interacted variables. While ginteff is a specialized command, its many options make
it fairly flexible. For example, a general concern with nonlinear models is that there is
no one single effect, be it conditional or unconditional. In such instances, one can use
the at() option to specify any number of relevant scenarios or compute the interaction
effect for each observation via obseff().

Last, it is important to acknowledge that ginteff is a postestimation command in
that it retrieves information from a regression model for further analysis but does not
produce new estimates as such. This means that the ginteff results are only as good
as the data fed into the command. In particular, ginteff assumes that the multiplica-
tive model is correctly specified. For example, all constitutive terms are included (see
Brambor, Clark, and Golder [2006]), there are no unmodeled interaction or quadratic
terms, the underlying model assumptions hold, etc.

Concerning unmodeled terms, Beiser-McGrath and Beiser-McGrath (2020) show
that omitted product terms can bias the included terms.19 As a possible solution,
the study considers a suite of parametric and nonparametric estimators (that is, the
adaptive lasso, kernel regularized least squares, and Bayesian additive regression trees).
The advantage of these estimators is that they can select the covariates that belong
in the model from a very large set of potential controls without leading to overfitting.
One drawback is that they are more conservative; that is, the CI of relevant terms
more frequently includes zero (729). Based on Monte Carlo simulations, the authors
conclude that, on average, the adaptive lasso is the best approach. If using an alternative
estimator, the analyst has to compute the interaction effect by hand while accounting
for any constraints associated with that estimator.20 If the results from the alternative
estimator and those from the standard model are substantively similar (that is, there
are no omitted relevant terms), researchers may use ginteff to compute the interaction
effect using the estimates from the standard model.

Many researchers take for granted that model assumptions hold in their particular
application without assessing the validity of these assumptions. But, when this is not
the case, the estimates may be fragile and model dependent. This in turn can lead
to incorrect inferences. Hainmueller, Mummolo, and Xu (2019) show that this is so
even for the more innocuous case of linear regression. Specifically, the authors consider
19. The omitted product term bias can occur when the analyst includes a nonrelevant interaction

term, say, between x and z2, but omits a relevant interaction, for example, between x and z1, which
shares a constitutive term with the included interaction term. Specifically, instead of estimating y =
βxx+βz1z1+βxz1xz1+βz2z2, the analyst fits the incorrect model y = βxx+βz1z1+βz2z2+βxz2xz2
(Beiser-McGrath and Beiser-McGrath 2020, 710–711).

20. For instance, margins cannot be used to compute marginal effects after lasso models. This is
because “margins requires a full coefficient vector and variance matrix for those coefficients. The
lasso inference commands can only tell us about a subset of that coefficient vector and associated
variance matrix” (StataCorp 2021a, 110). Because ginteff relies on margins for the computation
of the interaction effect, it also cannot be used after lasso models.
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two common assumptions: 1) the linear interaction effect changes at a constant rate
with the moderator, and 2) there is sufficient common support in the data to compute
valid conditional effects. Based on a literature survey, they find that these assumptions
often fail in practice, so they propose some diagnostics. A binning estimator (where
a continuous moderator is broken into several bins) can provide a sense of the effect
heterogeneity. It may also alert the analyst if the data are sparse. Another diagnostic
tool is the kernel smoothing estimator. This estimation strategy relaxes the linearity
assumption and estimates a flexible functional form of the treatment effect across the
moderator’s range. If the diagnostic tests reveal that model assumptions hold, the
research can compute the interaction effect using ginteff. If not, the analyst needs to
first address the underlying problem.

Even if we have the appropriate research design and our model is correctly specified,
we still need to exercise caution when computing substantive quantities of interest. We
often make assumptions not only at the estimation stage but also in the postestimation
phase. The latter type of assumption may be underappreciated but is equally important
to obtain practically meaningful estimates. As an example, consider the oft-used fixed-
effects logit model, which can be easily fit in Stata via the xtlogit command with the
fe option. The standard panel-data model is

Pr(yit = 1|xit, αi) =
eβxit+αi

1 + eβxit+αi
, i = 1, . . . , N, t = 1, . . . , Ti

where (eβ)/(1 + eβ) is the standard logistic cumulative distribution function, αi is the
individual effect, i indexes individuals, and Ti is the number of observations on each indi-
vidual. Fixed-effects models are attractive because they can account for time-invariant,
unobserved individual characteristics. This in turn minimizes the risk that the coef-
ficients on the observed predictors (the βs) are affected by the omitted variable bias.
The downside is that we cannot make valid inferences about quantities of interest that
require estimates of the fixed effects. The problem is that it is not possible to estimate
αi consistently when Ti is fixed (for a formal discussion, see Greene [2004, 106]). Pro-
viding the intuition for why adding more data cannot solve the problem, Wooldridge
(2020, 467) explicates that “as we add each additional cross-sectional observation, we
add a new αi. No information accumulates on each αi when T is fixed.”

This means we cannot compute predicted probabilities or partial effects unless we
choose an arbitrary value for α. There is no optimal a priori value “[b]ecause the distri-
bution of αi is unrestricted—in particular, E(αi) is not necessarily zero” (Wooldridge
2010, 558).21 But this is exactly what is typically assumed. Case in point, the margins
command assumes αi = 0 for every i when used after xtlogit with the fe option.22

Some analysts forcefully advise against calculating partial effects at αi = 0 because esti-
mates computed using an arbitrary value are not particularly meaningful (Baetschmann
et al. 2020; Santos Silva and Kemp 2016). Because ginteff draws on calculations from
margins, all assumptions are carried over. While evaluations of how problematic a par-

21. To keep with the previous notation, I replace ci with αi in the quote from Wooldridge (2010).
22. This assumption is documented in the xtlogit postestimation manual entry (StataCorp 2021b,

315).
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ticular assumption is are bound to be subjective, at the very least researchers should
be aware of the assumptions made in the estimation and postestimation phases.
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11 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2

. net install st0711 (to install program files, if available)

. net get st0711 (to install ancillary files, if available)

The User’s manuals and online appendix mentioned in the text can be found by
installing these files.

For additional information as well as any future software updates, visit
https://mariusradean.org.
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